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Preface

Dingen die men ziet, lijkt je eerder te begrijpen. Die gedachtegang lijkt in de maatschap-
pij ook steeds gaande te zijn. Zo bestaat handleiding van Ikea voornamelijk uit
afbeeldingen. Daarnaast kan een ziekenhuis niet zonder een radiologie afdeling.
Tevens is er op wetenschappelijk gebied, zeker het kwantificeren van dat was je ziet
steeds belangrijker. Deze gedachtegang is niet alleen zichtbaar in de maatschappij
maar ook persoonlijk door te kiezen voor de Master track keuze (Medical Imaging
and Interventions).

En de Master (track) bleek ook volledig in lijn met de eindopdracht van de mid-
delbare school; of men onder water met glazen lenzen beter zou kunnen zien, dan
met een duikbril. Eveneens een zicht/visie/beeldvormend en technisch onderwerp.
Een onderwerp dat op al op technisch geneeskundige onderwerpen de mogelijk en
onmogelijkheden is had belicht.

Een opleiding maar ook een studentenleven dat veel stageplekken en vele uit-
stapjes kende; Een Enschedese studententijd, de URaad, stages in Hardenberg,
Zwolle, Utrecht, Leiden/Amsterdam, Straatsburg. Plus het wonen in deze verschil-
lende steden. Niet te vergeten ook de studiereis met het backpacken door China.

Nu ruim 7 jaar verder heb ik me dan ook bezig kunnen houden met een AI binnen
de chirurgie dat ongetwijfeld hetzelfde pad zal volgen als andere sectoren zoals
de automotive of radiologie. Een werkgebied dat sterk moet vertrouwen op het
zicht. Dit is daarnaast een onderzoeksgebied waar ikzelf me in de 6 jaar Technische
Geneeskunde nog niet in had verdiept maar zeker van grote betekenis zal zijn in de
medisch sector.

In het bijzonder wil ik daarvoor een aantal mensen bedanken. Deze stage, zou
nooit mogelijk zijn geweest door de visie en gedrevenheid van prof. dr. I.A.M.J.
Broeders en het Meander Medisch Centrum. Zonder de daarbij behorende Tech-
nische begeleiding en ideeën en blik n imaging onderwijs van dr. ir. Ferdi van der
Heijden zou eveneens deze thesis niet compleet zijn geweest. De afgelopen drie
jaar heeft Paul van Katwijk een belangrijke rol in professionele ontwikkeling gehad
van vele TG’ers, waaronder ikzelf. We hebben altijd delen van elkaars ideeën over
de opleiding, stage(s) maar ook privézaken toch kunnen ondersteunen.

Er zijn daarnaast een boel anderen (TG’ers, coassistenten, arts-assistenten, ect)
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die er zeker aan hebben bijgedragen maar de twee mensen die ik absoluut niet
mag overslaan zijn mijn ouders. Zij die alles van visie op studie/studenten zaken,
verhuizen, halen/brengen naar het treinstation tot het lezen van de talloze concept
verslagen altijd hebben ondersteund.

Ontzettend bedankt en veel plezier met het lezen van deze master thesis!

Julian



Summary

English

Introduction During anti-reflux surgery, there is a potential risk of (unintended)
Nervus Vagus injury. Which estimated around 20%. A solution and our goal is
to create an AI tool (Deep Learning) that can detect the Nervus Vagus and other
anatomical structures in surgical videos. Addition of temporal features that might
help in segmentation/detecting the actual nerve.
Method Five UNET algorithm structures are used as a basis for the training of 5
visible structures in the videoframes. These networks are trained on two datasets; a
small clinical (105 frames, from 10 videos) for the actual goal and a larger automo-
tive dataset (2121 frames, from 5 videos) for testing the functionality of the networks
and testing the addition of dense optical flow (temporal features). The Dense Optical
Flow is calculated and used as an input or extra input for the algorithms. The clin-
ical dataset is, just like the automotive dataset, pixel-wise annotated for the target
structures (liver, crus, Vagus Nerve, stomach/oesophagus, else). The target struc-
tures for the automotive dataset are; car, road, traffic signs, sidewalk, else. The five
algorithms differ from each other on the input data; the red-green-blue (RGB) frame
as only input, the Dense Optical Flow and a combinitation of both.
Results The UNETS are able to segment in all cases at least two structures in
the automotive with an IoU 0.5 or higher. And even three structures in the RGB
only algorithm. The RGB only algorithm is performing better in both datasets and
has for each segmentable structure the highest IoU score compared to the other
algorithms that also used dense optical flow. IoU scores for the clinical dataset are
much lower but show a similar pattern. Only the ”else” structure reaches an IoU
above 0.5 in the clinical dataset. The confusion matrix shows similar findings, and
in none of the networks, the vagus nerve popped out (all algorithms score a 0.00
in the normalised confusion matrices for the Vagus Nerve). Visual inspection of the
heatmap/probability maps of the Vagus Nerve of the RGB algorithm shows a rela-
tively broad region where the vagus nerve indeed can be.
Conclusion Visualisation of semantic segmentation was possible on top of surgical
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video frames. Semantic segmentation with UNETs trained on surgical images is
possible. The addition of temporal features (Dense optical flow) of videos by com-
bining the RGB data in the first layer of the UNET algorithm does not improve the
semantic segmentation.
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Chapter 1

Introduction

1.1 Introduction

Gastroesophageal reflux disease (GERD) is considered a benign condition of the
stomach and oesophagus. [1] The primary medical treatment of GERD is the use
of proton-pump inhibitors (PPI’s), however, a 10 to 40% of the patients remain unre-
sponsive [17]. Surgical treatment is a second treatment option. When PPI treatment
does not show results in proven GERD, the recommended treatment is a fundopli-
cation. Even if no HHD is present, but PPI treatment does not work, a fundoplication
is recommended. [18] (Examples of a HHD are given in figure 1.1)

However, there is a potential risk of Vagus Nerve (Latin: Nervus Vagus) injury in
fundoplications with HDD repair. [19] More important, Vagus Nerve injury has a sig-
nificant negative effect on the reflux control postoperative and a significantly higher
redo rate compared when there is no vagus injury post surgery [20]. Research of
Van Rijn et al. (2016) ( [20]) reported an incidence of 20% on unintended vagus
injury. It should be mentioned that this long-term follow-up data of surgeries were
collected between 1990 and 2000. Back then, the laparoscopic video systems were
not as good as today. In this cohort of vagus injury (the study of Van Rijn et al.
(2016)) over 50% had redo surgery and most of them because of recurrent reflux
problems. Better knowledge per patient of the location during surgery or visualisa-
tion of this nerve might improve the outcomes.

Due to a dysfunctional closure of the lower oesophagal sphincter duodenal gas-
tric material can enter the oesophagus and even higher anatomical structures. This
reflux can cause apart from discomfort, damage and inflammation of those struc-
tures. Untreated, the inflammation and tissue changes can lead to aspiration, Bar-
rett’s oesophagus, stricture, esophagitis or an adenocarcinoma. A higher incidence
in GERD is found in patients who have an HHD, obesity or delayed gastric empty-
ing. [21]

Due to change of anatomy, an HHD reduces functionality of the lower oesopha-
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2 CHAPTER 1. INTRODUCTION

gal sphincter (LES), which results in possible entering of stomach fluids into the
oesophagus. An HHD is a protrusion of anatomical structures (other than the oe-
sophagus) into the thoracic cavity due to a widened hiatus diaphragmaticus. [22]
This causes the symptoms; pain, heartburn, bleeding, dysphagia, weight loss, vom-
iting and regurgitation. [23]

Those GERD-like symptoms are strongly related with the HHD but are not nec-
essarily present with every HHD. With a hiatal hernia, the stomach can migrate par-
tially or entirely to the thoracal cavity. An HHD has four different subtypes anatom-
ically (see figure 1.1). The most common one is type 1 and does not imply a non-
functional LES. Though non-functionality of the LES is also very size-dependent.
A type 2 to 4 is likely to cause GERD symptoms. In type 2, the gastroesophageal
junction is in the abdominal cavity although the gastric fundus slides into the hiatal
hernia. In a type 3 HHD, the fundus of the stomach and the gastroesophageal junc-
tion are located in the thorax cavity instead of in the abdominal cavity. A type 4 (not
visualised in figure 1.1) other anatomical structures migrate cranially to the hiatal
hernia. [1]

Figure 1.1: Type 1, 2 and 3 of hiatal herniations (HHD). A is a type 1 hernia (sliding hernia).
B is a type 2 hernia (rolling hernia). C is a combination type of the type 1 and 2 (mixed
hernia). [1]

The most common hiatal hernia is type 1; it covers 95% of all hiatal hernias. The
other three subtypes together make the other 5%. The common symptoms of type
1 are the presence of GERD/reflux. [24] The other subtypes present themselves, on
the other hand, more frequently with obstructive symptoms. [1] Also in type 1 hiatal
hernia without reflux disease is also considered as no indication for surgery [22].
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Artificial Intelligence for healthcare applications

In healthcare, the thrive to improve patient outcomes without raising the cost has
always been the case. A new step in the digitisation in health care might support
this need through big data and similar technologies like artificial intelligence (AI).
AI tends to improve on diagnostics, patient therapy, prevention and support health
care in making clinical decisions. A subtype of AI is machine learning. It can find
correlations, associations, segmentation and generate new insights in vast amounts
of data. AI is used in the automotive, finance and smart homes. In medicine, the first
clinical setups show their great value; node detection in X-ray images, the prediction
of outcomes in infectious diseases and ECG arrhythmia detection. Deep learning
is also a type of AI and machine learning but relies on a small infrastructure which
mimics the brain infrastructure. It is called deep because of stacked layers with
multiple artificial ’neurons’ that can be trained with existing data to make predictions
or classifications. This is achieved by learning based on prelabelled data [25]

Due to the enormous variation between observed data (patients), the other reg-
ular learning methods are not sufficient anymore (i.e. selection on only colour differ-
ences). So the step from machine learning to deep learning is established. Deep
learning can make automated predictions on large complex datasets. [26]

Also, in surgery, the first AI applications are built. An example is a previous work
from M. Schuhmacher at the Meander Medical Center. He showed that surgical
video could be used for object detection. He showed that with an object detec-
tion algorithm, trained on a clinical in hospital made dataset, is possible. The used
data was colorectal surgery video frames. The accuracy was low and acceptable
(43.7%), but improvement for clinical usage would be necessary as also stated in
his thesis. He used a CNN (convolutional neural network, the YOLOv2 network)
for autonomous structure recognition in the lower abdomen. Suggestions he made
were; more training data, more complex network architectures like long short-term
memory networks (LSTM). An LSTM is a recurrent neural network (RNN) which
adds a specific ’memory’ to the algorithm. In contrast, CNN does not have this
’memory’. [4] In this proposed study is to test new network structures on a clinical
visualisation problem during anti-reflux surgery.

