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Abstract

This report shows multiple diagnostic machine-learning models that can be used to recognize
several seal and valve leakages in a Ultra High Performance Liquid Chromatography (UHPLC)
pump. With the presented methods it is possible to estimate the seriousness of such a fault
and to differentiate between several faults. The diagnostic models were trained on a simulation
model of the real pump system.

The first diagnostic machine-learning model, that can be used to say something about
the seriousness of a fault, uses a combination of feature extraction and a simple Multilayer
Perceptron (MLP) model. The second model uses a combination of Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) layers. With the CNN layer of this CNN
+ LSTM based model it was possible to extract features from sensor signals of a UHPLC pump.
Compared with a method based on feature extraction, the CNN + LSTM based model is more
robust and averagely increases the accuracy with 32.7% when predicting the seriousness of a
fault.

To differentiate between several faults, two methods were investigated. The first method that
was investigated used the normalized probability outputs of the individual diagnostic models as
input for a simple MLP model. This model did however not converge during training and could
therefore not be used to differentiate between faults. The second method was based on a CNN
+ LSTM model and used the sensor signals directly. This method proved to be successful with
a maximal accuracy of 92.5% on the validation set.

All the CNN + LSTM based diagnostic machine-learning models proved to be not only
successful on a simulated validation set, but also on the real pump system using a developed
C++ application. A model-based machine-learning approach does, however, not always work as
was seen in the case of training a diagnostic model to detect backlash. It is therefore important
to always check whether the fault can simply be detected using a sensor signal directly instead
of using machine learning. Furthermore, when a simulation model of the system available, it is
important to check whether the model is not only valid for the normal behavior of the system,
but also for problematic behavior.

Finally, a number of things might improve the work presented in this report. Right now the
maximum number of classes that can be used to classify a certain fault can only be found using
a trial and error method. It might be interesting to perform more research in an unsupervised
based approach or better method to determine the maximum number of classes. Furthermore,
when training a model to differentiate between faults it is important to also define a class for
normal pump behavior. In addition to this, a technique that might be interesting when adding
more faults to this differentiate model is continuous learning. With continuous learning it is
possible to reuse the already trained differentiate model and only train the model to detect
new classes which in theory would improve the training time. Other things that might be
interesting to investigate are performing sensitivity analyses for noise on sensor signals, using a
variable sampling method instead of the used constant sampling method and performing more
research on how to detect cross-correlations of faults such that trained models become even
more accurate.

i C.J. van Ekris, BSc University of Twente
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Chapter 1

Introduction

1.1 Context

Automated diagnosis of faults in pump systems is a field in which not a lot of research is done
and a lot of things can still be improved. In general, all these pump systems have one inlet, one
outlet and several sensor signals which can be used to detect general faults such as leakages
(see Figure 1.1).

Figure 1.1: Diagnosis of faults in pump systems.

In order to automatically detect faults in systems, several diagnostics methods are currently
used, but do each have their own disadvantages.

Traditionally, automated diagnosis has been performed by mainly checking for the exceeding
of certain threshold values for sensor signals (Nyberg and Frisk, 2008). However, this method
heavily depends on correctly setting these threshold values and is therefore not very robust.

Another method is to check for deviations between a simulation model of a system and the
real system (Basseville et al., 1993). However, this method has the disadvantage that running
this model in real-time requires a lot of computer power and therefore has the disadvantage that
not all possible faults can be detected.

In order to overcome these disadvantages, the work of Murphey et al. (2006) shows a
promising method which can be successfully used for locating multiple classes of faults in an
electric drive. Using a simulation model of an electric drive, machine-learning models based on
feature extraction were trained and faults in the real electric drive could be successfully detected.
Compared with the method based on detecting deviations between a simulation model and real
system, this method requires less computer power because not the whole system needs to be
simulated, but only a specific fault.

In this assignment an improved version of this method will be used to perform diagnostics
in a pump used for Ultra High Performance Liquid Chromatography (UHPLC). A sketch of this
process that uses two of these so called UHPLC pumps can be seen in Figure 1.2.

1 C.J. van Ekris, BSc University of Twente



Pump Diagnostics Using Machine Learning CHAPTER 1. INTRODUCTION

Figure 1.2: Detection of substances using a UHPLC process.

UHPLC is a technique in analytical chemistry used to separate, identify and quantify each
component in a mixture; for instance blood (Wikipedia, 2019). It works by passing a pressurized
solvent containing the sample mixture under high pressure through a column filled with a solid
adsorbent material such as carbon. Each component in the sample interacts slightly differently
with the adsorbent material, causing different flow rates for the different components and leading
to the separation of the components as they flow out of the column. The separated components
can hereafter be identified using for instance a spectrum analyzer.

In order to separate the components successfully, it is important that the UHPLC pump used
to bring the liquid solvent under high pressure maintains a constant flow and pressure for the
outlet. A short drop in the pressure or small deviation in the flow can result in a completely
worthless result or even result in a wrong identification of components in a to be analyzed
sample.

Figure 1.3: Sketch of the pump system containing two valves, two pistons with pressure sensors
and two electric motors.

Figure 1.3 shows a sketch of a UHPLC pump. As previously mentioned, the main goal of the
pump is to maintain a constant flow and pressure for the outlet. To achieve this, two pistons
(primary and secondary piston) and two pressure chambers (primary and secondary chamber)
are used. Using a specific stroke pattern for both pistons, the pressures inside both chambers
can be controlled and the pressure of the secondary chamber can be kept constant. Because
this secondary chamber is directly connected to the outlet, this results in a constant flow and
pressure for the outlet.

Robotics and Mechatronics C.J. van Ekris, BSc 2



CHAPTER 1. INTRODUCTION Pump Diagnostics Using Machine Learning

However, sometimes a seal or valve leakage occurs inside the pump resulting in an inconsistent
flow or pressure for the outlet. In order to detect these kind of faults, two promising machine-
learning techniques are investigated and compared.

Hereby the first method is a machine-learning model based on feature extraction that is
also used in the work of Murphey et al. (2006). Compared with this method more recent
machine-learning techniques based on Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) have proven to be successful in the area of diagnostics (R. Zhao et
al., 2017). The second method will therefore be a machine-learning model based on CNN and
LSTM. Just as in the work of Murphey et al. (2006) both machine-learning models will be trained
on a dataset generated by a simulation model of the real system, in this case the 20-sim model
of the pump in Figure 3.2. By comparing the second method with a method based on feature
extraction, it can be determined whether using these newer machine-learning techniques leads
to a better performing model and therefore possibly a better method as presented in the work
of Murphey et al. (2006).

1.2 Research Questions

Based on the previously addressed context, the following research question is composed:

To what extend can a machine-learning method trained on a simulation model be used to
detect faults in a real pump?

This research question is made more specific by the following sub-questions:

1. What are important faults to detect and how can they be simulated using the provided
20-sim model of the pump?

2. Can a CNN be used to perform feature extraction and can a model based on CNN + LSTM
be used to detect faults in a pump?

3. How does a CNN + LSTM based method compare with a method based on feature
extraction?

4. What method can be used to differentiate between faults?

5. How can the final implementation of the diagnostic machine-learning models be validated?

1.3 Approach

In order to answer the proposed research questions, first research on several diagnostic machine-
learning methods is done and it is explained why the specific choice for a machine-learning
method based on CNN + LSTM is made. Thereafter, an analysis of the current pump system
is made to determine what faults can occur and to come up with set of requirements for the to
be developed diagnostics. Next, the 20-sim model of the pump is analyzed to determine how
the faults can be simulated to generate datasets that can be used for the training of diagnostic
machine-learning models.

After this analysis and research phase, the two different machine-learning techniques are
used to train several diagnostic machine-learning models on individual faults. With these individual
models it should be possible to say something about the seriousness of a fault. Next, a method
will be developed to differentiate between faults such that can be determined which fault really
occurs when multiple individual models detect a fault. Finally, the best individual models and
the differentiate model will be validated in real-time on the real pump system.

1.4 Outline

Chapter 2 describes the background which contains literature research which explains what
diagnostic machine-learning methods can be used and how the work. Next, Chapter 3 describes
the current state of the used pump system, what faults can occur and how the simulation

3 C.J. van Ekris, BSc University of Twente



Pump Diagnostics Using Machine Learning CHAPTER 1. INTRODUCTION

model looks like. The design Chapter 4 describes which machine-learning framework is most
suitable and shows the machine-learning pipeline that will be used to train diagnostic models.
Furthermore, it shows an in depth explanation of the individual and differentiate models and
how these models will be validated on the real pump system. Chapter 5 shows the results of
the experiments and Chapter 6 describes the discussion of theses results. Finally, Chapter 7
shows the conclusion of the assignment and answers each research question.

Robotics and Mechatronics C.J. van Ekris, BSc 4



Chapter 2

Background

In this background chapter, literature research is done to find out how similar diagnostic problems
were solved using machine-learning and the most promising techniques for this assignment are
described.

When looking in the literature, it can be concluded that automated diagnosis is not used for
UHPLC pumps yet. When looking more generally at other types of pumps, centrifugal pumps for
instance, sensor signals that are often used for diagnostics are pressure, motor speed, motor
torque, motor current and flow rates (Isermann, 2011). Most of these sensor signals are also
available for the pump used in this assignment.

