




Abstract

Emergent technologies such as electric vehicles (EVs) and renewable energy sources (RESs) are causing
a shift towards an increased electrical energy use. The unpredictable production of RESs, such as solar
panels and wind turbines, as well as the high peak consumption of EVs contribute to a discrepancy of
production and consumption that can not be resolved in the traditional centralized energy supply chain
without further investments in grid reinforcement. The use of schedulable smart appliances allows us to
even out this discrepancy before the transformer. In this thesis we consider a controllable smart energy
storage device where we account for energy conversion losses. We show that local reparation methods that
account for losses applied to the lossless solution perform poorly, that the problem is NP-complete, and
propose polynomial-time exact methods for certain parameter choices, and a heuristic for the general case.
A case study is conducted to evaluate the performance of the heuristic method.
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1. Introduction

The increasing electrification of our daily energy consumption, as well as the unpredictability of low-level
energy generation through solar panels and wind turbines, gives rise to a highly peaked electricity throughput
at the transformer level. High production and consumption peaks at the transformer level are linked to
system failures and local power outages, traditionally requiring reinforcement of in-place electrical systems to
maintain integrity of the low voltage grid. The cost of reinforcement will rise dramatically if no measures are
taken, given the higher penetration of solar panels and high-peak energy demand devices expected in the near
future. Demand side management approaches, where the energy profile is evened out before the transformer,
offer an alternative way to lower stress on the grid. Evening out the energy profile involves bridging the
temporal divide between consumption and production peaks, requiring short-term storage of energy. In this
thesis we consider mathematical optimization models for energy storage devices where we account for energy
conversion losses. In this chapter we give some background information about demand side management and
elaborate on the issues that necessitate it. Furthermore, the problem considered in this thesis is presented,
and the research questions regarding it are stated. Finally, a short outline of the rest of this report is given.

1.1 Energy transition

In recent decades there has been an increased interest all around the world in becoming independent of fossil
fuels due to their contribution to global warming and climate change through the greenhouse effect. As a
result, clean renewable energy sources (RESs) are nowadays more prevalent (see Figure 1.1), and the share
of electrical energy in our day-to-day energy usage is increasing both in peak and overall demand – to the
point where further increases may not be accodomodated by the current low-voltage (LV) grids.

This energy transition is accompanied by major technical issues for the current electricity grid. Foremost
of these is that RESs are less flexible in when they generate electricity; rooftop photovoltaics (PV) only
generate electricity when the sun is shining, and wind turbines only when the wind is blowing. Additionally,
these systems occasionally generate more electricity than is required at that time. When this happens, an
inverted power flow is sent upstream, potentially damaging electrical components [44]. The grid needs to be
upgraded before this happens, when PV become more widespread and no further actions are taken. Related
problems are reported by distribution grid operators around the world [4, 22, 36, 40, 41].
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^Figure 1.1: Share of electricity production from renewable sources as percentage of consumption in the
Netherlands. Source: CBS [14].
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Energy consumption, on the other hand, is usually directly triggered by human interaction, and so most
appliances require energy only when humans are there to operate them. This causes consumption peaks
to occur just before and after regular working hours. Due to the simultaneity of these peaks, a further
increase in the share of high peak energy demand devices, e.g. electric vehicles (EVs), may overburden the
LV grid [29]; fully charging an EV takes about a factor nine times the current average daily residential energy
consumption per person (approximately 1500 kWh per person per year [12]), and fast charging at 150kW for
three minutes already equals about twice a person’s average daily electric energy usage. Further increases
in EV penetration are likely to happen in the near future given the key role it plays in the climate goals of
countries all around the world [6, 10, 31, 39, 48] (see Figure 1.2). Consequently, we will shortly require ways
to accommodate for this increase.
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^Figure 1.2: Share of EVs among registered personal cars in the Netherlands. Source: CBS [15].

1.2 Smart grids

For the reasons outlined above, there is an obvious interest in structurally lowering both consumption and
production peaks in the energy profile, i.e., to do peak shaving. And because of the loss of flexibility at the
supply side, in order to obtain the desired peak shaving capabilities, there should conversely be an increase
of flexibility elsewhere in the grid: on the consumer side. Influencing consumer behaviour in order to match
demand with the supply (rather than the other way around) is called demand side management (DSM). More
information on DSM can be found in Section 2.1. A way to achieve it is through the use of smart, schedulable
appliances incorporated in a communicating electricity grid, called a smart grid. Through communication
and subsequent control mechanisms, smart devices can agree on and execute a common schedule that flattens
their cumulative energy profile over a period. Any appliance that does not (always) need ad hoc activation,
or whose activation can be automated, can be adopted into such a smart infrastructure. Typical examples
are: dish washers and washing machines (referred to as time-shiftable devices), EVs, and energy storage
devices.

Assuming we have an accurate prediction of all relevant parameters, we may attempt to employ mathe-
matical optimization techniques to determine how to optimally schedule the activation of devices. Optimal
in this case means the best possible schedule in the mathematical model with respect to the chosen objective.
However, it turns out that the problem of simultaneously optimizing multiple devices is intractable, regard-
less of the objective of the optimization problem (as feasibility checking of multiple time-shiftable devices is
already NP-complete [24]). Furthermore, other requirements can make such a centralized approach undesir-
able in practice, such as not wanting to communicate expected energy consumption of individual households
for privacy or security reasons. This leads us to consider optimizing devices in isolation, and aggregating
their schedules at a higher level. If we subsequently choose as objective to minimize the Euclidean distance
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between the energy profile and some target profile, we refer to this procedure as profile steering [24]. Profile
steering is explained in more detail in Section 2.3.

1.3 Utilizing storage devices

Ideally, consumption and production peaks of an energy profile are simultaneously shaved by cancelling them
out against each other. This can for instance be done by using energy storage devices to temporarily store
excess energy from PV. Afterwards, i.e. whenever an excessive amount of energy is to be consumed, we can
assist the grid by discharging the energy storage. When the storage is owned and used by the distribution
grid operator, it can be used to support the grid by directly performing peak shaving. Figure 1.3 shows the
effect of a Lithium-ion battery on the energy profile of a single household with PV: peaks are significantly
reduced such that the highest consumption peak is halved in height, and the consumption peak is completely
removed.
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^Figure 1.3: Energy profile of a single household on a typical day in summer, without (blue) and with
(red) energy storage device.

Consumers require an economical incentive to participate in peak shaving with energy storage. A way
to do so is through arbitrage created by varying energy prices over time. Consumers will be incentivized to
exploit the arbitrage by charging the energy storage when energy is cheap, and discharging it when energy
is more costly. A result is that consumers will be incentivized to use their energy storage to assist the grid
if the prices are correlated with the neighborhood energy profile. Whenever the energy delivered to the grid
yields less than taking energy from the grid costs, consumers are incentivized to use their own generated
energy. When the generated energy is not immediately required, it may prove beneficial to temporarily store
it.

In the Netherlands, home owners are currently not incentivized to limit the peaks of their energy profile,
as the current net metering policy (salderingsregeling [47]) does not take into account peak production or
consumption. Consuming the energy generated from one’s own PV is not even incentivized under this policy,
as the energy supplier is legally required to accept locally generated energy, and to only charge people for
the difference in their annual consumption and production. Whenever a household generates more electricity
than it consumes on an annual basis, the energy supplier is required to give a reasonable compensation for
the surplus. Therefore, there is no financial gain in using locally generated energy instead of energy from
the net under this policy. As such, under this policy it does not pay off to participate in peak shaving or
to utilize storage as consumer [33]. This policy will be phased out starting in 2023 [49], after which it will
gradually make way for a policy where only the feed-in subsidy remains. The goal is to incentivize the usage
of locally generated energy over energy from the grid due to a lower compensation for delivering back energy
to the grid. In this way, from an economical viewpoint people should prefer to even out their energy profile
on a household level (possibly employing storage). Further details on the new policy are scarce, except that
one of the aims is to keep the length of the payback period for PV approximately the same, at around seven
years.
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1.4 Research question

To effectively use an energy storage device, we require an adequate model of it. Optimization models for
energy storage devices are typically very much simplified, ignoring e.g. energy conversion losses. In this
thesis we extend an existing model by including exactly this feature, and we study the properties of the
new, lossy model. It turns out that after the introduction of conversion losses, the problem becomes NP-
complete, implying that it is impossible to devise a general exact algorithm that runs in polynomial time
(unless P = NP). This report addresses the following main question:

� Can energy storage devices, where we account for energy conversion losses, effectively support the
electricity grid over their lifetime?

We split this question into the following subquestions:

ä How important are conversion losses in practice, and how relevant are they for optimization procedures?

ä Are consumer-owned energy storage devices economically viable in the near future?

ä Can we distinguish cases that are computationally tractable to optimally solve?

ä Can an efficient approximate algorithm be devised?

These questions will be answered in turn, before returning to the main question in Chapter 7.

1.5 Contributions

To summarize, in this thesis we extend existing models of van der Klauw [55] for the scheduling of energy
storage devices by accounting for energy conversion losses. In general, unless P = NP, we can not find an
efficient exact algorithm for this problem, though certain parameter choices lead to instances of the problem
that can be solved to optimality in polynomial time. For the remaining cases we propose a novel constructive
heuristic. It solves a restricted version of the problem to optimality, where some state variables are a priori
restricted in sign (non-positive or non-negative) such that the optimal solution to the original problem is
found when the appropriate signs are chosen. An implementation of the method in Python is incorporated
in the optimization suite of the Decentralized Energy Management Toolkit (DEMKit) software package [27].
Finally, the performance of the method when applied to realistic artificial cases is investigated.

1.6 Outline

The structure of this thesis is as follows. In Chapter 2 we provide additional background information on
smart grids, scheduling approaches for smart appliances, and battery modelling. The goal of this chapter is
to place our research in context, to reflect on its applicability, and to give an overview of existing solution
methods.

Chapter 3 introduces the model used in the rest of this thesis, and places it in a mathematical formalism.
This model is solved in subsequent Chapters 4-5, in which we respectively investigate the importance of
considering losses in the optimization process, and how to properly do so.

In Chapter 4 we consider two naive methods to account for the incurred energy conversion losses. We
investigate the performance of these methods as compared to a linear programming approach. Several
different objective functions are considered. We also investigate the economic feasibility of a residential
energy storage for several efficiency values.

In Chapter 5 we show that the considered problem is NP-complete in general, implying it may be
inherently difficult to generally solve. We isolate parameter choices for which we can extend an existing
solution approach to find optimal solutions, and we introduce a novel heuristic for the general problem.

In Chapter 6 we investigate the performance of the given heuristic in a realistic case study.
Chapter 7 concludes this thesis with a comparison of the proposed solution methods, discussion of the

results and encountered problems, a projected future of energy storage in residential settings and future
work.



2. Background

The loss of flexibility at the supply side of the energy supply chain due to a higher penetration of uncontrollable
renewable energy sources necessitates an increase of flexibility at the consumer side. We discuss several ways
in which consumer behaviour can be influenced to better match the given energy supply. The emergence of
RESs requires a paradigm shift in our current energy supply chain, as methods for utilizing the flexibility
of multiple devices simultaneously are otherwise not scalable. The current centralized energy paradigm will
have to make way for a decentralized paradigm, where part of the computational effort of scheduling can be
delegated to the individual devices, making this approach more scalable with respect to the number of devices
that can be considered during optimization. Several methods for device scheduling from the literature are
listed. We reflect on the applicability of our model by looking at the workings of physical batteries, and finally
consider some adverse effects control can have.

2.1 Demand side management

A higher penetration of local energy production through RESs causes a loss of flexibility at the supply side
of the energy supply chain, in turn necessitating an increase of flexibility at the consumer side to avoid
excessive costs for grid reinforcement. Matching consumer demand to available supply, called demand side
management or demand-response, is an effective way of flattening energy profiles. It can be achieved in
multiple ways:

• Better education of the public: Government campaigns may make people more conscious of their
energy footprint. They may incentivize them to use less energy altogether, or to prompt them to
consider overproduction issues when deciding whether to purchase solar panels. Dealing with over-
production issues becomes especially important when the compensation for delivering back energy to
the grid is low compared to the price for consuming energy. A meta-analysis of multiple experimental
studies on energy conservation concludes that, on average, information strategies led to a reduction in
energy consumption of 7.4% [16]. Energy audits and consultation were most effective, with an average
decrease of 13.5%. Strategies focussing on financial aspects generally backfire, as they may highlight
that the discomfort of energy conservation may not be worth it financially.

• Financial incentives: Day-night tariffs are a typical example that have been around for some time
(at least 1926 in the Netherlands [53]). However, there are a few apparant problems with simple flat
schemes: they do not incentivize energy usage whenever there is an abundance of locally generated
energy, the obtained savings are often not worth the trouble [18], and the influence of these tariffs
on consumer behaviour is hard to predict. Other pricing schemes such as time-of-use (ToU) pricing,
off-peak savings, or quadratic prices perform better in these regards. Additionally, if local generation
of energy is rewarded less than the purchase of external energy costs, consumers are incentivized to
use their own energy first.

• Home energy management systems (HEMS): An integral part of future housing is, quite surely,
an energy monitoring and management system. Through interfacing with a neighborhood-level con-
troller, they may come to a consensus on proper activation times for certain smart appliances (such as
washing machines, dish washers, heat pumps, EVs) in order to flatten the aggregated energy profile for
an entire neighborhood. This sidesteps the problem of determining and distributing the prices in case
of dynamic tariffs, and potentially gives much better results. Furthermore, by assuming an automated
framework, there is no longer a reliance on active consumer participation to flatten energy profiles
(besides initial registration of devices), ideally offering both improved comfort and a flattened energy
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profile. Taking part in such a controlled system can be either made mandatory through legislation, or
be economically incentivized through periodic rewards based on participation.

A future system may use a mixture of direct control for controllable loads, and financial incentives for
uncontrollable base loads (appliances that are not schedulable, but for which we may still incentivize specific
timed usage). More information about DSM can be found in [54].

2.2 Smart appliances

Through the use of schedulable smart appliances both production and consumption peaks can be cut-off.
These appliances work within specified comfort bounds rather than ad hoc, allowing the energy profile to be
evened out through automated activation. For this reason, such devices are also called distributed energy
resources (DERs). A proper energy management approach should be able to handle all kind of DERs. It
therefore makes sense to identify a number of device classes that generalize all possible kind of flexibility
behaviours, in order to facilitate the interaction between an energy management system (such as a HEMS)
and the DERs. One such classification is given in the Energy Flexibility Platform and interface (EF-Pi) [20],
in which the following device types are distinguished:

• Uncontrollables are those devices that together constitute the base load. Their energy consump-
tion or production is not schedulable and the devices should directly function when required by the
consumer. Examples include computers, televisions, and coffee machines.

A subset of the uncontrollable devices are curtailable devices. These devices can be shorted on their
energy consumption/production (possibly leading to a loss of comfort). The typical example is rooftop
PV with controllable inverter. Controllable inverters are already legally required in Germany and
California [11, 21], due to a high penetration of rooftop PV systems. While potentially being beneficial
for peak shaving, curtailment is generally not desirable from an economical or user comfort point of
view, and should therefore only be used as a last resort;

• Time-shiftables are devices with a fixed energy profile after activation, where the activation time can
be varied (within certain comfort bounds). Typical examples are pool pumps, washing machines, and
dish washers;

• Buffers are devices that utilize some form of internal storage of energy, and can (dis)charge over several
time periods in a flexible manner. The effective local use of a buffer may be able to simultaneously
shave production and consumption peaks by cancelling them out against each other. Examples include
EVs, batteries, and heat storage devices;

• Unconstrained devices encompass all other devices that may have a very customized modus operandi
specifically designed for supporting the grid. On a residential level such devices generally do not occur.
An example is a neighborhood-level electricity generator.

