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Abstract

In harmonically modulated rotating Rayleigh-Bénard convection (MRRB) a time-dependent angular ve-
locity Ω(t) = Ω0+∆Ω sin(ωt) is added to a RB system. Earlier research by (Niemela et al., 2010), (Geurts
and Kunnen, 2014) and (Beunen and Kunnen, 2019) suggests possible great enhancement of heat trans-
fer in these systems. We report on Direct Numerical Simulations (DNS) in a standardized system with
water as a working fluid (Ra = 108,Pr = 6.4) in a cylindrical cell with height H = 1 and diameter
D = 1. Modulated rotation introduces an Euler force into the governing equations which depends on
the frequency and amplitude of the modulation only, as the constant rotation rate is set to zero. Two
parameter sweeps for amplitudes were carried out at two different frequencies, complementing earlier
simulations performed by Beunen (Beunen and Kunnen, 2019) as well as providing an entirely new data
set. An impressive increase in Nusselt number of about 335% compared to the non-rotating case was
achieved for a modulation with non-dimensional Rossby numbers for amplitude Ro∗ = 0.01 and frequency
Roω = 0.1. No optimal value of these Rossby numbers was found, but rather an asymptotic region where
results suggest a scaling law Nu ∼ (Ro*)−0.45 for amplitudes Ro∗ < 0.2 and seemingly independent on
frequency. Underlying flow structures include very efficient mixing at the top and bottom plates and a
large temperature gradient at half height near the sidewalls. The flow is dominated by fluctuations in
the θ-direction due to the extra Euler force. The underlying flow structure in the r − z plane shows a
stable double convection roll which might explain the efficiency of heat transfer in these cases. Further
research into the influence of the frequency or fluid properties such as the Rayleigh and Prandtl numbers
will deepen the understanding of this behaviour, possibly resulting in interesting industrial applications
of this extremely efficient heat transfer.
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1 Introduction

Rayleigh Bénard (RB) convection is a type of natural convection where fluid is heated from below and
cooled from above. A turbulent flow pattern will emerge because of buoyancy effects on the one hand,
and viscous and diffusive effects on the other hand. The expected flow pattern is a large scale circulation
(LSC) which may switch directions due to the turbulent nature of the flow (Stevens et al., 2012). RB
convection occurs in several geophysical and astrophysical systems. For example, in the Earth’s outer core
(Glatzmaier et al., 1999), the atmosphere (Sidorenkov, 2009), or in the outer layer of the sun (Cattaneo
et al., 2003). Here we consider RB convection in a cylindrical domain with diameter D = 1 and height
H = 1. Furthermore we choose dimensionless temperatures to be Tb = 1 on the bottom plate and Tt = 0
on the top plate, so that we have a temperature difference ∆T = 1. In Figure 1 a sketch can be found.

Figure 1: Sketch of non-rotating Rayleigh-Bénard convection in a cylindrical domain.

In general, RB studies look into the heat transfer between the bottom and top plate and its relation
to various input parameters. The heat transfer is often quantified by the dimensionless Nusselt number,
whereas fluid properties are captured in the Rayleigh and Prandtl number. Extensive research has been
done on finding the optimal Nusselt number for a certain combination of Prandtl and Rayleigh number.
This has been achieved for example by adding a constant rotation rate Ω in the θ-direction of the cylinder
in so called rotating Rayleigh-Bénard (RRB) convection, achieving an increase of about 15% in the Nusselt
number for moderate rotation rates (Stevens et al., 2013). It can also be done by optimizing the ratio
between the diameter and the length, resulting in an increase in heat transfer of about 12% (at Ra = 108)
(Chong et al., 2015).