Because the diagnostic machine-learning models will be trained on a dataset generated
from a simulation model, the dataset will be a dataset based on time series. In order to develop
a classification model based on time series, several methods can be used such as proposed
by Hyndman et al. (2015), Fulcher et al. (2013), Fulcher and Jones (2014) and Bandara et
al. (2017). Summarized, these methods come down to two different approaches; using an
optimized process to extract and select features in time series or using a Recurrent Neural
Network (RNN). In the case of RNNs, in particular LSTM networks are used.

2.1 Feature Extraction and Selection

In order to come up with useful features from the generated datasets, this Section looks into
extracting features from time series and how to select the most promising features for training.

Figure 2.1: General workflow for feature extraction from time series (Christ et al., 2016).

Figure 2.1 shows the general workflow for feature extraction from time series. First, a window
with a specific time span is taken of raw time series data. Next, feature aggregation is used to
capture all samples of the window in a limited number of features. This is done by determining

5 C.J. van Ekris, BSc University of Twente
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minimum, maximum, mean and more values of the window. Finally, the most significant features
are determined (feature selection) and used for the final dataset.

The work proposed by Trovero and Leonard (2019) and Jahankhani et al. (2006) both show
examples of how such a feature-extraction method can be used to perform classification on time
series. The work of Olszewski (2001) shows how these kind of classifications can be improved
by using a number of generic features that can be used in multiple domains.

Next, Chatterjee (2019) shows how the Python library TSFRESH (Christ et al. (2018)) can
be used to automatically extract useful features from time series. By default, the library extracts
794 features after which the most significant features are selected based on automatically
configured hypothesis tests. The work of Chatterjee (2019) also shows a method to perform
feature selection using a Random Forest (RF) classifier. Another approach for automatic feature
extraction for classification in time series is shown by Mierswa (2005). The paper proposes a
method for automatic feature extraction using Discrete Wavelet Transform (DWT) and Discrete
Fourier Transform (DFT) which improves clustering and reduces the size of classification rule
sets on a benchmark dataset.

2.2 Long Short-Term Memory (LSTM)

In this section, a brief explanation is given about LSTMs and multiple methods to implement
LSTMs are analyzed.

An example of a LSTM can be seen in Figure 2.2. Compared with standard RNNs, as
seen in Figure 2.3, LSTMs are capable of learning long-term dependencies. This is achieved
by using four interacting neural network layers instead of only one layer. The four interacting
neural network layers together determine what input information should be kept and how much
it should contribute to the output.

Figure 2.2: A LSTM containing four interacting neural network layers (σ, σ, tanh and σ), three
inputs (xt−1, xt, xt+1), three outputs (ht−1, ht, ht+1) and multiple LSTM cells (A). (Christopher
Olah, 2019).

A first example of a LSTM implementation is proposed by Lipton et al. (2015). This research
evaluates the ability of LSTMs to recognize patterns in multivariate time series of clinical measurements.
The proposed model was trained on raw time series, was able to outperform several strong
baselines on a wide variety of metrics (F1 score of 0.933) and nearly matched the performance
of a Multilayer Perceptron (MLP) trained on hand-engineered features.

J. Yang and Kim (2018) propose an algorithm for accident diagnosis using LSTM which
improves the limitation for time reflection. Furthermore, the outputs of the proposed model
are post-processed using softmax to determine the ranking of accident diagnosis results using
probabilities.

Next, a fault diagnosis scheme for fault diagnosis of rotating machinery is proposed by R.
Yang et al. (2018). Using the LSTM based method, both spatial and temporal dependencies
can be utilized to detect and classify faults based on available sensor measurement signals.

Other papers that show classifiers based on LSTM for diagnostic problems are proposed
by R. Zhao et al. (2017), H. Zhao et al. (2018), Choi et al. (2016), Pan et al. (2018), Xiao et

Robotics and Mechatronics C.J. van Ekris, BSc 6
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Figure 2.3: A standard RNN containing only one neural network layer (tanh), the same number
of inputs and outputs as Figure 2.2 and multiple LSTM cells (A) (Christopher Olah, 2019).

al. (2019) and K. Lee et al. (2018). Here the work of R. Zhao et al. (2017) and K. Lee et al.
(2018) looks especially interesting due to the use of a CNN, before the LSTM layers, to perform
feature extraction from raw data. Furthermore, a Bidirectional-LSTM (Bi-LSTM) is used instead
of a traditional Unidirectional-LSTM (Uni-LSTM). According to the papers, a Bi-LSTM has the
advantage over Uni-LSTMs to preserve information from both past and future, instead of only
past information, which improves the classification. In the case of K. Lee et al. (2018) the
combination of a CNN and Bi-LSTM resulted in an improvement of 7.22% for the Root-Mean-
Square Error (RMSE) compared with other state-of-the-art models that only used a Uni-LSTM
or Bi-LSTM. For the work of R. Zhao et al. (2017), also an improvement was seen over LSTMs
that did not use a CNN.

7 C.J. van Ekris, BSc University of Twente



Chapter 3

Analysis

In this analysis chapter, the current state of the system is analyzed to determine what kind of
hardware and software is used to control the existing UHPLC pump. Based on this, a number of
requirements for the to be developed system are specified. Next, a list of possible faults for the
pump are shown and research is done on what kind of variables can be used to detect these
specific faults. Finally, the 20-sim simulation model is analyzed to determine how these faults
can be simulated to generate datasets that can be used for training diagnostic machine-learning
models.

3.1 Current State of the System

In Figure 3.1a an architecture overview of the current pump situation can be seen. The system
mainly exist out of two hardware components; the pump and an PC. The pump contains firmware
that communicates with internal sensors and actuators, logs data to a memory buffer and
communicates with the driver component of the PC that is able to control the pump. Right
now, when a fault within the pump occurs, a mechanic uses the PC to retrieve the latest 240
seconds of log data from the pump and saves it to a CSV file. This log file is then send to an
expert who will determine what causes the fault and how it can be fixed.

(a) Current situation (b) New situation

Figure 3.1: Overview of the current (left) and new (right) pump situations where the arrows
represent the exchange of data between the modules (Weustink and Ekris, 2019). In this
assignment there is focused on the development of the diagnostic component as shown in
red for the new pump situation.

In order to remove the need for an experts opinion to solve a fault, the new situation as seen
in Figure 3.1b is proposed. For this new situation, the pump will no longer write log data to a
memory buffer, but instead directly communicate the log variables to the diagnostic component
on the PC using an User Datagram Protocol (UDP) connection. This has the advantage that
the pump no longer has to be stopped to obtain log data and diagnostics on this log data can
be done in real-time. Furthermore, an UDP instead of a TCP/IP connection is used such that
a higher baud rate can be achieved. This is necessary since the sensor signals are updated
every 1 millisecond.

The focus of this research is on the development of the diagnostic component of the PC. For
the PC hardware, the current driver that controls the pump is based on C++, runs on a Windows
operating system (OS) and has the following minimal specifications:

Robotics and Mechatronics C.J. van Ekris, BSc 8
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• CPU: Dual Core 2.4 GHz+ (Intel i5/i7 or equivalent AMD)

• RAM: 8 GB

• Disk Capacity: 128 GB

In order to use the same PC hardware and OS, the to be developed and implemented diagnostics
should thus be able to run on a Windows OS and should not require higher specifications as
mentioned above. Preferably, the diagnostics should be implemented in C++, such that the
driver component and diagnostics can be implemented in one application.

3.2 Faults

As mentioned in Section 1.1, the main goal of the UHPLC pump is to maintain a constant flow
and pressure for the outlet and to achieve this, two pistons and two pressure chambers are
used.

An example for normal behavior of the pump can be seen in Figure 1 of Appendix A. The
first plot shows that by changing the desired flow setpoint, the primary and secondary pressures
inside the pump change accordingly. In the second plot, it can be seen how the two pistons
inside the pump achieve this desired flow setpoint and keep the secondary pressure constant
using their specific stroke behavior.

Several faults inside the pump can occur which result in unwanted behavior for the pump.
According to the customer of the pump, the following faults (F1 - F8) have the highest priority
for the to be developed diagnostics. This assignment will focus on the first five faults:

• F1. Primary Seal Leakage

• F2. Outlet Check Valve Leakage

• F3. Inlet Check Valve Leakage

• F4. Backlash

• F5. Pump Head Blockage

• F6. Pressure Deviation Chambers

• F7. Pressure Ripple

• F8. Secondary Seal Leakage

In Figure 2 of Appendix A an example for one of the faults is shown. In the first plot it can be
seen that the pressure in the secondary chamber is no longer constant. Furthermore, in the
second plot it can be seen that the primary piston stokes have a non-linear pattern instead of
the linear pattern shown in Figure 1 of Appendix A. From this can be concluded that there is a
seal leakage for the primary piston.

3.3 Simulation of Faults

Figure 3.2 shows a top overview for the 20-sim simulation model of the UHPLC pump which
can be used to simulate faults and generate the required datasets to train the machine-learning
models.

In the first block of Figure 3.2, the firmware of the pump is modeled. In the second part of
the model, the control block is shown which is used for code generation. This generated code
runs inside the driver component of the PC as shown in Figure 3.1. Next, the I/O blocks for
both pistons are shown and the spindle blocks which can be found in the mechanics part of
the model. These spindle blocks both contain a model for a brushless DC motor that drives
a spindle for the piston. Finally, the hydraulics block is shown which contains a model of the
primary and secondary chambers, some pressure sensors and several hydraulic valves.

9 C.J. van Ekris, BSc University of Twente
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Figure 3.2: Top view of the 20-sim simulation model for the pump and PC (Weustink and Ekris,
2019).