In 2010 by Zanjani et Al. described that the AI segementation algorithms used
on videos still were based on the single frames and not on the video itself. Possible
clues that could be hidden in previous frames was discarded. This is also the case
in the YoloV2 algorithm that was used by M. Schuhmacher. That only used single
frames. [27] This problem of not using the video but single frames, in combination
with the recommendations of M. Schuhmacher, raises the question if a possible
mechanical fingerprint or clue (in previous frames), can be used to improve the seg-
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mentation of anatomical structures. In our case, the anatomical structures like a
Vagus Nerve.

Although the first, AI algorithms are introduced in medicine, none of them are
used in daily practise in interventional care like surgery. The Meander Medical Cen-
ter tries to fill this gab. This is achieved by the research line AI and Surgery, of
which the research of M. Schuhmacher as described was the first result. With that
mindset, this research continues in the field of surgery and the use of AI. [4], [28]

1.2 Research aim and research hypothesis

The ultimate aim of this study is to develop a surgical tool that is able to assist during
surgery in real-time recognition of the Vagus Nerve to help training residents and
support new surgeons. In this research, multiple steps are considered to achieve
a supportive algorithm for anatomical structure recognition. First, a laparoscopic
fundoplication dataset has to be created that can be used for training and building
these algorithms. Next, this data is used to create an algorithm using AI. Lastly, an
application has to be developed, which visualizes the data real-time to the surgeon.
To achieve these steps, the following research hypotheses and one sub question
have to be answered:

• The use of Deep Learning network can be used for anatomical structure recog-
nition/segmentation, such as the Vagus Nerve, on surgical video.

• The addition of movement (temporal information) of the surgical video does
improve the segmentation of anatomical structures by a Deep Learning net-
work.

• How can visual output from an algorithm be presented to the surgeon?

1.3 Outline

In the first chapter, the aim, clinical relevance and the link between the clinical prob-
lem and the technical approach are explained. In the second chapter, more back-
ground is given on the clinical aspects of the problem. A technical introduction with a
basis of Artificial Intelligence (AI), Deep Learning (DL), and how movement proper-
ties can be acquired in video by DOP is explained in the third chapter. Also, the last
research question about the representation of output representation to the surgeon
is addressed in this chapter. The fourth chapter will combine the clinical background
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and the technical background into a set of tests, how the output performance is
measured and the way the outcomes are presented. The results are shown and
explained in the fifth chapter and discussed in the following chapter. Finally, the con-
clusions are drawn. The last chapter also contains a set of specific recommendation
for future work. In the appendices, the study protocol, metadata about the networks
and raw output figures are included.
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Chapter 2

Clinical background

In this chapter, the surgical aspects of the anti-reflux surgery the role and anatomy
of the Vagus Nerve are discussed in-depth. Furthermore, the steps of the surgical
procedure, including the aim of the surgical procedure, is made clear. At the end of
this chapter, requirements are set for a possible algorithm to be clinically applicable
for the surgeon.

2.1 Vagus Nerve

The name vagus in Latin means ”wandering” and is a direct link to the behaviour
of the path it follows through the human body. It has been studied since ancient
times but at a stomach/gastric level. E. O. Schumov-Simanovskaja and the famous
Nobel Laureate Pavlov (Ivan Petrovich Pavlov) studied gastric secretion by the vagus
nerve in dogs. He was also the first to prove that the vagus nerve pas partially
responsible for gastric acid secretion. The response was that the vagotomy (cutting
off one ore more branches of the vagus) turned into a treatment for ulcer disease.
[29] Around the hiatus diaphragmaticus (the opening in the diaphragm where the
oesophagus passes through) as explained in chapter 1 are important structures
such as the lungs, heart but also the vagus nerve trunks. The vagus nerve is a
cerebral nerve (CN X, originates directly from the brain at both sides) and bundles
into two nerve trunks. The anterior vagal trunk is derived in most cases from the
left vagus nerve and enters the abdomen through the diaphragm on the anterior
side of the oesophagus. The path of this anterior vagus nerve is via the lesser
curvature of the stomach, and two branches leave to the hepatic-duodenal ligament
(the hepatic and duodenal branch). The trunk continues via the lesser curvature
to the anterior gastric branches and supplies the pyloric branch. On the posterior
side of the oesophagus at the level of the diaphragm enters the posterior vagal trunk.
This nerve bundle is mainly derived from the right vagus nerve (CN X). The posterior

7
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vagus nerve also runs to the lesser curvature but has branches to the posterior and
anterior surface of the stomach. Also, it continues the lesser curvature and gives off
a celiac branch to the celiac plexus. From there, it continues to the lower abdominal
organs. [30], [31]

The full path visualized in figure 2.1 and intraoperative human figures of the
Vagus Nerve in figures 2.3 and 2.4.

Figure 2.1: Vagus nerve (CN X): schema/pathway through the body [2]

Functionality of the nerve at the level of the stomach
The nerve has a sensory function for the gastrointestinal tract, but also the heart
and the lower respiratory tract. Although the last ones are not specifically relevant
in this study due to the level of possible injury. The sensory functionality starts from
the anatomical track of the nerve and ends at the distal part of the colon [29], [31],
[32]Also, it includes parasympathetic functionality of the respiratory tract (smooth
muscles of the bronchi), the heart and the intestine/stomach. Note, 90% of the
Vagus Nerve fibers of the bowel are afferent. The 10% left is efferent to give the
parasympathetic signals to the abdominal viscera (liver kidneys, spleen, splenic flex-
ure) as till the last third part of the colon. The rest of the colon receives parasympa-
thetic signals from pelvic nerves. The vagus nerve also innervates the circular mus-
cle at the end of the stomach (at the antrum, the pylorus) for gastric drainage [29]
This means those structures are critical to for proper gastric motility, emptying and
gastric secretion if the sensory function and parasympathetic function is disturbed.
This clarifies the higher redo (reoperation) rate as stated in chapter 1 and also more
evident if this is disturbed around the stomach. [20]
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Figure 2.2: A drawing of the stomach with the anterior vagal trunk (Nervus Vagus/Vagus
Nerve) . [1]

Figure 2.3: The big arrow points at the an-
terior Vagus Nerve surrounded by the crura
left and right (smaller arrows). [3]

Figure 2.4: Here the arrow points at the
posterior trunk of the Nervus Vagus/Vagus
Nerve, with a clearly visible esophagus on
top op it. [3]

2.2 Surgical procedure

In chapter 1 is written that a surgical procedure is only performed as a second treat-
ment option. The anti-reflux surgery is also called a fundoplication due to the upper
part of the stomach (fundus) that is used to compromise the functionality of the valve
(LES, Lower oesophagal sphincter). This sphincter functionality is often too little,
and otherwise, the GERD remains intact. The fundoplication in figure 2.5 is a visual
representation of how the fundus (upper part of the stomach) is folded around the
gastroesophageal junction and sutured to the surrounding structure. This creates
the new supportive valve at the gastroesophageal junction. [1]

There are multiple slightly different anti-reflux surgeries available. But overall the
same strategy is used: bring the stomach back in its original position beneath the
diaphragm, make the hiatus (opening) in the diaphragm smaller and finally create a
fundoplication to create a new supportive gastro-oesophagal valve to prevent gastric
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fluids from flowing back upward into the oesophagus or even mouth. The last step is
crucial to prevent this due to the widespread dysfunctional closure of this valve (the
lower oesophagal sphincter at the gastroesophageal junction). [1], [21]

There are three types of fundoplications, visualized in figure 2.5: 180 degrees,
270 degrees and the 360 degrees fundoplications. [1] At the Meander Medical Cen-
tre (MMC) the number of performed full 360 degrees (Nissen) fundoplications is
minimal due to more favourable outcomes of the partial fundoplications. [33]

The main surgical steps are:

1. Trocar placement and insufflation of the abdominal cavity [1], [34]

2. Left crural dissection after the pars flaccida is dissected. [21], [34]

3. Division of the short gastric vessels [1], [21], [34]

4. Right crural dissection [1], [34]

5. Mobilisation of esophagus [1], [34]

6. Approximation of the crura by a few stitches [1], [34]

7. (optional) Insertion of an orogastric tube with a (52 - 60) bougie. [1], [34] This
specific step is not performed in the Meander Medical Centre and differs per
surgeon. [21]

8. Actual folding and suturing the fundus of the stomach [34] At this point, the
actual the biggest difference is made in the severity of the fundoplication as
described above. [1], [21]

9. Desuflation of the abdominal cavity and closure of the entry ports. [3]

During the procedure from the second phase until the actual creation of the fundo-
plication, the vagus nerve might be visible and being injured. However, during these
phases in surgery it is still hard to discover and see the actual nerve, which may
support the unintended injury of the Vagus Nerve.

2.3 Clinical tool

The clinical tool should be applicable during surgery. Based on the difficulty of find-
ing the actual nerve and the ”wandering” path of the nerve, the location on the
screen is equally important as if it is on screen. As mentioned earlier, the study of
M. Schuhmacher used an algorithm that visualised the resulted by so-called bound-
ing boxes (see figure 2.6). Here the bounding box is visualized around the predicted
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Figure 2.5: A visualisation of the different types of funduswraps that can be made. A rep-
resents a 360 degrees fundoplication (also called a Nissen fundoplication). B represents a
partial anterior fundoplication (180 degrees, also called Thal or Dor). C is a partial posterior
fundoplication (1̃40 degrees, also called Toupet). [1]

area. Optimal is this probably not for nerves, due to their difficult visible presenta-
tion. Because it is a small long structure. For instance, if a small tubular-shaped
structure can be a large bounding box if the prediction is horizontal. Optimal would
be a tool that can segment per pixel if it is a vagus nerve or not. In collaboration with
residents and surgeons, it would also be beneficial if there is a region that can be
shown where there is a high probability of finding the nerve. This because the nerve
itself is not always visible.

Figure 2.6: This is a visualisation example from a incomple prediction of a urether prediction
algorithm made by M. Schuhmacher [4]
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Figure 2.7: Two different types of surgery with multiple visualisations of the ICG fluorescence
of the surgical area. This superimposing is only visible on a digital screen not with the naked
eye. [5]

To give the information back with high probabilities of finding the Nerve back to
the surgeon, there is the option to visualise the segmentation as a separate output
on the screen. This would still be difficult matching the exact location of the nerve
in the surgical field. If the information could be superimposed on the surgical video,
both information can be used by the surgeon. If superimposing this information is
applied, it uses the digital equivalent of the ICG visualisation. Switching between
the ICG only and the normal Red-green-blue video as well superimposing the ICG
as a heatmap on top of the red-green-blue video gives the best of both world to the
surgeon. ICG (Indocyanine green ) is a fluorescent that is used in different types
of fluorescent guided surgery. [5] Superimposing could be a solution if hot spots
where there is a high chance of hitting the vagus nerves. A so-called probability
map or heatmap. This would lead to a certain probability map as an overlay during
the surgical procedure.