The problem of scheduling multiple devices simultaneously turns out to be intractable for a large number
of devices, independent of the considered objective, as feasibility checking of multiple time-shiftable devices
is already difficult (technically, it is NP-complete [55]). Furthermore other requirements can make such a
centralized optimization approach undesirable in practice, such as not wanting to communicate (across the
grid) expected energy consumption of individual households for privacy and security reasons.

Overcoming these complications of the centralized energy management paradigm can be done by con-
sidering devices or households in isolation, and then potentially using some procedure to aggregate results.
Energy management and device scheduling of this kind is appropriately called decentralized energy manage-
ment (DEM).
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2.3 Device scheduling

The optimal scheduling of devices involves using their flexibility to redistribute the cumulative energy con-
sumption profile in such a way that certain measures are optimized. In a pricing setting this boils down
to minimizing costs or exploiting arbitrage created by the varying energy tariffs, while in peak shaving this
boils down to cancelling out consumption and production peaks against one another. Respectively these
correspond to the consumer’s point of view, and the distribution grid operator’s point of view. We list sev-
eral methods for approaching these problems below. Control approaches can roughly be divided into three
classes: local control, central optimization, and market-based control.

Profile steering

In the Profile Steering approach [24] (see Algorithm 1) scheduling decisions are made by a central controller,
which aggregates proposed schedules of individual appliances. This optimization procedure is therefore a
mixture of central optimization and local control. During each iteration, the best improving schedule is
consolidated with the current schedule until no more (or too little) improvement is found. As the central
controller repeatedly asks for a new schedule of each registered appliance, the controllers of the appliances
should be able to compute a new schedule relatively fast and with limited memory. For this reason, standard
generic solvers are inadequate in this context, and there is a need for specialized algorithms. In [55], the
author derives such algorithms for a variety of device classes. One such device class is a lossless energy
storage device, which we extend in this thesis by additionally considering conversion losses.

Algorithm 1 Profile steering algorithm

1: function ProfileSteering(f,M, T , X,Xm, ε)
2: Request an initial schedule xm of each device m
3: repeat
4: x←∑

m∈M xm . Determine the current aggregated schedule
5: for m ∈M do
6: x̂m ← arg minx̃m∈Xm

f(x− xm + x̃m) . Construct candidate schedules
7: δm ← f(x)− f(x− xm + x̂m) . Improvement made by m
8: end for
9: m̂← arg maxm∈M δm . Find device with best improvement

10: xm̂ ← x̂m̂ . Update schedule of m̂
11: until δ̂m̂ < ε . Repeat as long as sufficient progress is made
12: return x
13: end function

PowerMatcher

The PowerMatcher [34] is an example of a market-based control DSM approach. Double-sided auctions are
used to offer the consumer the possibility to sell their flexibility to interested parties. In this approach, each
smart appliances comes equipped with a bidding function, indicating which price it is willing to pay for
operation. This function may vary over time, and depend on internal mechanics of the appliance (such as
state of charge of an EV or battery), e.g. making an EV more eager to charge closer to the deadline. This
approach is optimal in the sense that the global optimum of the summed utilities coincides with the market
equilibrium, and is Pareto optimal with respect to the market model. Disadvantages of this approach are
the need for a bidding function for each appliance (they play a central role, but it is unclear exactly how
they should be chosen), there are no guarantees for load balancing, and there is an implicit loss of flexibility
due to postponement; early after going to auction devices may be reluctant to operate, causing them to
generally postpone activation to a non-optimal point.
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Game theoretic approach

Multi-agent decision processes can be modeled as (non-)cooperative games. In a smart grid, every consumer
is considered a player of such a game. An overview of game theoretic methods applied in the smart grid can
be found in [52]. In [46], a neighborhood with multiple batteries is considered. A best-response algorithm
is used to find a pure Nash equilibrium with no guarantee on optimality. Players pay for their share of the
total consumption at each time step, where the cost function is quadratic at each time step – implying load
balancing to be beneficial for all players. Despite the lack of optimality guarantees, simulations indicated
good performance for all simulations. Investigation of the influence of conversion losses indicated a significant
impact on participation behaviour. The peak-to-average (PAR) ratio reduction was halved in the case of 91%
efficiency as compared to the lossless case. Similarly, a lower reduction in energy bills for all participants
occurred in the lossy case. The authors refer to possible improvement through a more advanced billing
scheme: basing the prices on the respective success of each participant in reducing the PAR ratio may
directly incentivize optimizing in that direction. The battery model used in this paper includes some non-
linear mechanics, and battery actions are restricted to four modes of operation (idle, halfway charging, full
charging, and demand fulfillment).

Alternating direction method of multipliers

In [50], the authors consider the problem of simultaneously scheduling a fleet of EVs in a pricing and peak
shaving setting. The central problem is decomposed into N + 1 coupled problems (one for each EV, and one
for the aggregator) using the Alternating Direction Method of Multipliers (ADMM) method [23]. ADMM is
an augmented Lagrangian method that iteratively improves the aggregated schedule using partial updates
for the dual variables. ADMM has better asymptotic convergence properties compared to the profile steering
approach, though it also introduces some complications: extensibility to multiple device types still has to be
investigated, ADMM requires the specification of a penalty parameter but offers no method of determining
it, and finally even for single devices ADMM requires multiple iterations. A further comparison of both
methods is warranted, though we do not do so in this thesis.

2.4 Battery modelling

In order to match demand and supply of energy we can employ short-term energy storage devices (buffers
in EF-Pi), such as electrical batteries. In order to make good use of these devices, we require a good
model of their capabilities and input-response behaviour. This model can subsequently be optimized using
mathematical programming techniques to obtain a sequence of (dis)charging decisions. It therefore makes
sense to look different ways to model the inner workings of the most common residential energy storage
device: an electrical battery.

Batteries are thermo-electro-chemical systems that are used for the temporary storage of energy. Inside
the battery energy is stored in chemical bonds, while electrical energy can be charged to and discharged
from it. The base components of a battery include: two electrodes, a separator, and an electrolyte. During
discharge an oxidation reaction causes a reductant to donate electrons at the anode (one of the electrodes),
and conversely a reduction reaction causes an oxidant to accept them at the cathode (the other electrode).
The resulting flow of electrons can be used to power electrical appliances. During charging the reactions are
reversed. Energy dissipates in the form of heat or radiation during the charge and discharge processes, and
charge may be lost over time due to internal resistance. The yield relative to the input from a battery after
a full charge-discharge cycle is called the round-trip efficiency.

The slow diffusion of reactants at either electrode can cause non-linear effects to arise: when the battery
is discharged faster than diffusion can take place the reactants may accumulate at the poles, causing the
battery’s effective capacity to diminish until further diffusion has taken place. Hence, batteries may, for a
short period, effectively have some amount of unavailable charge just after usage. This is called the recovery
effect. Furthermore, the assumption that the battery voltage stays constant during discharge, instantly
dropping to zero when empty, does not hold in practice; during discharge the voltage gradually lowers, and
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the effective capacity is lower for high discharge currents. This is called the rate capacity effect. For the
purpose of optimization, such effects are often ignored and simpler models are adopted.

In general, batteries can be modeled on different levels:

• Electro-chemical models describe the chemical processes inside the battery as a system of non-
linear differential equations. Electro-chemical models can obtain very high accuracy, but require lots
of parameters to properly work.

• Electrical-circuit models try to emulate the electrical behaviour of a battery by modelling it as a
circuit with similar electrical properties. Electrical-circuit models require less configuration, but still
require a lot of experimental data. While otherwise fine, these models are less accurate in predicting
battery lifetime.

• Analytic models abstract away from the internal specifics of the battery and instead try to model the
observed dynamics directly. An example is the Kinetic Battery Model (KiBaM) [38], which models the
recovery effect by approximating the diffusion process as two bounded basins (one for the unavailable,
and one for the available charge) with some fixed conductance between them.

• Stochastic models more or less assume the battery is a black box. Characteristics of the physical
device are modelled by emergent properties of some randomized process.

The accuracy and complexity of these models are strongly related, causing the more accurate models to not
be suitable for use in optimization procedures. A survey of battery models is given in [32].

2.5 Adverse effects of control

So far, we have mostly considered the positive effects of control and optimization in DEM. Aside from the
overhead of introducing and running control mechanisms in the current energy supply chain, such mechanisms
also introduce some other issues related to privacy and peak reinforcement in a pricing setting.

Privacy and security

Energy consumption profiles may contain privacy sensitive information of the consumer, and should therefore
be handled as such: details on energy consumption should be communicated as locally as possible, and should
not be stored (for an extended period) without consent or legitimate reason according to GDPR. Information
that can be deduced from energy consumption are things such as: number of residents, home occupancy,
and/or ownership of an EV or rooftop PV. Failing to protect this data may therefore compromise the
privacy and security of the consumer, as access to it may allow third parties to, for example, send targeted
advertisements, or plan a burglary.

Despite best efforts to the contrary, electrical systems may sometimes fail. In particular, electrical
batteries may catch fire [8] due to incorrect control, puncture damage, over-charging, or local short-circuiting
from contact with a low resistance conductor. There are multiple reported cases of burn injuries [37] and even
deaths caused by fires of faulty smartphone batteries. Naturally, these safety concerns have to be addressed
before a widescale rollout of residential energy storage devices can happen. The sea-salt battery [2, 17] is an
emergent battery technology which is much safer to use and easier to dispose of than Li-ion batteries.

Peak reinforcement

Control mechanisms allow for the automated optimization of certain objectives. Consumers are generally
assumed to want to minimize costs, while the grid operator may want to minimize peaks. These objectives
may not align: there can be a significant increase in power passing the transformer by trading in energy
using e.g. day ahead prices of the spot market [43] (for intraday prices the effect is similar but reduced). In
general, traditional market mechanisms do not solve local grid problems.
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The observed effect can be easily explained: as all consumers are simultaneously incentivized to shift their
energy use to a period of low cost, peaks may not be reduced but merely shifted. Additionally, consumption
peaks may occur at times where there would have been none before. Hence the automated scheduling of
smart appliances in this setting potentially only worsens the situation.

One of the root causes of these problems is that people receive the same prices at the same time. Dynamic
price tariffs, where different people receive different energy tariffs at the same time, may be a way to deal
with this. The fairness of such schemes is still heavily debated [42], and it is unclear how exactly the prices
should be determined and fairly divided among the populace.

We do not investigate the influence of losses on the adverse effects in a pricing setting in this report.



3. Model

In order to make optimal charge and discharge decisions for the considered energy storage device, we require
a mathematical model to optimize. In this chapter, we formulate the models used in the rest of the thesis.
The considered model is an extension to the one presented in [55]. The novel contribution is the addition of
conversion losses. At the end of this chapter we summarise the model assumptions.

3.1 High-level description

We start by giving a high-level description of the properties of the derived model. In the next section we
place this description in a mathematical formalism.

Our model captures charge and discharge decisions of an energy storage device for a finite amount of
time steps T = {1, . . . , T}. We denote the state of charge at the end of time step t by SoCt, where initially
the storage device has a state of charge equal to SoC0. Furthermore, the amount of (dis)charging done at
time step t ∈ T is denoted by xt, where positive values indicates the storage device charges, and negative
values indicates the device discharges. The charging decisions x = (x1, . . . , xt) are bounded from below and
above, and the goal is to minimize a convex and separable objective function f(x) =

∑
t∈T ft(xt), where all

ft are convex. Typical choices for ft(xt) in the field of DEM are:

Ç linear pricing: ft(xt) = ctxt, where ct is the unit price of energy at time step t;

J feed-in subsidy: ft(xt) = ct (xt − pt)+ + st (xt − pt)−, where st ≤ ct, y
+ = min{0, y} and y− =

max{0, y}, ct as before, st is the unit subsidy for fed-in energy, and pt is the energy profile at time
t. Under a feed-in subsidy policy delivering back energy to the net incurs a monetary reward that is
lower than the energy cost, thus promoting self-consumption;

� quadratic deviations: ft(xt) = (xt − pt)2, where pt as before. By minimizing the quadratic deviations
objective, we use the storage device to steer the energy profile towards zero.

For simplicity we assume there is no latent charge (as might happen inside an electrical battery due to
slow diffusion of reactants), which means the entire state of charge is available for usage at all times. Losses
are incurred during (dis)charging, such that a fraction of the in- and outflow is lost when the storage is
used. Figure 3.1 is an abstract representation of our model. The resulting model is an extension to the one
presented in [55].

Energy conversion losses cause energy to be lost during the charging and discharging processes. This is
modeled by losing a fixed fraction of the in- or outflow: one unit of charge from the net leads to a charge
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^Figure 3.1: Simplified lossy storage model
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RTE [%] Decay [% energy/day]

PHES 70-85 ≈ 0
CAES 57-85 ≈ 0
FES 70-95 1.3-100
SCES 90-98 20-40
SMES 90-98 10-15
NaS 70-90 0.05-20
LA 70-82 0.033-0.3
NiCd 60-70 0.067-0.6
Li-Ion 85-98 0.1-0.3
ZnBr 60-75 0.24
PSB 57-75 ≈ 0
VR 60-85 0.2
Seasalt 80-90 ?

!Table 3.1: Efficiency parameter ranges for different energy storage devices, as seen in [51]. Abbreviations
used: pumped hydroelectric energy storage (PHES), compressed air energy storage (CAES), flywheel energy
storage (FES), supercapacitor energy storage (SCES), superconducting magnetic energy storage (SMES),
sodium sulphur battery (NaS), lead acid battery (LA), nickel cadmium battery (NiCd), lithium-ion battery
(Li-ion), zinc bromine flow battery (ZnBr), polysulphide bromide flow battery (PSB), and vanadium redox
flow battery (VR). RTE value for seasalt battery from [3].

increase of ηc ∈ (0, 1] in the energy storage, and conversely discharging ηd ∈ [1,∞) energy from the battery
delivers one unit of energy to the net. Consequently, circulating one unit of energy from the net through
the energy storage back to the net yields ηc/ηd, a quantity known as the round-trip efficiency (RTE) of the
energy storage device. Conversion losses most notably occur due to internal resistance in the form of friction,
spillage, heat emission, or radiation. When the state of charge is not directly measurable (which is the case
for electrical batteries) it is usually assumed that charging and discharging contribute equally to the loss of
energy, such that: ηc = 1/ηd =

√
RTE.

Another kind of loss is static discharge losses, which occurs over time either due to leakage or due
to uncontrolled spontaneous discharge. This case has been studied in [55] within the context of heating,
ventilation, and air conditioning (HVAC) systems. The problem we present here remains convex after
introduction of this type of loss, and it can easily be accounted for. Therefore, for convenience and without
loss of generality, we do not consider it in our model.

In Table 3.1 typical ranges of values for the RTE and decay rate per day for different types of energy
storage technologies. This table gives a simplified view of the working of batteries, as in practice the RTE
depends strongly on the mode of operation.