In order to simulate the faults, as mentioned in Section 3.2, several model parameters will be
changed. A list of parameters that will be changed for each fault can be found in Appendix B.
This list was drawn up using a consultation with the developers and modelers of the pump. To
limit the scope of the project, it is assumed that the following conditions apply to the behavior of
the pump when running the diagnostics:

• Pressure of 300 - 900 bar

• Flow setpoint of 0.5 - 1 mL/min

• Water is used as solvent

• The sensor signals continue to function

where most of the faults can be simulated by only changing a parameter in the 20-sim model,
F1 to F8 except F4, this is not the case for backlash because it is not modeled yet. In order to
model backlash in an efficient way the formula as seen in Equation 3.1 can be used.

f(x) =
1

α
· ln
(

1 + eα·(x−1)

1 + e−α·(x+1)

)
(3.1)

This formula is proposed in the work of Margielewicz et al. (2019) and should help the integration
routine when simulating backlash. In this formula the backlash force (f ) in Newton is calculated
based on the position difference (x) in meter, a coefficient α which can be freely chosen and a
backlash value of 1 micrometer. The higher the value for coefficient α, the more accurate the
model becomes. Chapter 4 describes how this formula is implemented in the 20-sim model to
simulate backlash.

3.4 Diagnostic Machine-Learning Models

Related work in Chapter 2 shows that a machine-learning method based on a combination of
CNN and LSTM can sometimes outperform or has similar performance as a method based on
a combination of feature extraction and a machine-learning method. For a feature-extraction
method, features need to be manually engineered or an automatic feature-extraction method
such as TSFRESH can be used. However, a combination of CNN and LSTM has the potential
to skip this process. Furthermore, the related work has shown that LSTMs can be successfully
used for the detection of several diagnostic problems and that adding one or more CNN layers
to these models resulted in a higher accuracy. Based on this literate research, a machine-
learning model using a combination of CNN and Bi-LSTM layers looks the most promising for
the detection of problem situations inside the UHPLC pump. However, to make sure that this is
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also the case for this specific machine-learning problem, both methods will be tried out and the
performance will be compared.

The performance of the feature-extraction model and CNN + LSTM based model will be
compared on the first three faults (F1 - F3). Hereby the models are trained to say something
about the seriousness of a fault and several different settings are tried out which will be further
explained in Section 4.3. Next, the best performing method will be used to train diagnostic
machine-learning models on fault F4 and F5. Again, these models are trained to say something
about the seriousness of the fault. Finally, two different methods are investigated to differentiate
between several faults which will be further explained in Sub-Subsection 4.3.2.3.
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Chapter 4

Design

This design chapter shows how the backlash is modeled because this fault could not be simulated
by only changing a parameter in the 20-sim model. Furthermore, the chosen machine-learning
framework and the machine-learning pipeline are shown. Hereby the machine-learning pipeline
section exactly describes the pre-processing of the data, the layout of the used machine-
learning models and the validation process on the real pump system.

4.1 Simulation of Faults

As mentioned in Section 3.3 most of the faults could be simulated by only changing a parameter
in the 20-sim model. However, the current simulation model of the pump did not have an option
to simulate the backlash fault and therefore an additional component had to be added to the
model.

Figure 4.1: 20-sim simulation model of the primary piston motor spindle.

Figure 4.1 shows the 20-sim simulation model of the primary piston motor spindle. The red box
marks the spindle which transforms a rotation of the brushless DC (BLDC) motor to a translation
of the mass. In this spindle backlash can occur which results in that a rotation does not directly
result in a translation. This phenomenon only occurs when changing the direction of rotation for
the BLDC motor. In order to simulate this fault the simulation model in Figure 4.2 is made.
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Figure 4.2: Simplified 20-sim simulation model of the motor spindle with backlash.

The simplified simulation model of Figure 4.2 shows that the mass presented in the original
model is divided in two parts and a new backlash component is placed in between. The standard
20-sim implementation of this backlash component is changed in order to reduce the required
simulation time.

In order to make Equation 3.1 suitable for different backlash values and more accurate when
approaching the backlash value, an adapted version of this formula as can be seen in Equation
4.1 is proposed and used in the final implementation of the model.

f(x) = β · s
α
·
(
ln
(
s+ eα·(x−s)

)
− ln

(
s+ e−α·(x+s)

))
, (4.1)

where s =
backlash

2
, α = 100 · 1

s
, β = slope

Chapter 5 shows a simulation with a backlash value of 10 µm and a slope of 1010. This slope
value will also be used when performing simulations with different backlash values to generate
the dataset. Chapter 5 also shows how all the other faults were simulated.

4.2 Machine-Learning Framework

In order to implement both models, several machine-learning frameworks are compared. Section
3.1 describes why a final implementation of the diagnostics in C++ is preferred. However, the
development and training of machine-learning models is considered more straight forward in
Python due to the large number of supported libraries and simpler syntax. A machine-learning
framework that supports the training of a model in Python and thereafter exporting it to C++ is
therefore preferred.

Popular frameworks that support such a workflow are TensorFlow (Martıén Abadi et al.,
2015), PyTorch (Paszke et al., 2017) and Caffe (Jia et al., 2014). A comparison between the
different frameworks for several criteria can be seen in Table 4.1.
For each criteria a score on a scale from 1 to 5 is used where 1 stands for bad and 5 for good.
Hereby LSTM and CNN support both have a weight of 2 since one of the models will be a
CNN + LSTM based model. The scores are determined by reading the documentation of the
libraries and based on user feedback. In the end, the choice for TensorFlow is made due to its
good documentation, support for LSTMs and CNNs and because it is more production ready.
Furthermore, TensorFlow has the advantage that Keras (Chollet et al., 2015) can be used for a
simplistic high level implementation of models resulting in a less steep learning curve. Finally,
the GPU support of TensorFlow ensures that the training of models is faster than when training
the model using a CPU.
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Table 4.1: Comparison of multiple machine-learning frameworks.

Weight TensorFlow/Keras PyTorch Caffe

Production Ready 1 5 3 2
LSTM Support 2 5 5 1
CNN Support 2 5 5 5
GPU Support 1 5 5 5
Other Functionality 1 5 4 3
Simplicity 1 5 5 3
Documentation 1 5 4 3

Total Score 45 42 28

4.3 Machine-Learning Pipeline

To prepare the generated datasets for training and compare the performance of the models, the
machine-learning pipeline in Figure 4.3 is used. The subsections that follow describe how each
section of this pipeline is designed. The first Subsection describes the data generation and pre-
processing of the data. The second Subsection describes how this data is used to train three
different types of diagnostic machine-learning models. Finally the third Subsection describes
how the performance of these diagnostic machine-learning models is analyzed on a validation
set and on a real pump system.

Figure 4.3: General machine-learning pipeline to generate the datasets for training and
evaluating the performance of trained machine-learning models on the simulation model and
real pump system.

4.3.1 Data Generation and Pre-Processing
In order to automate the data generation process, parameter combinations can be defined in
an Excel file and using the Python scripting interface of 20-sim simulation results can be saved
to a Comma-Separated Values (CSV) file. In the Excel file, for each parameter combination a
label can be provided which can later be used to train a machine-learning models. During the
labeling of the dataset it is made sure that each class has approximately the same number of
parameter combinations such that the resulting dataset will balanced.

The by 20-sim generated raw dataset needs to be pre-processed. A detailed pipeline for
this pre-processing can be seen in Figure 4.4 and pseudocode of the algorithm can found in
Appendix D.
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Figure 4.4: Pre-processing pipeline to prepare the generated raw datasets for training.

During the pre-processing, first only the relevant model variables will be selected such as the
pressure in the primary and secondary chamber of the pump and the position of pistons. The
table in Appendix C exactly shows what variables were available, which of these variables were
selected and why they were selected. The selected variables are hereafter normalized using
a min-max scaler such that all values lay between 0 and 1. According to Suarez-Alvarez et
al. (2012) this should prevent that specific variables with large numerical values dominate the
model and according to Pedregosa et al. (2011) this ensures that a model converges faster
during training. Next, each data file, which is the result of a simulation with one parameter
set, is divided in windows based on the logic state variables (see Appendix F). These logic
state variables are one of the variables which are available in the data file and show the current
state of the controller. For the first three faults (F1 - F3) simply the full window will be used as
can be seen in Figure 1 of Appendix F. For the remaining faults (F4 and F5), where only the
best machine-learning method will be used, there will be experimented with different window
sizes (Figure 2 of Appendix F). In both cases the selected windows are interpolated to have
a fixed window size of 100 samples such that the data is suitable for a LSTM model. Finally,
the resulting data files are divided in 80% train and 20% validation data. It is chosen to not
use cross-validation because enough data can be generated using the 20-sim model and would
therefore not lead to a significant performance difference for models between folds.

4.3.2 Train Machine-Learning Models
Using these pre-processed training datasets both a MLP model based on feature extraction, a
CNN + LSTM based model and a differentiate model will be trained. Hereby the first two models
can say something about the seriousness of fault and the differentiate models can differentiate
between several possible faults. The hyperparameters of the models will be optimized using
Bayesian optimization. Bayesian optimization is used because it has shown its superior performance
above other optimization algorithms like Grid Search and Random Search multiple times (Koehrsen,
2018; Kraus, 2019; Snoek et al., 2012). Categorical cross entropy is used as loss function such
that the probability for each prediction can be given. The training of a model with a specific set
of hyperparameters is stopped when the loss does not improve for 10 continuous epochs.

4.3.2.1 Feature-Extraction Model

Section 2.1 explains the general workflow for a machine-learning model based on feature
extraction. In this section more details of the chosen implementation and the hyperparameter
optimization process are shown.