To summarize how the clinical representation could be more beneficial than a
bounding box are:

• A segmented nerve (a per-pixel knowledge)

• A probability map of the nerve (a per pixel predictive number that it a nerve)

• A superimpose of the output(the two points mentioned above) on top of the
original surgical video

Summary of this chapter

In this chapter, the anatomical path and functionality of the nerve are explained.
The surgical procedure is made clear and it is clarified which phases of the surgery
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are related to the nerve and nerve injury. Finally, the optimal requirements of an
algorithm output are set out to make requirements for our setup.
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Chapter 3

Technical background

This chapter contains the technical background of AI and DL. More specific on
how AI and DL can be used to do object detection and segmentation. Then we
explain what temporal information is in the surgical videos, and how this is used as
information for the DL algorithms.

3.1 Artificial Intelligence

The actual name Artificial Intelligence first used during a conference about ”the sci-
ence and engineering of making intelligent machines by John McCarthy in 1956.
In the subsequent decades’ research in this field became less until the nineties.
Though exact definition differs from each other slightly, the general concept is AI
a part of computer science which tries to make complex algorithms and machines
that mimic characteristics of humans. This is not the thinking and acting of robots
and algorithms as some people also describe as Artificial Intelligence. Different AI
algorithms are used by many others during the day such as; text, speech analysis,
facial recognition and even in cars. [35]

Though the term/definition of AI broad, the term Machine Learning is already
more specific. Machine learning is an element of AI that specifically is build to find
patterns in data. [9]

Machine learning roughly can be divided into two types; supervised learning and
unsupervised learning. Unsupervised learning focuses on interpreting and grouping
data based on the data only. This mainly results in the clustering of the input data.
Supervised learning is used in creating predictive models with input and output data.
The output can be a classification model or regression model. Supervised learning
is chosen if the outcome should be a prediction or a classification. [36]Due to the
task, that is aimed in this thesis, classification and prediction, we will from now on
focus on supervised learning. Although there are also many options available within

15
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the supervised learning such as support vector machines, decision trees, Bayes
networks, Neural networks and Deep Learning. Two key terms are important to
understand; Classes and features. A Class refer to the output that should be found.
This can apply on full images but can also be something pixelwise (which is used
for segmentation, a per-pixel prediction). A feature is an indicator within the data
that can be used to separate the data. It is the task to find and calculate that feature
to separate data in the classes that are asked. When these features are found,
they can be used as an input for the earlier mentioned network (support vector
machines, Bayes networks, decision trees, Neural networks and Deep Learning.
Neural networks, as the name suggests, mimic the neural structure that can be
found in brains, although highly simplified. A visualisation of an example of a simple
neural network can be seen in figure 3.4. The basic functionality of this network is
that every single input is for each feature that provided. Within al the circles the,
called nodes, there is a weight that is multiplied with the feature. The output is given
to the next nodes in the next layer (figure 3.4 the nodes in the hidden layer). In that
next node, all inputs are added together and pushed through an ”activation function”
and also being multiplied by a weight before being passed through to the next layer.
This interconnectivity and number of layers can be determined while building the
network. The last layer, in figure 3.4 called output layer, the combination of outputs
from the hidden layers is converted to the desired output format. This output is
generated by an activation function. The type of output mainly determines the type
of activation function in the last layer. The previously mentioned steps are when
data flows through the network to generate output. However, the weights need to
be defined in order to function properly and is achieved by ”learning”. So data is
necessary that contains a known input and output; this is called labelled data. For
training the data will flow through the network and based on the error between the
model output and the known output the ”weights” are adjusted. The basic approach
is with a big error a bigger adjustment should be made than with a small error. This
can be applied many times until the algorithm reaches the satisfying outcome, does
not learn any more, or is ”overtraining/overfitting”. The difficult thing is to adjust the
right weight within the network. In the last decade, the size and complexity of those
networks exploded. Due to the ” depth” of the layers, this concept is called ”Deep
Learning”. [9], [37] So what makes this specific type of networks possible? Well,
tasks that are very difficult to accomplish with so-called ”rule-based” programming
or reasoning like structure recognition. [38]

Deep learning
The growth of deep learning was mainly because of the growth of computation power
that decreased the learning time of the compiled/build networks. We will address two
key concepts to understand the building of those Deep Learning networks; Layers
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and architecture. A layer is already visualised in figure 3.4, all the input nodes
form one layer, each other step of nodes within that image. Architecture is the
macroscopic shape and type of nodes and layers that is used. Some basic deep
learning layers that are broadly used are:

• Fully connected layers: This is more or less the network that is visualised
in figure 3.4. This can be part of a bigger neural network with multiple other
(different) layers. Often you can find this at the end of the complex network
structure to combine multiple neurons/inputs to the desired output. [9]

• Convolutional layers: Convolutional layers are essential in pattern recog-
nition tasks. For one but also multidimensional signals. For imaging-based
solutions, it is quite common to place multiple convolutional layers within the
network. The basic concept of a convolutional layer is that they can filter on
a specific structure, and the filter itself is constructed during the learning pro-
cess. So specific features that are visible. [9]

Figure 3.1: An input tensor (which can represent data from an other layer, or is the input
image) that is used for a convolutional operation with a given filter kernel (size 3 x 3). The
first output of the convolutional kernel is also given in the feature map. There is no padding
and the stride is 1. [6]

• Pooling layers: pooling is a way of downscaling the output of the previous
layer. Mostly in convolutional networks, multiple outputs of the convolutional
layer are with pooling downscaled. Pooling groups a set of outcomes that are
as wide as the dimensions of the ”window” and based on the type of pooling
it passes only one outcome. The most commonly used is maxpool, here the
outcome within the moving window will be passed through. [9]

• Activation layers: Deep Learning mainly is built on top of non-linearity of
the system. This is mainly achieved by the activation layers. Sometimes the
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Figure 3.2: Max pooling example. An example of a large image on the left with pixel values
that are maxpooled. So a small window (in this case 2x2) the max value is used to generate
a smaller image on the right. [7]

activation layer itself is built within other layers. The functionality was copied
from the biological behaviour of non-linear input-output of neurons. The clos-
est Deep Learning activation layer that mimics the neuron activation was the
hyperbolic tangent function, but nowadays, other better-performing functions
are used to create this non-linearity. Also, specific activation functions can be
selected for specific tasks and mainly determine the output of the neuron. [9]

• Output layer:The output layer is a very special node as written earlier. It can
convert the different inputs to the desired output format that can be interpreted
by us. For instance, some networks need a yes/no, left-right, cat/dog output.
This is binary output although others need a specific number or even set of
numbers. In figure 3.5 different output formats are presented. These output
layers are based on special ”activation functions”. [9]

Figure 3.3: An set of activation functions for deep learning layers. [8]

• Residual layer: The best to describe these layers are additional layers. These
layers are made to achieve better results for specific cases. The function of
this layer is to bypass some input data to the next layer or even further in the
network and compare the two paths (bypass vs no bypass). The non-bypass
is forced to perform better than the no bypass path, which increases learning



3.1. ARTIFICIAL INTELLIGENCE 19

in that specific part. This mainly allows to decrease the number of layers and
so the number of trainable parameters and overfitting of the training data. [9]

The shown output types of Deep Learning in figure 3.5 also each need different
annotations for training, validation and test data. For image classification are labels
on image level needed, for object detection are object labelled (i.e. bounding boxes)
needed, and for semantic segmentation or instance segmentation are on pixel-level
labels needed. As a rule of thumb, each type is that is on a higher resolution level
also requires more labelling time. [10]

Figure 3.4: An scematic visualisation of an neural network. The network has multiple neuron
(in deep learning called perceptrons). [9]

Figure 3.5: Network outputs in Deep Learning networks can have different tasks. Every step
needs different labelled data and other types of networks. Especially the activation function
in the output layer is important. [10]
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3.2 AI and healthcare

As shown in the research of Schuhmacher et al. (2018), not only the Vagus Nerve is
also other structures that can be automatically detected of segmented can be useful.
The opportunities are endless, even within surgery alone. Although Schuhmacher
et al. (2018) showed an example of AI and interventional care, most AI tools in
medicine are on the predictive tools for detection and diagnosis. Within surgery,
AI might extent the eye of the surgeon but also objectify the performance of the
surgeon or benchmark segments of the surgical intervention. So segmentation of
other anatomical structures might be equally relevant. [4], [28]

Within radiology and pathology, AI is much further. From applications that di-
agnose TBC based on chest X-rays to mammography screening algorithms that is
mentioned by the author as performing at the level of a radiologist. The impact on
the physician in the field of image recognition and predictive analytics might be sub-
stantially based on some predictions that those algorithms perform more effective
than humans. Although most physicians will not necessarily lose their job, due to
some gradual change or specific areas that need traditional exams or they augment
the use of these algorithms. [6], [35]

3.3 Deep Learning for structure recognition

Sufficient data is necessary for Deep learning due to the high number of parame-
ters that need to be trained. Existing datasets that provide sufficient data with their
ground truth can thereby be used to test functionality, test hypothesis and even com-
pare results of networks that use the same datasets in for example contests (such
as Kaggle.com).

When building datasets, there is always a risk of not providing/generating enough
labelled data. Mainly because the labelling is quite labour intensive. In that case,
the solution can also be the use of existing machine learning datasets to test the
hypothesis and beside perform the process on the own made dataset to compare if
results meet the expectations. [9], [39]

3.3.1 Network structure for semantic segementation

As described above the networks can be built like lego bricks with different layers,
different inputs and different activation functions, all depending on what the network
should do. AI gained momentum in using images due to a new approach that came
in 1998. The trainable parameters came as convolutional filters. Those were intro-
duced for the detection of handwritten characters. [40] Those convolutional layers
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are also described above. These networks did the first step; classification of images
not the segmentation of images. The transformation of fully connected layers with
convolutional layers it is possible to perform an image classification (see example in
figure 3.6). This is called a fully convolutional network. It is able to produce spatial
heatmaps but no realistic semantic segmentation. The next step is to perform a
reverse kind of operation, upsampling and deconvolutions to achieve the per pixel
predictions (see figure 3.7. [10], [11]

Figure 3.6: An image is feeded to a pre-
trained FCN that is visualized by a set of
white blocks that mimic the covolutional lay-
ers and their size. [11]

Figure 3.7: A set of deconvolutional layers
and upsampling of the setup of figure 3.6
brings more semantic features back and
gives a better per pixel prediction. [11]

This approach is also used by Ronneberger et al. (2015). They achieved a high-
resolution output with limited training images. Their elegant network structure is U
shaped and was highly symmetrical. It uses residual layers during upsampling from
data directly from the left part of the U-NET to gain resolution back. This is done
multiple times until the actual or desired resolution is achieved. The actual U-NET,
which is used by Ronneberger et al. (2015) is visualized in figure 3.8. [9], [12]

Figure 3.8: Basis U-NET that with an 1 channel 572x572 (pixel width height) that was used
in the paper of Ronneberger 2015. [12]

Although there are many more network structures, like Recurrent Neural Network
(RNN) and Long Short-Term Memory (LSTM) they differ per needed applications in
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this paper thesis we mainly describe to the used ones in imaging and the conducted
research.

