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Summary

The youBot is a mobile manipulator developed by KUKA to be used in research and education.
The youBot consists of a base with four omniwheels and an arm with five joints. Reusable
software was developed termed the motion stack for use with the youBot, but (mis)use of this
software during several research projects resulted in broken gearboxes in the youBot.

A new method of control has been realized termed the Inverse Kinematics with Kinematic Con-
straints (IKwKC) solver, which replaces the motion stack. The IKwKC solver utilizes an analytic
closed form Inverse Kinematic solver, but when the formulas of the IK solver calculate unreach-
able joint positions the Kinematic Constraints solver recalculates the IK formulas with different
redundancy parameters such that reachable joint positions are calculated and the desired end
effector position is reached. With the IKwKC solver the range of motion is almost doubled com-
pared with the IK solver it is based on.

A connection between the youBot and the RaMstix is realized using EtherCAT such that the
youBot can be controlled with the 20-sim 4C toolchain. Advantages of the connection between
the youBot and RaMstix are: the motors in the joint can be commanded at PWM level, the
youBot is controlled hard real-time and safety features are built in the toolchain. This connec-
tion has been realized successfully, all inputs and outputs of the youBot are accessible. The
execution time of one cycle is on average > 150 us, but peaks every 30 cycles to 300 us. The
cause is likely a result of the network stack which is not real-time. Nevertheless, the youBot
can be controlled with a frequency of up to 2 kHz. The implementation of a real-time network
communication, like RTNet, is recommended.

To showcase the toolchain and the new method of control a demo has been developed. For this
demo the toolchain has been expanded to allow for set-point generation and communication.
This allows the youBot to be controlled wirelessly via wifi with either an Xbox controller or a
keyboard.

Robotics and Mechatronics T.A. Spil
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1 Introduction

1.1 Context

The youBot is a mobile manipulator developed by KUKA to be used in research and education,
a picture of the youBot is shown in Figure 1.1. The youBot consists of a base with four omni-
wheels and an arm with five joints. The base and manipulator can be used independently. The
Robotics and Mechatronics (RaM) group acquired two youBots for the BRICS (Best Practice In
Robotics) project and were used by Brodskiy (2014) to test reusable software and fault-tolerant
control. The reusable software, termed the motion stack, controls the youBot with the use of an
impedance controller (Hogan, 1984).

Figure 1.1: The KUKA youBot (Bischoff et al., 2011)

The motion stack was used to demo the youBot with the Phantom omni, a 6 dof haptic device.
This demo was later upgraded by Frijnts (2014), in which the control of arm and base is separ-
ated. The base was made controllable with a joystick, the arm with an Omega 6. The Omega 6
is also a 6 dof haptic device, but it is more precise and offers larger force feedback than the
Phantom omni. The most important safety feature in the motion stack, the passivity layer
(Franken et al., 2009), was not properly updated. Even though additional safety features were
added, gearboxes in both youBots broke down during several student projects (Weijers, 2015).

The conclusion can be drawn that the motion stack is not safe enough, even with the addi-
tional safety features. Also the tool chain that is used is not real-time, does not have a proper
embedded control software structure and does not allow for rapid prototyping.

1.2 Goals of the project

To solve the problems stated in the previous section this project has the following goals

1. New method of control. Several students in succession broke down both youBots in the
lab using the motion stack. Therefore the need for an easier, more robust and safer con-
trol method is clear.

2. Connecting the youBot with the RaMstix. The RaMstix is a platform developed at RaM
used to run embedded control software. The aim of this connection is to control the

Robotics and Mechatronics T.A. Spil
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youBot hard real-time and use the 20-sim 4C toolchain to implement the controller. If
20-sim 4C would have been used during the previous student projects, the passivity layer
could have been updated more easily and the youBots would not have broken down. This
is conceived because 20-sim 4C allows easy monitoring of data and tweaking of paramet-
ers.

3. Showcase the new control method and toolchain with a new demo

1.3 Outline of the report

In Chapter 2 background material on: the youBot, EtherCAT, the ECS structure and the RaMstix
is detailed. Any of these topics can be passed over if the reader has sufficient knowledge about
them. In Chapter 3 the design and realization of the connection between the RaMstix and
the youBot is detailed. In Chapter 4 a new control method for the youBot, called the Inverse
Kinematic with Kinematic Constraint solver, is detailed. In Chapter 5 set-point generation and
communication is detailed, which is integrated in the toolchain for usage in the youBot demo.

T.A. Spil University of Twente
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2 Background

2.1 The youBot

The youBot, shown in Figure 1.1, is a mobile manipulator devoped by KUKA with the goal of
bridging the gaps between mobile manipulation research, application development for cog-
nitive manufacturing and education in mobile manipulation (Bischoff et al., 2011), such that
research in mobile manipulation is translated faster to industrial applications and to serve as a
state-of-the-art example to introduce robotics education with actual research problems.

X
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Y

Joint 5
340°

Joint 6
155°

Joint 7
300°

Joint 8
200°

Joint 9
340°

x

z

Y

Gripper

Base

Joint 2

Joint 3

Joint 1

Figure 2.1: The KUKA youBot, with the positive direction of the motors indicated by the arrows (Frijnts,
2014)

2.1.1 Technical details

The youBot consists of an omnidirectional base, an arm with five Degrees Of Freedom (DOF)
and a two-finger gripper. The omnidirectional base has a payload of 20 kg and is driven by
four omnidirectional wheels. The wheels and arm joints are driven by brushless DC motors
(also known as EC motors) with built-in gearbox, relative encoder and joint bearing. The five
arm joints have mechanical end-stops. Together in the arm they can lift 0.5 kg using the gripper.
Both fingers of the gripper are opened and closed with one stepper motor. All motors (4 wheels,
5 arm joints, 2 fingers) can be controlled using EtherCAT. The lowest level of command being
pulse width modulation (PWM). Higher-level control commands are: current control, velocity
control and position control. In Figure 2.2 these commands are visualized. In the youBot driver
there is no access to pwm control. The base also contains a computer running Ubuntu. The
main characteristics of the youBot are summarized in Table 2.1 and 2.2

Robotics and Mechatronics T.A. Spil
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Figure 2.2: Ways of controlling a motor using ethercat. VC signifies velocity control, PC signifies position
control and CC signifies current control

Serial kinematics 5 axes
Height 655 mm
Work envelope 0.513 m3

Weight 6.3 kg
Payload 0.5 kg
Structure Magnesium cast
Positioning repeatability 1 mm
Communication EtherCAT
Voltage connection 24 V
Drive train power limitable to 80 W
Joint data Range Speed
Joint 5 +/−169◦ 90◦/s
Joint 6 +90◦/−65◦ 90◦/s
Joint 7 +146◦/−151◦ 90◦/s
Joint 8 +/−102◦ 90◦/s
Joint 9 +/−167◦ 90◦/s
Gripper Detachable, 2 fingers
Gripper stroke 20 mm
Gripper range 70 mm

Table 2.1: General characteristics KUKA youBot arm (Bischoff et al., 2011)

Omnidirectional kinematics 4 KUKA omniWheels
Length 580 mm
Width 380 mm
Height 140 mm
Clearance 20 mm
Weight 20 kg
Payload 20 kg
Structure Steel
Speed 0.8 m/s
Communication EtherCAT
Voltage connection 24 V

Table 2.2: General characteristics KUKA youBot base (Bischoff et al., 2011)

T.A. Spil University of Twente



CHAPTER 2. BACKGROUND 5

2.1.2 youBot driver

The youBot driver is used to control the youBot, it is made up of two parts, the EtherCAT driver
and the youBot Application Programming Interface (API). The EtherCAT driver utilizes an open
source EtherCAT master called Simple Open EtherCAT Master (SOEM) (Karlsson, 2014).