After some initial testing with the TSFRESH library it was found that it is not feasible to
use all the 794 features for feature aggregation. Calculating and determining the best features
would simply take to much time. It was therefore decided to use a smaller selection of features.
Based on the knowledge for detecting a specific problem situation by hand, the following most
promising features are used to capture all the samples of a window:

• Mean

• Standard Deviation

• Derivative

• Kurtosis

• Minimum

• Maximum

• Median

• Sample Entropy

• Skewness
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• Variance

• Count Above Mean

• Count Below Mean

• Mean Absolute Change

• Mean Change

• Mean Second Derivative
Central

• Absolute Energy

• Absolute Sum of
Changes

For each signal that was selected (Appendix C), the mentioned features are calculated. The
formulas that are used for calculating the mentioned features can be found in Appendix E.
Next, the K-best features are used to train several MLP models with different hyperparameters.
Hereby, the K-value for selecting the best features is one of the hyperparameters that will be
tuned using the Bayesian optimization algorithm. Other hyperparameters that will be tuned are
the number of neurons in each layer and the number of layers. The Adam optimizer with its
default parameters will be used to train the model (learning rate = 0.001, beta 1 = 0.9, beta 2
= 0.999 and no AMSGrad). An example of the feature-extraction model with three dense layers
can be seen in Figure 4.5.

Figure 4.5: Feature-extraction model.

To decrease the training time, an initial batch size of 64 is chosen. After finding the best
hyperparameter combinations using Bayesian optimization, the best three combinations are
used to again train a model but this time with a reduced batch size of 16. According to Keskar
et al. (2016) training with a smaller batch size generally leads to an better model. When this
is the case, the newly trained model will be used, otherwise the previously found best model is
used.

4.3.2.2 CNN + LSTM Model

In this section more details of the model architecture and the hyperparameter optimization
process for the CNN + LSTM based model are shown.

Figure 4.6 shows the model architecture which is based on the work of R. Zhao et al. (2017).
Compared with the feature-extraction method, this time no feature aggregation is applied to the
selected features, but each signal consisting out of 100 samples is directly used as model input.
After feeding the samples to the CNN layer of the network, 2 Bi-LSTM layers, 1 dense layer
and finally 1 output layer are used. Again, a batch size of 64 is used during the Bayesian
optimization process and a reduced batch size of 16 is used to finalize the training with the
best three hyperparameter combinations. Just as with the feature-extraction model, the Adam
optimizer with its default parameters will be used to train the model.
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Figure 4.6: CNN + LSTM model based on the work of R. Zhao et al. (2017).

Section 4.3 shows which variables where selected and will be used as input for the machine-
learning model. For the feature extraction based model additional feature selection was done
by selecting the k-best features and optimizing the k-best value during the hyperparameter
optimization process. Because the input for a CNN + LSTM based model consist out of multiple
samples, this approach cannot be used to perform additional feature selection. The Python
package SHapley Additive exPlanations (SHAP) (Lundberg and S.-I. Lee, 2017) will therefore
be used after training to determine the importance of each input variable on the output of the
model. If the results show that certain variables do not have an significant influence on any
of the model output classes (less than 5%), the feature will be removed and the model will be
retrained. Hereafter, the accuracy on the validation dataset of the newly trained model will be
determined and compared with the old model. If the accuracy of the model is approximately the
same or better as the old model, the newly trained model will be the final model. If this is not the
case, the old model will be used as final model. The hope is that by using this selection method
variables that introduce noise to the model will be removed and the performance of models will
increase.

4.3.2.3 Differentiate Between Faults

The models trained in the two previous sections only focus on predicting the seriousness of a
specific fault. For example, one of the models aims to predict how large the primary seal leakage
is and another model aims to predict how large the outlet check valve leakage is. Because these
individual models are only trained to detect a specific fault and have never seen data of other
faults during the training phase, it could be that for multiple models a large leakage is detected
and still no conclusion can be drawn for which fault really occurs. To determine which fault really
occurs, two different methods will be investigated. Both of these methods will aim to differentiate
between the first three faults (F1 - F3).

The first method that will be investigated is to use the normalized probability outputs of
the previously trained individual models as inputs for a simple MLP model. A visualization of
this method can be seen in Figure 4.7. Hereby the outputs of each individual model will be
normalized.
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Figure 4.7: Visualization of using the normalized probability outputs of the individual models to
differentiate between problem situations.

The second method that will be investigated is to use the previously generated datasets of each
fault and train a CNN + LSTM based model directly on the sensor data to differentiate between
the faults. Hereby the data can be labeled as follows:

• 3 Classes: F1, F2 and F3

• 4 Classes: F1, F2, F3 and Normal

• 9 Classes: F1_0, F1_1, F1_2, F2_0, ..., F3_2

For the first option with 3 classes, the dataset generated for each fault will receive a label
accordingly. For the second option with four classes, again each dataset will receive a label
accordingly, but there will also be a "normal" class which represents a correctly functioning
pump. Whether a pump is functioning correctly, can be found in Table 4.2. Finally, a last option
with 9 classes can further subdivide the correct functionality of the pump. The exact criteria for
this can also be found in Table 4.2.

Table 4.2: Subdivision for each fault when using 3, 4 or 9 classes and where Fx stands for F1
for example.

Classes Secondary Pressure < 500 bar Secondary Pressure >= 500 bar
3 4 9 Pressure Deviation Pressure Deviation

Fx Normal Fx_0 < 3 bar < 0.6 %
Fx Fx Fx_1 3 - 5 bar 0.6 - 1.0 %
Fx Fx Fx_2 > 5 bar > 1.0 %

Because the pump control software compensates for leakages in the primary chamber by
performing more piston takeovers, a large leakage for the primary seal or inlet check valve
does not necessarily mean that there is a problem with the functionality of the pump (an error).
In order to determine whether there really is an error, the criteria in Table 4.2 will be used which
are based on the specifications of the pump. An additional criteria that can be used for primary
seal and inlet check valve leakage is the required number of piston takeovers to achieve a
certain outlet flow. However, to limit the scope of this project, this part will not be investigated
and only the deviation for the secondary pressure will be taken into account. Furthermore, only
the first two options with 3 and 4 classes will be investigated and the option with 9 classes will
be skipped.

4.3.3 Performance Analysis
The performance of the trained models will be compared on the generated validation data.
Because the generated dataset is balanced, it should be possible to use accuracy as performance
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metric. Whether the accuracy can really be used as performance metric will be confirmed by
also looking at the resulting confusion matrices.

The best performing models on the validation dataset will also be tested in real-time on the
real pump system. In order to do this a C++ application will be developed that receives log
variables of the pump using UDP and uses the trained models to make predictions in real-time.
The choice for C++ was made such that the driver component and diagnostics can be easily
implemented in one application as stated in Section 3.1.
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Results

This results chapter shows how the faults were simulated, shows the performance of individual
and differentiate diagnostic machine-learning models on the validation data and shows the real-
time performance of the best models using the C++ application.

5.1 Simulation of Faults

This Section gives a more detailed explanation of each fault and exactly shows how they were
simulated using the 20-sim model of the pump in order to generate the required datasets. Most
of the faults could already be simulated without modifying the model and only changing a specific
parameter was necessary. However, for some of the faults, additional pump behavior needed to
be modeled and added to the current 20-sim model.

5.1.1 Primary Seal Leakage
When looking at the sketch of the pump in Figure 1.3, primary seal leakage is caused by a
defective seal at the primary piston. Normally, this seal always leaks a little bit and the pressure
in the primary chamber is kept constant by slowly moving the primary piston forward. However,
when there is a real problematic seal leakage, the primary piston needs to move forwards faster
and can eventually no longer compensate for the pressure drop.

In order to simulate this fault, no changes to the model had to be made and the fault could
simply be simulated by changing the leak parameter (G_leak) for the primary piston. Table B.1 in
Appendix B shows what parameter values were used to simulate different leak sizes by several
flow rates and pressure levels. In order to vary the outlet pressure, the laminar resistance
parameter was varied which simulates different types of columns.

5.1.2 Outlet/Inlet Check Valve
The first valve in the sketch of Figure 1.3 is called the inlet check valve and the second valve in
this figure is called the outlet check valve. Normally these valves leak a little bit when closed and
the pistons can compensate for these leakages by slowly moving forward. However, again it can
happen that these leakages become so problematic that the pistons can no longer compensate
for this behavior and pressure drops can occur.

Just as with the primary seal leakage, no changes to the model had to be made and the fault
could simply be simulated by changing the leak parameter (G_leak) as can be seen in Table B.2
and Table B.3 in Appendix B.

5.1.3 Backlash
Figure 5.1 shows the simulation results when performing a simulation with the backlash component
with a backlash value of 10 µm and slope of 1010.

Robotics and Mechatronics C.J. van Ekris, BSc 20



CHAPTER 5. RESULTS Pump Diagnostics Using Machine Learning

Figure 5.1: Plot of backlash in the motor spindle. The first plot shows the position difference of
the two masses over time when given an sine wave as velocity input. The second plot shows
the force/position relation. As can be seen in both plots, the backlash value is approximately 10
µm.

Table B.4 in Appendix B shows the parameter ranges used to perform the simulations for
different backlash values at several pressure levels and for multiple flow rates.