3.4 Dense optical flow

[12] Dense optical flow is not specifically part of DL or even AI. The concept of
optical flow is the displacement of an object that is displayed. This optical flow is
thereby a two-dimensional vector field that describes the displacement of the ob-
ject between the images. If this is applied to each pixel in the image, it is called,
dense optical flow. [41] Dense optical flow in video frames can be interpreted as
multi-frame motion estimation. Zanjani et Al. (2010) already described that multi-
label segmentation in videos in most cases is based on the individual frames while
ignoring the dynamic information that could be stored in the video. In their approach
to adding this extra temporal information was able to increase the segmentation per-
formance. This motion clue was recently again confirmed in a similar, dense optical
flow supported, approach by Rashed et Al. (2019). [27], [42], [43]

The used dense optical flow by Rashed et Al. (2019) was Farneback dense
optical flow [43]. Farneback dense optical flow is able to make a motion estimate of
each pixel of two consecutive image frames. The Farneback dense optical flow is
performed in two steps; polynominal expansion and displacement estimation. The
output will be a displacement field, a vector of each pixel that gives an estimate of the
movement that the pixel made between two frames. [42] [44] The steps considered in
Farneback dense optical flow algorithm to achieve a per-pixel displacement estimate
(Dense Optical Flow):

1. Neighbourhoods of pixels are described with a polynomial (Polynomial expan-
sion). A quadratic polynomial of a signal is given in equation 3.1.

f(x) ∼ xTAx+ bTx+ c (3.1)

[42] Where A is a symmetrical matrix, c a scalar and b a vector.

2. The two image frames differ from each other, as well the polynominals of the
two frames. With the transform of the polynomials a displacement fields can be
calculated. After some refinements the dense optical flow is given as a vector
field. [42], [44]

The estimated flow given as a vector field of the two images (example given in
figure 3.9. But can also be converted to a polar coordinates or the RGB color that is
given in the figure. So this creates two options a RGB = Red, green and blue. A 3



3.4. DENSE OPTICAL FLOW 23

channel input containing red, green and blue values. Those are commonly used for
videorepresentation or pictures. (RGB) image represending the displacment (dense
optical flow) or the vector field.

Figure 3.9: The flowfield, or vectorfield on the right and its RGB color that it represents in a
polar coordinate system [13]

Summary of this chapter

In this chapter, the brought AI and Machine Learning are explained. Promising tech-
nologies in many industries, like automotive and healthcare. Machine learning can
be applied to perform predictions or segmentation tasks. For those tasks is labelled
data is preferred to train the algorithms. The training of this subdivision within ma-
chine learning is also called ”supervised learning”. The labelled data, input and
output (i.e. data with the ground truth), is necessary. In the case of testing, building
and training Deep Learning algorithms, sufficient data is necessary. Deep Learning
networks can be built with different architectures, shapes and sizes. Also, multiple
network structures are available for segmentation tasks. This mainly depends on the
specific task and outcome that is asked or available data. Dense optical flow itself
is not AI-related. It is a way of estimating the displacement of an object within two
images on a per-pixel level. Previously conducted research suggests it might be a
solution to improve the segmentation outcomes of Deep Learning networks.
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Chapter 4

Method

In this chapter the actual setup to create a set of algorithms to test the idea’s of
segmentation of anatomical structures, use temporal information (movement infor-
mation) and visualize them on a proper way to be clinically applicable for the surgeon
or new surgeons/residents. In figure 4.1 the input, algorithms and output are sum-
marised in an overview.

First, the datasets were used to be able to train AI networks. From the both
dataset is also movement data calculated (Dense Optical Flow). Secondly, 5 dif-
ferent UNET structured network were adjusted to fit the provided datatypes of the
datasets and trained with the provided datasets. After fine-tuning and retraining the
networks are saved. In the end, the 5 trained are tested on a testdata set to provide
performance data.

25
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Figure 4.1: In this overview the input of the algorithms, the 5 algorithms and the outputs are
schematically visualised.

4.1 Datasets and data retrieval

The size of an exiting, available datasets can easily be more substantial than what
can be made available in a short time in a hospital. Also, no clinical dataset was
available when we started building the networks. There is a potential risk that a
clinical dataset that is too small to test the setup of adding temporal information to
improve the semantic segementation outcome. To train and validate different UNets,
two datasets were used.

First, an existing big database (VKITTI) was used to be able to train and test a
self-developed algorithm. This is not a clinical dataset but an existing, non-medical
automotive dataset. This was preferred because 1) no clinical dataset was available
and 2) there is a potential risk that the manual created dataset is too small because
it is a timeconsuming process.
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Secondly, a clinical dataset was created to be able to train and validate the fine-
tuned UNETs. In contrast to the VKITTI dataset, the clinically dataset was labelled
manually. Mannually labbeling is timeconsuming and has the risk to be more inac-
curate due to the fact that tissues can be hard to distinguish as well.

Different object structures were chosen in the two datasets, still similar structures
were selected. The structures in the VKITTI which were most similar to the Vagus
Nerve structure were selected: traffic signs and traffic lights. This was based on
their object shape (thin) and availability of pixels of those classes. For the road
structure a similar, almost always present structure is chosen in the clinical dataset;
the liver. Those structures are probably easy to segment due to their availability in
the datasets. The other structures that were chosen more on their overall availability
and possible added value to segment for future surgical applications.

VKITTI Dataset

The VKITTI dataset is an automotive dataset. Which means it is made for the car
industry to create and test algorithms like self-driving cars or safety systems. The
virtual KITTI dataset is a synthetic dataset, which means it are no real pictures,
but computer-based images in order to have a 100% knowledge of what each pixel
is (i.e. car or road). The original dataset KITTI is an actually filmed dataset in a
car mostly in Karlsruhe. With a real-to-virtual cloning method the actual images
are converted to a virtual world with cars, trees, roadsigns on more or less the
same place. The five environments, the five dash videos were mostly filmed in
sunny condition, but with the virtual kitty approach, other weather conditions could
be simulated. The virtual KITTI dataset also contains the five environments but also
in 7 weather conditions. In our test setup, we only use the virtual KITTI data from
sunny conditions. In figure 4.2 the real-to-virtual clone visualised. The advantage of
using the virtual KITTI dataset over the original KITTI dataset is the available 100%
true ground truth labels. [14]
In our setup we used:

• 5 different ’enviroments’ all in sunny/normal weather conditions

• 1016 Trainings images (2 environments)

• 836 Validation images (2 environments)

• 269 Test images (1 environments)

• Used labels (multiple labels are converted to 5 labels: road, car, the ”pedes-
trian” label are not pedestrians but the lampposts and traffic signs,
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Figure 4.2: From top to bottom 5 frames one from each environment. Left are the kitti images
and left are the virtual kitti images that are cloned from the real kitti images. [14]

• Class distribution of pixellabels in the dataset (road 24.4%, side 15.5%, ped.
1.6%, car 8.1%, else 50.3%)

Clinical laparoscopic dataset

The clinical dataset is made of selected video frames of the anti-reflux surgery. Due
to the problem that the nerve is difficult to see, all surgical videos were reviewed
and between the surgical phase of the left crural dissection and the actual folding
and suturing of the fundus. Between these phases, there were possible events of a
visible vagus nerve. This moment, ”event”, were cut out and used for labelling (gold
standard). Ten seconds before this ”event” was saved as a video clip to generate the
dense optical flow calculation and backup. All types of HHDs (ranging from type 1 to
4) were included robotic and conventional laparoscopic. Datasets for deep learning
purposes need to be significant to be able to ’learn’ the network. Also, the dataset
can be as diverse to learn from (anatomical) deviations.

• 10 surgical laparoscopic fundoplication surgeries wich made a total of 105
images.

• 73 trainings images (6 sugeries/patients)

• 26 validation images (3 surgeries/patients)

• 6 test images (1 surgery)
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• labels Liver, Stomach, Esophagus, Crus, Nervus Vagus Anterior, Nervus Va-
gus posterior, the rest of the pixels is ”Else”. The labels Stomach, Esophagus
are combined aswell for the two Nervus vagus labels are combined to the label
N.V. (Nervus Vagus).

• Class distribution of pixellabels in the dataset (Liver 8.7%, Crus 5.0%, N.V.
0.15%, Stomach/esophagus 14.5%, Else 71.6%)

Figure 4.3: From top to bottom 5 random frames from the clinical dataset. The round field of
view is caused by the video scope that is used in conventional laparoscopy. The square field
of view is from the robot (the small blue squares is information of the robot that is projected
on top of the surgicalvideo.

4.2 Labelling and preprocessing

For supervised learning, labelled data is required in order to train the networks for a
specific task. Because the models are built for the data of the VKITTI dataset, and
all the specific pixel values are used a similar labelled clinical dataset is preferred.
The best solution to create a per-pixel-labelled-dataset. For the clinical dataset, this
is conducted in two steps. Step one, annotation with a toolbox that allows easy and
highspeed annotation. Step two is the output of that annotation tool and converting
it to the same data format that is used in the VKITTI dataset. For the first step, the
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image labelling toolbox of Matlab [15] is used. With a python script, the multidimen-
sional arrays are converted to Portable Network Graphics, image data format (PNG)
which is the same data format as the VKITTI data.
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Figure 4.4: The first step: the image labeling of the clinical dataset with Matlab 2018a. [15]

DOP dataset

As written earlier, Zanjani et Al. (2010) described that multilabel segmentation in
videos in most cases is based on the individual frames while ignoring the dynamic
information that could be stored in the video. In their approach, they showed that
within the dynamic behaviour segmentation is still possible. Although the VKITTI
dataset also contains ground truth DOP data, this is not used for our setup. Because
this is in an other format, also a 100% true, we chose to apply the same calculation
of the movement that is applied on the clinical dataset. So differences would be
minimal. In our setup, the DOP is calculated between two frames of which the last
frame is also has ground truth labels. The difference between the first and second
image was 0.1 for the VKITTI dataset and 0.4 seconds for clinical dataset. For the
VKITTI data, this dataset is calculated between two frames. For the clinical dataset,
this is calculated per sub video. Open CV is used to calculate the Farneback dense
optical flow of those two frames. This data is stored in two ways; A vector array (two
dimensional) and a polar (colour) version (a three-dimensional colour image). [41],
[42]

4.3 Network architecture

Python 3.6 is used in combination with Keras to create, train, test and evaluate the
networks [45]. The basis of the used network is a U-Net for the paper [12] In our
setup, we choose a U-(shaped)Network (U-NET) for segmentation. Ronneberger et
al. (2015) showed that a simple U shaped can perform with a rather small dataset
to segment biomedical images (Microscopic cell structures). The main reason we
chose this network is it can give a prediction per pixel. The output is either a binairy
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Figure 4.5: Image of the surgical procedure with with the labels visualised on top of the
image as an semi-transparent overlay. The original image can be seen in figure 4.6 (Green
for liver, blue for oesophagus, pink for stomach and purple for the Crus)

Figure 4.6: Image of the surgical proce-
dure.