The youBot API (KUKA, 2015) is an open source c++ library developed by the Autonomous Sys-
tems Group at Bonn-Rhein-Sieg University of Applied Sciences. The architecture of the youBot
API is shown in Figure 2.3. The arrows represent flow of information. The communication to
the youBot happens on a different thread called the communication thread, which is initialized
when the first youBot joint is constructed. The rest of the youBot API runs on the same thread
as the user application, therefore called the user thread. The idea behind the youBot API archi-
tecture is to represent the youBot as a combination of decoupled functional subsystems. After
initialization of the YouBotBase or YouBotManipulator several YouBotJoints are initialized, but
it is also possible to initialize a single YouBotJoint.

Figure 2.3: Architecture of the youBot API (KUKA, 2015)

In Figure 2.4 the state machine for the youBot Base and Manipulator class is shown. The main
difference between the two is an extra state in the YouBotManipulator class which is reached by
calibrating the manipulator. Calibration needs to be done before the joints can be controlled
with the setData() function, because the encoders are relative. During calibration the joints
are commanded to move toward their end-stop position at very low speed. By measuring the
current applied by the motor it can be concluded when the joint reached its end-stop and the
relative encoder is reset, such that the end-stop is the zero position of the encoder.

Robotics and Mechatronics T.A. Spil



6 User-input device based command and control of the youBot using a RaMstix

The doJointCommutation() function initializes the sine commutation by energizing the mo-
tor, moving the winding in the motor to the closest magnetic pole, this is called the stepper
technique.

Figure 2.4: The state machine for the youBot Base and Manipulator class (KUKA, 2015)

2.1.3 Former youBot demo

In the former demo the youBot is teleoperated by an haptic device. The software architecture
for this demo is developed by Brodskiy (2014) where it is called the motion stack. The motion

T.A. Spil University of Twente



CHAPTER 2. BACKGROUND 7

stack is shown in Figure 2.5 and is developed with the tool 20-sim. The Cartesian controller
calculates the wrench to be applied to the gripper given an Cartesian set-point for the gripper.
The wrench is calculated with the use of an impedance controller, which uses a virtual spring.
The youBot kinematics component transforms the wrench on the tool tip to joint torques using
forward kinematics. The arm pose controller component implements two safety checks, end-
stop protection and network protection by use of the passivity layer. In the base pose controller
component the three torques (two translations, one rotation) for the base are mapped to the
four wheels.

The youBot model is developed by Dresscher et al. (2010) using bond graphs. The youBot arm
is modelled as a series of links and joints. The link being a rigid body affected by gravity and
the joint an actuator that has a controllable torque around one rotation. The base is modelled
by its four wheels and a connection with the floor. The wheels are modelled as a series of TF-
elements that transforms the energy of the actuator to the floor. The youBot model is used as a
plant to test the motion stack, but also for gravity compensation in the arm pose controller.

Figure 2.5: Architecture of the motion stack (Brodskiy, 2014)

Teleoperation of the youbot is achieved using multiple frameworks. Figure 2.6 shows the mul-
tiple frameworks and how they work together. The set-point generator on the remote computer
generates the values that match the trajectory planning in the motion stack. This Figure shows
the software framework for the updated demo developed by Frijnts (2014). In this demo the
base is controlled by the joystick and the arm by the haptic device, this is done to have a greater
range of motion then there was with only the haptic device.

Robotics and Mechatronics T.A. Spil
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Figure 2.6: Software framework of the youBot demo (Frijnts, 2014)

2.2 EtherCAT

EtherCAT (Ethernet for Control Automation Technology) is an Ethernet-based fieldbus system
that can achieve hard real-time requirements. The various goals of EtherCAT are (Jansen and
Buttner, 2004)

• broad applicability, any pc with an Ethernet port can be an EtherCAT master.

• full conformity with the Ethernet standard, EtherCAT can coexist with other Ethernet
devices and protocols on the same bus.

• smallest possible device granularity without having to use a sub bus, any type of I/O node,
from 2 bit I/O to a complex node, can be used economically as an EtherCAT slave.

• maximum efficiency, as much of the Ethernet bandwidth as possible should be available
for user data.

• short cycle times, cycle times significantly less than 100 µs

• maximum deterministic properties, even without the basis of absolute telegram transfer
accuracy

2.2.1 Operating principle

From an Ethernet viewpoint, an EtherCAT bus can be seen as a single Ethernet device that
sends and receives Ethernet telegrams. But instead of an Ethernet controller with downstream
microprocessors, the ’device’ contains EtherCAT slaves which insert and/or extract relevant I/O
data and sent the telegram to the next slave along the Tx line. The last slave sends the fully pro-
cessed telegram back to the master via the Rx line. Different topologies are easily realized with
EtherCAT as shown in Figure 2.7. This topology is achieved due to the design of an EtherCAT
slave, shown in Figure 2.8. One single EtherCAT slave can branch out to three other EtherCAT
slaves further along the path.

T.A. Spil University of Twente
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M S

S S

S S

SS

Tx

Rx

Figure 2.7: A possible EtherCAT topology. M stands for master, S stands for slave

Figure 2.8: The way a telegram can travel through an EtherCAT slave (Beckhoff, 2014)

2.2.2 State machine

An EtherCAT slave operates a state machine to indicate what functionalities are available. The
state machine is shown in Figure 2.9. The master is responsible for a state change, but the slave
only changes state when all services required for the requested state are provided or stopped.
An overview of the states is given in Table 2.3. A mailbox message transfers acyclic parameter
or diagnostic data, which can be much bigger than a single process data telegram. Process data
communication only transfers the required data for the process and is cyclic.

Robotics and Mechatronics T.A. Spil
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State Functionalities
INIT Init state. No communication on the application layer is available. The mas-

ter has access only to the DL-information registers.
PREOP Pre-Operational state. Mailbox communication on the application layer

available, but no process data communication available.
SAFEOP Safe-Operational state. Mailbox communication on the application layer,

process (input) data communication available. In SafeOp only inputs are
evaluated; outputs are kept in "safe" state.

OP Operational state. Process data inputs and outputs are valid.
BOOT Bootstrap state. Optional but recommended if firmware updates necessary.

No process data communication. Communication only via mailbox on Ap-
plication Layer available. Special mailbox configuration is possible, e.g. lar-
ger mailbox size. In this state usually the FoE protocol is used for firmware
download.

Table 2.3: EtherCAT state descriptions (ETG, 2014)

Figure 2.9: EtherCAT state machine (ETG, 2014). The arrows show the possible steps between states,
arrows are named as from to state

2.2.3 Telegram processing

Telegrams are processed "on the fly", that means that a telegram passes directly to the next
slave and only relevant information (i.e. commands, encoder values) is copied from and in-
serted into the telegram by the hardware of the slave and is therefore independent of response
time of a microprocessor. The EtherCAT data is carried in standard IEEE 802.3 Ethernet fames
with a reserved Ether type that distinguishes it from other Ethernet frames which makes Eth-
erCAT able to run in parallel with other Ethernet protocols. EtherCAT data can also be encap-
sulated by UDP/IP if normal IP routing is needed the encapsulated protocol can be seen in the
bottom half of Figure 2.10.

T.A. Spil University of Twente
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Figure 2.10: EtherCAT telegram structure (Jansen and Buttner, 2004). WC stands for working counter

2.2.4 Protection measures

EtherCAT checks whether a telegram was transmitted correctly, this is done using the stand-
ard Ethernet checksum found at the end of an Ethernet telegram. Since multiple slaves can
modify the telegram during its transfer, the checksum is recalculated for every slave. If a check-
sum error is detected, a status bit is set in the EtherCAT slave, so that a fault can be located
precisely. EtherCAT also checks whether a telegram was processed correctly using a working
counter (WC). When an EtherCAT slave reads or writes data in an EtherCAT command, the
working counter of that command is incremented. Since the master knows how many slaves
are addressed by the telegram, it can detect form the working counter whether all slaves have
exchanged their data correctly.