5.1.4 Pump Head Blockage
When looking at the sketch of the pump in Figure 1.3, a pump head blockage occurs in the
flow path between the primary- and secondary chamber and means that there is an obstruction
of the flow between these chambers. Because the exact position of the obstruction does not
influence the behavior of the fault, the fault can be simulated by changing the flow passage
parameter for the outlet check valve (G_klep) as can be seen in Table B.5 of Appendix B.

5.2 Diagnostic Machine-Learning Models

In this Section the results of the hyperparameter optimization process using Bayesian optimization
and the final performance of both the feature-extraction models and CNN + LSTM based models
for in total five faults are shown. In the first Subsection the results for the first three faults are
shown using a full window of the repeating pattern. Next, the second Subsection shows the
results of the backlash model and the third Subsection shows the results of using two different
window sizes to detect a pump head blockage.

5.2.1 Primary Seal and Outlet/Inlet Check Valve Leakage
The first Section of Appendix G shows the search ranges and the final values for each hyperparameter
for the first three faults of the feature-extraction models. Next, in Appendix H the confusion
matrix for the best feature-extraction models can be seen. Finally, in Table 5.1 the accuracy
scores on the validation set can be seen for the best models.

The second Section of Appendix G shows the hyperparameters of the CNN + LSTM based
models for the first three faults. Next, in Appendix H the confusion matrix for the best CNN +
LSTM based models can be seen and Table 5.1 shows the accuracy scores on the validation
set for the best models. This Table also shows the accuracy scores for the retrained model
using only the variables that had an influence of at least 5% on the model output according to
the SHAP package.
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Table 5.1: Accuracy scores feature extraction and CNN + LSTM based models for the first three
faults and using an optimal number of classes.

Fault Num. Classes Feature Extraction CNN + LSTM CNN + LSTM (Selection)

Primary Seal Leakage 15 56.5% 97.7% 87.9%
Outlet Check Valve Leakage 8 48.1% 75.7% 71.5%
Inlet Check Valve Leakage 10 66.1% 95.4% 95.7%

Average Accuracy 56.9% 89.6% 85.0%

Appendix J shows which variables were chosen for the retrained models. The percentages in
these tables are determined by calculating the influence of each variable for a specific output
and thereafter taking the maximum percentage value for each variable over all the outputs. For
example, the model to detect a primary seal leakage has 15 classes and thus 15 outputs. For
each output the influence of each variable is calculated which results in 15× 9 = 135 percentage
values. Hereafter the maximum for each variable over the 15 outputs is taken and used in the
table. The sum of these percentages in this table can therefore be higher than 100%.

5.2.2 Backlash

As can be seen in Subsection 5.2.1 the CNN + LSTM based model performs way better than
a model based on feature extraction. This Subsection will therefore use a CNN + LSTM based
model to detect backlash. After analyzing the differences between smaller and larger values
for backlash, it is found that hardly any difference can be seen for the sensor signals. This is
confirmed by looking at the resulting confusion matrix for a model trained on full windows and
only 3 classes for the output as can be seen in Figure 5.2.

Figure 5.2: Normalized confusion matrices of a CNN + LSTM based model for backlash in motor
spindle (F4).
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5.2.3 Pump Head Blockage
In this Subsection again a CNN + LSTM based model is used to compare the difference between
using a full window versus using a specific smaller window. After analyzing the differences
between a small and larger pump head blockage, it is found that the fault can be mainly detected
by looking at the sensor signals in the transition state of the pump as can be seen in Figure 2
of Appendix F. When using this transition state as window and optimizing the hyperparameters
of the CNN + LSTM based model as can be seen in Table G.7 of Appendix G, an accuracy
of 83.9% is achieved. When using a full window as input and optimizing the hyperparameters
of the CNN + LSTM based model as can be seen in Table G.8 of Appendix G, an accuracy of
79.9% is achieved. The corresponding confusion matrices of both trained models can be found
in Figure 5.3 and 5.4 respectively.

Figure 5.3: Normalized confusion matrix of a CNN + LSTM based model on a full window for
pump head blockage (F5) with an accuracy of 79.9%.
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Figure 5.4: Normalized confusion matrix of a CNN + LSTM based model on a smaller window
for pump head blockage (F5) with an accuracy of 83.9%.

In addition to these results, again an analysis is done to determine the most important input
variables using the SHAP package for which the results can be found in Table J.4 of Appendix
J. Furthermore, the importance of each sample in a full window and smaller window is analyzed
using SHAP which can be seen in Figure 5.5 and 5.6 respectively. Finally, a comparison of
using a full window and smaller window for a simulation of problematic and non-problematic
pump head blockage can be seen in Appendix K.
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Figure 5.5: Average percentage impact of a sample on the output of a model to detect pump
head blockage (F5) when using a full window.

Figure 5.6: Average percentage impact of a sample on the output of a model to detect pump
head blockage (F5) when using a smaller window.

25 C.J. van Ekris, BSc University of Twente



Pump Diagnostics Using Machine Learning CHAPTER 5. RESULTS

5.3 Differentiate Between Faults

Appendix I shows the resulting confusion matrices when making predictions on a dataset of
certain fault with a CNN + LSTM based model trained to detect a different fault. As can be seen
from these confusion matrices it is especially hard to differentiate between fault F1 and F3. It is
therefore expected that the first method, as seen in Figure 4.7, also has difficulty to differentiate
between these faults. After implementing the method, it is found that the MLP model does not
converge and cannot be used to differentiate between the faults.

Figure 5.7: Normalized confusion matrices of a CNN + LSTM based model to differentiate
between problem F1, F2 and F3 (left) and normalized confusion matrices of a CNN + LSTM
based model to differentiate between problem F1, F2, F3 and a normal functioning pump (right).
The confusion matrix on the left has an accuracy of 88.1% and confusion matrix on the right
has an accuracy of 92.5%.

The results of the second method, as described in Sub-subsection 4.3.2.3, shows that there is
still a relatively large correlation between F1 and F3. However, using the CNN + LSTM based
model it is possible to differentiate between the faults with an accuracy of 88.1% when using 3
classes and 92.5% when using 4 classes. The corresponding confusion matrices of this second
method can both be found in Figure 5.7.

5.4 Model Performance on the Real Pump System

As described in Subsection 4.3.3 the performance of the trained models will also be validated
on the real pump system using a C++ application. A flowchart of this developed C++ application
can be found in Appendix L.

The application receives UDP packages of the real pump system and adds the packages to
a buffer until a full window is received. Next, the buffer is resampled to a window of 100 samples
and passed to a predict function of a developed Tensorflow Dynamic-Link Library (DLL) that has
loaded the trained CNN + LSTM based models. Since the real pump system consist out of two
pumps (A and B), predictions of both pumps are printed to the console and can be analyzed.

Screen prints of the application and the console of the real pump system can be found
Appendix M. Furthermore, a mapping from each class to the leakage in µl/min can be found in
Appendix N.

The screen prints of the application show that the application works as expected for several
seal and valve leakages. However, it is hard to validate whether the precise prediction of the
class is also correct. This is because leakages of only several µl/min can hardly be measured
by any instrument.
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Discussion

Chapter 5 shows how in total five faults were simulated and how the simulations were used to
train and validate several diagnostic machine-learning models. This chapter will give an in depth
explanation of these results.

6.1 Simulation of Faults

Section 3.2 shows that there are in total eight faults that are important to detect. To limit the
scope of this assignment, it was chosen to focus on the five most important ones which are:

• F1. Primary Seal Leakage

• F2. Outlet Check Valve Leakage

• F3. Inlet Check Valve Leakage

• F4. Backlash

• F5. Pump Head Blockage

Section 5.1 shows that most of these faults could already be simulated by only modifying some
parameters in the 20-sim model of the pump. However, this did not apply for backlash in the
spindle of the pump which required some additional modeling and was then added to the original
model of the pump. This immediately showed one of the disadvantages of using a model based
approach to train diagnostic machine-learning models; the simulation of some faults can take a
lot of time.

In the case of simulating backlash, the simulation time increased with a factor 10 compared
with the original simulation model. It took multiple days to perform all the simulations to generate
the training dataset and in the end it was found that no machine-learning model could be
trained on this dataset. It is therefore recommended to first determine whether the fault can
be measured directly using the sensor data instead of using a machine-learning approach. In
the case of backlash, it is possible to directly measure the amount of backlash using one of the
available pump sensors which is more reliable and requires less developing time. For the other
faults this was not the case and the model based machine-learning method is probably a better
approach.

6.2 Diagnostic Machine-Learning Models

When comparing the feature-extraction method and CNN + LSTM based models in Table 5.1,
it can be seen that for the first three faults a CNN + LSTM based model scores averagely a
32.7% higher accuracy. From this can be concluded that a CNN layer can successfully be used
to perform feature extraction and a CNN + LSTM based model can be used to detect faults in
a UHPLC pump. Only using features that have at least a 5% influence on the model output
reduces the accuracy by approximately 4.6%. It is therefore recommended to not use a feature
selection method since this work can be outsourced to the CNN layer of the model.

A model based method to train diagnostic machine-learning models does not always work
as can be seen in the case of backlash. Even when only using 3 classes a CNN + LSTM based
model does not converge. However, when the method does work, it proves to be very robust as
can be seen in the case of a pump head blockage. Here using a full window was compared with
using a smaller window which resulted in an accuracy difference of only 4%. That the selection
of the window has almost no influence can also be seen when looking at the sample importance
in a window in Figure 5.5 and 5.6 and the corresponding simulations in Appendix K. In these
figures can be seen that the CNN + LSTM based model just focuses on smaller region of a
window when using a full window as input. This means that 100 samples for a full window are
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enough to detect and classify a fault that can only be recognized in a fraction of this window.
Of course this will be different when peaks in the sensor signal become smaller. It is therefore
important to always check whether the resampled window is still a good representation of the
original sensor signals.