3.2 Mathematical formulation

In this section we place the description of the previous section in a mathematical formalism. More precisely,
we formulate the optimization problems of scheduling the (dis)charging decisions of lossless and lossy energy
storage devices. A first formulation of our energy storage problem, based on the previous section, is:

minx f (x) ,

s.t. SoCmin
t ≤ SoCt ≤ SoCmax

t ∀t ∈ T ,
xmin
t ≤ ∆SoCt ≤ xmax

t ∀t ∈ T ,
(3.1)

where SoCmin
t and SoCmax

t are capacity bounds, and xmin
t and xmax

t are (dis)charging bounds. The con-
straints in (3.1) state that the (dis)charge rate of the battery and its state of charge should be within these
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bounds. To make the model complete, we need to relate the state of charge to the charging decisions. When
we disregard losses their relation is straightforward, as the state of charge at time t is simply the accumulated
effect of all (dis)charge decisions up to time t starting from the initial state of charge:

SoCt = SoC0 +

t∑
t′=1

xt′ .

Thus, we obtain the following optimization problem for lossless storage devices:

Problem 3.1. Lossless Storage Problem: Given an initial state of charge SoC0, capacity bounds SoCmin
t

and SoCmax
t , and (dis)charge bounds xmin

t and xmax
t , the optimization problem for the lossless energy storage

device is:
minx f (x) ,

s.t. SoCmin
t ≤ SoC0 +

t∑
t′=1

xt′ ≤ SoCmax
t ∀t ∈ T ,

xmin
t ≤ xt ≤ xmax

t ∀t ∈ T .

When we take into account conversion losses, the state of charge at time t depends on the charging
decisions xt, and the conversion rates ηc and ηd in the following manner:

SoCt = SoC0 +

t∑
t′=1

(
ηcx

+
t′ + ηdx

−
t′

)
. (3.2)

where x+t = max {xt, 0} is the positive part and x−t = min {xt, 0} is the negative part of xt. Plugging (3.2)
into (3.1) gives us the following formulation of the Lossy Storage Problem:

Problem 3.2. Lossy Storage Problem: Given an initial state of charge SoC0, conversion rates 0 <
ηc ≤ 1 ≤ ηd, capacity bounds SoCmin

t and SoCmax
t , and (dis)charge bounds xmin

t and xmax
t , the optimization

problem for the lossy energy storage device is:

minx f (x) ,

s.t. SoCmin
t ≤ SoC0 +

t∑
t′=1

(
ηcx

+
t′ + ηdx

−
t′

)
≤ SoCmax

t ∀t ∈ T ,

xmin
t ≤ ηcx+t + ηdx

−
t ≤ xmax

t ∀t ∈ T .

Note that we can remove the losses in Problem 3.2 by setting ηc = ηd = 1, doing so reduces Problem 3.2
to Problem 3.1.

It is useful to make the distinction between the charging decision xt, and the internal change in state of
charge x̃t at time t. These quantities are related in the following manner:

x̃t = ηcx
+
t + ηdx

−
t ,

xt = 1
ηc
x̃+t + 1

ηd
x̃−t .

(3.3)

Since the second transform in (3.3) will occur frequently, we introduce the following notation for it: Tη(x) =
1
ηc
x+ + 1

ηd
x−.

In Problem 3.2 the charging decisions occurred inside the objective, while the internal change in state of
charge occurred in the constraints. Using the above equations we can obtain an equivalent (but differently
formulated) model, by expressing the state space in terms of x̃t rather than in xt, thus moving the losses
from the constraints to the objective:
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Problem 3.3. Lossy Storage Problem (alternative form): Given an initial state of charge SoC0,
conversion rates 0 < ηc ≤ 1 ≤ ηd, capacity bounds SoCmin

t and SoCmax
t , and (dis)charge bounds xmin

t and
xmax
t . The optimization problem for the lossy energy storage device is:

minx̃ f̃ (x̃) = f
(

1
ηc

x̃+ + 1
ηd

x̃−
)
,

s.t. SoCmin
t ≤ SoC0 +

t∑
t′=1

x̃t′ ≤ SoCmax
t ∀t ∈ T ,

xmin
t ≤ x̃t ≤ xmax

t ∀t ∈ T .

Although it is perhaps more natural to visualize the lossy storage problem as formulated in Problem 3.2 we
will instead work with the alternative formulation offered in Problem 3.3, unless stated otherwise. Note that
the feasible sets of both problems are compact. Hence when the objectives we consider are continuous, the
Weierstrass’ extreme value theorem for general topological metric spaces asserts that the optimal solution
exists – it only remains to find it.

3.3 Model assumptions

In formulating the models we have made some implicit and explicit assumptions. We summarise them below:

ËAssumption 1:. The initial state of charge SoC0 is measurable (and given).

ËAssumption 2:. The objective is convex and separable: f (x) =
∑
t∈T ft (xt), where each ft is convex.

ËAssumption 3:. Static discharge and energy conversion losses are independent. Furthermore, the corre-
sponding parameters can be independently determined.

ËAssumption 4:. The storage device behaves linearly; non-linear effects of the storage device are negligible.

The accuracy of these assumptions differs with the considered storage device: in a pumped hydroelectric
storage system the state of charge can be directly measured as the water level in the upper reservoir. This is
not the case for an electric battery. As the state of charge is not directly measurable, it may also be harder
to separate the effects of static and conversion losses in an electric battery.



4. Importance of losses

In this chapter we quantify the importance of considering losses during optimization. In particular, we assess
the deterioration of the objective value when we momentarily disregard the effect of losses. We propose two
intuitive approaches for amending solutions of the lossless problem to account for losses, and show through
simulations that they perform poorly as compared to the optimal solution of the lossy problem. These results
serve as motivation for further exploration of the problem. Finally, we briefly investigate economic feasibility.

4.1 Amending the solution

When the round-trip efficiency is relatively high (RTE ≈ 1), we expect the optimal solutions of the lossless
and lossy problems to be very similar: applying the lossless solution to a lossy storage with high efficiency
should yield only a slight deterioration in objective value. Nevertheless, the solution may become infeasible
due to there being a lower state of charge than anticipated, causing the given solution to attempt to further
discharge the storage whilst it is already empty. Consider a 40 kWh storage device with 70% RTE with
the quadratic deviations objective, where the profile values are obtained by aggregating the net energy
consumption of ten households. The blue graphs in Figure 4.1a show the optimal charging decisions (left)
and state of charge (right) when the storage is lossless, and the red graphs indicate the same quantities when
the optimal lossless solution is applied to the lossy storage. The solution quickly becomes infeasible, getting
as low as negative half of the maximum capacity at the end of a single day. Two simple ways in which we
can amend the lossless solution to account for this are:

• repair the solution: whenever the state of charge is about to exceed its bounds, it is set equal to that
bound instead. When the changes in state of charge bounds are not too erratic, this gives a feasible
solution (otherwise, the problem can be preprocessed first). This method attempts to remain close
to optimality by staying as close as possible to the original optimal solution, but due to feasibility
problems will generally not be able to;

• rescale the solution: we transform the solution by considering the lossless solution to express the
internal energy x̃t of the lossy storage. In other words, all positive valued xt’s are scaled by 1

ηc
, and

all negative valued xt’s are scaled by 1
ηd

. Essentially we are plugging the solution to Problem 3.1 into
Problem 3.3. This method attempts to remain feasible, but in doing so does not remain optimal as
the objective toward which we optimize has changed.

As can be seen in Figure 4.1a, simply ignoring the losses leads to an infeasible solution as the state of charge
ends up lower than expected due to not having taken into account the incurred losses. The blue line indicates
the optimal lossless schedule, and the red line the realized profile induced by using the lossless schedule in a
lossy device with 70% RTE. The discrepancy between the lossless model and lossy reality is huge: around
20:00 the model thinks the storage is halfway full, while it is already empty! At the end of the day, the state
of charge equals negative half of the capacity.

In Figure 4.1b losses are accounted for via the repair strategy. The (dis)charging profile is essentially the
same as in the original solution, except for parts where it is not feasible to perform the prescribed action.
The resulting schedule is feasible again, but doesn’t ever use the full capacity of the battery. Furthermore,
for larger time horizons, the effective capacity will continue to diminish further over time.

In Figure 4.1c, we directly translate the lossless schedule to the lossy case by rescaling the schedule. As
such, it certainly is feasible, but may not be optimal. Both the repaired and rescaled solutions reduce to the
original solution when the efficiency approaches 100%.
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(a) Lossless solution applied to a lossy storage device with 70% RTE. The blue line indicates the lossless
schedule, and the red line indicates the realized profile induced by using the lossless schedule in the lossy
storage device.
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(b) Repair method applied to the lossless schedule.
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(c) Rescale method applied to the lossless schedule.

^Figure 4.1: (Dis)charge rate and state of charge of storage devices under different schedules.
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4.2 Bounding the deterioration

In this section, we use the rescale method to impose a bound on the change in objective from the lossless to
lossy case when we consider the linear pricing objective. Although often returns diminish due to losses, we
show that there are cases in which the objective improves due to losses. Let v∗(ηc, ηd) denote the objective
value of the optimal solution to an instance of Problem 3.3 (such that v∗(1, 1) is the optimal objective value
of the lossless case). Lemma 4.2 gives a bound on their difference. Although the given bounds are not very
tight, they at least indicate that the solution deteriorates proportional to 1

ηc
(or 1√

RTE
) in the linear case.

Lemma 4.1. When ft(xt) = ctxt, ηc = 1/ηd, and xmin = mint x
min
t = −maxt x

max
t = −xmax:

v∗(ηc, ηd)− v∗(1, 1) ≤
∑
t∈T

c+t

(
1

ηc
− 1

)
xmax.

Proof. We prove the bound by using the rescale method. Let x be the optimal solution to the
instance of Problem 3.1. Applying the rescale method to x gives us a feasible solution to the
instance of Problem 3.3: 1

ηc
x+ + 1

ηd
x−, with objective value vres(ηc, ηd), such that: v∗(ηc, ηd) ≤

vres(ηc, ηd). In the following derivation we use the index sets T + := { t ∈ T |xt ≥ 0 } and T − :=
{ t ∈ T |xt < 0 }.

v∗(ηc, ηd)− v∗(1, 1) ≤ vres(ηc, ηd)− v∗(1, 1)

=

(
1

ηc
− 1

)∑
t∈T

ctx
+
t +

(
1

ηd
− 1

)∑
t∈T

ctx
−
t ,

≤
(

1

ηc
− 1

)∑
t∈T

c+t x
+
t +

(
1

ηd
− 1

)∑
t∈T

c+t x
−
t

≤
(

1

ηc
− 1

)
xmax

∑
t∈T +

c+t +

(
1

ηd
− 1

)
xmin

∑
t∈T −

c+t

=
∑
t∈T

c+t ·max

{(
1

ηc
− 1

)
xmax,

(
1

ηd
− 1

)
xmin

}
=
∑
t∈T

c+t

(
1

ηc
− 1

)
xmax.

This result tells us that when all costs are non-positive (which do occur, although rarely, in the real
world [4]), the lossy storage device will never be worse in objective value than the lossless storage device.
This can be motivated by considering that non-positive costs indicate that energy consumption is rewarded.
The lower the round-trip efficiency, the more the storage device is capable of consuming energy. We give
two minimal examples below:

• The optimal solution to the following Lossy Storage Problem with negative linear cost:

minx − x,
s.t. 0 ≤ ηcx+t + ηdx

−
t ≤ 1,

turns out to be strictly increasing in ηc ∈ (0, 1]: − 1
ηc

. It follows that negative prices allow us to find
improvement when we introduce losses.
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• And similarly for the quadratic deviations objective with positive profile:

minx (x− 2)
2
,

s.t. 0 ≤ ηcx+t + ηdx
−
t ≤ 1,

where the optimal objective value equals 0 when ηc ∈
(
0, 12
]

and
(

1
ηc
− 2
)2

when ηc ∈
[
1
2 , 1
]
, which is

an increasing function in ηc ∈ (0, 1].

We show in Chapter 5 that exactly these cases, where we have negative prices or positive profiles, turn out
to be difficult to solve in general.

4.3 Numerical study

In this section we determine the impact of the introduction of conversion losses for different objectives and
several RTEs. In particular, we consider the deterioration of the optimal objective as a function of the
round-trip efficiency. The schedules generated by the proposed repair and rescale methods are compared
to the optimal solution for the linear pricing, feed-in subsidy, and quadratic deviations objectives. Optimal
solutions are found by turning Problem 3.3 into an Integer Linear Programming problem [5]. In the case of
the quadratic deviations objective, this methodology is not exact, but rather an approximation.

Throughout our simulations we consider single days in isolation with a time step every 15 minutes. We
consider a 42.2 kWh Lithium-ion battery, having (dis)charge bounds of 7.4kW (1.85 kWh per 15 minutes)
– comparable to normal charging of batteries found in average modern EVs (BMW i3: 19–42 kWh, Nissan
Leaf II: 40–62 kWh, Tesla Model S: 50–100 kWh [?]) with a single phase AC charger at 230V and 32A. Our
simulations thus allow for the interpretation of using the vehicle-to-grid (V2G) capabilities of a latent EV.
An appropriately dimensioned residential energy storage device can be much smaller than this.

Linear pricing

We first consider the linear pricing objective: ft(xt) = ctxt. For the unit energy prices ct we take day-ahead
prices from the energy spot market of 2014. We simulate one week of each season, and a single day with
a day-night tariff of e0.21/kWh by day and e0.18/kWh by night (the night tariff is active from 23:00h
till 7:00h). An assessment of the efficacy of the repair and rescale approaches as compared to the optimal
schedule can be found in Table 4.1. For many instances, the repair and rescale methods return a schedule
that costs money (see Table 4.2). We do not trade on those days instead. When the RTE is lower than
the ratio between the lowest and highest energy prices (18/21 ≈ 0.8571 for the day-night tariff), there is
no sense in trading as no profit can be made. The amount of lost revenue per day due to conversion losses
is evaluated in Figure 4.2. In particular, the difference in objective between the optimal lossy solution and
lossless solutions is plotted.

Round-trip efficiency
70% 75% 80% 85% 90% 95% 100%

Spot prices
Optimum e0.0005 e0.0066 e0.0544 e0.1957 e0.4490 e0.8021 e1.2724

Repair e0 e0 e0 e0 e0.1004 e0.5722 ”
Rescale e0 e0 e0 e0 e0.1029 e0.5845 ”

Day-night
Optimum e0 e0 e0 e0 e0.4003 e0.8443 e1.2660

Repair e0 e0 e0 e0 e0.3132 e0.7896 ”
Rescale e0 e0 e0 e0 e0.3301 e0.8101 ”

!Table 4.1: Average daily revenue from energy trading using a lossy energy storage device, where no
trading is done on unprofitable schedules.
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Round-trip efficiency
70% 75% 80% 85% 90% 95% 100%

Spot prices
Repair -e2.9676 -e2.2596 -e1.5516 -e0.8443 -e0.1387 e0.5669 e1.2724
Rescale -e3.5507 -e2.6137 -e1.7400 -e0.9210 -e0.1496 e0.5799 ”

Day-night
Repair -e1.5924 -e1.1160 -e0.6396 -e0.1632 e0.3132 e0.7896 e1.2660
Rescale -e1.9033 -e1.2886 -e0.7151 -e0.1770 e0.3301 e0.8101 ”

!Table 4.2: Average daily revenue of the repair and rescale methods from energy trading using a lossy
energy storage device, where trading is still done on unprofitable schedules.