2.2.5 Performance

In Prytz (2008) the performance of EtherCAT and of another real-time Ethernet protocol,
PROFINET IRT, are calculated and compared. EtherCAT is for every configuration (number
of slaves, telegram size, link speed) faster than PROFINET. For a small number of slaves the
minimum cycle time of EtherCAT is within 100µs.

2.3 Embedded control software structure

At the Robotics and Mechatronics (RaM) group, a layered architecture is used for the design of
embedded control software (ECS) Broenink et al. (2010) as is shown in Figure 2.11. With layers
for: user interfacing, supervisory control (Planning algorithm or image processing), sequence
control (order of action), loop control (control of actuation), safety (safe inputs/outputs around
all layers) and measurement and actuation (interface with hardware). The ECS is a combination
of time-triggered parts (e.g. Loop control) and event-driven parts (e.g. UI) where multiple
layers have different (real-)time requirements, which differ from system to system.

Figure 2.11: Layered architecture for embedded control software (Broenink et al., 2010)

Robotics and Mechatronics T.A. Spil
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2.4 RaMstix

The RaMstix is a platform used to run embedded control software at the RAM group, the RaM-
stix is shown in Figure 2.12. It is an expansion board for a processing unit called the Gumstix
Overo module. The Gumstix runs on Linux Xenomai for hard real-time capabilities. The Overo
module is connected to a Field-Programmable Gate Array (FPGA), the Altera Cyclone III, with
a General Purpose Memory Controller (GPMC). This combination offers the following I/O pos-
sibilities.

• USB/serial debug interface
• 100 Mbit Ethernet connector
• USB master
• USB slave
• 4 dedicated Encoder inputs
• 4 dedicated PWM/Stepper outputs
• 16 digital output pins
• 16 digital input pins
• CAN bus interface
• 2 16-bit ADC
• 2 16-bit DAC

The RaMstix is also used to rapidly test developed software on the setup using the tool 20-sim
4C which allows a controller (or any other model) designed in 20-sim to be uploaded to the
RaMstix in a few simple steps. While the controller is running the inputs, outputs and other
variables can be monitored using 4C.

Figure 2.12: Picture of the RaMstix

T.A. Spil University of Twente
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3 Controlling the youBot with the RaMstix

In this chapter the development of the connection between the RaMstix and the youbot is de-
tailed.

3.1 Design

3.1.1 Possible ways to control the youBot

Two ways of controlling the motors of the youBot using the RaMstix have been investigated:

• Hooking up the motors directly to the RaMstix. Every motor in the youbot has twelve
pins, three to control the windings in the motor, five to read out the hall sensors and four
to read out the encoder. To connect all these pins to the RaMstix the board should be
expanded, the FPGA reprogrammed and the 20-sim 4C interface to the GPMC software
rewritten. Another part of work would be to control the three windings in the motor such
that a steady motion is achieved. A disadvantage of connecting the motors directly to the
RaMstix is that there will be a lot of cables running between the RAMstix and the motors.

• Controlling the motors with EtherCAT. To control the youBot motors with the RaMstix an
EtherCAT master needs to run on the operating system, Linux Xenomai, of the RAMstix.
Also an interface between the EtherCAT master and 20-sim 4C needs to be written.

Following the discussion above, the second way is favourable. It is less time consuming to im-
plement for almost the same results. Both ways are able to handle hard real-time constraints on
high frequencies. Both ways can also control the motor directly, the first way by energizing the
windings and the second way by PWM. Therefore if an EtherCAT master runs on the RAMstix
the youBot will be controlled with the RAMstix using EtherCAT.

3.1.2 EtherCAT master

There are two open-source EtherCAT masters that work on Linux Xenomai:

• Simple Open EtherCAT Master (SOEM). SOEM is used in the youBot API and is also de-
veloped with embedded systems in mind.

• IgH EtherCAT master. The IgH EhterCAT master has drivers available for specific com-
monly used network interface cards (NIC) that communicate directly with the EtherCAT
master such that it circumvents the linux network stack for better performance and guar-
anteed real-time performance. However the RAMstix has a NIC specially developed for
embedded systems, the SMSC911x, which is not supported by the IgH Ethercat master.
Therefore the IgH master uses the linux network stack to communicate with the Ether-
CAT slaves just like SOEM.

Both EtherCAT masters work on Xenomai, but call the linux network stack, therefore they
don’t have guaranteed hard real-time performance. SOEM is chosen to communicate with the
youBot, because it is light weight and the youBot API can be used to understand and use SOEM
in conjunction with the youBot.

3.1.3 Safety features

Two necessary safety features for the control of the youBot are identified:

• End-stop protection, protect the youBot arm joints from colliding with the end-stop.
• Intrinsic safety, protect the youBot arm from colliding with itself or its base.

Robotics and Mechatronics T.A. Spil
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Figure 3.1: Graphical representation of the design of how the youBot is controlled using the RaMstix

Following the Embedded Control Software (ECS) structure, the safety features should reside
between the loop control and measuring and actuation. Following this approach, end-stop
protection is implemented in the youBot interface. Self protection can also be implemented
in the youBot interface, but it is difficult to achieve on joint level. Therefore self protection is
realized in chapter 4 in Cartesian space, where it is easier to realize.

It is chosen to develop end-stop protection only for the PWM control mode. The reason being
that it is the most direct control of the motors and therefore should be used primarily to control
the youBot. End-stop protection should be simple, such that it is fast, does not add delay and
can be easily implemented in C.

3.1.4 Final design

In Figure 3.1 a graphical representation of the design is shown. On a development PC (running
windows) a 20-sim model is created by the end-user that has to control the youBot. Using 20-
sim’s real-time toolbox this model is converted to C code and transferred to 20-sim 4C. In 4C the
code of the model is encapsulated by code that manages the monitor & control, the real-time
loop and the IO. Then the code is compiled to an executable and transferred to the RAMstix,
through the XMLRPC daemon. This daemon is responsible for the communication between
20-sim 4C and the deployed controller. On the RAMstix the executable is deployed and the
model can be started, stopped and monitored by 4C.

3.2 Realization

To realize the design an interface to the youBot using SOEM needs to be written and a RaMstix
target with youBot interface needs to be set-up.

3.2.1 youBot interface

The interface to the youBot is written in C. Important functions are described in this section
in pseudocode. The first function that needs to be run initializes Ethercat, this function is de-
scribed in Algorithm 3.1. The functions ec_init() and ec_config() are from the SOEM library and
initialize EtherCAT and configure EtherCAT respectively. More information on SOEM and the
functions called in the algorithms can be found in Appendix A. In line 9 and 11 the pointers
to the inputs and outputs in the IOmap are coupled to pointers to structures. This is possible
because the RaMstix can handle non-aligned pointers to the IOmap. Otherwise values to be
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read and written had to be done so bit wise. The structures that are coupled to the IOmap are
listed in Listing 3.1.� �

struct {
int32 value ;
uint8 controllermode ;

} SlaveMessageOutput ;

struct {
int32 actualPosit ion ; / / encoder t i c k s
int32 actualCurrent ; / / mA
int32 actualVelocity ; / / rpm motor axis
uint32 errorFlags ;
int32 targetPosi t ion ;
int32 targetCurrent ;
int32 t a r g e t V e l o c i t y ;
int32 rampGeneratorVelocity ;

} SlaveMessageInput ;� �
Listing 3.1: Structure of the process data

Algorithm 3.1 Initialize EtherCAT

Require: EtherCAT not initialized
1 if ec_init(IFName) then
2 if ec_config(TRUE,&IOmap) then
3 Check if all slaves reached SAFEOP state
4 Request OP state for all slaves and check if they reached OP state
5 end if
6 end if
7 for Each slave do
8 if slave is TMCM-174 then
9 Connect struct pointers of base I/O buffer to slave I/O pointers