6.3 Differentiate Between Faults

In order to differentiate between faults two different methods were investigated. The first method,
as mentioned in Sub-subsection 4.3.2.3, uses the normalized probability outputs of the individual
models as input for a simple MLP model. During the training of this model it was found that the
model did not converge and cannot be used to differentiate between faults. An explanation
for this disappointing result might be that the CNN layer of the individual models only selects
features that are important to classify the seriousness of a fault and features that are important
to differentiate between faults are ignored. Furthermore, because there is a large correlation
between fault F1 and F3 it is even harder to differentiate between the faults and the method
becomes completely useless.

On the other hand, the second method mentioned in Sub-subsection 4.3.2.3 shows some
decent results and can be used to differentiate between faults. An explanation that this method
does work might be that the CNN + LSTM based model works directly on the sensor data and
therefore finds features that can be used to differentiate between faults. Another interesting
result of this method is that using 4 classes performs better than using 3 classes (92.5% vs
88.1% accuracy). An explanation for this might be that each fault contains data that can be
seen as a normal functioning pump, but was labeled as problematic when using 3 classes.
Whereas it was labeled as normal when using 4 classes.

Finally, both methods show that there is a large correlation between fault F1 and F3. An
explanation for this large correlation is that a primary seal leakage (F1) and inlet check valve
leakage (F3) can both be seen as a leakage in the primary chamber of the pump (see Figure
1.3). Because they can both be seen as a leakage in the primary chamber of the pump, they
also result in a similar deviation for the sensor signals and therefore have a high correlation.

6.4 Model Performance on the Real Pump System

The goal of the C++ application was to have a method to validate the trained diagnostic machine-
learning models on the real pump systems. The console output of the developed C++ application
shows that there is still a large correlation between Fault F1 and F3, but also shows that it is
possible to detect several seal and valve leakages in real-time using a UDP connection. In
particular an outlet check valve leakage in pump B can be correctly classified by the individual
and the differentiate model with 4 classes (Normal, F1, F2 and F3). Since the other differentiate
model with 3 classes (F1, F2 and F3) gives a false positive for pump A, it is recommend to not
use such a differentiate model.

It is hard to validate the exact leakage values of the individual models since a leakage of
several µl/min can hardly be measured by any instrument. However, it is possible te check
the predicted leakage values for a correctly functioning pump and use these values as the
standard values for the pump. When one of these values are thus exceeded, it can be seen as
a problematic leakage. In addition to this, when multiple faults would occur at the same time, the
trained diagnostic models might have a hard time to correctly classify which fault really occurs.
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Chapter 7

Conclusion

The research in this assignment consisted out five sub-questions which are answered below:

What are important faults to detect and how can they be simulated using the provided
20-sim model of the pump?
The most important faults that are detected in the UHPLC pump used in this assignment are
seal leakages, valve leakages and obstructions in flow paths. These faults could simply be
simulated by only changing a parameter in the provided 20-sim model of the UHPLC pump.
The simulation of backlash is also possible, but takes a lot of time and this fault could not be
detected using the trained machine-learning models.

Can a CNN be used to perform feature extraction and can a model based on CNN + LSTM
be used to detect faults in a pump?
In this assignment a CNN is successfully used to perform feature extraction for several faults.
Furthermore, a combination of a CNN and LSTM could successfully be used to detect faults in
an UHPLC pump with an average accuracy of 89.6%.

How does a CNN + LSTM based method compare with a method based on feature extraction?
A CNN + LSTM based method scored approximately a 32.7% higher accuracy compared with a
MLP model using feature extraction. Furthermore, the method was more robust and it was not
necessary to use a feature selection method since this work could be outsourced to the CNN
layer of the model.

What method can be used to differentiate between faults?
Using a CNN + LSTM based model that was trained on several faults, it was possible to
successfully differentiate between faults in an UHPLC pump. Another method that used the
normalized probability outputs of machine-learning models trained to detect individual faults did
not work.

How can the final implementation of the diagnostic machine-learning models be validated?
The best performing diagnostic machine-learning models were validated on a real pump system
using a developed C++ application. Using the C++ application it was possible to correctly detect
several seal and valve leakages in the real pump system. However, the detection of backlash
was not possible.

Using the answers of these sub-questions the main research question of this assignment can
be answered:

To what extend can a machine-learning method trained on a simulation model be used
to detect faults in a real pump?

Summarized, a CNN + LSTM based diagnostic machine-learning model trained on a simulation
model performs the best and can be successfully used to detect several seal and valve leakages
in a real pump. However, there are a number of things to take into account.

At first, an accurate simulation model of the system is required because the diagnostic
machine-learning model is as good as the simulation model used to generate the training sets.
This simulation model should not only be valid for the normal behavior of the system, but also for
the simulation of problematic behavior of the system. For example, make sure that a pressure
signal is in a valid range and not below minus 1 bar which is physically impossible.

Secondly, a model based approach to train diagnostic machine-learning models is not always
the best approach as can be seen in the case of backlash. It is therefore important to always
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check whether the fault can be detected using a sensor signal directly instead of using machine
learning.

Finally, when a model based approach is used, it is important to check whether the resampled
window is still a good representation of the original sensor signals. For the pump system used
in this research a window of 100 samples was good enough, but this might be different when a
system contains more high-frequency signals.

7.1 Future Work

A number of things might improve the work presented in this report. Right now the maximum
number of classes that can be used to classify a certain fault can only be found using a trial
and error method. It might be interesting to perform more research in an unsupervised based
approach or better method to determine the maximum number of classes. In this way an
optimum can be found between the precision and maximum accuracy of the models.

Furthermore, when training a model to differentiate between faults it is important to define
a normal class. In addition to this, a technique that might be interesting when adding more
faults to this differentiate model is continuous learning. With continuous learning it is possible
to reuse the already trained differentiate model and only train the model to detect new classes
which would improve the training time in theory.

Other things that might be interesting to investigate are performing sensitivity analyses
for noise on sensor signals, using a variable sampling method instead of the used constant
sampling method and performing more research on how to detect cross-correlations of faults
such that trained models become even more accurate.

Robotics and Mechatronics C.J. van Ekris, BSc 30



Appendix A

Pump Behavior

Figure 1: Example of normal behavior for the pump Weustink and Ekris, 2019.

Figure 2: Example of a problem situation inside the pump, non-linear relation between pressure
and leakage Weustink and Ekris, 2019.
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Appendix B

Parameter Lists

Table B.1: Primary Seal Leakage

Model Parameter Min Max Step Size Unit

Firmware.setFlow.flow 500 1000 100 µl/min
Hydraulics.LaminarResistance.R 3e15 1e16 1e15 -

Hydraulics.PC.G_leak 1e-19 2e-17

{
1e-19, if a <= 1e-18
1e-18, otherwise

µl/min/bar

Table B.2: Outlet Check Valve

Model Parameter Min Max Step Size Unit

Firmware.setFlow.flow 500 1000 100 µl/min
Hydraulics.LaminarResistance.R 3e15 1e16 1e15 -

Hydraulics.SCV.CheckValve.G_leak 1e-20 1e-17

{
1e-20, if a <= 1e-19
2e-19, otherwise

µl/min/bar

Table B.3: Inlet Check Valve

Model Parameter Min Max Step Size Unit

Firmware.setFlow.flow 500 1000 100 µl/min
Hydraulics.LaminarResistance.R 3e15 1e16 1e15 -

Hydraulics.PCV.CheckValve.G_leak 1e-20 1e-17

{
1e-20, if a <= 1e-19
2e-19, otherwise

µl/min/bar

Robotics and Mechatronics C.J. van Ekris, BSc 32



APPENDIX B. PARAMETER LISTS Pump Diagnostics Using Machine Learning

Table B.4: Backlash (Ex5 and Ex12)

Model Parameter Min Max Step Size Unit

Firmware.setFlow.flow 500 1000 100 µl/min
Hydraulics.LaminarResistance.R 3e15 1e16 1e15 -

PP_MotorSpindle.Backlash.counts 125 5000

{
125, if a <= 1000
250, otherwise

encoder
counts

Table B.5: Pump Head Blockage

Model Parameter Min Max Step Size Unit

Firmware.setFlow.flow 500 1000 100 µl/min
Hydraulics.LaminarResistance.R 3e15 1e16 1e15 -