Figure 4.7: The corresponding DOP of fig-
ure 4.6. The colors represent movement by
the colorscheme in figure 3.9

per pixel. [12] Next to that a U-NET and with modifications in the first and last layers
they can be able to have a different number of input channels (for instance an RGB
image is three channels R, G and B) and the output can be a different number of
classes as output as well a variable output per pixel. Also, we know that a U-net can
easily be trained on limited data U-NET.

4.3.1 U-NET

Based on the structure of Ronneberger et al. (2015), we modified the last layer
that it can give five output values per pixel between 0 and 1. Each number will act
as a prediction it belongs to one of those five classes. This is performed by the
activation function softmax in the last layer. With this setup, it is possible to generate
a heatmap per class but also post-process to generate the 5 class outcome.

The input has a number of channels that corresponds to the dimensions of the
input data. An Red-Green-Blue (RGB) image has height x width x 3 (red, green,
blue). If we add movement information either the vector array of the RGB (polar)
data, we concatenate this to the RGB data. So an RGB image with a 2-dimensional



4.3. NETWORK ARCHITECTURE 33

vector array will be an input array of height x width x 5 (3 for the RGB image and 2
for the vector array).

To summarize the basis modification on the basis U-NET.

• Output not binary (0,1) but between 0 and 1 and provide 5 output channels

• Input modifications for different shaped data inputs

U-NET input modifications. The name of the algorithm is based on the input:

1. DOP (RGB): 3 input channels used RGB input

2. RGB video + DOP (vec): 5 input channels used RGB org. + vector DOP

3. RGB video: 3 input channels used RGB original frames

4. RGB video + DOP (RGB): 6 input channels used RGB original frames + RGB
DOP

5. DOP (vec): 2 input channels used vector DOP

In this thesis the names of the trained models trained have the names as described
above.

Figure 4.8: Overview of the UNET that is used. The X depends on the number of input
channels given in the enumeration above. This network is a tailored and modified version of
Ronneberger et al. (2015) [12]
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4.3.2 Hyparameters and Dense Optical Flow parameters

To train the algorithms, different techniques were used to prepare/optimize the avail-
able datasets. Due to the different sizes of the dataset, we watched the clinical
dataset manually. Also, the step sizes are smaller compared to the bigger VKITTI
dataset. The training strategy with the kitti set is different,
Kitti training strategy

• batchsize: 5 stepsize: 50 maximum epochs: 20

• Early stopping on a plateau (patience 10 epochs)

• Automated reducing Learning rate (when monitored condition reaches a plateau
with a patience of 4 epochs)

• Monitored paremeter for saving the network: lowest validation loss

• loss function: kullback leibler divergence

Clinical dataset training strategy

• batch size: 5 images, steps: 25 per epoch, epochs: 30

• No automated early stopping on plateau

• training manually watched; stopped if the loss reached a plateau

• Monitored parameter for saving the network: Accuracy, but manually watched

• loss function: kullback Leibler divergence

Training, validation and testing hardware

• Windows 10 pc with an NVidea GPU for accelation

• An anaconda virtual enviroment running Python 3.6 [46]

• A Keras with a Tensorflow backend [45]

4.4 Performance parameters/ evaluation metrics

The output of the algorithms or model is given in an accuracy and loss during train-
ing, but the actual performance may differ per class that is segmented. For instance,
the algorithm may be better in segmenting a road instead of cars. All algorithms will
be tested with a test dataset, and the output is used to calculate an Intersection over
Union (Jaccard index) and a confusion matrix is made.
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4.4.1 Jaccard index, Intersection over Union

An often used metric in medical imaging is the Jaccard index. A per pixel accuracy
metric. The corresponding formula 4.1 shows the used definition in our setup. The
idea is that the segmented area of the output of the algorithms overlaps with the
segmented area of the ground truth, this intersection area is the intersection area
(see figure 4.9. The intersection area is divided by the area that is formed by the
ground truth with the algorithms output (union). In perfect condition the index would
be a 1.0 but that is not realistic. A jaccard index of 0.5 and higher is considered as
good. This is clearly visualised in 4.10 [16], [47]

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (4.1)

Figure 4.9: A visual representation of the mathematical representation of the intersection
over union. [16]

Figure 4.10: A visual representation of the intersection over union. The green box represents
the true area (ground truth) and the red box represents the predicted area. [16]

4.4.2 Confusion matrix

The IOU tells something about the performance of a specific class. A confusion
matrix is able to show relations in multi-class classification outputs. It is not only able
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to show if an output is assigned false, but also to which class it is assigned falsely.
In order to compare the ground truth labels with the predictions by the network,
confusion matrices are calculated based on a test dataset. This is performed to
see if certain structures might be falsely assigned (too easy) to another class. An
example of an confusion matrix is given in figure 4.11. [48]

Figure 4.11: A small example of a 2 class and 4 class confusion matrix. In the four class
confusion matrix the false output can be seen in other output classes. Vertical axis are the
ground truths, horizontal are the predicted classes. [16]

4.4.3 Visual inspection

It is written above that the algorithm or model can give an output per class that
represents a probability of a pixel belongs to that class. This can be visualized like
a heatmap that is comparable with the ICG fluorescence of chapter 1 (figure 2.7).

This is also a subjective way for understanding the output and performance of the
network. The outputs for a single class, the vagus nerve, will be presented for the
different trained models. For the RGB model all classes will be shown as heatmaps.

4.5 Class weigthing

In our datasets, especially the clinical dataset, not all classes are equally available.
This may lead to learning not equally each classes. So performance of one of the
classes could be much higher than others. Class weighting weights a higher value
for mistakes during training in less available classes. This forces the Deep Learning
model to train more equal for all the classes although they are not equally present in
the data. In Keras class weighting, to counter balance the class imbalance was not
possible with our setup of the Networks. [45]

A possible option is to weight the output of the model after training. Due to a the
lower availabible class, the output of the model is weighted heavier by a certain α.
See the formula 4.2. Normally this is tackled during training by class weighting. In
our dataset the Vagus Nerve is only 0.15% of the total pixels. This is only performed
for the output of the Vagus Nerve and for only the basic RGB model. To understand
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if performance will increase, the IOU and confusion matrices are plotted for different
values of α

Weighted model output valueV agus Nerve = α ∗ Model output valueV agus Nerve (4.2)

summary of this chapter

In this chapter, the setup of the experiment is explained; a set of deep learning
networks are trained, tested and validated on two datasets with and without the
movement information. The movement information is Dense Optical Flow. One of
the two datasets, the VKITTI dataset, is already used in machine learning. The other
dataset is made from specific episodes in the surgical intervention when the vagus
nerve could be visible. The performance of the trained networks are tested and set
out with a confusion matrix, a Jaccard index (intersection over union) per class and
a heat map/probability map is visualized of a test image.
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Chapter 5

Results

In this chapter, the output of the different networks are shown. The results of the
RGB only model is also shown with the different heatmaps. The intersection over
union (IOU) and the confusion matrices are presented for all proposed networks for
both datasets as mentioned in chapter 4. Also, the per-pixel prediction of the Vagus
Nerve is shown of all the proposed networks of a test image of the test dataset.

5.1 IOU

The IOU is the mean value for that class of the full test dataset. Every colour rep-
resents an model. The best scores are in both datasets the green (RGB only in-
put). Combining video data with dense optical flow (Orange and Red bars) show
less good results. Only using Dense Optical Flow as input allows still some seg-
mentation but performs the worst. Visible are the differences in performance be-
tween the datasets. The smaller clinical dataset performs with a substantial smaller
IoU. Both datasets show a high IoU in the ”else” label. The ratio of IoU between
that ”else” label an the other labels is bigger in the small clinical dataset. An IoU
above the 0.5 is mostly seen in the labels ”Else”, ”Road” and ”car” (for the RGB only
model/algorithm). Exact values are available in the appendix A

39
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Figure 5.1: The IoU scores of a VKITTI test set with the different networks.

Figure 5.2: The IoU scores of a clinical test set with the different networks.



5.2. VISUAL INSPECTION OF OUTPUTS AND OUTPUT OF THE BASIC SEGMENTATION NETWORK41

5.2 Visual inspection of outputs and output of the ba-
sic segmentation network

In figures 5.3- 5.6 an output of the model input of the basic RGB video input of
the model, with all five label outputs visualized as a heatmap. Plus, the combined
output. The highest output channel per pixel is the assigned class. Note in figure 5.4
the liver is not visualised by a transparent label. The original image that is given to
the RGB only model.

Figure 5.3: A raw RGB input frame of the clinical test dataset. On this image are two surgical
tools visible (on the left and the right side).

Figure 5.4: Input image of the test set with the ground truth labels as an overlay. Only the
liver on the left was not labelled manually, unfortunately. (stomach is pink, the esophagus is
blue, and the crus is purple-blue.
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Figure 5.5: The output/prediction visualised on by hard colours on top of the input figure 5.7
by the RGB based model. The green colour represents the predicted liver. The Vagus
Nerve is not predicted by the model, and the red colour represents the predicted stomach
and oesophagus, the blue colour represents the prediction of the crus, the label else is
transparent

Figure 5.6: The output/prediction visualised by hard colours only of the of figure 5.7 by
the RGB based model. The green colour represents the predicted liver. The Vagus Nerve
is not predicted by the model, and the red colour represents the predicted stomach and
oesophagus, the blue colour represents the prediction of the crus, the label else is black

In figure 5.7 5 output channels are visualised as the probability maps/heatmaps.
This visualisation is from the same image as in figure 5.3. Some structures are
easier to distinguish for the human eye, such as the liver in the left sub image. Also,
the region of the vagus nerve is broad.
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Liver Crus Nervus Vagus (Vagus Nerve)
output output output

stomach/esophagus Else
output output

Figure 5.7: The separate outputs of figure 5.4 by the model visualized as heatmap. White
represents a low value, so a low prediction
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5.3 Confusion Matrices

DOP (RGB) RGB video + DOP (vector) RGB video

RGB video + DOP (RGB) DOP (vector)
Figure 5.8: Confusion matrices of the different moddels trained on the VKITTI dataset.
Those results are based on the test set.

The normalisation values are performed per horizontal row in the matrix. The
blue colours are linked to the blue values of the normalisation. So interpreted hor-
izontally how the true label is distributed over the predicted labels. In figure 5.8
the confusion matrices for each model trained on the VKITTI data are shown. The
data used for generating the results are from the test data. The confusion matrices
show similar outcomes as in the IOU. The smaller objects, like lampposts and traffic
signs (Ped.) is mostly predicted in the else group. Overall the sidewalk (side) and
lampposts and traffic signs (Ped.) are predicted very poorly. The RGB video model
is doing the best overall when looking at the different classes because the highest
values are scored to the correct class (except Ped.).