10 else if slave is TMCM-KR-841 then
11 Connect struct pointers of manipulator I/O buffer to slave I/O pointers
12 end if
13 end for
14 if four base slaves detected then
15 BASE is true
16 end if
17 if five manipulator slaves detected then
18 MANIPULATOR is true
19 end if

After running the Initialize EtherCAT function, full communication with the youBot slaves is
possible. But before the motors in the joints can be controlled they need to be commutated,
the function that handles this is described in Algorithm 3.2. During this process the motors
move, for the joints in the base this is not a problem. But for joints in the manipulator it is be-
cause the encoder is relative and the end-stops are its zero positions. After the movement the
manipulator joints are no longer in their end-stop position and need to be moved back. There-
fore the initialization of the manipulator is a longer process, which is described in Algorithm
3.3.
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Algorithm 3.2 Initialize Base

Require: BASE is true
1 for Each base slave do
2 Send mailbox message, clear motor controller time out flag
3 end for
4 Fill process data buffer of each base slave, with controller mode initialize
5 repeat
6 Send process data buffer
7 Receive process data buffer
8 until Each base slaves motor is commutated
9 for Each base slave do

10 Send mailbox message, reset encoder
11 end for

Algorithm 3.3 Initialize Manipulator

Require: MANIPULATOR is true
1 Same as Algorithm 3.2 until line 8
2 Fill process data buffer of each manipulator slave, with velocity control at two RPM
3 while Every joint is not in end-stop position do
4 Send process data buffer
5 Receive process data buffer
6 for Each manipulator slave do
7 if Exercised current of slave exceeds threshold then
8 Joint reached end-stop position
9 Fill process data buffer of slave, with current control of zero current

10 end if
11 end for
12 end while
13 for Each manipulator slave do
14 Send mailbox message, reset encoder
15 end for
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array number outgoing mailbox message incoming mailbox message
0 module address reply address
1 command number module address
2 type number status
3 motor number command number
4 value (31-24 bit) value (31-24 bit)
5 value (23-16 bit) value (23-16 bit)
6 value (15-8 bit) value (15-8 bit)
7 value (7-0 bit) value (7-0 bit)

Table 3.1: Content of the mailbox message arrays from youBot slaves

In Algorithm 3.2 and 3.3 mailbox messages are sent. The process how these are sent is described
in Algorithm 3.4. The structure of the mailbox messages is shown in Table 3.1. The position of
the youBot gripper is controlled by use of mailbox messages, the desired position is sent in
encoder counts.

Algorithm 3.4 Send mailbox message

Require: Mailbox message to send and number of addressed slave
1 Order mailbox message in the right bit order
2 ec_mbxsend(SlaveNumber,MailboxMessageSend,TimeOut)
3 repeat
4 ec_mbxreceive(SlaveNumber,MailboxMessageReceive,TimeOut)
5 Reorder received mailbox message in right bit order
6 until Confirmation of sent message being received

The final functions implemented in the youBot interface are:

• Get and set functions for the I/O of the youBot. Every input of the youBot –PWM, position
set-point, velocity set-point and current set-point –can be set using their own set func-
tion. Every output of the youBot –current, position and velocity –can be accessed using
the appropriate get function.

• Send youBot data. The I/O data is sent to the youBot using the function
ec_send_processdata().

• Receive youBot data. The I/O data is received from the youBot using the function
ec_receive_processdata().

3.2.2 20-sim 4C target

The RaMstix is already a target in 20-sim 4C. To add additional I/O the .tcf file has to be expan-
ded. In the .tcf file all the I/O needs to be documented, one input is shown in Listing 3.2. By
adding more ports the encoder data of the rest of the base can be accessed. By adding addi-
tional components with the relevant get function other inputs can be accessed. Outputs are set
with the following line setPWMBase(% VAR% ,% CHANNEL % ) in a component, by adding those
components to the output section of the .tcf the I/O is linked. The executable that is compiled
from the 4C target has its process described in Algorithm 3.5.� �

<COMPONENT>
<NAME>Base encoders</NAME>
<DESCRIPTION>

< ! [CDATA[ Base encoders of the youbot
] ] >
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</DESCRIPTION>
<VARIABLES />
<INIT />
<FUNCTION>

< ! [CDATA[
%VAR% = getEncoderBase(%CHANNEL%);
] ] >

</FUNCTION>
<PORTS>

<PORT>
<NAME>Encoder j o i n t 1</NAME>
<PINS>

<PIN>NoPinEncJ1</PIN>
</PINS>

</PORT>
</PORTS>

</COMPONENT>� �
Listing 3.2: Piece of the .tcf file

Algorithm 3.5 20-sim 4C control loop

1 Initialize EtherCAT
2 Initialize base and manipulator
3 repeat
4 Receive youBot data
5 Access youBot data
6 Set youBot data
7 Send youBot data
8 Monitor and /or Log data
9 Calculate model outputs using youBot data

10 Wait for next period
11 until Time ≥ Finish time or Stop is pressed
12 Return manipulator to rest position
13 Stop motors

3.2.3 End-stop protection

End-stop protection is implemented with two P controllers that have their set-points as the
end-stops of the joint and the process variable is the joint position in encoder counts, with the
following formula.

PW Mmin/max = Kp ∗ (SPmin/max −PV )

The output of these P controllers is compared with the desired PWM. If the desired PWM ex-
ceeds the calculated minimum or maximum PWM, the desired PWM is limited to the calculated
min/max.

End-stop protection is implemented in 20-sim to determine the gain (Kp ) and end-stop
min/max values (SPmin/max) empirically. The gain is determined by going through a range of
values and selecting the value with the best response in terms of steady state error and over-
shoot. The SP values are determined such that the end-stop protection barely avoids hitting
the end-stop when the joint is at max speed. The determined values can be found in table 3.2
and are used in the realization of the end-stop protection in the youBot interface.
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Joint Kp SPmin SPmax

5 0.002 -580000 -1000
6 0.0012 -253000 -7000
7 0.0013 -308000 -11000
8 0.0015 -155000 -1000
9 0.0025 -255000 -1000

Table 3.2: Values used in end-stop protection

3.3 Tests

Four tests are performed. The first test was designed during realization to evaluate the youBot
interface. A control loop was implemented using the functions in the interface. The youBot
was successfully controlled using this control loop.

The other three tests are designed to test various features of the youBot using the 20-sim 4C
target implemented above.

• I/O test, tests the inputs and outputs of the youBot

• Performance test, tests the performance of the 20-sim 4C control loop with the youBot

• End-stop protection test, tests the end-stop protection

3.3.1 I/O test

The input/output (I/O) test is designed to assess the various inputs of the youBot and see if
the outputs are working properly. During the I/O test the manipulator arm is moved to the
extended arm position by controlling the encoder position using every controller mode that is
possible for the youbot.

With the positioning controller mode no control loop is implemented, because the EtherCAT
slave controls the encoder position of the joint in this control mode. The joints are commanded
to the extended arm position with constant blocks, the position of the joints for the extended
arm is given in Table 3.3.

For the other controller modes– velocity, current and PWM– a control loop is implemented.
The position of each joint is controlled with a P controller. The P controller is chosen to clearly
see the behaviour of each mode. The gain values of the controllers are determined empirically
and are given in Table 3.3.