Hydraulics.SVC.CheckValve.G_klep 5e-16 2.7e-12


5e-16, if a <= 1e-14
1e-14, otherwise
1e-13, if a > 1e-13

µl/min/bar
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Appendix C

Variable List

Table C.1: Variable List

Model Variable Used/Not Used Clarification

Pump Control Mode Not Used Variance equal to zero
Pump Control Command Not Used Variance equal to zero
Pump Desired Flow Pressure Used Useful when a problem is

flow/pressure related
Primary Encoder Used Position of the primary piston
Primary Pressure Used Pressure in the primary

chamber
Primary Hall Sensor Flag Not Used Variance equal to zero
Primary Latched Encoder Position Not Used Variance equal to zero
Primary Maximum Current Not Used Variance equal to zero
Primary Maximum Velocity Not Used Variance equal to zero
Secondary Encoder Used Position of the secondary

piston
Secondary Pressure Used Pressure in the secondary

chamber
Secondary Hall Sensor Flag Not Used Variance equal to zero
Secondary Latched Encoder Position Not Used Variance equal to zero
Secondary Maximum Current Not Used Variance equal to zero
Secondary Maximum Velocity Not Used Variance equal to zero
Position Sensors Not Used Variance almost equal to zero
Primary Desired Pressure Not Used Variance equal to zero
Secondary Desired Pressure Not Used Variance equal to zero
Secondary Position Fixed Not Used Variance equal to zero
Pump Control Version Not Used Variance equal to zero
Pump Control Status Not Used Variance almost equal to zero
Pump Control Error Not Used Variance equal to zero
Pump Compressibility Factor Not Used Compressibility estimation, but

changes to slowly
Pump Check Valve Delay Not Used Variance almost equal to zero
Pump Diagnostics 1 Not Used Minimum ripple estimation, but

changes to slowly
Pump Diagnostics 2 Not Used Maximum ripple estimation, but

changes to slowly
Primary Pressure Filtered Not Used Both models have a filtering

behavior, no need to add this
extra variable

Secondary Pressure Filtered Not Used Both models have a filtering
behavior, no need to add this
extra variable
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Model Variable Used/Not Used Clarification

Enable End Stops Not Used Variance equal to zero
Primary Set Current Used Current setpoint for

primary piston motor
Primary End Position Forward Not Used Variance equal to zero
Primary End Position Backward Not Used Variance equal to zero
Primary Leakage Not Used Primary leakage

estimation, but changes to
slowly

Primary Diagnostics 1 Used Reference position of the
primary piston

Primary Diagnostics 2 Not Used Reference velocity of
the primary piston, but
useless without a real
velocity measurement

Primary Diagnostics 3 Used in pre-processing Logic State Variable
Primary Diagnostics 4 Not Used Primary PID output,

scaled version of to
Primary Set Current, so
no need to add this extra
variable

Secondary Set Current Used Current setpoint for
secondary piston motor

Secondary End Position Forward Not Used Variance equal to zero
Secondary End Position Backward Not Used Variance equal to zero
Secondary Leakage Not Used Variance equal to zero
Secondary Diagnostics 1 Used Reference position of the

secondary piston
Secondary Diagnostics 2 Not Used Reference velocity of the

secondary piston, but
useless without a real
velocity measurement

Secondary Diagnostics 3 Used in pre-processing Logic State Variable
Secondary Diagnostics 4 Not Used Secondary PID output,

similar to Secondary Set
Current so no need to add
this extra variable

Synchronize Not Used Variance equal to zero
Pump Time To Next Take Over Not Used Directly linked to Pump

Desired Flow Pressure, no
need to add this extra
variable

Primary Compressed Stroke Not Used Variance equal to zero
Secondary Compressed Stroke Not Used Variance equal to zero
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Appendix D

Pseudocode Algorithms

Algorithm 1 Pre-Processing

Set raw data directory
Set train directory
Set validation directory
Set NumberOfSamples to 100
Define min-max scaler
for train_xxx.csv in raw data directory do

Select variables
Scale the data
Determine start and end indices of windows
for Window in train_xxx.csv do

if Window Size < NumberOfSamples then
Skip window

else
Resample window to NumberOfSamples
Save resampled window as train_xxx_xxx.csv in train directory

Randomly move 20% of saved CSVs to validation directory
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Appendix E

Feature Formulas

For each signal that was selected, as can be seen in Appendix C, the following formulas are
used to calculate the features when using a window of N samples X :

Table E.1: Feature Formulas

Feature Symbol Formula/Function

Mean µ 1
N (
∑N
i=1 xi)

Standard Deviation σ
√

1
N

∑N
i=1(xi − µ)2

Derivative m xN−1−x0

N

Kurtosis Kurt[x] E[(X−µ
σ )4]

Minimum min numpy.min(X)

Maximum max numpy.max(x)

Median median numpy.median

Sample Entropy −logAB

Skewness µ̃3 E[(X−µ
σ )3]

Variance Var(X)
∑N
i=1 pi · (xi − µ)2

Count Above Mean numpy.where(x > µ)[0].size

Count Below Mean numpy.where(x < µ)[0].size

Mean Change 1
N

∑N
i=1 xi+1 − xi

Mean Absolute Change 1
N

∑N
i=1 |xi+1 − xi|

Mean Second Derivative Central 1
N

∑N
i=1

1
2 (xi+2 − 2 · xi+1 + xi)

Absolute Energy
∑N
i=1(xi)

2

Absolute Sum of Changes
∑N
i=1 |xi+1 − xi|
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Appendix F

Simulation Windowing

Figure 1: Resulting data files after windowing a simulation using full windows.

Figure 2: Resulting data files/windows of a simulation after using the transition state of the pump
as window for a pump head blockage.
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Appendix G

Hyperparameter Optimization

G.1 Feature Extraction Model

Table G.1: Hyperparameter optimization primary seal leakage (F1).

Hyperparameter Bounds Final Value
Min Max Step

Neurons Dense 1 5 600 1 130
Neurons Dense 2 5 600 1 78
Neurons Dense 3 5 600 1 164
Number of Layers 1 3 1 3
K-Best Value 2 50 1 40

Table G.2: Hyperparameter optimization outlet check valve (F2).

Hyperparameter Bounds Final Value
Min Max Step

Neurons Dense 1 5 600 1 5
Neurons Dense 2 5 600 1 309
Neurons Dense 3 5 600 1 x
Number of Layers 1 3 1 2
K-Best Value 2 50 1 35

Table G.3: Hyperparameter optimization inlet check valve (F3).

Hyperparameter Bounds Final Value
Min Max Step

Neurons Dense 1 5 600 1 250
Neurons Dense 2 5 600 1 68
Neurons Dense 3 5 600 1 128
Number of Layers 1 3 1 3
K-Best Value 2 50 1 33
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G.2 CNN + LSTM Model

Table G.4: Hyperparameter optimization primary seal leakage (F1).

Hyperparameter Bounds Final Value
Min Max Step

Filter 32 64 32 32
Kernel Size 1 5 1 4
Pool Size 1 5 1 3
Neurons LSTM 1 5 600 1 397
Neurons LSTM 2 5 600 1 446
Neurons Dense 5 600 1 335

Table G.5: Hyperparameter optimization outlet check valve (F2).

Hyperparameter Bounds Final Value
Min Max Step

Filter 32 64 32 32
Kernel Size 1 5 1 2
Pool Size 1 5 1 3
Neurons LSTM 1 5 600 1 252
Neurons LSTM 2 5 600 1 443
Neurons Dense 5 600 1 135

Table G.6: Hyperparameter optimization inlet check valve (F3).

Hyperparameter Bounds Final Value
Min Max Step

Filter 32 64 32 32
Kernel Size 1 5 1 3
Pool Size 1 5 1 2
Neurons LSTM 1 5 600 1 398
Neurons LSTM 2 5 600 1 91
Neurons Dense 5 600 1 259
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Table G.7: Hyperparameter optimization pump head blockage (F5)

Hyperparameter Bounds Final Value
Min Max Step

Filter 32 64 32 32
Kernel Size 1 5 1 4
Pool Size 1 5 1 2
Neurons LSTM 1 5 600 1 155
Neurons LSTM 2 5 600 1 136
Neurons Dense 5 600 1 71

Table G.8: Hyperparameter optimization pump head blockage for a smaller window (F5).

Hyperparameter Bounds Final Value
Min Max Step

Filter 32 64 32 32
Kernel Size 1 5 1 3
Pool Size 1 5 1 1
Neurons LSTM 1 5 600 1 244
Neurons LSTM 2 5 600 1 446
Neurons Dense 5 600 1 446
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Appendix H

Confusion Matrices

Figure 1: Normalized confusion matrices of the feature extraction model (left) and CNN + LSTM
based model (right) for primary seal leakage (F1).

Figure 2: Normalized confusion matrices of the feature extraction model (left) and CNN + LSTM
based model (right) for outlet check valve leakage (F2).
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Figure 3: Normalized confusion matrices of the feature extraction model (left) and CNN + LSTM
based model (right) for inlet check valve leakage (F3).
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Appendix I

Confusion Matrices Predictions

Figure 1: Normalized confusion matrices for the predictions on outlet check valve leakage (F2)
(left) and inlet check valve leakage (F3) (right) data using a CNN + LSTM based model trained
to detect primary seal leakage (F1).

Figure 2: Normalized confusion matrices for the predictions on primary seal leakage (F1) (left)
and inlet check valve leakage (F3) (right) data using a CNN + LSTM based model trained to
detect outlet check valve leakage (F2).
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Figure 3: Normalized confusion matrices for the predictions on primary seal leakage (F1) (left)
and outlet check valve leakage (F2) (right) data using a CNN + LSTM based model trained to
detect inlet check valve leakage (F3).
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Appendix J

Variable Importance

Table J.1: Maximum influence on model output for 15 classes and a CNN + LSTM based model
to detect primary seal leakage (F1). Variables that have less than 5% influence on the output of
the model are shown in red.

Variable Maximum Influence on Model Output

Primary Diagnostics 1 38.6%
Pump Desired Flow Pressure 35.0%
Primary Pressure 28.6%
Primary Encoder 25.6%
Secondary Pressure 23.8%
Secondary Encoder 4.9%
Secondary Diagnostics 1 2.8%
Primary Set Current 2.5%
Secondary Set Current 1.7%

Table J.2: Maximum influence on model output for 8 classes and a CNN + LSTM based model
to detect outlet check valve leakage (F2). Variables that have less than 5% influence on the
output of the model are shown in red.