In figure 5.9, the confusion matrices for each model trained on the clinical data
are shown. Compared to the other confusion matrices in of the VKITTI dataset,
these results are inferior. Only the RGB video shows on the diagonal corresponding
truelabel - predicted label outputs. For all the models, no Vagus Nerves were de-
tected. Most of the pixels that were true label Vagus Nerve were predicted as ”Else”
of as ”Crus”.
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DOP (RGB) RGB video + DOP (vector) RGB video

RGB video + DOP (RGB) DOP (vector)
Figure 5.9: Confusion matrices of the different models trained on the clinical dataset. Those
results are based on the test set.
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5.4 Vagus nerve heatmap as an output of the models

Visualisation for nerve detection

DOP (RGB) RGB video + DOP (vector) RGB video

RGB video + DOP (RGB) DOP (vector) Original image
Figure 5.10: Heatmaps of the vagus nerve which is given by the different networks/models
on the same sample/test image. The input image with labels (including the Vagus Nerve) is
given in figure 5.11

In the 6 subfigures of figure 5.10 are all the different outputs for the Vagus Nerve
prediction visualized as heatmaps. A high probability is a more red color per pixel.
There is no similarity visible between the images predicting the same structure and
of the same image. The expected region is around the yellow line of the labelled
ground truth visible in 5.11. Visual inspection shows the only image with a similar
outcome is the RGB video model.



5.4. VAGUS NERVE HEATMAP AS AN OUTPUT OF THE MODELS 47

Figure 5.11: One of the images from the test dataset. The anatomical structures are vi-
sualised on top with transparant colors; yellow for vagus nerve, blue for crus, purple for
stomach and light blue for esophagus. This is one of the images in the test dataset and
used to visualize the outputs given in figure 5.10
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5.5 Weighting of the model output value of the Vagus
Nerve

Weighting the output value for the Vagus Nerve of the RGB model. This is performed
with the formula 4.2 with different α (ranging from 1.0 till 1.5).

Figure 5.12: The IOU of the test data with different weigthing (α) of the Vagus Nerve output.
Applied only on the RGB model.

The IOU in figure 5.12 shows no output for the Vagus Nerve with a normal model
output (α = 1). The Nerve becomes present when enhanced by 10% (α = 1.1).
Afther raising further the outcomes for Stomach/Esophagus further decline and the
Crus/Diaphragm drops to zero, although the Vagus Nerve does not rise much. This
is also visible in the confusion matrices in figure‘5.13. The values for Vagus Nerve
make the biggest increase α = 1.2, but the Crus/diaphragm vanishes. A further
increase drops the label Esosphagus/Stomach and shows that the pixels probably
are now labelled as Vagus Nerve.
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α = 1.0 (original) α = 1.1 α = 1.2

α = 1.3 α = 1.4 α = 1.5

Figure 5.13: Confusion matrices of the test data with different weigthing (α) of the Vagus
Nerve output. Applied only on the RGB model.

5.6 Summary of this chapter

In this chapter the results of the different trained networks are shown. For the IOU la-
bels Else scored in both trained models high. The VKITTI trained model also showed
useful outcomes for the label road. The smaller clinical dataset overall scored much
lower. Numbers in IOU decreased also when the dense optical flow as added. Al-
though the Dense Optical flow input still showed some performance in the IOU. For
the clinical trained models, labels scored lower IOU’s and the Vagus Nerve in the
clinical dataset showed even zero as output in the IOU. Visual inspection of the
RGB model on the clinical data suggested a a working model for some of the labels,
but no visible Vagus Nerve in the outputs. This was also visible in the confusion
matrices. The heatmap/probability map of the Vagus Nerve for the different models
showed in visual inspection also only for the RGB model a plausible output. Even
after heavier weighing the output of the Vagus Nerve output, to counter balance
the class imbalance, the Vagus Nerve prediction in the IOU and confusion matrices
rose slightly. Weigthing more the 20% did vanish the Crus label and higher weighing
mostly lowered the outcomes for the label stomach/esophagus and showed no big
increase in the Vagus label.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

The first hypothesis if Deep Learning algorithms can be used for anatomical struc-
ture recognition/segmentation, such as the Vagus Nerve on surgical video is yes.
In our setup it was not possible to segment the Vagus Nerve. But, although the
dataset is small, the stomach/oesophagus was possible to segmented by the sim-
plest U-Net.

The network is able to create a probability/heat map per class-based of struc-
tures, but the clinical dataset contains too little data to give a reliable outcome of
the nerve location. Though the VKITTI dataset trained network suggests that this
might be possible with more data, at least for other structures such as the stom-
ach/oesophagus.

The second hypothesis if the addition of movement (temporal information of the
surgical video improves the segmentation of anatomical structures by a Deep Learn-
ing network is no. There is information that potentially can be used for better seg-
mentation. Based on the results that if the only dense optical flow is used still ok
segmentation results can be acquired. This suggests explicitly that there is spatial
information available in the DOP images. The combination of frames (RGB) and
the temporal information with a U-Net is not successful and lowers the outcome re-
sults. The visualisation as a heatmap for the probability that the Vagus Nerve is in
the surgical field is still debatable. The outcome for this structure is little, and no
clear conclusion can be made if this is clinically the right way to give this type of
information back to the surgeon.

The visual output of the models can be presented to a surgeon as a heatmap,
which answers the last research question partially. However, the usability as well as
the performance or accuracy of the heatmap is highly questionable and should be
further investigated.

51



52 CHAPTER 6. DISCUSSION AND CONCLUSIONS

Dataset and data

The first aim was to build a model that was able to segment images with a prob-
ability map per class as output, this in combination with the possibility to generate
movement information. The second aim was to use this knowledge in building a
clinical dataset. Although the datasets are in some ways comparable, they are also
very different. The labels of the VKITTI dataset are available with a 100% ground
truth because the full dataset is generated by a Game Engine. The labels of the
clinical dataset are made by humans. This has many consequences. First vague
labels such as the crus and Nervus Vagus/Vagus Nerve, can easily be false. So
training becomes more difficult and if these ”errors” are present in the validation or
test set the model is wrong. Also, the different tissues are difficult to distinguish from
each other, which makes the dataset even more difficult to create but also difficult to
train on. The easiest structure for labelling was the liver, so labelling is probably per-
formed the best of all clinical labels. Also, training is performed easier. Also, this is
one of the classes that are available. The problem of labelling errors/uncertainty will
always exist in human-made datasets, but a good solution is to perform labelling by
multiple people and do an average of all the people (possibly also with the exclusion
of outliers). This makes a dataset more valuable.

Next difference is the size of the two datasets. Deep Learning relies on suffi-
cient data to train (learn). The VKITTI dataset was 20 times larger than the clinical
dataset. The biggest drawback is that labelling consumes a lot of time, when creat-
ing an new dataset. It is suggested that there is too little data in the clinical dataset
to be able to train a network sufficient enough, at least the labels that are less fre-
quent in the images. Another drawback that is the issue that both datasets have an
imbalance of labels. For instance, the number of pixels with label Pedestrian (in fact
the lampposts and road signs) compared to the label road. So the training of the
label road is possibly faster due to the availability of the label. This can be solved
by class weights. So a mistake in a less frequent available label can be weighted
heavier weighted that a frequent label such as road. This is performed within the
loss function. So the total loss of the model. Unfortunately, the package that is used
for training, Keras, was not able to perform class weights to the loss function with
the output dimensions that were used in this thesis.

So the label/class imbalance is probably a good explanation of high IOU for the
better training of the class road and very low outputs for the other classes. The
overall low outputs (in the IOU and the confusion matrix) could be a combination of
class imbalance and the limited size of the dataset.

A good point for creating this dataset is diversity. The clinical data contains mul-
tiple types of fundoplication surgery. This makes training in a small dataset difficult,
but if the dataset is large enough, the trained model will be more accurate in all types
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of fundoplication surgeries. So increasing the dataset is highly recommended.

Training

The first tests with the training of the small clinical dataset on the algorithms overfit-
ting were reached easily. The steps and epochs were reduced to the limited number
that is mentioned in the method. As mentioned above the dataset was too small, al-
though class prediction for the RGB (video) only was good on all the classes (except
the Vagus Nerve).

The overtraining was also reached on longer training of the VKITTI dataset. The
results when approaching overtraining were that a higher accuracy and low loss did
not show a IOU that was above 0.10 for all the predicted labels other than one (other
than else). This indicates the overtraining of one class, possibly due to class imbal-
ance. Unfortunately, classes could not be weighted during training, so the chosen
solution was shorter training to prevent this over training event. This happened much
faster in the VKITTI data than the limited clinical dataset.

The clinical dataset was so small that training was watched manually, also to
prevent overtraining. A critical note for the validation set is that three patients also
for validation is minimal. A good solution is to increase the potential of this small
dataset to use cross-validation. Unfortunately, this was not possible with the data
generator that was designed by ourselves. This design problem also arose with the
use of class weighting.

As written above, no classes weighting was implemented due to no support of
Keras for these multiple output variables. However, other improvements should be
considered to train these models better next time; implementation of cross-validation
and image optimisation. Due to manual building, the data generators no implemen-
tation of rotation, sheer and cropping was applied.

Also, these implementation issues created another potential problem, the a priori
chance that a particular pixel has a specific class. So the road is always beneath,
in the middle of the image, so the model can be falsely trained that there is always
road there, this can be prevented by a, shifting, rotating and cropping the image,
when preparing the data for deep learning.

The most significant recommendation that follows from this design is that, al-
though the outcome presentation is favourable, the use of the Deep Learning pack-
age in python does not have the right tools for this type type of labelling. Next time,
the dataset should be labelled differently with also different type of outcomes to be
able to use the full potential of the possibilities within Keras package. Alternatively,
the data generator, loss function/class weighting should be built. It should also be
considered to use a labelling standard for surgical video to be able to use the full
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potential from different Deep Learning networks in the future and usability for other
research subjects.

Network and Dense Optical Flow

It can easily be spotted that the addition of DOP lowers the results of the Deep
Learning networks. It can be a possibility that the addition of two different types to
a convolutional network eighter one of the two types of data is noise for the model.
This is visible that the addition of DOP RGB and DOP vector to the RGB frames the
IoU is lower for all classes. This in contrast that the DOP vector and DOP RGB in
the KITTI dataset were still ok in the segmentation for the label road. The answer
might be in the way the first step of the network uses and combines the data.

Good to mention is that it is highly feasible that segmentable information is avail-
able within the DOP information when looking at the outcomes of the VKITTI trained
models. Because segmentation was still possible even with IOU outcomes higher
than 0.5.