Position (cnts) Kvel Kcur KPW M

Joint 5 -290000 0.02 0.003 0.002
Joint 6 -110000 0.03 0.003 0.0015
Joint 7 -150000 0.025 0.003 0.002
Joint 8 -75000 0.035 0.003 0.004
Joint 9 -132000 0.025 0.003 0.005

Table 3.3: Position per joint to reach extended arm position and proportional gains used in the control-
lers for the different modes of control: velocity, current and PWM

Results

The recorded outputs–position, velocity and current–of the arm extension test for all control
modes are shown in Figure 3.2, 3.3 and 3.4 respectively. The position results match with the
visual inspection performed during the experiments. The joints reached the set-point within
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5 seconds using the PWM, position and velocity control modes. However using the current
control mode the set-points were not reached for any joint. Using the PWM control mode the
joints reached its set-point atleast a second faster than every other control type.

Discussion

There are a few reasons that using current control the joints did not reach their set-point:

• Non-optimal controller, a simple P controller is not sufficient to counteract the inertia
once the joint is moving. Design of a better controller for the current control mode was
outside the scope of this test.

• Low gains, the proportional gains in the controller for joint 6-8 are not high enough to
overcome gravity. The gains were not increased due to the chance of overshoot and the
youBot harming itself.
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Figure 3.2: Position output of the youBot joints during arm extension for several control types
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Figure 3.3: Velocity output of the youBot joints during arm extension for several control types
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Figure 3.4: Current output of the youBot joints during arm extension for several control types
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Figure 3.5: Execution time of every 20-sim 4C control loop cycle, for two different frequencies and dif-
ferent amount of logged variables

3.3.2 Performance test

The performance test records the amount of time it takes for the 20-sim 4C control loop to
finish one cycle, called the execution time. The current time is recorded at line 10 in Algorithm
3.5, before and after the wait operation, giving the time at the end and start of a control loop
respectively. The execution time is calculated by subtracting the start time from the end time.
The execution time is measured for a simple model that sets the position using the position
control mode such that no model calculation are required, but still has changing outputs such
that the validity of the loop can be checked.

Results

The results of the performance test are shown in Figure 3.5. Every 30 cycles the execution time
has an increase of 50−100µs. The amount of logged variables by 20-sim 4C seems to have an
influence on the height of the peaks. There is almost no difference in execution time between
running the loop at 100Hz or 1000Hz, also the peaks are separated by 30 cycles on both fre-
quencies.

Discussion

Further testing proved that the peaks are not directly caused by 20-sim 4C. By deactivating parts
of the code the function that caused the peaks was found. The function ec_send_processdata()
from SOEM causes the peaks and overhead as can be seen in Figure 3.6. But that still does not
explain why the peaks vary with the amount of logged variables. The most logical explanation
of the reason the peaks vary with the amount of logged variables is that SOEM has to com-
municate with the Linux network stack. The Linux network stack is not managed by Xenomai
and therefore not real-time. Other programs can occupy the network stack, like the XMLRPC
daemon that has a longer execution time when more variables need to be logged.
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Figure 3.6: Execution time when the function ec_send_processdata() is enabled and disabled

3.3.3 End stop protection test

The end stop protection is tested by putting maximum PWM in both directions on the joint and
see if the protection takes over close to the end stop. This is done by first controlling the joint
to its extended arm position and then let one of the joint go to both end stop positions at max
PWM.

Results

In Figure 3.7 the plots for all five manipulator joints is shown. The dotted line is plotted to
indicate the position of the end-stops.
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Figure 3.7: Safety layer in action for every joint
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Discussion

With the end stop protection it is not possible to hit the end-stops of the joint, provided that
the loop frequency is sufficient > 25Hz.

3.3.4 Conclusion

The youBot can be controlled with the RaMstix using the tool 20-sim 4C. All inputs and outputs
of the youBot can be used. The youBot can be controlled with a frequency up to 2 kHz, on a
higher frequency periods can be missed due to peaks in sending the process data. The end-
stops can not be hit when operating the youBot with PWM.
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4 Inverse Kinematics with Kinematic Constraints solver

In this chapter the design and implementation of the new control method called the Inverse
Kinematic with Kinematic Constraints (IKwKC) solver is detailed.

4.1 Design

Two options for the control method have been investigated. Both are operational space con-
trollers, the impedance controller has been used in the motion stack (Brodskiy, 2014).

• Impedance control, implemented for the youBot by Brodskiy (2014). It implements a vir-
tual spring between the current end-effector position and the desired end-effector po-
sition resulting in a wrench. This wrench on the end-effector is transformed to joint
torques with the Jacobian.

Advantages of impedance control are that it can achieve compliant behaviour and that
it has a physical interpretation. A disadvantage is that it is limited to torque (current)
control.

• Inverse Kinematics (IK) solver, in Sharma et al. (2012) an analytic closed form inverse kin-
ematic solver for the youBot is detailed. It calculates the joint positions from a desired
position of the end-effector– 6D Cartesian coordinates of the end effector and 3 redund-
ancy parameters– to the position and orientation of the base and arm joint angles θ5 to
θ9.

Because the IK solver is analytic, the joint positions can be calculated every control cycle
without adding much processing time, this makes it usable as a hybrid between conven-
tional IK solvers– which operate with some intermediate task points– and operational
space control (Siciliano and Khatib, 2008, Chapter 6).

With an IK solver, the joints can still be controlled independently with any kind of joint space
controllers, therefore it should still be possible to implement impedance control on joint level.
Since one of the goals is to control the motors of the youBot as directly as possible (in this case
using PWM), the IK solver has been chosen for end-effector control.

Sometimes the IK solver calculates joint positions that are unreachable even though a reach-
able end-effector position is commanded. By varying the redundancy parameters reachable
joint positions can be calculated. This is termed the Kinematic Constraint solver.

The reachable space of z is limited and depends on the rotation of the end-effector, therefore
if the youBot arm is in a position where z is minimum or maximum for that orientation– called
a corner case– and a change of orientation is desired, then z would also need to be adjusted.
Otherwise the desired end-effector position would not be reached. Since end-effector control
is designed for human interaction it is chosen that when the youBot arm is in a corner case and
an adjustment to the rotation is made that would lead to an unreachable end-effector position,
z will be adjusted such that the desired rotation is achieved.

4.2 Realization

In Algorithm 4.1 the process of the IKwKC solver is detailed, this process is implemented in
20-sim. The closed form analytic inverse kinematic solver detailed in Sharma et al. (2012) is
used with some modifications. The zero positions of the angles are altered to the extended arm
position. Essential and relevant steps in the Algorithm are detailed in the following sections.
In Figure 4.1 an illustration of the youBot arm and base is shown detailing joint angles, θ and
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θ9

θ5

θ6

θ7

θ8

β

x

yθB

θ5
θ

Figure 4.1: youBot arm and base representation showing all joint angles and extra variables θ and β

Figure 4.2: Rendition of the three redundancy parameters: (a) is ρ1, (b) is ρ2,(c) is ρ3 (Sharma et al.,
2012)

β. In Figure 4.2 renditions of several poses of the youBot are shown clarifying the redundancy
parameters.

Algorithm 4.1 Inverse Kinematic with Kinematic Constraints solver

1 Calculate θ and β

2 Calculate base angle and joint 5 angle
3 Check goal position for a corner case
4 if Not a corner case then
5 repeat
6 Calculate angles of joint 6, 7 and 8
7 if joint angle 6, 7 or 8 is not reachable then
8 Use different value ρ2

9 if tried whole range of ρ2 values then
10 Use joint angles from previous loop
11 end if
12 end if
13 until angles are possible
14 end if
15 Calculate base position and angle joint 9

4.2.1 Calculation of θ and β

Values for θ and β can be extracted from the goal orientation. β is the angle the end effector
makes with the X-Y plane of the base and θ is the angle the youBot turns about its center. A
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problem with the Cartesian calculation of θ and β where the set-point is generated with a con-
troller is that it is not clear at all times why it is moving the way it is. Also the range is limited
since the range of β is −π/2,π/2. Therefore another way has also been implemented, termed
direct control, where the buttons of the controller are directly mapped to θ and β. With direct
control it is always clear how the youBot arm is going to move, but the Cartesian control is lost.
The two possibilities for calculation of θ and β are listed in Table 4.1, where r are the indices of
the goal rotation matrix calculated by the Tait-Bryon angles (θx , θy and θz ).