As long as a household is not a net producer annually, the linear pricing setting corresponds to the net
metering policy. Under linear pricing, even for high round-trip efficiencies and strongly varying prices taken
from the energy spot market, the arbitrage opportunities for energy traders do not warrant the investment in
an energy storage device in the near future: even for the optimal schedule at 100% efficiency, and Lithium-ion
battery prices being as low as $62/kWh in 2030 [25] (or e55.40/kWh), the expected payback time of the
considered battery is about 5 years – approximately equal to its lifetime. For reference, the average global
cost of Lithium-ion batteries was $176/kWh (or e157.26/kWh) in 2018 [25], giving an expected payback
time of about 15 years. Appropriate dimensioning of the battery size does not help in this regard, as both
revenue and costs scale with the battery dimension.

Assuming the expected battery prices of 2030, if the efficiency and lifetime of this battery technology
can be further improved it may become economically feasible to purchase an electical battery dedicated
to energy trading within the next 20 years. Specifically, if the average lifetime of Lithium-ion batteries
can be extended to eight years a daily revenue above e0.80/day makes dedicated energy trading batteries
economically viable, thus requiring an RTE of around 95% for economic viability (for the current five year
lifetime a daily revenue above e1.28/day is required). If the lifetime can be further extended to ten years,
a daily revenue above e0.64/day suffices, for which an RTE between 90% and 95% is required. Using the
battery of a latent EV for energy trading may be worthwhile already – given that the battery is already
available. A more thorough analysis of economic feasibility in a linear pricing setting can be found in [45],
where the authors additionally show that rewarding EV owners for participation in grid support is required
to counter the monetary losses incurred by device ageing.

Finally, accounting for losses after the fact using either the repair or rescale methods has poor performance
for the linear pricing objective. At 90% RTE – a typical value for Lithium-ion batteries (see Table 3.1) – these
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^Figure 4.2: Lost revenue due to energy conversion losses as function of round-trip efficiency. Green,
yellow, orange, and blue correspond to the averages of the simulations where the energy spot prices are taken
from days in spring, summer, autumn, and winter respectively. The black line indicates the day-night tariff.
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methods yield between 20-25% of the revenue that could have been obtained under the optimal schedule for
the spot market prices, and about 80% for the day-night tariff.

Feed-in subsidy

Next, we consider the feed-in subsidy objective: ft(xt) = ct(xt − pt)+ + st(xt − pt)−, where st ≤ ct. Take
the energy prices ct as before, the subsidy st is taken constant for all time steps and is either equally
zero everywhere or taken as 50% of the lowest energy price through the year, and the energy profile pt is
generated by the Artificial Load Profile Generator (ALPG) [28]. We consider 105 isolated households, where
approximately half of the houses have solar panels, and the solar irradiation data is taken from [35, Twenthe
2014]. One week per season is simulated, where all days and housholds are taken as isolated instances.
The average lost revenue due to energy conversion losses are plotted in Figure 4.3a for spot market prices,
and Figure 4.3b for the day-night tariff. Households with and without PV are averaged separately. Also see
Table 4.3 and Table 4.4 for the daily revenue due to the battery for houses with and without PV respectively.

These results are revealing on multiple levels: the revenue due to the battery does not change at all for
households without PV for different subsidy levels implying it is never discharged beyond the household’s
own energy demand, and compared to linear pricing the daily revenue due to the battery is much higher for
households with PV (except for 95% and 100% efficiency). Using the same calculations from the previous
section, we find, as expected, that households without PV should not invest in an energy storage device.
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(a) Energy prices taken from spot market. Left: zero subsidy, right: 50% of lowest price as subsidy.
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(b) Energy prices taken from day-night tariff. Left: zero subsidy, right: 50% of lowest price as subsidy.

^Figure 4.3: Lost revenue due to energy conversion losses as function of round-trip efficiency. Green,
yellow, orange, and blue correspond to simulations where the energy spot prices are taken from days in spring,
summer, autumn, and winter respectively. Results are averaged separately for houses with and without PV.
The houses with PV stand to lose more of their revenue due to inefficiencies in the energy storage device.
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Subsidy RTE 70% 75% 80% 85% 90% 95% 100%
S

p
ot

p
ri

ce
s

0%
Optimum e0.4867 e0.5101 e0.5396 e0.5795 e0.6405 e0.7183 e0.8031

Repair e0.3244 e0.3778 e0.4423 e0.5183 e0.6084 e0.7057 ”
Rescale e0.1674 e0.2404 e0.3311 e0.4377 e0.5580 e0.6829 ”

50%
Optimum e0.1912 e0.2214 e0.2574 e0.3035 e0.3704 e0.4537 e0.5437

Repair e0.0592 e0.0933 e0.1438 e0.2198 e0.3199 e0.4306 ”
Rescale e0.0166 e0.0468 e0.0994 e0.1821 e0.2937 e0.4181 ”

D
ay

-n
ig

h
t 0%

Optimum e0.5713 e0.5981 e0.6235 e0.6479 e0.7520 e0.8601 e0.9594
Repair e0.3870 e0.4483 e0.5243 e0.6127 e0.7252 e0.8441 ”
Rescale e0.1973 e0.2826 e0.3904 e0.5162 e0.6648 e0.8158 ”

50%
Optimum e0.2200 e0.2549 e0.2880 e0.3198 e0.4308 e0.5455 e0.651

Repair e0.0701 e0.1089 e0.1664 e0.2549 e0.3810 e0.5171 ”
Rescale e0.0190 e0.0533 e0.1123 e0.2094 e0.3492 e0.5009 ”

!Table 4.3: Averaged daily revenue from feed-in subsidy using a lossy battery for different round-trip
efficiency values for households with PV.

Subsidy RTE 70% 75% 80% 85% 90% 95% 100%

S
p

ot
p

ri
ce

s

0%
Optimum e0.0002 e0.0021 e0.0131 e0.0422 e0.1033 e0.1906 e0.2866

Repair e0 e0 e0.0012 e0.0148 e0.0784 e0.1766 ”
Rescale e0 e0 e0.0014 e0.0146 e0.0776 e0.1781 ”

50%
Optimum e0.0002 e0.0021 e0.0131 e0.0422 e0.1033 e0.1906 e0.2866

Repair e0 e0 e0.0012 e0.0148 e0.0784 e0.1766 ”
Rescale e0 e0 e0.0014 e0.0146 e0.0776 e0.1781 ”

D
ay

-n
ig

h
t 0%

Optimum e0 e0 e0 e0 e0.1155 e0.2380 e0.3489
Repair e0 e0 e0 e0 e0.0844 e0.2193 ”
Rescale e0 e0 e0 e0 e0.0840 e0.2196 ”

50%
Optimum e0 e0 e0 e0 e0.1155 e0.2380 e0.3489

Repair e0 e0 e0 e0 e0.0844 e0.2193 ”
Rescale e0 e0 e0 e0 e0.0840 e0.2196 ”

!Table 4.4: Averaged daily revenue from feed-in subsidy using a lossy battery for different round-trip
efficiency values for households without PV.

For households with PV, only the zero subsidy case warrants the purchase of an energy storage device for
both the spot market prices and day-night tariff. Given zero feed-in subsidy and a doubled battery lifetime,
Lithium-ion batteries will be viable in 2030. Similarly, given one and a half times the lifetime and a 2% to
3% increase in efficiency Lithium-ion batteries will also be viable in 2030 (for the day-night tariff).

The repair and rescale methods perform relatively well in some scenarios for this objective: at 90% only
a few cents are lost each day as compared to the optimal solution in the 90% efficiency, day-night tariff,
household with PV setting. For other settings, around 12% of the revenue is lost.

The revenue due to the battery increases at the expense of the revenue due to PV. In reality, viability
therefore depends strongly on the level of subsidization given for PV, and the feed-in subsidy should steadily
be reduced to zero according to current battery prices. Furthermore, the revenue due to the battery will
decrease for every additional schedulable appliance introduced in the household.

Correctly dimensioning the battery potentially increases the daily revenue, as the revenue does not scale
linearly with the battery capacity. Consider the same battery as before, but scaled down by a factor ten:
4.22 kWh maximum capacity with 0.74 kW (dis)charge bounds (0.185 kWh per 15 minutes). Table 4.5 shows
the average daily revenue due to the battery in the optimal schedule for households with PV. While costs go
down by a factor ten, the average daily revenue due to the battery approximately only goes down by a factor
two. The level curves indicate the e/kWh battery prices at which point the corresponding subsidy and
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Round-trip efficiency
70% 75% 80% 85% 90% 95% 100%

S
u

b
si

d
y

0% e0.2949 e0.3045 e0.3147 e0.3267 e0.3422 e0.3600 e0.3789 ≤150 e/kWh
10% e0.2589 e0.2698 e0.2812 e0.2943 e0.3108 e0.3295 e0.3494
20% e0.2228 e0.2351 e0.2477 e0.2618 e0.2794 e0.2991 e0.3198 ≤ 125 e/kWh
30% e0.1868 e0.2004 e0.2141 e0.2294 e0.2480 e0.2686 e0.2902
40% e0.1508 e0.1656 e0.1806 e0.1970 e0.2166 e0.2382 e0.2607 ≤ 100 e/kWh
50% e0.1147 e0.1309 e0.1471 e0.1646 e0.1852 e0.2077 e0.2311 ≤ 75 e/kWh
60% e0.0787 e0.0962 e0.1136 e0.1322 e0.1538 e0.1773 e0.2016
70% e0.0427 e0.0615 e0.0800 e0.0997 e0.1224 e0.1468 e0.1720 ≤ 50 e/kWh
80% e0.0123 e0.0272 e0.0465 e0.0673 e0.0910 e0.1164 e0.1424
90% e0.0015 e0.0063 e0.0170 e0.0352 e0.0596 e0.0859 e0.1129 ≤ 25 e/kWh
100% e0.0000 e0.0006 e0.0043 e0.0135 e0.0312 e0.0557 e0.0833

!Table 4.5: Averaged daily revenue from feed-in subsidy using a lossy battery for different round-trip
efficiency values for households without PV.

RTE pair gives enough incentive to invest in residential electrical batteries. We assume a five year lifetime
with no battery degradation, and that the solar panels are already cost-neutral. Given the projected price
for 2030, and no significant improvement in the battery technology itself, a subsidy of 50% or lower gives
enough incentive to consumers to purchase energy storage. The expected revenue due to the battery will
only increase over time as the subsidy level continues to drop.

Quadratic deviations

Finally, we consider the quadratic deviations objective ft(xt) = (xt − pt)2, where pt as before. Once more,
one week per season is simulated, where all days and houses are taken as isolated instances and the results
are averaged for the houses with and without PV. We again consider the 42.2 kWh storage device. The
change of the optimal objective value as compared to the lossless battery as function of the RTE is plotted
in Figure 4.4. See Table 4.6 for a comparison of the objectives of the optimal solution and the repair and
rescale methods. The averaged objective of the PV instances without battery is 19.1814, and 9.5188 for
the instances without PV. Combining these statistics with Table 4.6 indicates that the use of a battery is
roughly twice as effective at profile steering for households with PV.

On about 2% of the days, the repair and rescale methods gave a schedule that was worse than doing
nothing at 90% RTE. Instead of executing that schedule, the battery did not operate on those days instead.
Hence, roughly 7 days each year a household is not using it’s storage device for load balancing. By itself,
this is not a huge problem. However, the days on which this occurs across multiple households correlate.
Simultaneous failure to perform load balancing may still cause overloading on those days. As the grid has
to be dimensioned for such eventualities, this defeats the purpose of having batteries in the first place.

Round-trip efficiency
70% 75% 80% 85% 90% 95% 100%

PV
Optimum* 14.4703 14.4060 14.3428 14.2807 14.2200 14.1605 14.1019

Repair 15.0844 14.9091 14.7363 14.5683 14.4010 14.2436 ”
Rescale 14.4829 14.4137 14.3471 14.2829 14.2208 14.1605 ”

No PV
Optimum* 7.70462 7.61521 7.52930 7.44685 7.36764 7.29144 7.2180

Repair 7.97168 7.83508 7.70109 7.57274 7.44740 7.32739 ”
Rescale 7.72209 7.62595 7.53552 7.45007 7.36898 7.29177 ”

!Table 4.6: Averaged daily Euclidean norm using a lossy energy storage device.
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^Figure 4.4: Changes in Euclidean norm of the net energy profile as function of round-trip efficiency.
Green, yellow, orange, and blue correspond to simulations where the energy profiles are taken from days
in spring, summer, autumn, and winter respectively. Results are averaged separately for houses with and
without PV. The houses with PV suffer more due to inefficiencies in the energy storage device.

4.4 Conclusion

In this chapter we sought to answer the first two of our subquestions:

ä How important are losses in practice, and how relevant are they for optimization procedures?

ä Are consumer-owned energy storage devices economically viable in the near future?

We only considered Li-ion batteries in both cases.
From the obtained results we conclude that high energy conversion efficiencies (above 90%) are crucial for

achieving desired arbitrage exploiting and peak shaving capabilities in order to make consumer-owned battery
storage viable. The optimal revenue of the lossy case as compared to the lossless case quickly diminishes for
both the linear pricing and the feed-in subsidy scenarios. Not properly accounting for these losses worsens
the situation: using naive methods, such as the repair or rescale method, leads to significant financial losses
of around 75% of the total revenue at 90% RTE and 30% at 95% RTE as compared to the optimal lossy
solution in the linear pricing setting for spot market prices. For the day-night tariff, the financial losses are
about 25% at 90% RTE and 5% at 95% RTE. The feed-in subsidy objective also deteriorates when using
the repair or rescale method rather than the optimal solution, but slightly less so with around 15% financial
losses at 90% RTE. For the quadratic deviations objective, the averaged objective deteriorates less strongly
due to either losses or the repair/rescale method as compared to both pricing settings. However, the days on
which the repair and rescale schedules (about 2% of the cases) are disadvantageous correlate across different
households. The simultaneity of these events therefore still necessitates a method that incorporates the
consideration of losses into the optimization process for this case.

In a profile steering approach, multiple instances of the storage problem have to be solved in a short
amount of time, requiring us to be able to solve individual instances in the order of milliseconds. This makes
the used linear programming models inadequate in practice. We conclude that a new method is called for
that incorporates conversion losses into the optimization process.

To make residential electrical battery storage economically viable in the near future, a low feed-in subsidy
is required. Low feed-in subsidies prompts owners of PV to use their own generated energy. The revenue due
to the battery therefore mainly consists of saving costs by matching supply and demand over time. For lower
feed-in subsidies the revenue due to the battery increases at the expense of the revenue due to PV. Therefore,
unless PV prices drop at the same rate as the devaluation of PV due to the lowered feed-in subsidy, rooftop
PV will have to be continued to be subsidized in the future. Table 4.5 indicates that for a feed-in subsidy
below 50% of the energy price residential Li-ion batteries may be economically feasible from 2030.
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5. Analysis

In this chapter we derive methods for solving the problems presented in Section 3.2. We begin with stating
the derivation of the solution method to the Lossless Storage Problem, and show that this derivation fails in
deriving a general solution method for the Lossy Storage Problem, as it turns out to be NP-hard in general.
We show how optimal solutions can be computed for certain parameter choices in the objectives are derived
using subdifferential calculus. For the general problem, we propose a novel heuristic approach, of which we
assess the performance in a case study in Chapter 6.

5.1 Lossless storage problem

In this section we discuss a polynomial time solution approach for Problem 3.1 (the lossless problem). The
method we present was originally derived by van der Klauw [55]. In his thesis, the Lossless Storage Problem
is referred to as the Battery Charging (BC) problem.