Variable Maximum Influence on Model Output

Pump Desired Flow Pressure 88.7%
Secondary Pressure 66.4%
Secondary Diagnostics 1 1.9%
Secondary Encoder 1.8%
Primary Diagnostics 1 1.7%
Primary Encoder 1.7%
Primary Pressure 0.9%
Primary Set Current 0.4%
Secondary Set Current 0.1%
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Table J.3: Maximum influence on model output for 10 classes and a CNN + LSTM based model
to detect inlet check valve leakage (F3). Variables that have less than 5% influence on the
output of the model are shown in red.

Variable Maximum Influence on Model Output

Primary Diagnostics 1 40.1%
Pump Desired Flow Pressure 33.2%
Primary Pressure 32.0%
Secondary Pressure 21.3%
Primary Encoder 17.0%
Secondary Encoder 5.3%
Secondary Diagnostics 1 3.1%
Secondary Set Current 1.1%
Primary Set Current 1.1%

Table J.4: Maximum influence on model output for 11 classes and a CNN + LSTM based model
to detect pump head blockage (F5). Variables that have less than 5% influence on the output of
the model are shown in red.

Variable Maximum Influence on Model Output

Primary Pressure 51.8%
Secondary Pressure 45.0%
Secondary Diagnostics 1 13.3%
Secondary Encoder 6.4%
Primary Diagnostics 1 4.3%
Pump Desired Flow Pressure 3.5%
Primary Encoder 2.9%
Primary Set Current 1.5%
Secondary Set Current 0.9%
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Appendix K

Full vs Small Simulation Window

Figure 1: Comparison of a simulation of problematic vs non-problematic pump head blockage
(F5) when using a full window.

Figure 2: Comparison of a simulation of problematic vs non-problematic pump head blockage
(F5) when using a smaller window.
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Appendix L

Flowchart C++ Application

Figure 1: Flowchart of the C++ application used to validate the trained models on the real pump
system.
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Appendix M

Screen Prints C++ Application

Figure 1: The left side of the image shows a screen print of the console of the C++ application
and the right side of the image shows the console of the real pump system that has a primary
seal leakage (F1)

Figure 2: The left side of the image shows a screen print of the console of the C++ application
and the right side of the image shows the console of the real pump system that has a outlet
check valve leakage (F2)
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Figure 3: The left side of the image shows a screen print of the console of the C++ application
and the right side of the image shows the console of the real pump system that has a inlet check
valve leakage (F3)

51 C.J. van Ekris, BSc University of Twente



Appendix N

Class Mappings

The following formula can be used to calculate the leakage in µl/min at a specific pressure value:

Leakage [µl/min] = 6e15 × Pressure [bar] × Parameter Value

Table N.1: Class mapping for primary seal leakage (F1) at a pressure of 500 bar.

Primary Seal Leakage Parameter value in 20-sim model Leakage (µl/min) @ 500 bar
Class Minimum Maximum Minimum Maximum
0 0 2.0e-19 0 0.6
1 3.0e-19 4.0e-19 0.9 1.2
2 5.0e-19 6.0e-19 1.5 1.8
3 7.0e-19 8.0e-19 2.1 2.4
4 9.0e-19 1.0e-18 2.7 3.0
5 2.0e-18 3.0e-18 6.0 9.0
6 4.0e-18 5.0e-18 12.0 15.0
7 6.0e-18 7.0e-18 18.0 21.0
8 8.0e-18 9.0e-18 24.0 27.0
9 1.0e-17 1.1e-17 30.0 33.0
10 1.2e-17 1.3e-17 36.0 39.0
11 1.4e-17 1.5e-17 42.0 45.0
12 1.6e-17 1.7e-17 48.0 51.0
13 1.8e-17 1.9e-17 54.0 57.0
14 2.0e-17 ∞ 60.0 ∞

Table N.2: Class mapping for outlet check valve leakage (F2) at a pressure of 500 bar.

Primary Seal Leakage Parameter value in 20-sim model Leakage (µl/min) @ 500 bar
Class Minimum Maximum Minimum Maximum
0 0 7.0e-20 0 0.2
1 8.0e-20 9.0e-19 0.2 2.7
2 1.1e-18 2.3e-18 3.3 6.9
3 2.5e-18 3.7e-18 7.5 11.1
4 3.9e-18 5.3e-18 11.7 15.9
5 5.5e-18 6.9e-18 16.5 20.7
6 7.1e-18 8.5e-18 21.3 25.5
7 8.7e-18 ∞ 26.1 ∞
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Table N.3: Class mapping for inlet check valve leakage (F3) at a pressure of 500 bar.

Primary Seal Leakage Parameter value in 20-sim model Leakage (µl/min) @ 500 bar
Class Minimum Maximum Minimum Maximum
0 0 6.0e-20 0 0.2
1 7.0e-20 5.0e-19 0.2 1.5
2 7.0e-19 1.7e-18 2.1 5.1
3 1.9e-18 2.9e-18 5.7 8.7
4 3.1e-18 4.1e-18 9.3 12.3
5 4.3e-18 5.3e-18 12.9 15.9
6 5.5e-18 6.5e-18 16.5 19.5
7 6.7e-18 7.7e-18 20.1 23.1
8 7.9e-18 8.9e-18 23.7 26.7
9 9.1e-18 ∞ 27.3 ∞
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Appendix O

Scripting Manual

In order to run the scripts the following installations are assumed:

• Ubuntu 18.04.02

• Python 3.6.8

• TensorFlow GPU version 1.13.1

• Keras version 2.2.4

• Numpy version 1.16.4

• Pandas version 23.4

• GPy version 1.9.8

• GPyOpt version 1.2.5

O.1 Generating a dataset of a new problem situation

1. Duplicate the data/temp folder and rename "temp" to "Px" where x is the specified problem
number.

2. Open the parameters_cXX.xlsx

3. Define the parameter name and parameter ranges of the to be simulated problem situation.
The flow and laminar resistance parameters are already set to the correct ranges.

4. Save and close the parameters_cXX.xlsx

5. Run the setParameters.py script from inside the "Px" folder to create a list of all the
possible combinations of the set parameter ranges.

6. Reopen the parameters_cXX.xlsx

7. Label the dataset with numeric values in the Label column

8. Save and close the parameters_cXX.xlsx

9. Generate the dataset by running the generateData.sh bash script

10. When the generateData.sh script is finished run the generateMissing.sh bash script to
generate all the missing csv files

11. Replace the "XX" in parameters_cXX.xlsx with the number of classes

12. The generated raw dataset can be checked by running the rawTo20sim.py script and using
the rawFileReader.emx 20-sim file

O.2 Pre-process the generated dataset

1. Open the training/preprocess_windowing.py script

2. Set the problem situation and number of classes

3. Set "transitionWindow" to "False"

4. Set "executeParallel" to "True"

5. Run the preprocess_windowing.py from inside the training folder
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O.3 Train a individual diagnostic model

1. Open the training/train_CNNLSTM.py script

2. Set the problem situation and number of classes

3. Set "reload_data" to "True" when running for the first time

4. Set "selection" and "transitionWindow" to "False"

5. Change the "Training Settings" and "Hyperparameter Bounds" if you want

6. Train the CNN + LSTM based model by running the train_CNNLSTM.py script from inside
the training folder

7. Evaluate the training results by running the evaluate_CNNLSTM.py script

8. The best model will be saved to the testing/models folder

O.4 Train a differentiate diagnostic model

1. Open the train_CNNLSTM_differentiate.py script

2. Set the problem situations, number of classes for each problem situation and class limits
for the normal class

3. Set "reload_data" to "True" when running for the first time

4. Set "selection" to "False"

5. Set "normalClass" to "True"

6. Change the "Training Settings" and "Hyperparameter Bounds" if you want

7. Train the CNN + LSTM based model by running the train_CNNLSTM_differentiate.py script
from inside the training folder

8. Evaluate the training results by running the evaluate_CNNLSTM_differentiate.py script

9. The best model will be saved to the testing/models folder

O.5 Convert a trained model to a *.pb file for the C++ application

1. Open the hdf5_2_pd.py script

2. Set the name of the problem situation and number of outputs

3. Run the hdf5_2_pd.py script
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Appendix P

Building a TensorFlow DLL

P.1 Building a TensorFlow DLL under Windows

In order to build a TensorFlow DLL from scratch the following steps are required. On the "D"
disk of the Windows PC an example of a TensorFlow dll can already be found (see tensorflow-
windows-build-script/source).

1. Go to: "https://github.com/guikarist/tensorflow-windows-build-script" and follow the instructions
to install all the required software

2. Checkout the TensorFlow Git repository version 1.13.1

3. Modify the tensorflow/core/kernels/BUILD file:

• Comment out "unicode_ops" in cc_library

• Comment out "unicode_script_op" in cc_library

• Comment out "@icu//:common"

4. Modify the third_party/icu/BUILD.bazel file:

• Change default_visibility = ["//visibility:public"], to default_visibility = ["//visibility:private"]

5. Create a new directory called "loader" in the tensorflow directory

6. Create a BUILD file with the following content:
cc_binary(
name = "libloader.dll",
srcs = ["loader.cc"],
linkshared=1,
copts = ["/O2", "/DNDEBUG"],
deps = [
"//tensorflow/core:tensorflow",
],
visibility=["//visibility:public"]
)

7. Create a loader.cc file that uses the TensorFlow library

8. Build the dll by running: "bazel build :libloader.dll"

9. The created loader.dll can be found under bazel-bin/tensorflow/loader
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