Cartesian control Direct control
θ ar ct an2(r32,r31) θy

β ar ct an2(r33,
√

(r31)2 + (r32)2) −θx +π/2

Table 4.1: Two possibilities for calculating β and θ

4.2.2 Calculation of base angle and joint 5 angle

In Sharma et al. (2012), the base angle (θb) is calculated with θ and the angle of joint 5 (θ5) with
the first redundancy parameter (ρ1), but θ5 can be controlled much more accurately than θb ,
because the wheels of the youBot experience slip. Therefore

θ5 = θ−ρ1

and
θb = ρ1

this ensures that changing the redundancy parameter only changes the angle between the base
and the arm and the end-effector remains in the same place.

4.2.3 Check corner cases

By extrapolating the physical configuration to the desired position it can be checked whether
the desired position leads to a corner case. There are two distinct sets of corner cases: z > zmax

and z < zmin an illustration is shown in Figure 4.3. When the youBot arm is in a corner case
the joint angles for joint 6, 7 and 8 are easily calculated and only depend on β. In Table 4.2 the
equations for the calculation of joint angles 6, 7 and 8 are shown for all possible corner cases.

Figure 4.3: Corner cases with maximum and minimum height for a value of β
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Conditions θ6 θ7 θ8

z > zmax and β<βmin 0 π/2−β−θ8max θ8max

z > zmax and βmin <β<βmax 0 0 π/2−β

z > zmax and β>βmax 0 π/2−β−θ8min θ8min

z < zmin and β<βmin θ6max π−θ6max −π/2−β

z < zmin and βmin <β<βmid θ6max π/2−β−θ6max −θ8min θ8min

z < zmin and βmid <β<βmax θ6min π/2−β−θ6min −θ8min θ8max

z < zmin and β>βmax θ6min −π−θ6min 3π/2−β

Table 4.2: Equations for calculation of θ6, θ7 and θ8 when the youBot arm is in a corner case. Where
βmin =π/2−θ8max , βmid =π/2 and βmax =π2 +θ8min

4.2.4 Calculate joint angles 6, 7 and 8
L2

L3

L4

θ6

θ7

θ8

β

X ′′

ρ2

Z”

z

Figure 4.4: youBot arm representation for calculation of θ6, θ7 and θ8

The formulas from Sharma et al. (2012) have been modified such that an extended arm is the
zero position instead of a position that is not reachable by the youBot arm. Figure 4.4 gives
an overview of the youBot arm and the angles that are to be calculated. Z ′′ and X ′′ can be
expressed in known quantities:

Z ′′ = z −L4 cos(β) X ′′ = ρ2 −L4 sin(β)

θ7 can then be calculated as follows

θ7 = at an2(sin(θ7),cos(θ7))

cos(θ7) = Z ′′2 +X ′′2 −L2
2 −L2

3

2L2L3
sin(θ7) = ρ3

√
1−cos(θ7)

θ6 can be calculated as follows

θ6 = at an2(X ′′, Z ′′)−at an2(L3 sin(θ7),L2 +L3 cos(θ7))

and finally θ8 can be calculated
θ8 =π/2−β−θ6 −θ7
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4.2.5 Kinematic constraint solver

The kinematic constraint solver is detailed in Algorithm 4.1 line 5-13. When joint angle 6, 7 or
8 is unreachable a set of possible ρ2 values is generated. The size of this set can be chosen and
the set is sorted, from smallest deviation from desired ρ2 to biggest deviation. The first value
in the set is used to recalculate θ6, θ7 and θ8. If one of those angles is still unreachable the next
value in the set is used to recalculate the joint angles and so on, until a value of ρ2 is found that
has reachable angles or when the set is depleted. When this is the case previous angles that are
reachable are used.

4.2.6 Calculation of base position and joint 9 angle

The base position is calculated using forward kinematics which calculates the end effector po-
sition using the already calculated joint angles except for the angle of joint 9 which does not
affect the distance to the end-effector. By comparing the end effector position in x and y the
desired position in x an y the base position can be calculated.

Joint 9, just as θ and β, can be calculated in 2 ways. With Cartesian space control and direct
control. In Table 4.3 the two ways are shown.

Cartesian control Direct control
θ9 at an2(sin(θ9),cos(θ9)) θz

Table 4.3: Two ways to calculate angle of joint 9

sin(θ9) = e11r11 +e21r21 +e31r31

cos(θ9) = e12r11 +e22r21 +e33r31

Where e are the indices of the end effector rotation matrix and r the indices of the goal rotation
matrix.

4.2.7 Limit set-point to reachable space

During use of the IKwKC solver, z and ρ2 sometimes deviate from their set-point. To change the
actual position of the youBot arm the set-point position first has to arrive at the actual position,
or there will be weird jumps. To solve this a feature termed dynamic set-point was introduced
an illustration of this feature is shown in Figure 4.5. With dynamic set-point the actual position
can be left directly, this comes at the cost that z and ρ2 are floating, they do not correspond to
the set-point but only to the change in the set-point.
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Set-Point
(a)

Set-Point
(b)

Figure 4.5: Change of youBot configuration to a change in set-point when it is outside of reachable
space. (a) with dynamic set-point, (b) without dynamic set-point

4.2.8 Intrinsic safety

The youBot is able to hit itself and the base, therefore intrinsic safety is necessary. Intrinsic
safety should not be included in an inverse kinematic solver, but because the set-point is dy-
namic the exact position is only known in the IKwKC solver, therefore intrinsic safety is in-
cluded. The implemented intrinsic safety has two parts. The first part protects the arm from
colliding with the base and the second part protects the arm from colliding with itself. Collision
with the base is prevented by limiting the height at certain values of θ. Collision of the arm with
itself is prevented by limiting ρ2 when β< 0∧β>π.

4.3 Tests

To adequately test the IKwKC during realization a real-time youBot model is necessary, sim-
ilar to a plant to test controllers. For the tool 20-sim a youBot model is already developed
(Dresscher et al., 2010), however this model is too computational heavy to be run in real-time,
therefore a new youBot model is developed in 20-sim. This model can be run at real-time and
translates the outputs of the IKwKC solver, base position and joint angles, to a stylized anima-
tion model of the youBot. This is done with forward kinematics. If the angle commanded for a
joint is not reachable it is capped to its maximum value. The model assumes that the control is
done perfectly and instantaneous, due to the way it is implemented.

After completion of the IKwKC solver it has been used as part of a youBot demo. The demo has
been used numerous hours by numerous users without errors from the IKwKC solver. Therefore
it can be concluded that the IKwKC solver works as intended. It is robust and can be used by
anyone.

4.3.1 Range of motion test

The range of motion test is designed to test the range of motion the youBot arm has in the z
direction depending on β. It is tested by first changing β in small increments from minimum
to maximum while z is maximum and then on minimum z changing from maximum β to min-
imum β in small increments.

Results

In Figure 4.6 the range of motion of the IKwKC solver is shown as well as the range of motion
of the IK solver presented by Sharma et al. (2012). The area the IKwKC solver covers is much
bigger than the IK solver it is based on and almost fully encloses it. The IK solver only passes
through the line denoted by A.
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Figure 4.6: Range of motion for the inverse kinematic solver by Sharma et al. (2012) and the inverse
kinematic with kinematic constraints solver

Discussion

The IKwKC solvers range of motion is greater than that of the IK solver also it almost entirely
encompasses the IK solvers range of motion except for the line at A. At A the height is limited
by the self protection such that the youBot arm does not hit the base. The height difference
at B is caused by joint 6, which has no symmetric joint limit. The two lines at B are caused by
the corner case checker. When going from right to left, the corner case checking increases the
height, going from left to right z has a rate of change and therefore is a sloping line.