First note that we can always add a dummy time step to the end of any instance of the Lossless Storage
Problem in which we can force the state of charge to a specific level C without influencing the schedule in
the rest of the time steps. To do so, we add a time step T + 1 with the following properties:

ft(xT+1) = 0,

SoCmin
T+1 = C, xmin

T+1 = C − SoCmax
T ,

SoCmax
T+1 = C, xmax

T+1 = C − SoCmin
T .

The optimal solution of the original problem can be obtained by discarding the charging decision of the
dummy time step. In the rest of this section we only consider instances that have undergone this transfor-
mation, i.e. that have an equality constraint for the state of charge in the final time step. Equivalently this
means we only consider instances where SoCmin

T = SoCmax
T = C.

Solving the Problem 3.1 relies on solving an intermediate problem, which corresponds to the Lossless
Storage Problem where we have relaxed all but the last constraint (which is an equality). This intermediate
problem is called the Electric Vehicle Charging (EVC) problem, because, when xmin

t ≥ 0, it models the
problem of charging an EV battery to some capacity without allowing vehicle-to-grid (V2G) functionality.
The EVC problem belongs to the class of resource allocation problems, of which an overview can be found
in [30]. Formally, the EVC problem can be stated as follows:

Problem 5.1. Electric Vehicle Charging Problem: Given an initial state of charge SoC0, desired state
of charge C, and (dis)charge bounds xmin

t and xmax
t , the electric vehicle charging problem is:

minx f (x) ,

s.t. SoC0 +

T∑
t=1

xt = C

xmin
t ≤ xt ≤ xmax

t ∀t ∈ T .

There is a strong relation between the optimal solutions of instances of Problem 3.1 and Problem 5.1 if
SoCmin

T = SoCmax
T = C and their objective functions are equal, allowing us to solve Problem 3.1. Suppose

we have such instances, and we have used some method to solve the EVC instance. If the EVC solution is a
feasible solution to the BC instance, it must be an optimal solution to it. If it is not feasible, the convexity
of the problem suggests that a local reparation may maintain optimality. Concretely: let k be the time step
where the maximal violation of state of charge bounds occurs, then there exists an optimal solution to the
BC instance where the state of charge is exactly the bound at k. Lemma 5.1 proves this claim.

31
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Lemma 5.1. Consider an instance of Problem 3.1 with SoCmin
T = SoCmax

T and let y be an op-
timal solution to the corresponding instance of Problem 5.1 obtained by ignoring the cumulative
bounds for all indices except the last. Assume that y is not feasible for the considered instance
of Problem 3.1 and let k be the index at which the cumulative bound is maximally violated, i.e.

k = arg maxt

{∑t
t′=1 yt′ − SoCmax

t , SoCmin
t −∑t

t′=1 yt′
}

. Then, there exists an optimal solution x

to the considered instance of Problem 3.1 such that, if
∑k
t=1 yt > SoCmax

k then
∑k
t=1 xt = SoCmax

k

and, on the other hand, if
∑k
t=1 yt < SoCmin

k then
∑k
t=1 xt = SoCmin

k .

See Lemma 5.1 in [55] for the full proof. The proof uses the convexity of the objective.

Furthermore note that if we know the state of charge level at some time step, we can decouple the problem
into two new EVC problems: one in which we constrain the last state of charge to be the given bound, and
one in which we assume the initial state of charge is the given bound. These new problems can be solved in
a similar manner.

This gives us a divide-and-conquer approach for Problem 3.1 relying on our ability to solve Problem 5.1.
The full procedure is outlined in Algorithm 2. Its time complexity is O(T (T + CEVC(T ))), where CEVC(T )
is the time complexity of solving an instance of Problem 5.1 consisting of T time steps using the procedure
optEV C. By ft→t′ we denote the vector (ft, . . . , ft′) obtained by restricting f to the range of indices t
through t′. In the remainder of this section we describe a so-called water filling approach [9, p. 245] to solve
Problem 5.1 with linear or quadratic objectives. For both types of objective, the approach runs in O(T log T )
time.

Algorithm 2 Lossless Storage Problem with SoCmin
T = SoCmax

T

1: function optBC(T, f ,xmin,xmax,SoCmin,SoCmax, SoC0)
2: x = optEV C(T, f ,xmin,xmax, CT , SoC0)
3: if x is feasible then
4: return x
5: end if
6: k ← arg maxk

{∑k
t=1 xt − SoCmax

k , SoCmin
k −∑k

t=1 xt

}
7: if

∑k
t=1 xt > SoCmax

k then
8: v ← SoCmax

k

9: SoCmin
k ← SoCmax

k

10: else
11: v ← SoCmin

k

12: SoCmax
k ← SoCmin

k

13: end if
14: for t = k + 1, . . . , T do
15: SoCmin

t ← SoCmin
t − v

16: SoCmax
t ← SoCmax

t − v
17: end for
18: x1→k ← optBC(k, f1→k,xmin

1→k,x
max
1→k,SoCmin

1→k,SoCmax
1→k, SoC0)

19: xk+1→T ← optBC(T − k, fk+1→T ,xmin
k+1→T ,x

max
k+1→T ,SoCmin

k+1→T ,SoCmax
k+1→T , v)

20: return x
21: end function
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Waterfilling approach

We use the Karush-Kuhn-Tucker (KKT) optimality conditions of Problem 5.1 to arrive at a solution proce-
dure. The KKT conditions [9, p. 244] are necessary conditions for a solution of an optimization problem to
be optimal. Consider the following general optimization problem:

minx f (x) ,

s.t. gi (x) ≤ 0, ∀i = 1, . . . ,m,

hj (x) = 0, ∀j = 1, . . . , l.

(5.1)

The KKT conditions of (5.1) are as follows: if f : Rn → R, gi : Rn → R, and hj : Rn → R are continuously
differentiable at a point x∗, and if x∗ is a local optimum of (5.1) and (5.1) satisfies some regularity conditions,
then there exist KKT multipliers µi, i = 1, . . . ,m, and λj , j = 1, . . . , l, such that:

∇f(x∗) +

m∑
i=1

µi∇gi(x∗) +

l∑
j=1

λj∇hj(x∗) = 0,

gi(x
∗) ≤ 0, ∀i = 1, . . . ,m,

hj(x
∗) = 0, ∀j = 1, . . . , l,

µi ≥ 0, ∀i = 1, . . . ,m,

µigi(x
∗) = 0, ∀i = 1, . . . ,m.

Furthermore, when the Problem 5.1 is convex, i.e. when f, g1, . . . , gm are convex functions and h1, . . . , hl
are affine functions, the KKT conditions are also sufficient for the solution to be optimal.

An example of the aforementioned regularity conditions is Slater’s condition. It requires the existence of
a strictly feasible point x such that gi(x) < 0 for all i = 1, . . . ,m, and hj(x) = 0 for all j = 1, . . . , l. This
condition holds for every instance of Problem 5.1. Note that having

∑
t∈T x

min
t = C or

∑
t∈T x

max
t = C

trivializes Problem 5.4, as there exists only a single feasible solution in either case, consisting of fully
discharging or fully charging respectively. We can therefore assume that

∑
t∈T x

min
t < C <

∑
t∈T x

max
t

holds, implying the existence of a strictly feasible point x:

xt = xmin
t +

C −∑t′∈T x
min
t′∑

t′∈T
(
xmax
t′ − xmin

t′

) (xmax
t − xmin

t

)
, ∀t ∈ T . (5.2)

It follows that Slater’s condition holds. This regularity condition holds for every instance of Problem 5.1.
Therefore, we can readily use the KKT conditions to determine solutions for Problem 5.1.

Assume the ft functions to be strictly convex, which implies that their derivatives f ′t are continuous,
strictly increasing, and invertible. The KKT conditions of Problem 5.1 allow us to explicitly derive the
optimal xt. A feasible solution x to Problem 5.1 is optimal if and only if there exist multipliers λ, µ1, . . . , µT
such that:

f ′t(xt) + µt = λ ∀t ∈ T ,
µ+
t (xt − xmax

t ) = 0 ∀t ∈ T ,
µ−t (xmin

t − xt) = 0 ∀t ∈ T ,
(5.3)

Here, we have combined the multipliers of the box constraints of xt into one multiplier. From (5.3) it directly
follows that:

λ < f ′t(x
min
t )⇒ µt < 0⇒ xt = xmin

t ,

λ > f ′t(x
max
t )⇒ µt > 0⇒ xt = xmax

t ,

λ = f ′t(xt)⇒ µt = 0⇒ xt = (f ′t)
−1

(λ).

(5.4)

Hence, we can write xt as a function λ: xt = xt(λ). To ensure feasibility, we only still require that∑T
t=1 xt(λ) = C holds. Because we assumed f ′t to be strictly increasing, xt(λ) will be non-decreasing in
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λ. The result is that we can gradually increase λ until the constraint is satisfied, at which point we have
obtained the optimal solution according to the KKT conditions.

Consider the quadratic objective ft(xt) = 1
2atx

2
t + btxt + ct where at > 0, then (5.4) prescribes the

following expression for xt(λ):

xt(λ) =


xmin
t if λ < atx

min
t + bt,

λ−bt
at

if atx
min
t + bt ≤ λ ≤ atxmax

t + bt,

xmax
t if λ > atx

max
t + bt.

(5.5)

Essentially, this equation states that every λ is in some sense a “fill-level” of a series of T basins, where every
basin t relates to the gradient of the corresponding ft, and the bounds xmin

t and xmax
t . This interpretation

explains why this method is often referred to as water filling or valley filling. See Figure 5.1.

λ∗

t

∇
f t
(x

t
)

^Figure 5.1: Water filling approach for the case of quadratic objective functions.

The case where ft(xt) = atxt+ bt can be solved in a similar fashion, except that each basin shrinks down
to a point. This implies that the xt should be “filled” in order of increasing at. Specifically, for any optimal
x∗ if at < at′ , then x∗t < xmax

t implies x∗t′ = xmin
t′ . Adding a dummy node, where ft(xt) = 0, can be seen as

adding a time step with linear objective where at = bt = 0. As the dummy node is always capable of meeting
the desired state of charge C the fill level should never exceed zero in the presence of a dummy node.

For both types of objectives, the water filling approach relies on iterating through the endpoints of the
basins in order. Thus, the running time is dominated by sorting these points, which can be done in O(T log T )
time. Algorithm 3 outlines the procedure when considering quadratic objectives. It appears as Algorithm 4.1
in [55]. It is a primal-dual method [19], as both primal and dual variables are simultaneously estimated.

An O(T ) time algorithm exists based on median search [26]. However, this approach is inefficient for the
relatively small values of T typically encountered in DEM.

Relaxation of the lossy problem

In this section we show that the previous approach generally no longer works for the lossy problem. We relax
the storage charging problem to a corresponding EV charging problem (with only an equality constraint at
the end), and show that the relaxed solution does not necessarily correspond to the optimal solution in the
original problem for both the linear pricing and quadratic deviations objectives. Consider a lossy energy
storage charging problem with T = 2, and the following choice of parameters (where λ ∈ [0, 1]):

xmin = [−1,−1], xmax = [ 1, 1],

SoCmin = [−1, 0], SoCmax = [ λ, 0],

ηc = 1
2 , ηd = 2.

First, we consider the linear pricing objective ft(xt) = ctxt, where c1 = −2 and c2 = −1. The optimal
relaxed solution charges maximally on the first time step and discharges maximally on the second time step.
Therefore, if Lemma 5.1 would extend to the lossy problem, we would be led to believe that x1 = λ and
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Algorithm 3 Water filling Approach for Problem 5.1 with ft(xt) = 1
2atx

2
t + btxt + ct

1: function optEVC(T, f ,xmin,xmax, C, SoC0)
2: A←

{
a1x

min
1 + b1, . . . aTx

min
T + bT

}
3: B ← {a1xmax

1 + b1, . . . aTx
max
T + bT }

4: Sort A and B in non-decreasing order
5: Take α as the first value from A with associated interval t
6: A← A \ {α} , λ̃← α, Ĉ ←∑

t∈T x
min
t , η ← 1

at

7: while Ĉ < C do
8: Take α as the first element from A with associated time interval t
9: Take β as the first element from B with associated time interval t′

10: γ ← min {α, β} ,∆← min
{
γ − λ̃, C−Ĉη

}
11: λ̃← λ̃+ ∆, Ĉ ← Ĉ + ∆η
12: if Ĉ < C and α = γ then
13: A← A \ {α}
14: η ← η + 1

at

15: else if Ĉ < C and β = γ then
16: B ← B \ {β}
17: η ← η − 1

at′

18: end if
19: end while
20: return x(λ̃) using (5.5)
21: end function

x2 = −λ is optimal. This solution gives an objective value of − 7
2λ. However, the solution x1 = −1 and

x2 = 1 has an objective value of −1, which is smaller when λ < 2
7 .

Next, we consider the quadratic deviations objective ft(xt) = (xt − pt)
2, where p1 = 6 and p2 = 5.

We assume the formulation of Problem 3.2 where the losses occur inside the constraints. We can find the
optimal solution geometrically, as the level curves of the given objective are concentric circles centered around
(6, 5), see Figure 5.2. Again, if Lemma 5.1 would extend to the lossy problem, we would be led to believe
that x1 = λ and x2 = −λ4 is optimal. However, the solution x1 = − 1

4 and x2 = 1 outperforms it when

λ < 1
34

(
76−

√
4161

)
.

Hence, Lemma 5.1 fails in general for the lossy storage problem. This is due to the fact that the objectives
(ft ◦ Tη) are generally no longer convex. In Section 5.3.1 we isolate cases that can still be solved in a similar
manner. In the next section, we show that the problem is NP-hard in general.

(
− 1

4 , 1
)

(0, 0)

(
1,− 1

4

)
^Figure 5.2: Hitting level curves over the feasible region of the relaxed problem. For some values of
λ the solution [λ,−λ/4] obtained from the relaxation performs worse than [− 1

4 , 1] (red), while in others it
performs better (green).
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5.2 NP-completeness proof

In this section we consider the decision version of Problem 3.3, Problem 5.2, which involves deciding whether
we can find a feasible solution to Problem 3.3 which has an objective value no greater than some threshold,
and we show that it is NP-complete. We consider the linear pricing objective with constant negative prices.
Evidently, Problem 5.2 is in NP: checking whether some certificate x solves an instance can be done in linear
time. We show by a reduction from the Subset Sum Problem (Problem 5.3) that the problem is NP-hard.

Problem 5.2. Decision version of Lossy Storage Problem: Given a time horizon T = {1, . . . , T},
efficiency rates 0 < ηc < 1 < ηd, a threshold τ , box constraints xmin

t , xmax
t , initial state of charge SoC0,

and cumulative bounds SoCmin
t and SoCmax

t for t ∈ T , can we find xt for t ∈ T such that it is feasible with
respect to the given bounds:

SoCmin
t ≤ SoC0 +

t∑
t′=1

xt′ ≤ SoCmax
t ∀t ∈ T ,

xmin
t ≤ xt ≤ xmax

t ∀t ∈ T ,

and the total objective does not exceed the threshold τ (where ft(xt) = ctxt and Tη(xt) = 1
ηc
x+t + 1

ηd
x−t ):∑

t∈T (ft ◦ Tη) (xt) ≤ τ?