Other network structures that still combine the dense optical flow with images
should be further investigated. Detach the RGB information from the motion seems
necessary in the first part of the network. This was also visible in the two indepen-
dent encoding paths (one for RGB and one for the Flow data) and one decoding
path to come till one semantic segmentation outcome in the paper of Rashed et
al. (2019). [43] Because this approach seems to work other suggestions with multi
encoders arise and should be further investigated.

There is also a difference in dense optical flow data when looking at the type of
movement that is present in the two datasets, although no differences in outcome
based on the different types is visible. The VKITTI dataset is a dashcam simulated
video (the camera is moving), so the most significant movement is always around the
edges. The clinical dataset is a helicopter view video, so roughly only the anatomical
structures move apart from some little movement of the camera itself. It did not
became clear in this research what the effect of the different types of movement was
on the semantic segmentation.

Vagus detection

Nerve prediction is shown in the results as an low outcomes in the confusion matri-
ces and IOU metrics. Though looking at the visualisation in the heatmap suggests
the region of the Nerve in the right area. So the nerve prediction is not wrong, but
the other classes score a higher prediction value. In the IOU and confusion matrix
this is not seen. Most of the pixels that were true label Vagus Nerve, were predicted
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as ”Else” of as ”Crus”. But not the surrounding oesophagus or stomach. Which you
could expect when it is common surrounding tissue! So it can distinguish slightly the
difference.

After weighting the output heavier of the Vagus Nerve prediction only a slight
increase in performance is seen. But this increase is little and does not increase
substantial after weighting the output more than 20%. Suggesting there is too little
Vagus Nerve data to learn properly. Concluding it is a difficult/impossible class to
learn based on this small data is not possible.

In our view no performance parameter is needed for the heatmap of the vagus re-
gion. The IOU and confusion matrices represent well the performance of the model.
Although showing the output in a heatmap suggests a lot of the performance of
the model, but interpretation is still subjective. Superimposing and heatmaps, are
a way of visualisation that might has an added value for the clinic of those type of
modeloutput. But models need to be far more precise to rely on during surgery.

Potential future of AI and Surgery

The future of AI and surgery probably will grow. Although, the near future might
not be in the direct clinical decision support like the models that are shown in this
thesis. More likely are AI models that track, time and benchmark surgical perfor-
mance. Measuring parameters such as the duration of steps during procedures
might give basic insight in the learning curve of residents or surgeons among each
other. Currently this is something that is only performed by a human with a stop-
watch in research setting. With the help of AI this could be something monitored
always and for everybody. Timing duration is only one parameter, but the options
are endless like; tracking movement of tools on screen, track the onset of bleed-
ing. The actual surgery, performed by a robot without a human interaction is a step
further. Much much further. This will not only need the detection performed by AI
but also the decision making and the performing the needed action. It is probably
not going to happen, although the other options of AI within surgery still remain. In
conclusion the possibilities are endless. No matter what, this will change the way
how we educate surgery and how we perform surgery.
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6.2 Conclusions and recommendations

Conclusions

A first step is made in the ultimate goal of assisting or help training residents or
surgeons. The way the results can be displayed, data is labelled, and output is
generated can be further developed with this labelling and training approach. Also,
this research showed that a pixel-wise segmentation of anatomical surgical video is
possible with a U-NET.

These results proof and show further possibilities of the use of semantic segmen-
tation networks, although other U-Net setups might be a better solution in combining
the two different data types. Data types like Dense Optical Flow and spational data.

The use of how to combine the video frame data with the DOP within a Deep
Learning network should be further investigated, but show a promising future in
Deep Learning and the medical field.

Recommendations

In order to perform more accurate result, the clinical dataset should be increased
to similar amounts of images as the VKITTIdataset. The class imbalance within
the data is not solvable, but the weight of an error that is made in a less available
label could be accounted much heavier than a highly available label error. This is
called class weighting and might improve learning outcomes of labels such as the
Vagus Nerve. This is not possible with Keras at the time of writing with this output.
A (tailored) loss function that allows class weighting is highly recommended in this
type of semantic segmentation.

Both datasets itself could also be further optimised by a more complex data gen-
erator. Options that enlarge the limited data such as tilting, mirroring and cropping
could further improve the trainingdata.

Create or use a labelling standard for semantic segmentation/machine learning.
In that case, the usage of other models of clinical data would be more translational
and probably also easier to apply in the hospital.

The last recommendation is more (complex) networks testing, like the two encod-
ing arms networks (described by Rashed et al. (2019) [43]). But also other complex
two arm/multi-channel input structures.
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Appendix A

Overview of IoU output metrics of the
different models

Table A.1: The IOU results of the different models trained, validated and tested with the virtual KITTI
dataset. The IOU results are created with the test data.

Model
name\Class

Road Side Ped (road
signs)

Car Else

DOP (rgb) 6.493∗10−1 4.620∗10−4 0.0 2.567∗10−1 6.776∗10−1

RGB + DOP
(vector)

0.8030 0.1751 0.0000 0.0564 0.7878

RGB 0.9200 0.4878 0.0706 0.7822 0.8586
RGB + DOP
(rgb)

7.214∗10−1 2.417∗10−7 0.0000 0.0000 6.624∗10−1

DOP (vec-
tor)

0.6421 0.0573 0.0000 0.1605 0.6841

Table A.2: The IOU results of the different models trained, validated and tested with clinical dataset.
The IOU results are created with the test data.

Model
name\Class

Liver Crus Vagus Nerve(s) Stomach/
Esophagus

Else

DOP (rgb) 0.0707 0.0000 0.0000 0.2313 0.6720
RGB + DOP
(vector)

0.0379 0.0437 0.0000 0.0596 0.6969

RGB 0.3285 0.1405 0.0000 0.4984 0.7710
RGB + DOP
(rgb)

0.0025 0.0967 0.0000 0.0855 0.7135

DOP (vec-
tor)

0.0000 0.0000 0.0000 0.1207 0.7316
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Appendix B

Overview of the training of the
models

Onderschriften corresponderen niet met daadwerkelijke resultaten. Afbeeldingen
zijn wel correct.

Figure B.1: Training input: DOP (RGB) on
the VKITTI dataset. Saved Epoch: 5 based
on lowest validation loss, accuracy 0.833,
loss 0.584, validation accuracy 0.604, vali-
dation loss 1.0929

Figure B.2: Training input:DOP (RGB) on
the clinical dataset. Saved Epoch: 29
based on highest acc, accuracy 0.756, loss
0.572, validation Accuracy 0.657, valida-
tion loss 0.802
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Figure B.3: Training input: DOP (RGB) +
RGB (vector) on the VKITTI dataset. Saved
Epoch: 5 based on lowest validation loss,
accuracy 0.891, loss 0.337, validation ac-
curacy 0.731, validation loss 0.797

Figure B.4: Training input: DOP (RGB) +
RGB (vector) on the clinical dataset. Saved
Epoch: 29 based on highest accuracy, ac-
curacy 0.806, loss 0.408, validation Accu-
racy 0.596, validation loss 0.550

Figure B.5: Training input: RGB on the
VKITTI dataset. Saved Epoch: 2 based on
lowest validation loss, accuracy 0.976, loss
0.043, validation accuracy 0.811, validation
loss 0.961

Figure B.6: Training input: RGB on the
clinical dataset. Saved Epoch: 27 based
on highest accuracy, accuracy 0.826, loss
0.483, validation Accuracy 0.694, valida-
tion loss 0.575
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Figure B.7: Training input: RGB frames +
DOP (RGB) on the VKITTI dataset. Saved
Epoch: 3 based on lowest validation loss,
accuracy 0.786, loss 0.636, validation ac-
curacy 0.585, validation loss 0.899

Figure B.8: Training input: RGB frame +
DOP (RGB) on the clinical dataset. Saved
Epoch: 29 based on highest accuracy, ac-
curacy 0.800, loss 0.434, validation Accu-
racy 0.640, validation loss 0.546

Figure B.9: Training input: DOP (vector)
on the VKITTI dataset. Saved Epoch:
16 based on lowest validation loss, accu-
racy 0.807, loss 0.534, validation accuracy
0.608, validation loss 0.836

Figure B.10: Training input: DOP (vec-
tor) on the clinical dataset. Saved Epoch:
27 based on highest accuracy, accuracy
0.698, loss 0.742, validation Accuracy
0.676, validation loss 0.796
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Appendix C

Study Protocol
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1

Study protocol: Machine Learning visualisation
algorithms on anti-reflux surgery video

Prof. Dr. I.A.M.J. BROEDERS Surgeon/Professor of robotics and minimally invasive surgery
J.R. ABBING BSc. Investigator/Student

I. SUMMARY

Nederlands:
In de gezondheidszorg is altijd een drijfveer de zorg te
innoveren voor betere uitkomsten zonder de kosten te
doen stijgen. Een nieuwe stap van de digitalisatie in de
gezondheidszorg zou de vraag naar technologieën als
artificial intelligence (AI, kunstmatige intelligentie) en
big data waarschijnlijk doen stijgen. Binnen de chirurgie
zijn dan ook al de eerste toepassingen gemaakt en getest.
Deze technologie bevat ook mogelijkheden voor ons
probleem. Bij anti-reflux chirurgie is er een risico tot het
doornemen of beschadigen van de Nervus Vagus. Dit
letsel bij dit type operaties is wordt dan ook geschat op
20%. Een oplossing en tevens ons doel is het creëren
van een AI toepassing (Deep learning) die de zenuw
én andere anatomische structuren kan detecteren op
basis van alleen de laparoscopische videobeelden. Het
verwachtte resultaat is een toepassing die de zenuw
kan detecteren met een hoge mate van nauwkeurigheid.
De te gebruiken laparoscopische videobeelden worden
retrospectief gebruikt en alleen indien deze volledig
geanonimiseerd zijn; daarnaast worden ook geen andere
parameters/informatie uit het elektronisch patienten dossier
verkregen.

English:
In healthcare, the thrive to improve patient outcomes with-
out raising the cost has always been the case. A new step
in the digitisation in health care might support this need
through big data and similar technologies like artificial
intelligence (AI). Also, in surgery, the first AI applications
are build and tested. This might hold a solution for our
problem. During anti-reflux surgery, there is a potential
risk of Nervus Vagus injury. Here the rate of unintended
Nervus Vagus injury is estimated around 20%. A solution
and our goal is to create an AI tool (deep learning) that can
detect the Nervus Vagus and other anatomical structures in
those surgical videos. The expected result is an AI tool that
can detect with a certain accuracy the Nervus Vagus, but
this also depends on the size of the dataset. The video
data is used retrospectively and only used if it is fully
anonymised; also no other information is obtained from
the patient record systems.