4.3.2 Conclusion

The IKwKC solver outputs valid joint angles for every set-point and the entire space reachable
by the arm can be reached with the IKwKC solver.
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5 Set-point generation and communication

Set-point generation and communication is used for user interaction in the youBot demo. In
this chapter the development of a platform to interact with the youBot and integration of the
platform in the toolchain is detailed.

5.1 Design

5.1.1 Set-point generation

Set-point generation will be done on the development pc, the main reason being that a lot
more user input devices work on windows than linux, especially the stripped down version of
the linux kernel that the RaMstix works on. 20-sim is used as a platform to generate and send
set-points, since 20-sim can call functions using dynamic link library’s (dll’s). A few reasons for
the use of 20-sim over an executable for generating and sending set-points:

• model testing with device, an input device can be used during real-time simulation to test
a model.

• easy switch out, another input device can easily be used by developing a dll for it.

• real-time comparison, the youBot and simulated youBot can be compared during run-
time with the same set-points.

5.1.2 Set-point communication

Since the RaMstix communicates via wifi with the development pc for 20-sim 4C, it is chosen to
communicate the set-point unilaterally over the network as well. Information over the network
can be send with sockets, there are three kinds of sockets:

• A datagram socket, uses the User Datagram Protocol (UDP), is also called connectionless
socket and uses a minimum amount of protocol mechanism. A datagram socket is used
for time sensitive applications because dropping packets is preferable over waiting.

• A stream socket, uses the Transmission Control Protocol (TCP) and is also called
connection-oriented socket. TCP provides ordered error-checked packets, but this
comes with additional overhead.

• A raw socket, does not use any protocol. To utilize the raw socket a protocol has to be
designed.

For the communication with the RaMstix the datagram socket is chosen. It is less work to im-
plement than the raw socket, has less overhead than the stream socket and it is commonly used
for time sensitive applications.

Since the UDP packets are sent over wifi the chance for data errors is higher than sending
them over TCP. The datagram socket only error checks the length of the received packet us-
ing a checksum, so if the packet length is incorrect the packet is thrown out. If some of the
data in the packet is corrupted it is not detected, therefore error detection should be built in
the function that receives the datagram.
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Figure 5.1: Set-point generation on development pc and communication to the RaMstix, sp stands for
set-point

5.1.3 Final design

In Figure 5.1 a graphical representation of the final design is shown. The yellow coloured
rectangles– set-point generator (sp gen) dll, set-point send (sp send) dll and set-point receive
(sp receive) interface– have been realized. The sp receive interface should also be integrated
with the RaMstix target in 20-sim 4C.

The devised operation is as follows. In 20-sim a model (C) is created that should run on the
RaMstix. The code of this model is transferred to 20-sim 4C. There it is encapsulated by monitor
& control software and deployed on the RaMstix. Another model (C*) in 20-sim simulates in
real-time and calls a function in the sp gen dll to generate the set-point. This set-point is send
to the RaMstix with the sp send dll. The sp receive interface receives the set-point and saves
it such that it can be accessed by the monitor & control loop such that it can be used by the
model (C).

5.2 Realization

All algorithms described in this section are written in C.

5.2.1 Set-point generation

Set-point generation for two input devices, a keyboard and an Xbox controller, is implemented.
The function that generates the set-point for the Xbox controller is described in Algorithm 5.1.
Set-point generation using the keyboard is done in a similar fashion, only it is implemented in
20-sim, because a dll for the keyboard is already incorporated in 20-sim. In 20-sim line 2-6 of
Algorithm 5.1 are implemented for set-point generation with the keyboard.

In table 5.1 the mapping between the set-point and the two input devices is shown. The youbot
has 9 DOF, 6 can be expressed in cartesian coordinates the other 3 are independent and are
called ρ1 , ρ2 and ρ3. These 9 dof are generated as set-points and are sent to the RaMstix.
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Set-point
Xbox controller Keyboard

+ - + -
x D-pad up D-pad down W S
y D-pad right D-pad left D A
z Trigger right Trigger left E Q
θx Left stick up Left stick down Numpad 9 Numpad 7
θy Left stick right Left stick left Numpad 3 Numpad 1
θz Right stick right Right stick left Numpad 6 Numpad 5
ρ1 Right bumper Left bumper Numpad . Numpad 0
ρ2 Right stick up Right stick down Numpad 8 Numpad 2
ρ3 Stick button left Stick button right Space

Table 5.1: Mapping between set-point and input devices

Figure 5.2: Buttons on an Xbox controller (Alphathon, 2010)

Algorithm 5.1 Generate set-point

Require: Xbox controller connected and rate of change (roc)
1 Get Xbox controller state
2 for Each button coupled to set-point do
3 if Button pressed then
4 Increase coupled set-point by roc
5 end if
6 end for
7 for Each stick direction do
8 Calculate normalized axis
9 Increase coupled set-point by normalized axis times roc

10 end for

5.2.2 Send set-point

Before the set-point can be sent, the socket needs to be initialized, that process is described
in Algorithm 5.3. The function that sends the set-point is described in Algorithm 5.2. The set-
point is saved as an array of floats, to send these over the network via socket they have to be
transformed, since the data type float is saved differently on different devices. Therefore the
set-points are packed using the IEEE Standard for Floating-Point Arithmetic (Zuras et al., 2008)
using functions detailed in Hall (2001).
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Algorithm 5.2 Send set-point

Require: Set-point and Socket send initialized
1 Pack set-points values according to IEEE 754
2 Send set-points over socket

Algorithm 5.3 Initialize socket send

Require: ip-address
1 Read ip-address from configuration file
2 Initialize winsock dll with WSAStartup()
3 Set up structures with getaddrinfo(&servinfo)
4 for All servinfo entries do
5 Set up socket
6 if successful then
7 Break for loop
8 end if
9 end for

5.2.3 Receive set-point

The function that receives datagrams is a blocking function, even on Xenomai with high real-
time priority the function will block until it receives a datagram on the indicated port. This
is resolved by operating the receive function in a separate thread, as shown in Figure 5.3 The
variable array containing the set-points is shared between the two threads, the thread with the
receive function writes to it and the original thread reads from it. Therefore there is no need for
mutual exclusion (mutex). The initialization of the socket and thread is described in Algorithm
5.5 and the function that receives the set-point is and error checks it is described in Algorithm
5.4.

4C loop
thread

sp receive
thread

create

thread

cancel

thread

Start of
4C loop

End of
4C loop

Figure 5.3: Sequence diagram to show creation of the set-point receive thread
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Algorithm 5.4 Receive set-point

1 while thread is not cancelled do
2 Listen on socket for datagram packets containing the set-point
3 if Set-points received then
4 for every set-point do
5 Unpack set-point value according to IEEE 754
6 Calculate difference between received set-point and previous set-point
7 if difference > 1 then
8 Use previous set-point
9 else

10 Use received set-point
11 end if
12 end for
13 end if
14 end while

Algorithm 5.5 Initialize socket receive

1 Set up structures with getaddrinfo(&servinfo)
2 for All servinfo entries do
3 Set up socket
4 if successful then
5 Bind socket
6 if successful then
7 Break for loop
8 end if
9 end if

10 end for
11 Create set-point receive thread

5.3 Tests

Two tests are performed to test set-point generation on the development pc and set-point com-
munication to the RaMstix.

5.3.1 Generation test

Set-point Generation is done on the development pc using 20-sim, all variables are generated
with the Xbox controller and keyboard, as listed in table 5.1. The set-point values are generated
by repeatedly pressing randomly on one of the two buttons or holding the thumb stick in a
direction.