Problem 5.3. Subset Sum Problem: Given a set of integers S = {α1, . . . , αn} with 0 < α1 ≤ . . . ≤ αn
and a goal G, can we find a subset I ⊆ {1, . . . , n} such that

∑
t∈I αt = G?

Let an instance Subset of Problem 5.3 be given with integers S = {α1, . . . , αn} and goal G, then we can
transform it to an instance Storage of Problem 5.2 with time horizon T = n and the following parameters:

xmin
t = −αt, xmax

t = αt t = 1, . . . , n,

SoCmin
t = −

n∑
t=1

αt, SoCmax
t =

n∑
t=1

αt t = 1, . . . , n− 1,

SoC0 = 0, SoCmin
n = SoCmax

n =

n∑
t=1

αt − 2G,

τ =

n∑
t=1

ct
ηc
αt +G ct = − ηcηd

ηc + ηd
t = 1, . . . , n.

Note that this transformation is possible in polynomial-time: all parameters (of which there are a linear
amount) can be determined in linear time. It only remains to prove that it is a reduction, i.e. that each
YES or NO-instance of Problem 5.3 respectively transforms into a YES or NO-instance of Problem 5.2. We
will prove this in the rest of this section, but first we reflect on the connection between these two problems.

For instances with constant negative prices it turns out to be optimal to maximally charge and discharge
on each time step. Assume we have some optimal solution x where we do not maximally charge and discharge,
such that there are time steps t and t′ where: xt ∈ (0, xmax

t ) and xt′ ∈ (xmin
t′ , 0). Then, we can construct

an improving solution y, equal to x on all time steps except t and t′, that has lower objective than x. Take
δ = min

{
xmax
t − xt, xt′ − xmin

t′

}
, then if we take yt = xt + δ, and yt′ = xt′ − δ we have found a feasible

solution that improves upon the objective of x by:

1

ηc
ct (yt − xt)−

1

ηd
ct′ (yt′ − xt′) =

1

ηc
ctδ −

1

ηd
ct′δ

=

(
1

ηc
− 1

ηd

)
ctδ < 0,

contradicting the optimality of x. Therefore, it is always optimal to maximally charge and discharge on each
time step. The ‘hardness’ of the problem comes from deciding on which interval to charge and discharge to
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begin with. As will shortly become clear, the reduction was chosen such that for a certificate I of Subset

the corresponding certificate x of Storage will maximally discharge for every interval t ∈ I and otherwise
maximally charge.

We will first prove that if Subset is a YES-instance for Problem 5.3, then the corresponding Storage

instance is a YES-instance for Problem 5.2.

Lemma 5.2. If Subset is a YES-instance for Problem 5.3, then Storage is a YES-instance for
Problem 5.2.

Proof. Suppose that Subset is a YES-instance, then there exists some I ⊆ {1, . . . , n} such that∑
t∈I αt = G. We will show that the following solution to Storage is feasible with respect to the

box and state of charge constraints, and that the threshold τ is met:

xt = xmin
t = −αt t ∈ I,

xt = xmax
t = αt t /∈ I.

By construction, xt satisfies its box constraints for all t ∈ T . They also satisfy their state of charge
constraints for all t ∈ T :

SoCt ≥ −
t∑

k=1

αk ≥ −
n∑
k=1

αk = SoCmin
k t = 1, . . . n− 1,

SoCt ≤
t∑

k=1

αk ≤
n∑
k=1

αk = SoCmax
k t = 1, . . . , n− 1,

SoCn =
∑
t/∈I

αt −
∑
t∈I

αt =

n∑
t=1

αt − 2
∑
t∈I

αt = SoCmin
n = SoCmax

n .

It only remains to show that the threshold τ is met:

n∑
t=1

(ft ◦ Tη) (xt) =
∑
t/∈I

ct
ηc
αt −

∑
t∈I

ct
ηd
αt

=

n∑
t=1

ct
ηc
αt −

∑
t∈I

(
1

ηc
+

1

ηd

)
ctαt

=

n∑
t=1

ct
ηc
αt +

∑
t∈I

αt =

n∑
t=1

ct
ηc
αt +G = τ.

Hence, Storage is a YES-instance.

To be able to prove the converse we require Lemma 5.3, which gives a linear lower bound on the objective at
each time step. The bound is obtained from the linear approximation of (ft ◦ Tη) (xt) through xt = −αt and
xt = αt. We will later show that this linear approximation summed over t ∈ T equals τ , implying infeasibility
of the solution if the inequality is strict on any time interval. Therefore, any certificate of Storage being a
YES-instance must have xt = −st or xt = st for each t ∈ T .
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Lemma 5.3. For t = 1, . . . , n we have that: (ft ◦ Tη) (xt) ≥ − 1
2xt − 1

2
ηd−ηc
ηc+ηd

αt. This inequality is

strict when xt ∈ (−αt, αt), and is met with equality when xt = −αt or xt = αt.

Proof. We verify the lemma for the points xt = −αt, 0, αt, and use (piecewise) linearity of both
sides of the inequality to prove the remaining cases when xt ∈ (−αt, 0) or xt ∈ (0, αt).

• First, we consider the case where xt = −αt:

(ft ◦ Tη)(xt) = − ct
ηd
αt

=
ηc

ηc + ηd
αt

= −1

2

(
ηd − ηc
ηc + ηd

− 1

)
αt

=
1

2
αt −

1

2

ηd − ηc
ηc + ηd

αt

= −1

2
xt −

1

2

ηd − ηc
ηc + ηd

αt

• Next, we consider the case where xt = αt:

(ft ◦ Tη)(xt) =
ct
ηc
αt

= − ηd
ηc + ηd

αt

= −1

2

(
ηd − ηc
ηc + ηd

+ 1

)
αt

= −1

2
αt −

1

2

ηd − ηc
ηc + ηd

αt

= −1

2
xt −

1

2

ηd − ηc
ηc + ηd

αt

• Finally, we consider the case where xt = 0:

(ft ◦ Tη)(xt) = 0 > −1

2
xt −

1

2

ηd − ηc
ηc + ηd

αt

Since (ft ◦ Tη)(xt) is linear with slope ct
ηc

for xt ≥ 0, it follows that any point from (0, αt), i.e.
xt = λst for 0 < λ < 1, will be met with strict inequality:

(ft ◦ Tη)(xt) = (ft ◦ Tη)((1− λ)0 + λαt)

= (1− λ)(ft ◦ Tη)(0) + λ(ft ◦ Tη)(αt)

> −1

2
λαt −

1

2

ηd − ηc
ηc + ηd

αt.

The case where xt ∈ (−αt, 0) follows analogously by linearity of (ft ◦ Tη) for xt ≤ 0.



Page 39 CHAPTER 5. ANALYSIS

Lemma 5.4. If Subset is a NO-instance for Problem 5.3, then Storage is a NO-instance for
Problem 5.2.

Proof. Given that Subset is a NO-instance, there does not exist an I ⊆ {1, . . . , n} such that∑
t∈I αt = G. Assume Storage is a YES-instance with certificate x. By summing over t = 1, . . . , n

on both sides of Lemma 5.3, we obtain the following:

n∑
t=1

(ft ◦ Tη)(xt) ≥ −
1

2

n∑
t=1

xt −
1

2

ηd − ηc
ηc + ηd

n∑
t=1

αt

= −1

2

(
n∑
t=1

αt − 2G

)
− 1

2

ηd − ηc
ηc + ηd

n∑
t=1

αt

= G− 1

2

(
ηd − ηc
ηc + ηd

+ 1

) n∑
t=1

αt

= G+

n∑
t=1

ct
ηc
αt = τ,

(5.6)

where the first equality follows from the nth state of charge constraint and feasibility of x. It follows
from (5.6) that if any of the summed inequalities for t = 1, . . . , n is strict, the threshold is not met,
implying that x is not a solution to Storage. Therefore, again by Lemma 5.3, either xt = −αt or
xt = αt for every t = 1, . . . , n. Define I = { t ∈ T | xt = −αt }, then we get from the nth state of
charge constraint that:

n∑
t=1

αt − 2G =

n∑
t=1

xt =
∑
t/∈I

αt −
∑
t∈I

αt

=

n∑
t=1

αt − 2
∑
t∈I

αt.

We have found an I such that
∑
t∈I αt = G, contradicting the assumption that Subset is a NO-

instance. The assumption that Storage is a YES-instance was wrong: Storage is a NO-instance.

Theorem 5.1 combines the preceding lemmas to state that Problem 5.2 is NP-complete. By noting that the
state of charge bounds on the first n−1 time steps can never be exceeded, and the last bound is an equality,
it also follows that the “Lossy Electric Vehicle Charging Problem” (see Problem 5.4 from the next section)
is NP-complete as well by the same reduction.

Theorem 5.1. Problem 5.2 is NP-complete (for constant negative costs).

Proof. Lemmas 5.2 and 5.4 confirm that the given transformation is a polynomial-time reduction.
The theorem now follows directly from the NP-completeness of Problem 5.3, and because Prob-
lem 5.2 is in NP.

Due to a similar reduction by van der Klauw [56], instances of Problem 5.3 can also be reduced to instances
of Problem 5.2 where xmin

t , SoCmin
t , and SoCmax

t are taken constant for all t ∈ T , but where costs ct and
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xmax
t may vary. For a given instance Subset of Problem 5.3 with integers S = {α1, . . . , αn} and goal G,

he constructs an instance Storage’ of Problem 5.2 with T = n + 1 in polynomial time with the following
parameters:

xmin
t = −α, xmax

t = αt − α, t = 1, . . . , n,

xmin
n+1 = −α xmax

n+1 = G,

SoCmin
t = 0, SoCmax

t =

n∑
t=1

αt, t = 1, . . . , n+ 1,

SoC0 = nα, ct = − ηcηdαt
ηcα+ ηd(αt − α)

, t = 1, . . . , n,

cn+1 < −ηc, τ =

n∑
t=1

ct
ηc

(αt − α) +

(
1 +

cn+1

ηc

)
G,

where 0 < α < α1.

5.3 Tractable lossy instances

In the previous section we presented an NP-completeness proof for the decision version of Problem 3.3.
Despite the problem being hard in general, there are certain parameter choices that induce optimally solvable
instances. In this section we extend the approach of Section 5.1 to instances of Problem 3.3 where the
parameters ensure that convexity is maintained. We will take an analogous approach by considering the
following intermediate problem:

Problem 5.4. Lossy Electric Vehicle Charging Problem: Given an initial state of charge SoC0,
conversion rates 0 < ηc ≤ 1 ≤ ηd, desired state of charge C, and (dis)charge bounds xmin

t and xmax
t , the lossy

electric vehicle charging problem is:

minx̃ f̃ (x̃) = f
(

1
ηc

x̃+ + 1
ηd

x̃−
)
,

s.t. SoC0 +

T∑
t=1

x̃t = C

xmin
t ≤ x̃t ≤ xmax

t ∀t ∈ T .

5.3.1 Conditions for convexity

As long as f̃ is convex, Lemma 5.1 holds, relating the optimal solutions of instances of Problem 3.3 and
Problem 5.4 where SoCmin

T = SoCmax
T = C. Recall that from the separability of f̃(x̃) =

∑
t∈T (ft ◦ Tη) (xt)

where Tη(xt) = 1
ηc
x+t + 1

ηd
x−t , such that the convexity of the composed objectives (ft ◦ Tη) for all t ∈ T

implies that f̃ is convex. However, although ft and Tη are both convex (by assumption and because ηc < ηd
respectively), their composition is not necessarily convex. The following result from convex analysis imposes
a condition on ft that ensures convexity of (ft ◦ Tη):

Lemma 5.5. For any two functions f and g, where f is convex and non-decreasing, and g is
convex, their composition (f ◦ g) is convex.
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Proof. We prove convexity of (f ◦ g) directly through its definition. For any λ with 0 ≤ λ ≤ 1 it
holds that:

(f ◦ g) (λx+ (1− λ) y) = f (g (λx+ (1− λ) y))

≤ f (λg (x) + (1− λ) g (y))

≤ λf (g (x)) + (1− λ) f (g (y))

= λ (f ◦ g) (x) + (1− λ) (f ◦ g) (y) ,

where we have used that g is convex and f is non-decreasing in the first step:

g (λx+ (1− λ) y) ≤ λg (x) + (1− λ) g (y)

f (g (λx+ (1− λ) y)) ≤ f (λg (x) + (1− λ) g (y)) ,

and the convexity of f in the second step. �

The ft functions are generally not non-decreasing, thus (ft ◦Tη) (and in particular also f̃) is not guaranteed
to be convex. Indeed, they turn out to be non-convex for certain relevant parameter choices. Hence, we now
isolate conditions for convexity of three typical objectives that arise in DEM. These objectives are:

Ç linear pricing: ft(xt) = ctxt;

J feed-in subsidy: ft(xt) = ct (xt − pt)+ + st (xt − pt)−, where st ≤ ct;

� quadratic deviations: ft(xt) = (xt − pt)2.

Linear pricing

We first consider the linear objective ft(xt) = ctxt, where ct is the unit cost of energy at time t. Lemma 5.5
applied to this linear objective implies that (ft ◦Tη) is convex when the prices are non-negative. Conversely,
we show that (ft ◦ Tη) becomes non-convex when ct is negative. Negative prices – although rare – do occur
in the real world to incentivize energy consumption when the excess of energy can be potentially harmful
to the grid. This has happened on intraday markets across several countries: Germany, U.S., Australia,
Switzerland, Belgium, France [4, 7]. The composed objective (ft ◦ Tη) is a continuous piecewise linear
function, where the two linear pieces meet at the origin:

(ft ◦ Tη)(xt) =

{
1
ηd
atxt if xt < 0,

1
ηc
atxt if xt ≥ 0.

Individually the pieces are convex, so we are left to consider pairs of points that do not lie in the same
halfspace. In particular, consider the convex combination of some xt > 0 and −xt. The objective function
is non-convex when the averaged objective value of xt and −xt is less than the objective value at the
origin. Respectively, the values at xt and −xt are: 1

2
1
ηc
ctxt and − 1

2
1
ηd
ctxt. Therefore, the objective becomes

non-convex whenever:

1
2

(
1
ηc
− 1

ηd

)
︸ ︷︷ ︸

>0

ctxt < 0⇒ ct < 0.

Thus, (ft ◦ Tη) is non-convex for negative prices ct. See also Figures 5.3a, and 5.3b.

Feed-in subsidy

Next, we consider the feed-in subsidy objective ft(xt) = ct (xt − pt)++st (xt − pt)−, where ct is the unit cost
of energy at time t, st is the subsidy at time t, and pt is the net energy profile of the considered household(s)
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x

(ft ◦ Tη)(xt)

(a) Linear pricing with positive price

x

(ft ◦ Tη)(xt)

(b) Linear pricing with negative price

^Figure 5.3: The linear pricing objective remains convex for positive prices, and becomes non-convex for
negative prices.

at time t. By expanding all branches of ft it follows that the composed objective (ft ◦ Tη) can be written as
a piecewise linear function. Consider the case where xt ≥ 0, and xt ≥ ptηc, then:

(ft ◦ Tη)(xt) = ct

(
1
ηc
x+t + 1

ηd
x−t − pt

)+
+ st

(
1
ηc
x+t + 1

ηd
x−t − pt

)−
(xt ≥ 0, xt ≥ ptηc)

= ct

(
1
ηc
xt − pt

)+
+ st

(
1
ηc
xt − pt

)−
= ct

ηc
(xt − ptηc) .