II. INTRODUCTION

Artificial Intelligence for healthcare applications: In
healthcare, the thrive to improve patient outcomes without
raising the cost has always been the case. A new step in the
digitisation in health care might support this need through
big data and similar technologies like artificial intelligence
(AI). AI tends to improve on diagnostics, patient therapy,
prevention and support health care in making clinical
decisions. A subtype of AI is machine learning. It can
find correlations, associations, segmentation and generate
new insights in very large amounts of data. AI is used in
the automotive, finance and smart homes. In medicine, the

first clinical setups show their great value; node detection
in X-ray images, the prediction of outcomes in infectious
diseases and ECG arrhythmia detection. Deep learning is
also a type of AI and machine learning but relies on a
small infrastructure which mimics the brain infrastructure.
It is called deep because of stacked layers with multiple
artificial ’neurons’ that can be trained with existing data
to make predictions or classifications. This is achieved by
learning based on prelabelled data [1]

Due to the enormous variation between observed data
(patients), the other regular learning methods are not suffi-
cient anymore (i.e. selection on only colour differences).
So the step from machine learning to deep learning is
established. Deep learning can make automated predictions
on very large complex datasets. [2]

Also, in surgery, the first AI applications are built. An
example is the previous work from M. Schuhmacher at
the Meander Medical Center. He showed that surgical
video could be used for object detection. The accuracy
was acceptable (43.7%), but improvement for clinical usage
would be necessary as also stated in his thesis. He used a
CNN (convolutional neural network, the YOLOv2 network)
for autonomous structure recognition in the lower abdomen.
Suggestions he made were; more training data, more com-
plex network architectures like long short-term memory
networks (LSTM). An LSTM is a recurrent neural network
(RNN) which adds a specific ’memory’ to the algorithm.
In contrast, CNN does not have this ’memory’.[3] In this
proposed study is to test new network structures on a
clinical visualisation problem during anti-reflux surgery.

Anti-Reflux Surgery; GERD and Hiatal Hernia diaphrag-
maticus

Gastroesophageal reflux disease (GERD) is considered
a benign condition of the stomach and oesophagus.[4]
The primary medical treatment of GERD is the use of
proton-pump inhibitors (PPI’s), though a 10 to 40% of the
patients remains unresponsive [5]. Surgical treatment is a
second treatment option.
When PPI treatment does not show results in proven
GERD, the recommended treatment is a fundoplication.
Even if no hiatal hernia diaphragmaticus (HHD) is
present, but PPI treatment does not work a fundoplication
is recommended. [6]However, there is a potential risk
of Nervus Vagus injury in fundoplications with HDD
repair. [7] More important, Nervus Vagus (Nervus Vagus)
injury has a significant negative effect on the reflux control
postoperative and a significantly higher redo rate compared
when there is no vagus injury post surgery[8]. Research of
Van Rijn et al. (2016) ([8]) reported an incidence of 20%
on unintended vagus injury. It should be mentioned that
this long-term follow-up data of surgeries were collected
between 1990 and 2000. Back then, the laparoscopic video
systems were not as good as today. In this cohort of vagus
injury (the study of Van Rijn et al. (2016)) over 50% had
redo surgery and most of them because of recurrent reflux
problems. Better knowledge per patient of the location
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during surgery or visualisation of this nerve might improve
the outcomes.

Due to a dysfunctional closure of the lower oesophagal
sphincter duodenal gastric material can enter the oesoph-
agus and even higher anatomical structures. This reflux
can cause apart from discomfort, damage and inflammation
of those structures. Untreated, the inflammation and tissue
changes can lead to aspiration, Barrett’s oesophagus, stric-
ture, esophagitis or an adenocarcinoma. A higher incidence
in GERD is found in patients who have a hiatal hernia
(HHD, hiatal hernia diaphramatica), obesity or delayed
gastric emptying.[9]

Due to change of anatomy, a HHD reduces the function-
ality of the lower oesophagal sphincter (LES) which results
in possible entering of stomach fluids into the oesophagus.
An HHD is a protrusion of anatomical structures (other than
the oesophagus) into the thoracic cavity due to a widened
hiatus diaphragmaticus.[10] This causes the symptoms;
pain, heartburn, bleeding, dysphagia, weight loss, vomiting
and regurgitation.[11]

Those GERD-like symptoms are strongly related with
the HHD but are not necessarily present with every HHD.
With a hiatal hernia, the stomach can migrate partially or
entirely to the thoracal cavity. An HHD has four different
subtypes anatomically (see figure 1). The most common
one is type 1 and does not imply a non-functional LES.
Though non-functionality is also very size-dependent.
A type 2 to 4 is likely to cause GERD symptoms. In
type 2, the gastroesophageal junction is in the abdominal
cavity although the gastric fundus slides into the hiatal
hernia. In a type 3 HHD, the fundus of the stomach and
the gastroesophageal junction are located in the thorax
cavity instead of in the abdominal cavity. A type 4 (not
visualised in figure 1) other anatomical structures migrate
cranially to the hiatal hernia.[4]

Figure 1: Type 1, 2 and 3 of hiatal herniations. A is
a type 1 hernia (sliding hernia). B is a type 2 hernia
(rolling hernia). C is a combination type of the type 1
and 2 (mixed hernia).[4]

The most common hiatal hernia is type 1; it covers 95%
of all hiatal hernias. The other three subtypes together
make the other 5%. The common symptoms of type 1

are the presence of GERD/reflux. [12] The other subtypes
present themselves, on the other hand, more frequently
with obstructive symptoms. [4] Also in type 1 hiatal hernia
without reflux disease is also considered as no indication
for surgery [10].

A. Visualisation with Artificial Intelligence
A logic step for improvement of this intervention is a vi-

sualisation of the (path of the) Nervus Vagus perioperative
to decrease the Nervus Vagus injury and improve outcome.
See figure 2 , 3 and figure 4 for the Nervus Vagus ante-
rior and the Nervus Vagus posterior during surgery. [13]
Complications in reoperations are frequent, although the
risk of complication is lower in expertise centres. [14, 15]
Hashimi et al. (2015) state that complications occur twice
as much in redo surgery. [14] Because the visualisation of
the nerve might be a step for improvement of the surgical
outcome a high-end visualisation algorithm is suggested.
Previous work on using Machine Learning on anatomical
images (conducted in the Meander Medical Center) was
done by Michiel Schuhmacher. His work showed that the
concept of object detection worked on surgical videos. [3]
This Machine learning approach might hold a solution in
the Nervus Vagus visualisation problem.

Figure 2: A drawing of the stomach with the anterior
vagal trunk (Nervus Vagus) .[4]

Figure 3: The big arrow points at the anterior Nervus
Vagus surrounded by the crura left and right (smaller
arrows). [13]
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Figure 4: Here the arrow points at the posterior trunk of
the Nervus Vagus, with a clearly visible esophagus on
top op it. [13]

B. Objectives

Primary objective: To create a tool, based on deep
learning, that can visualise the different anatomical struc-
tures such as the oesophagus, Nervus Vagus, diaphragm
and liver.

Secondary objective: To test different artificial deep
learning network structures that can visualise different
classes (i.e. visualise only the Nervus Vaguss). Different
inputs other than video frames (stills) but also the move-
ment of pixels using as input in order to probably increase
the accuracy.

III. STUDY POPULATION

A. study population

population base One subject group of laparoscopic
fundoplication surgery between 01-01-2018 and 31-12-
2019. No information other than the anonymised video is
obtained from the EPD. The fundoplication surgery data
are from type 1 to 4 The distinction between robotic
surgery and conventional laparoscopic surgery can be made
based on the video data itself. Datasets for deeplearning
puroses need to be significant to be able to ’learn’ the
network. Also, the dataset can be as diverse to learn from
(anatomical) deviations. The estimated number of patients
needed is 80 fudoplication video’s, based on the fact that
the surgical videos have multiple segments where the nerve
will be visible. Those separate events can all be used as
’learn data’ and will keep the number of needed surgical
video’s low.

Inclusion criterea are
• fundoplication surgery; robotic and conventional la-

paroscopy
• Had surgery between 01-01-2018 and 31-12-2019
Exclusion criterea
• fundoplication video data that cannot be anonymized

(on-screen text, patient data or date)

B. Collecting the video data

1) Patient had surgery
2) A (legally) access to the patient file (i.e. the surgeon

or assistant collects the video of the procedure and
analyses if the video needs to be excluded).

3) The included video is uploaded to a disk drive,
which is secured. (Recommened encryption is used

op the IA department, if they do not have a recom-
mended encryption software Veracrypt or Bitlocker
is used).

4) The data/disk drive is handed over to the research
group.

IV. METHODS

Figure 5: Study procedure

A. Main study parameters/end points

Main study parameters are the accuracy parameters of
predicting classes in the images. Classes like the stomach,
oesophagus, Nervus Vagus, diaphragm and liver. Secondary
parameters will be the difference in the accuracy of these
structures between the different Deep learning networks.

B. study procedures

There is no interference or change to interventions. Data
is collected retrospective. After data is received by the
research group, the dataset is modified for deep learning.
This is achieved by selecting video frames and label these
images manually. This labelling is drawing regions on
the video frames which belong to a certain anatomical
structure. These labels are the ground truth of what a
certain pixel is. For example, a pixel, or set of pixels,
belongs to the stomach. An example of labelling and
the output from a trained network is given in figure ??
Also, extra information from frame-to-frame is generated.
So-called dense optical flow, the estimated movement of
a pixel colour to another region in the next frame.[16]
The workflow is visualised in figure 5. An example of a
labelled image of a dataset (Virtual Kitti dataset[17]) and
the predicted output generated by an modified UNET[18]
can be seen in figure 6.
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Figure 6: The input, output and ground truth of data from
a modified U-NET[18] on the Virtual KITTI dataset[17].
The image below is a labelled image of the image on
top.

V. PRIVACY AND WMO
For the usage of data that is stored in the hospital patient

record systems apply some strict regulations and laws. Two
of them consider the use of medical data and privacy; Wet
medisch-wetenschappelijk onderzoek met mensen (WMO)
and the Algemene verordening gegevensbescherming (AVG
or the English version: GDPR)

The WMO states if ethical approval is needed by the
METC (medical ethical review committee). This is the case
if both rules apply to the study:[19]

1) Er sprake is van medisch-wetenschappelijk onder-
zoek. English: It concerns medical, scientific re-
search

2) Personen worden onderworpen aan handelingen of
aan hen wordt een bepaalde gedragswijze opgelegd.
English: The patients/participants are subject to pro-
cedures or are required to follow rules of behaviour.

Only the first rule applies to our study, based on that our
study is not WMO plichtig.

1) Informed concent/Privacy: By dutch law (AVG) a
persoonsgegevens/personal data is: All personal data from
an identified or identifiable natural person. It is considered
as information directly about someone or can be traced
back to someone. [20] The data is fully anonymised (not
pseude anonymised) and thereby it is not a persoons-
gegeven. Because no persoonsgegevens/personal data is
used, the data can/is legally allowed to be collected without
informed consent of the patients.
In our conclusion for this study, no approval is needed from
the METC, and anonymised video data can be used if this
protocol is followed and no informed consent is needed.
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