Results

In Figure 5.4 the results for the generation test are shown. Three variables generated with the
Xbox controller are plotted: x, z and θx to show variables generated with the buttons, triggers
and thumb stick. One variable generated by the keyboard x is plotted, to show a variable gen-
erated by the keyboard. All the other variables were also successfully generated but are not
plotted.
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Figure 5.4: Generated set-points x, z and θx with the Xbox controller and x with the keyboard

Discussion

There is almost no difference in generation between the button, trigger and thumb stick. How-
ever with the thumb stick inversion of direction takes longer, because it takes time to physically
move the stick.

5.3.2 Set-point communication test

In the set-point communication test three features are tested: set-point sending, set-point re-
ceiving and set-point error checking. Set-point sending is done on the development pc in 20-
sim using the function described in Algorithm 5.2. With 20-sim 4C the set-points are received
and error checked using the interface detailed in section 5.2.3.

A repeating signal is sent with some injected errors to test the error checking. There is a 1 in 200
chance of an error occurring every simulation step of 0.01 s. When an error occurs, the send
set-point is adjusted to a unified random value between ±64. A network time out is simulated
between 12 and 15 seconds, based on a real-time out. The effect of a network time-out is shown
in Figure5.5. At the 12 second mark an error value is send and afterwards no values are sent
until the 15 second mark.
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Figure 5.5: Effect of a network time out on the received set-point

Results

In Figure 5.6 the sent set-point compared with the received and error checked set-point on
the RaMstix. The graph does not say anything about the delay, the received data is shifted to
overlap with the send. This is done because the difference is made up of the time between the
start of the 20-sim 4C control loop and the start of the 20-sim model that generates and sends
the set-points.
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Figure 5.6: Send set-point vs. received set-point

Discussion

The communication between the development pc and the RaMstix is successful, the RaMstix
received most of the sent packets. All errors are also filtered out effectively. After the simulated
time out at A in Figure 5.6 it takes a moment for the RaMstix to receive the packets again.

5.3.3 Conclusion

The set-points can be generated on the development pc by both the Xbox controller and key-
board. The generated set-points can be sent from the development pc to the RaMstix. On the
RaMstix the received set-points are error checked, which filters out corruption of data effect-
ively.

Robotics and Mechatronics T.A. Spil



40 User-input device based command and control of the youBot using a RaMstix

6 Conclusion and Recommendations

6.1 Conclusion

The youBot can be controlled via the RaMstix using the toolchain 20-sim 4C. A new control
method, the IKwKC solver, is designed and realized. With the built-in safety features in the
toolchain and the inherent safer control method the youBot should be safe to be used without
the youBot breaking down. A demo in which a user can control the youBot via wifi with an Xbox
controller or keyboard has been realized.

6.2 Recommendations

Several recommendations can be made

• Real-time network communication, as noted in Chapter 3 the linux network stack is not
real-time and this leads to peaks in the execution time. By implementing a real-time
networking framework (like RTNet Kiszka et al. (2005)) these performance dips could be
prevented.

• Better joint controllers, currently P-controllers are implemented at joint level. Better joint
controllers can be implemented to improve steady state error and overshoot.

• YouBot interface in LUNA, the youBot interface that has been developed in Chapter 3 can
also be used in LUNA.

• Update Dresscher et al. (2010) youBot model, the youBot model is developed with force
inputs. But now a lower level control of the motors is possible (PWM) and the youBot
model could be updated with motors to accommodate the new input.
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A SOEM

SOEM is a simple EtherCAT master, an EtherCAT master is a software library that handles the
communication with EtherCAT slaves, it provides the means to send and receive EtherCAT
frames as well as mailbox messages. Mailbox messages can be sent with the following profiles:
CAN application protocol over EtherCAT (CoE), Service drive profile according to SERCOS (SoE)
and File access over EtherCAT (FoE). SOEM sends EtherCAT messages over the NIC through the
use of the RAW socket. During configuration SOEM automatically maps the IO between the
EtherCAT master and slave in an IOmap keeping the logical process image as small as possible.
This is done by fitting bits from different slaves in a single byte. The mapped outputs are put
first in the IOmap and thereafter the mapped inputs. Figure A.1 gives an example of the map-
ping, the colors between the physical and logical address represents the mapping of the bits,
the color represents the slave.

Figure A.1: Memory layout, mapping between the physical and logical addresses by the IOmap (Karls-
son, 2014)

.

Some important functions of SOEM are

• ec_init(IFName), sets up the NIC to be used as EtherCAT Ethernet interface. The input
argument is the name of the Ethernet device. The function returns one if it succeeds else
it returns zero.

• ec_config(UseTable,pIOmap), is a combination of two functions. The first function ini-
tializes all the slaves to the PREOP state and sets up mailboxes for slaves that support it.
The second function maps the IO in the IOmap and requests the SAFEOP state. The in-
put argument UseTable is a boolean that is true when the slaves have a config table that
can be read out. The input argument pIOmap is a pointer to the IOmap that needs to be
set-up. The function returns one if it succeeds else it returns zero.

• ec_send_processdata(), sends the EtherCAT frame on the NIC.

• ec_receive_processdata(TimeOut), tries to fetch the EtherCAT frame for the duration in-
dicated by the argument TimeOut. It returns the working counter.

• ec_mbxsend(SlaveNumber,MailboxMessageSend,TimeOut), sends a mailbox message to
the slave indicated by the SlaveNumber. The mailbox message to be sent is an array of
8 bit unsigned integers. Due to the 8 bit restriction an integer bigger than 8 bit needs to
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be split up into 8 bit portions when sending a message, starting with the most significant
bit.

• ec_mbxreceive(SlaveNumber,MailboxMessageReceive,TimeOut), receives a mailbox mes-
sage. The received mailbox message is also an array of 8 bit unsigned integers, so due
to this restriction bigger integers need to be pieced back together, starting with the most
significant bit.
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B Demo

The following software is necessary to run the youBot demo:

• 20-sim, to open the models
• 20-sim 4C, to control the youBot via the RaMstix

The following files are necessary:

• SendIKValuesXbox.emx or SendIKValuesKeyboard.emx, to send the set-point values to the
RaMstix

• XboxDemo.emx, contains the controller for the youBot
• xboxdll.dll, sendSP.dll and youbot.ini, these files are necessary for the SendIKValues mod-

els to send the set-point to the RaMstix.
• RaMstix_youBot_target.rar, contains the 4C target of the RaMstix coupled with the files

to receive the set-point and communicate with the youBot over EtherCAT.

The following steps should be taken to start the youBot demo for the first time:

• Copy the xboxdll.dll, sendSP.dll and youbot.ini files to the bin directory in the 20-sim
installation directory

• Install the RaMstix 4C target following the direction on the RaM wiki

• Extract the RaMstix_youBot_target.rar file in your 4C target directory

• Generate c-code for the YouBotController submodel in the XboxDemo.emx. This is done
in the simulator, selecting tools->real-time toolbox->c-code generation. Then in the tar-
get list select 20-sim 4C and generate the c-code. This should open 4C.

• in 20-sim 4C:

– Connect to the RaMstix, the currently used RaMstix ip is: 10.0.5.114. If a different
RaMstix is used alter the ip-adress in the youbot.ini file.

– Connect the inputs and ouputs. At minimal the encoder inputs, set-point inputs
and pwm outputs should be connected.

– Compile and Run

• Begin simulating in the SendIKValuesXbox.emx or SendIKValuesKeyboard.emx model.
Make sure that in the run properties the simulator attempts real-time simulation and is
endless.

Now the demo should be up and running, and depending on which model you are using
SendIKValuesXbox.emx or SendIKValuesKeyboard.emx you can control the youBot with an
Xbox controller or with the keyboard.
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