Similarly, expanding the other branches, we get that:

(ft ◦ Tη)(xt) =


ct
ηc

(xt − ptηc) when xt ≥ 0, xt ≥ ptηc,
st
ηc

(xt − ptηc) when xt ≥ 0, xt < ptηc,
ct
ηd

(xt − ptηd) when xt < 0, xt ≥ ptηc,
st
ηd

(xt − ptηd) when xt < 0, xt < ptηc.

The above expression contains empty ranges: if pt is non-negative the third case can not happen. Simi-
larly, if pt is negative the second case can not happen. This case distinction allows us to rewrite the expression
as:

(ft ◦ Tη)(xt) =


st
ηd

(xt − ptηd) when xt < 0,
st
ηc

(xt − ptηc) when 0 ≤ xt < ptηc,
ct
ηc

(xt − ptηc) when ptηc ≤ xt,
(pt ≥ 0)

(ft ◦ Tη)(xt) =


st
ηd

(xt − ptηd) when xt < ptηd,
ct
ηd

(xt − ptηd) when ptηd ≤ xt < 0,
ct
ηc

(xt − ptηc) when 0 ≤ xt.
(pt < 0)

As these expressions are both continuous piecewise linear functions, they are convex if and only if the slopes
in consecutive ranges form non-decreasing sequences, i.e. when:

pt > 0⇒ st
ηd
≤ st

ηc
≤ ct

ηc
⇔ st ≤ ct and st ≥ 0,

pt < 0⇒ st
ηd
≤ ct

ηd
≤ ct

ηc
⇔ st ≤ ct and ct ≥ 0,

pt = 0⇒ st
ηd
≤ ct

ηc
⇔ stηc ≤ ctηd.
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A sufficient condition for the above is: 0 ≤ st ≤ ct for all t ∈ T , i.e. that both the subsidies and prices on
each time step are positive. The objective functions (ft ◦Tη)(xt) look similar to those of the linear objective,
but are shifted and have additional point where the slope changes.

Quadratic Deviations

For the quadratic deviations objective function ft(xt) = (xt− pt)2, where pt is the net energy profile at time
t, Lemma 5.5 implies that the composed objective (ft ◦ Tη) is convex when pt ≤ 1

ηd
xmin
t . However, we will

show it is convex for a larger range of parameter values.

Consider the more general quadratic function: ft(xt) = 1
2atx

2
t + btxt + ct with at > 0. The composed

objective (ft ◦ Tη) consists of parts of two parabola that both pass through (0, ct), and have their minimum

at different positions. The left parabola, whose value is assumed for negative xt, has its minimum at −ηdbtat
,

and the right one, occurring for positive xt, at −ηcbtat
. The objective is convex precisely when the minimum

of the left parabola is to the left of or on the same position as the minimum of the right parabola. This is
the case when:

−ηdbtat
≤ −ηcbtat

⇒ bt ≥ 0.

As a consequence, when considering the quadratic deviations objective the composed objective (ft ◦ Tη) is
convex whenever pt ≤ 0, and non-convex otherwise. See also Figure 5.4.

x

(ft ◦ Tη)(xt)

(a) Peak shaving with negative profile

x

(ft ◦ Tη)(xt)

(b) Peak shaving with positive profile

^Figure 5.4: The peak shaving objective remains convex for negative profile values, and becomes non-
convex for positive profile values.

5.3.2 Subdifferential Karush-Kuhn-Tucker conditions

Analogously to the lossless case, we require a way to solve convex instances of Problem 5.4 in order to solve
Problem 3.3. Due to the loss of differentiability of the objective function after the introduction of conversion
losses, we require alternative KKT conditions based on subdifferentiation – a generalization of the derivative
to non-differentiable convex functions.

Where the derivative of a differentiable function at a point is defined as the slope of the unique tangent
line at that point, the subderivative of a convex function at a point is defined as the slope of any of the
lines that is touching at that point and are everywhere touching or below the graph on the rest of the
domain of the function. When there are non-differentiable ’kinks’ in the function, multiple values exist. For
differentiable convex functions, the derivative is the unique subderivative. The set of all subderivatives of f
at x is called the subdifferential of f at x:
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Definition 5.1. Subdifferential: The subdifferential ∂f(x) of f : I 7→ Rn at x ∈ I (where I ⊆ Rn is an
open convex set) is defined as the collection of all subgradients of f at x:

∂f(x) = { c ∈ Rn | ∀y ∈ I : f(y)− f(x) ≥ c · (y − x) }
Subdifferential KKT conditions [19] exist for convex optimization problems (5.1), where the continuous
differentiability requirement is dropped:

Theorem 5.2. Subdifferential Karush-Kuhn-Tucker conditions: If f : Rn → R, and gi : Rn → R

are convex, and hj : Rn → R are affine functions and Slater’s condition holds, then x∗ is the primal optimum
and λ∗, µ∗ is dual optimum of (5.1) if and only if:

∂f(x∗) +

m∑
i=1

µ∗i ∂gi(x
∗) +

l∑
j=1

λ∗j∂hj(x
∗) 3 0,

gi(x
∗) ≤ 0, ∀i = 1, . . . ,m,

hj(x
∗) = 0, ∀j = 1, . . . , l,

µ∗i ≥ 0, ∀i = 1, . . . ,m,

µ∗i gi(x
∗) = 0, ∀i = 1, . . . ,m.

(5.7)

Where, for sets A,B ⊆ Rn, A + B = { a+ b | a ∈ A, b ∈ B } is the Minkowski sum. Note that in (5.7)
∂f(x∗), ∂gi(x∗), ∂hj(x∗) are sets instead of scalars.

Slater’s condition holds by (5.2), and the fact that the feasible sets of the lossless and lossy problem are
the same. Hence, when (ft ◦ Tη) is convex for all t ∈ T , we can apply (5.7) to Problem 5.4 to obtain that x∗

is primal optimal and λ∗, µ∗ are dual optimal if and only if x∗ is primal feasible and:

∂(ft ◦ Tη)(x∗t ) + µ∗t − λ∗ 3 0, ∀t ∈ T ,
µ∗+t (x∗t − xmax

t ) = 0, ∀t ∈ T ,
µ∗−t

(
x∗t − xmin

t

)
= 0, ∀t ∈ T .

(5.8)

In the remainder of this section we use (5.8) to solve Problem 5.4 for the linear pricing, feed-in subsidy, and
peak shaving objectives. To simplify our analysis, we assume that xmin

t < 0 < xmax
t for all t ∈ T . Though

the results can be easily adapted for the cases where 0 ≤ xmin
t ≤ xmax

t or xmin
t ≤ xmax

t ≤ 0.

Linear pricing

Let us again consider the linear objective ft(xt) = ctxt. Recall from Section 5.3.1 that the composed
objectives (ft ◦ Tη) are convex if and only if ct ≥ 0. Under this condition, the subdifferential of (ft ◦ Tη) at
xt can be explicitly determined as the following set-valued function:

∂(ft ◦ Tη)(xt) =


{
ct
ηd

}
when xt < 0,[

ct
ηd
, ctηc

]
when xt = 0,{

ct
ηc

}
when xt > 0.

Using (5.8) this yields the following optimal solution:

xt = xmin
t , µt < 0, λ = ct

ηd
+ µt,

xt ∈
[
xmin
t , 0

]
, µt = 0, λ = ct

ηd
,

xt = 0, µt = 0, λ ∈
(
ct
ηd
, ctηc

)
,

xt ∈ [0, xmax
t ] , µt = 0, λ = ct

ηc
,

xt = xmax
t , µt > 0, λ = ct

ηc
+ µt.
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Imposing primal feasibility by requiring
∑
t∈T xt = C to hold therefore again gives rise to a water filling

approach. When the same breakpoint occurs in multiple time steps, the charge can be divided arbitrarily.
A possible choice is to spread the charge equally on all tied time steps.

In this case each time step has not one, but two breakpoints: one at ct
ηd

, and one at ct
ηc

. At these
breakpoints, if we can meet the equality bound within the given range for xt, we set it to the required value,
otherwise we increase λ to the next breakpoint. The waterfilling method to solve Problem 5.4 with linear
objective is shown in Algorithm 4.

Algorithm 4 Waterfilling approach for Problem 5.4 with ft(xt) = ctxt.

1: function optLEVC
2: A←

{
c1
ηd
, . . . , cTηd

}
3: B ←

{
c1
ηc
, . . . , cTηc

}
4: Sort A and B in non-decreasing order
5: C̃ ← SoC0 +

∑
t∈T x

min
t ,x← xmin

6: while C̃ < C do
7: Take α as the first element from A with associated time interval t
8: Take β as the first element from B with associated time interval t′

9: if α < β then

10: ∆← min
{
−xt, C − C̃

}
11: C̃ ← C̃ + ∆, xt ← xt + ∆
12: else
13: ∆← min

{
xmax
t′ − xt′ , C − C̃

}
14: C̃ ← C̃ + ∆, xt′ ← xt′ + ∆
15: end if
16: end while
17: return x
18: end function

Feed-in subsidy

Recall the feed-in subsidy objective ft(xt) = ct(xt − pt)+ + st(xt − pt)−, and that this function is convex
if 0 ≤ st ≤ ct for all t ∈ T . Note that, when ptηd < xmin

t or ptηc > xmax
t , the objective reduces to

a linear objective with unit cost of energy ct and st respectively. We therefore can assume that w.l.o.g.
xmin
t

ηd
≤ pt ≤ xmax

t

ηc
. When pt ≥ 0, the subdifferential of (ft ◦ Tη) is given by:

∂(ft ◦ Tη)(xt) =



{
st
ηd

}
when xt < 0,[

st
ηd
, stηc

]
when xt = 0,{

st
ηc

}
, when 0 < xt < ptηc,[

st
ηc
, ctηc

]
when xt = pt,{

ct
ηc

}
when xt > 0.

(pt ≥ 0)
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When pt < 0, the subdifferential looks similar. We obtain the following solution to (5.8) when pt ≥ 0:

xt = xmin
t , µt < 0, λ = st

ηd
+ µt,

xt ∈
[
xmin
t , 0

]
, µt = 0, λ = st

ηd
,

xt = 0, µt = 0, λ ∈
(
st
ηd
, stηc

)
,

xt ∈ [0, ptηc] , µt = 0, λ = st
ηc
,

xt = ptηc, µt = 0, λ ∈
(
st
ηc
, ctηc

)
,

xt ∈ [ptηc, x
max
t ] , µt = 0, λ = ct

ηc
,

xt = xmax
t , µt > 0, λ = ct

ηc
+ µt.

And for pt < 0:

xt = xmin
t , µt < 0, λ = st

ηd
+ µt,

xt ∈
[
xmin
t , ptηd

]
, µt = 0, λ = st

ηd
,

xt = ptηd, µt = 0, λ ∈
(
st
ηd
, ctηd

)
,

xt ∈ [ptηd, 0] , µt = 0, λ = ct
ηd
,

xt = 0, µt = 0, λ ∈
(
ct
ηd
, ctηc

)
,

xt ∈ [0, xmax
t ] , µt = 0, λ = ct

ηc
,

xt = xmax
t , µt > 0, λ = ct

ηc
+ µt.

Such that, after imposing the constraint
∑
t∈T xt = C, we obtain a water filling approach with three

breakpoints for each time step.

Quadratic deviations

Finally, instead of the quadratic deviations objective function ft(xt) = (xt − pt)
2, we consider the more

general quadratic objective ft(xt) = 1
2atx

2
t + btxt + ct, with at > 0, where bt ≥ 0 to ensure convexity. The

subdifferential of (ft ◦ Tη) is given by:

∂(ft ◦ Tη)(xt) =


{
at
η2d
xt + bt

ηd

}
when xt < 0,[

at
η2d
xt + bt

ηd
, atη2c

xt + bt
ηc

]
when xt = 0,{

at
η2c
xt + bt

ηc

}
when xt > 0.

Giving us the following solution to (5.8):

xt = xmin
t , µt < 0, λ = at

η2d
xmin
t + bt

ηd
+ µt,

xt =
λη2d−btηd

at
, µt = 0, λ ∈

[
at
η2d
xmin
t + bt

ηd
, btηd

]
,

xt = 0, µt = 0, λ ∈
(
bt
ηd
, btηc

)
,

xt =
λη2c−btηc

at
, µt = 0, λ ∈

[
bt
ηc
, atη2c

xmax
t + bt

ηc

]
,

xt = xmax
t , µt > 0, λ = at

η2c
xmax
t + bt

ηc
+ µt.

Giving rise to a water filling approach with two basins per time step, as seen in Figure 5.5.
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^Figure 5.5: Water filling approach for the case of quadratic objective functions.

5.3.3 Maximal charging

In the previous section, we derived methods for solving convex instances of Problem 3.3. In this section,
we consider a method to solve instances of Problem 3.3 where ft(xt) = ctxt with ct < 0 for some time
steps. As we have seen, this problem is NP-complete in general, hence it is unlikely that an exact efficient
algorithm exists. Nevertheless, whenever negative prices occur we intuitively want to charge as much as
possible. Theorem 5.3 gives us a condition under which this intuition turns out to hold true. As it turns
out, if it is feasible to fully charge at all time steps where the prices are negative, then it is optimal to do so.

Theorem 5.3. If there exists a feasible solution x to an instance of Problem 3.3 with linear
objectives where xt = xmax

t for all t ∈ T where at < 0, then each optimal solution y to the instance
has yt = xmax

t for all t ∈ T where at < 0.

Proof. Define I as the set of time intervals where negative prices occur: I = {t | at < 0}. Let x be
a feasible solution with xt = xmax

t for all t ∈ I, and assume there exists some optimal solution y
where for some time interval t′ ∈ I: yt′ < xmax

t′ . We show that t′ must be contained in an interval

[tA, tB ] where:
∑tA
t=1 yt = SoCmin

tA and
∑tB
t=1 yt = SoCmax

tB , where on the entire interval yt ≤ xt
with strict inequality for t′, causing x to not be feasible. In all other cases, we can improve y.

There must be some time step tB ≥ t′ where
∑tB
t=1 yt = SoCmax

tB , otherwise we could improve
y, contradicting its optimality, by increasing yt′ by an amount up to:

min

(
min

t=t′,...,T

{
SoCmax

t −
t∑

s=1

ys

}
︸ ︷︷ ︸

>0

, xmax
t′ − yt′︸ ︷︷ ︸

>0

)
.

Let tB be the smallest such time step. There must also exist a time step t /∈ I, t ≤ tB where
yt > xt. If there were no such t, then:

xt ≥ yt, t ≤ tB , t /∈ I,
xt = xmax

t ≥ yt, t ≤ tB , t ∈ I \ {t′} ,
xt′ = xmax

t′ > yt′ ,

such that, since tB ≥ t′,
∑tB
t=1 xt >

∑tB
t=1 yt = SoCmax

tB . This implies that x is infeasible, a
contradiction. Let t be the last such time step, such that: ↓
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yt ≤ xt, t ∈ (t, tB ].

Since yt > xt and yt′ < xt′ , it follows that t 6= t′. Therefore, either t > t′ or t < t′:

• Assume t > t′, then we can improve y by increasing yt′ and decreasing yt by:

min

(
min

t=t′,...,t−1

{
SoCmax

t −
t∑

s=1

ys

}
︸ ︷︷ ︸

>0

, xmax
t′ − yt′︸ ︷︷ ︸

>0

, yt − xmin
t︸ ︷︷ ︸

>0

)
.

The first argument is positive since, by definition, tB ≥ t is the first time step after t′ where
SoCmax

tB =
∑tB
t=1 yt. The second and third arguments are positive by definition as well. It

follows that y was not optimal, a contradiction.

• Next, consider t < t′. Either there exists a time step tA ∈ [t, t′) where
∑tA
t=1 yt = SoCmin

tA , or
there is not. If there is no such time, then we can improve y by increasing yt′ and decreasing
yt by an amount up to:

min

(
min

t=t,...,t′−1

{
t∑

s=1

ys − SoCmin
t

}
︸ ︷︷ ︸

>0

, xmax
t′ − yt′︸ ︷︷ ︸

>0

, yt − xmin
t︸ ︷︷ ︸

>0

)
.

If there is such a time step tA, then since t is the last time step before tB where y exceeds x:
yt ≤ xt for all t ∈ (tA, tB ], with strict inequality for t′. Therefore,

∑tB
t=1 xt ≥

∑tB
t=tA+1 xt +

SoCmin
tA >

∑tB
t=tA+1 yt + SoCmin

tA =
∑tB
t=1 yt = SoCmax

tB , contradicting feasibility of x.

Hence, there does not exist a time step t′ ∈ I where for an optimal solution y: yt′ < xmax
t′ .

Hence, if indeed there exists a feasible solution where we maximally charge on each time step with
negative prices, we can then eliminate these time steps to yield a convex instance.

5.4 Sign restriction method

In the previous section we derived methods for solving the lossy EVC problem for certain parameter values.
However, the imposed constraints on the parameters may not hold up in practice: too many negative prices
may occur on a single day, there may be a negative feed-in subsidy (such that it becomes a penalty to feed
energy into the net), or positive profile values make these methods inapplicable. In this section we propose
a heuristic to deal with these scenarios. We show that restricting the sign of xt makes (ft ◦ Tη) convex.

Although searching the entire space of the Lossy Storage Problem is hard, we will show that searching a
single of its orthants can be done efficiently. For the moment consider that though we might not know the
exact values of xt for any t, we might know their signs, i.e. know for each time step whether we are charging
or discharging at that time. This corresponds to having an oracle for the Subset Sum problem in the given
NP-hardness proof. The choice of signs can be expressed as a partition (I+, I−) of T , such that:

t ∈ I+ ⇒ x̃min
t = (xmin

t )+, (5.9)

t ∈ I− ⇒ x̃max
t = (xmax

t )−. (5.10)

We can use the imposed sign restriction to absorb the efficiency coefficients into the parameters of the
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objective. Assuming a quadratic objective function ft(xt) = 1
2atx

2
t + btxt + ct we get that:

(ft ◦ Tη) (xt) =

{
1
2
at
η2c
x2t + bt

ηc
xt + ct t ∈ I+

1
2
at
η2d
x2t + bt

ηd
xt + ct t ∈ I−

= 1
2 ãtx

2
t + b̃txt + ct,

where

ãt =

{
at
η2c

t ∈ I+
at
η2d

t ∈ I− , and b̃t =

{
bt
ηc

t ∈ I+
bt
ηd

t ∈ I− .

The Lossy Storage Problem restricted to a single orthant can thus be reduced to an instance of Problem 3.1.
For other types of objective functions similar transformations exist. This procedure works as long as the set
of objectives functions is complete under positive valued input-scaling, i.e. if the objectives we can solve are
sufficiently parameterized to allow the absorption of positive factors from xt.

Alternatively, observe that when we restrict Tη to just positive or negative inputs, it reduces to a linear
transform. From convex analysis, we know that (ft ◦ Tη) is convex when ft convex and Tη linear. As such,
we only need a sign restriction on the time intervals that give rise to a non-convex objective. And so, given
a solution method for the convex case, we obtain an exact procedure for the lossy case when we enumerate
all possible sign restriction combinations for the non-convex xt’s. Denote by T nc the set of time steps for
which the unrestricted objective is non-convex. If we denote by g(I+, I−) the value obtained by imposing
the sign restriction (I+, I−) on T nc, we can restate Problem 3.3 as:

min
I+⊆T nc

I−⊆T nc

I+∪I−=T nc

I+∩I−=∅

g
(
I+, I−

)
.

(5.11)

Taking the minimum over all restricted problems indeed gives the optimal solution of the original problem.
However, it requires us to solve a number of convex instances that is exponential in the number of non-
convex objectives, limiting its practical applicability only to instances of small size or where the number of
non-convexities is small.

The notion of sign restriction also induces heuristic methods in which we do not search the entire state
space, but only consider sign restrictions that are in some sense logical, or those which we expect the optimal
solution to adhere. Some examples are:

• learning from historical data, for example using machine learning techniques on previously solved
instances;

• parameter-based selection rules, for example for the profile steering objective (xt − pt)2: whenever pt
exceeds some threshold τ charge at time t, otherwise discharge;

• solving the corresponding Lossless Storage Problem, and copy the signs to the case where we do account
for conversion losses;

• local search approaches with the neighborhood of sign flips.

We will compare these choices in a case study in the next chapter.
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6. Case Study

In the previous chapter, we developed methods to solve instances of the Lossy Storage Problem. Certain
parameter choices allowed for exact and efficient solving, while for the remaining cases we introduced a
heuristic approach based on sign restrictions. In this chapter, we evaluate the performance of the sign re-
striction methods outlined in Section 5.4, when applied to instances with the quadratic deviations objective
ft(xt) = (xt − pt)2.

The sign restriction method from Section 5.4 is a heuristic, and offers no performance guarantees. In this
chapter we therefore evaluate its performance on a set of non-convex instances of Problem 3.3 with quadratic
deviations objective ft(xt) = (xt − pt)2. We do not consider a pricing setting, since Theorem 5.3 offers us a
means to solve all practical occurrences of negative prices.

We consider the case where each individual household has a residential-level Lithium-ion battery to
flatten their energy profile. The energy profiles are the same as from Section 4.3: single days of individual
households are considered in isolation, with time steps of 15 minutes, where a week per season is simulated.
We only consider the households with PV, giving us a set of 52 households. The battery has 4.22 kWh
maximum capacity with 0.74 kW (dis)charge bounds (0.185 kWh per 15 minutes) and starts out empty.

We require a sign restriction for each charging decision where in the corresponding time step production
exceeds consumption. The choices we simulate are:

• equal division: an equal division of positive and negative signs, where the first quarter of each day
is used for discharging, the next half for charging, and the final quarter for discharging;

• profile sign: whenever the profile is positive, we charge. Otherwise we discharge;

• lossless sign: whenever optimal solution the corresponding lossless instance charges, we charge. Oth-
erwise we discharge.

Note that though we specify a sign restriction for each time step, it is only imposed for time steps with
non-convex objective.

Next, we consider how we can further improve the obtained solutions. Whenever xt = 0 for some t
where (ft ◦Tη) is non-convex, we can not worsen the solution by flipping the corresponding sign and solving
for this new sign restriction. Indeed, in the worst case xt still equals 0 afterwards. This yields an iterated
improvement method that halts when xt is non-zero for each time step with non-convex objective, or when
no more improvement is found for any sign flip.

Another way by which we can improve the objective is through a more advanced local search method.
We consider multi-start simulated annealing [1] with a static cooling strategy: cn = 0.999n. Each search
consists of five restarts in which 50 sign flips are considered.

Results

The lossless sign choice outperforms the equal division and profile sign choices in almost all instances. Only
in about 0.85% of the cases at 70% RTE and 0.5% of the cases at 85% RTE does the profile sign choice
outperform it, and it is never outperformed by the equal division choice. Table 6.1 shows the average
objective values attained by the different sign restriction choices for several round-trip efficiencies. The
reported optimum is found by taking the signs of the solution to the ILP that approximates the given
instance. The average objective of the lossless sign choice is lower than that of the optimum!

We consider an instance to be solved whenever its objective is lower or equal than the objective of the
ILP solution of that instance. Table 6.2 shows the percentage of solved instances for several RTEs, for: the
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lossless sign choice, lossless sign with iterated improvement, and lossless sign with simulated annealing. The
simulated annealing method outperforms the rest, but also requires a lot more computation time. The lossless
sign choice only requires us to solve two instances: one to determine the signs, and the other to determine
the solution. The iterated improvement adds less than one pass on average to this, with a maximum of 12
additional passes encountered during simulations. The simulated annealing approach requires 250 additional
passes. Given that the performance increase of simulated annealing is very small with respect iterated
improvement, it may not be worth the computational overhead.

Round-trip efficiency
70% 75% 80% 85% 90% 95%

Optimum 14.4703 14.4060 14.3428 14.2807 14.2200 14.1605
Equal division 14.4753 14.4105 14.3469 14.2845 14.2234 14.1636

Profile sign 14.4743 14.4096 14.3460 14.2837 14.2226 14.1628
Lossless sign 14.4698 14.4056 14.3425 14.2805 14.2198 14.1603

!Table 6.1: Average objective value for several sign restriction methods and round-trip efficiencies.

Round-trip efficiency
70% 75% 80% 85% 90% 95%

Lossless sign 82.1429% 82.4274% 83.6976% 84.4286% 86.5713% 87.1154%
+ iterated improvement 86.1338% 86.2857% 86.3624% 86.5698% 87.0120% 87.1428%
+ simulated annealing 86.4291% 86.5721% 86.7143% 86.9378% 87.1761% 87.4286%

!Table 6.2: Percentage of optimally solved instances. An instance is considered solved if it performs just
as well, or outperforms, the LP solution.



7. Conclusion and discussion

7.1 Research questions

In this thesis we considered the optimization problem where a lossy energy storage device is employed for
either arbitrage seeking in a linear pricing or feed-in subsidy setting, or matching energy supply and demand.
The research question we addressed is:

� Can energy storage devices, where we account for energy conversion losses, effectively support the
electricity grid over their lifetime?

We splitted this question into the following subquestions:

ä How important are conversion losses in practice, and how relevant are they for optimization procedures?

ä Are consumer-owned energy storage devices economically viable in the near future?

ä Can we distinguish cases that are computationally tractable to optimally solve?

ä Can an efficient approximate algorithm be devised?

Correctly accounting for conversion losses turns out to be crucial, as naive approaches, such as the repair
and rescale methods from Chapter 4, display poor performance for the linear pricing and feed-in subsidy
settings. Even for high round-trip efficiencies the revenue due to the battery decreases sharply under these
methods, as compared to the optimal solution. For the quadratic deviations objective the performance drop
is less severe, yet still notable since the days on which this occurs across households correlate.

Simulations of a 4.22 kWh Li-ion storage device for several levels of feed-in subsidy and round-trip
efficiencies were performed to investigate economic feasibility of residential energy storage devices. The
simulations indicate that, given the current trend in Li-ion battery prices, it may from 2030 onward be
economically feasible for consumers to invest in residential energy storage, given that the feed-in subsidy is
50% or less of the average energy price. This assumes that the consumer already owns rooftop PV that are
cost-neutral.

In order to feasibly incorporate the new model into a decentralized energy management paradigm, in-
stances of the problem have to be solvable in the order of milliseconds, with limited memory. This makes
general approach such as ILP models inadequate, and requires us to consider tailored algorithms for this
problem. For many parameter choices, an extension of existing approaches can be used to efficiently solve
instances of the problem to optimality. This does not hold for, e.g., positive profile values or negative prices
or subsidies. We proved that the lossy storage problem with negative linear prices is already NP-complete
when considered in isolation. Nevertheless, we derive a method to solve practical instances with negative
prices, and show that the heuristic method performs well on instances with the quadratic deviations objective
– being able to solve roughly 85% of the considered cases to optimality.

In practice, (dis)charge bounds and state of charge bounds will likely not change (much) over time. As
the problem loses a lot of its structure under these assumptions, we suspect that such instances should be
easy to solve. In particular, the given NP-completeness proof does not hold under this constraint. However,
we were unable to find a solution method for such instances.

The main contributions of this thesis are the implementation of the aforementioned solution methods in
Python to be used inside DEMKit, an investigation in economic feasibility under the feed-in subsidy policy,
and a NP-completeness proof for the lossy storage problem with linear prices that are negative and fixed.

We answer our research question in the affirmative: the battery’s capabilities, economic feasibility in
the near future, and existence of adequate optimization techniques all contribute to a device that has great
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potential to effectively support the grid. Lower battery costs, policy change from net metering to feed-in
subsidy, and the availability of energy profile predictions and control mechanisms for energy storage are the
last hurdles in the possible deployment of residential energy storage devices.

7.2 Data

The solar irradiation and price data were taken from 2014, as this was the only year I could get both datasets
from, due to availability issues. Due to technological advances and inflation, we expect prices to strongly
vary through the years. For an energy trader, the resulting effect of scaling the prices are minimal, as a flat
increase or decrease in price does not affect arbitrage opportunities. Arbitrage opportunities will likely only
increase in amount and magnitude in the near future: due to a higher penetration of local generation we
expect prices across the day to vary stronger than in previous years, creating more opportunity for arbitrage.
Therefore, in this regard results from Chapter 4 were slightly pessimistic.

Additionally, the choice of time horizon also influences the results: carry-over of energy to the next
day is not rewarded as the simulation stops at 24:00, implying that, e.g., the last hour of the day in the
day-night tariff does not contribute to the revenue. Considering either a rolling horizon, longer periods than
single days, or somehow changing the problem to a ’steady-state’ problem, where SoCT = SoC0, may help
in this regard. Because low prices that are not followed by higher prices do not constitute an arbitrage
opportunity, we essentially lose some revenue – reinforcing the pessimism of the results of Chapter 4. The
effect of this is minimal though, as there is ample time to charge the storage from 0:00 till 7:00. Specifically,
the maximum obtainable profit under linear pricing for the day-night tariff is (cday − cnight)SoCmax =
e0.03/kWh · 42.2kWh = e1.266, corresponding to the results seen in Table 4.1. This indicates that
considering a single day is sufficient in this case. We suspect that the same holds for spot market prices.
Nevertheless, for the feed-in subsidy and quadratic deviations objectives it may still be useful to consider
more time steps.

7.3 Consumer behaviour

Given rooftop PV, the revenue due to energy storage under the feed-in subsidy policy mainly consists of
avoiding the purchase of energy by load shifting. Given a lower subsidy level consumers in households with
PV are automatically incentivized to shift their load towards noon, regardless of whether they have an energy
storage device. This is not accounted for in our simulations. When this happens, the revenue due to the
battery will decrease, as consumer behaviour essentially takes over the task of load shifting via the energy
storage in this case. A further study needs to be done to investigate the influence on revenue due to the
battery; essentially the numerical study needs to be repeated, but some or all shiftable devices should be
moved to a time around noon. Similarly, additional smart appliances may reduce the revenue due to the
battery.

Given a household where the washing machine (5̃00 kWh per load) and dish washer (1̃500 kWh per
load) are used twice a week, and their usage is shifted towards noon, already 1̃0% of a households energy
consumption can be shifted [13]. Given that manual shifting is more energy efficient than employing a lossy
battery, we expect to gain about (1−RTE) · 10% of the energy costs on days where we shift this load at the
cost of RTE · 10% of revenue due to the battery.
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[52] W. Saad, Z. Han, H. V. Poor, and T. Başar, Game theoretic methods for the smart grid, Signal
Processing Magazine, 29 (2012), pp. 86–105. (Cited on page 14.)

[53] J. W. Schot, H. W. Lintsen, A. Rip, and A. A. A. de la Bruhèze, Techniek in Nederland in
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