This thesis concerns the relatively new field of modulated rotating Rayleigh-Bénard (MRRB) convec-
tion, where the rotation rate is not constant, but can instead be defined as: Ω = Ω(t). In this research
we will look into harmonic MRRB convection, further defining Ω(t) as:

Ω(t) = Ω0 + ∆Ω sin(ωt), (1)

where we have the time dependent rotation rate Ω(t), the constant rotation rate Ω0, the modulated
rotation rate ∆Ω and the angular velocity of the modulated rotation rate ω. This type of ‘shaking’
RB flow might not be directly relevant to large scale systems in nature, but could develop interesting
industrial applications due to the extreme enhancement of heat transfer found in these systems. The first
results were found by (Niemela et al., 2010) who did an unique experiment with cryogenic helium gas as
a working fluid for high Rayleigh numbers and a high modulation angular velocity. In their experiments
they found impressive enhancements in the heat transfer for the MRRB situation. In 2014 Geurts &
Kunnen further looked into this, but this time with Direct Numerical Simulations (DNS) and using the
properties of water for their model, as well as working with a lower Rayleigh number of 109 (Geurts
and Kunnen, 2014). They found interesting results, but later found out that the implementation of the
Euler force had an incorrect specification of the modulation amplitude. While the reported large increase
in Nu can be maintained, the actual quantitative values needed correction. In 2019 Bob Beunen, a
student at the TU/e, continued their work with a corrected version of the same code and a slightly lower
Rayleigh number Ra = 108 and found enhanced heat transport for high amplitude and high frequency
MRRB convection and an indication of even higher Nusselt numbers for even higher amplitudes (Beunen
and Kunnen, 2019). This thesis builds on his results and complements them with extra simulations at
the same frequency for higher amplitudes and provides an additional simulation set at an even higher
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frequency. Our results confirm his hypothesis and we achieve an incredible quadrupled Nusselt number
compared to the non-rotating case, as well as consistent flow structures that indicate an asymptotic
behaviour such that Nusselt could increase even more for even lower modulation amplitudes.

The report is organized as follows: Section 2 provides the relevant mathematical model and numerical
setup, as well as an analysis of the time averaging and resolution accuracy. Then, Section 3 contains
various flow representations that will give some insight into the underlying flow structure. Subsequently,
Section 4 shows and discusses the main results for the Nusselt numbers and a possible scaling law. Lastly,
in Section 5 some ideas regarding future research will be discussed.

2 Mathematical model and numerical setup

Boussinesq Approximation

For incompressible, Newtonian flow, the Navier-Stokes equations reduce to:

∂~u

∂t
+ (~u · ~∇)~u = −1

ρ
~∇~p+ ν ~∇2~u+

1

ρ
~F , (2)

where ~u denotes the velocity, t denotes the time, ρ is the density, ~p denotes the pressure, ν is the
kinematic viscosity and F are the forces that are present in the system: buoyancy forces and rotational
forces. Furthermore, since we approximate our system as having incompressible flow, we get a simplified
continuity equation of:

~∇ · ~u = 0 (3)

For the modelling of our MRRB convection we can use the Boussinesq approximation. This approxi-
mation ignores all differences in fluid properties, except for those in density and only considers fluctuations
in density when they are multiplied by g, the gravitational acceleration. Within this approximation we
model the changes in density as being linear with temperature:

ρ = ρ0 − αρ0∆T (4)

where ρ0 is some reference density, α is the thermal expansion coefficient and ∆T is the temperature
difference between the upper and lower plate of the system.

Besides buoyancy forces we also have rotational forces due to the modulated rotation Ω(t). In order
to derive the equations governing this rotation, we need to look at a stationary reference frame I and a
rotational reference frame R. The velocities of these respective frames are related as follows:(

d~r

dt

)
I

=

(
d~r

dt

)
R

+ ~Ω(t)× ~r (5)

For the Navier-Stokes equation we need the force, so we need to calculate the acceleration by applying
the same operator twice:

(
d2~r

dt2

)
I

=

((
d

dt

)
R

+ ~Ω(t)

)2

× ~r (6)

=

(
d2~r

dt2

)
R

+ 2~Ω(t)×
(
d~r

dt

)
R︸ ︷︷ ︸

Coriolis force

+ ~Ω(t)× ~Ω(t)× ~r︸ ︷︷ ︸
centrifugal force

+
d~Ω(t)

dt
× ~r︸ ︷︷ ︸

Euler force

(7)

The buoyancy forces follow from Equation 4, and the rotational forces follow from Equation 7, resulting
in the modified N-S equation:

∂~u

∂t
+ (~u · ~∇)~u = − 1

ρ0
~∇~p+ ν ~∇2~u+ gαT~z − 2Ω(t)~z × ~u− r dΩ(t)

dt
~θ, (8)

where the centrifugal forces are contained in the pressure term.
The third governing equation for Rayleigh-Bénard convection is the convection-diffusion equation:

∂T

∂t
+
(
~u · ~∇

)
T = κ∇2T (9)
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Non-dimensional model

To simplify computations and generalize the flow behaviour, we will non-dimensionalize the three main
equations 3, 8 and 9. To do this we need to introduce some dimensionless variables:

l = Hl∗, (10)

t =
H

U
t∗, (11)

p = ρ0U
2p∗, (12)

T = ∆TT ∗, (13)

u = Uu∗, (14)

∇ =
1

H
∇∗, (15)

where l denotes all length scales, H = 1 is the height of the cylinder and U =
√
gα∆TH is the typical

velocity. Rewriting Equation 8 with these dimensionless variables gives the following equation:

∂~u∗

∂t∗
+ (~u∗ · ~∇∗)~u∗ = ~∇∗~p∗ +

√
Pr

Ra
(~∇∗)2~u∗ + T ∗ẑ − 1

Ro
~z∗ × ~u∗ − r∗

4RoωRo∗
cos

(
t∗

2Roω

)
θ̂, (16)

where we use the following dimensionless numbers:

Ra =
gα∆TH3

νκ
, (17)

Pr =
ν

κ
, (18)

Ro =
U

2HΩ
, (19)

Ro0 =
U

2HΩ0
, (20)

Ro∗ =
U

2H∆Ω
, (21)

Roω =
U

2Hω
, (22)

where the Rayleigh number (Ra) gives a general indication of the flow behaviour and gives the ratio
between the time scales of diffusion and convection and the Prandtl number (Pr) is defined as the ratio
between momentum diffusivity and thermal diffusivity. The various Rossby numbers (Ro) represent how
a flow is affected by rotational forces and have the non-dimensional relation:

1

Ro
(t∗) =

1

Ro0
+

1

Ro∗
sin

(
t∗

2Roω

)
, (23)

which can be derived from Equation 1.
The continuity equation (Equation 3) can also be non-dimensionalized:

U

H
~∇∗ · ~u∗ = 0, (24)

~∇∗ · ~u∗ = 0 (25)

Lastly the convection-diffusion equation has the non-dimensionalized form:

∂T ∗

∂t∗
+
(
~u∗ · ~∇∗

)
T ∗ =

1√
PrRa

∇∗2T ∗. (26)

Numerical model

Since our simulation is in a cylindrical domain, it is convenient to use cylindrical coordinates. The
Navier-Stokes equations under the Boussinesq approximation can be rewritten to cylindrical fluxes using:
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qr = r · ur, (27)

qθ = uθ, (28)

qz = uz, (29)

where qr, qθ, qz represent the fluxes in the r, θ, z-directions respectively. For the DNS we use a finite-
difference flow solver as first proposed by (Verzicco and Orlandi, 1996) with modifications for MRRB by
(Geurts and Kunnen, 2014). This simulation employs a third order Runge-Kutta scheme to integrate
the discretized non-dimensional equations by making use of cylindrical fluxes to model the flow field. A
staggered grid is used, which means that vector quantities are evaluated at the edges of the grid, while
scalar quantities such as the temperature or the pressure are evaluated at the center of a grid cell, see
Figure 2. Since qr = r · ur, this flux will automatically be zero at the center axis r = 0 preventing any
problems. More details can be found in (Verzicco and Orlandi, 1996).

Figure 2: Sketch of a grid cell in the center of the cylinder (left) and away from the center (right). Blue
lines: outlines of the cell; Yellow arrows: qz; Green arrows: qθ; Red arrows: qz; Orange dot: evaluation
point for scalar quantities. Figure taken from (Beunen and Kunnen, 2019).

Nusselt number

Within this non-dimensional model, we also use a non-dimensional number to quantify the heat transfer,
the Nusselt number:

Nu =
Convective heat transfer

Conductive heat transfer
=
〈Q〉H
k∆T

, (30)

where 〈Q〉 is the average heat flux density, k is the thermal diffusivity, and H,∆T are defined as
before. For our situation the Nusselt number calculation can be simplified in two ways. Firstly as a
volume and time average over the entire domain:

Nu = 1 +
√

PrRa〈qzT 〉V,t, (31)

where Nu denotes the volume averaged Nusselt number and 〈qzT 〉V,t denotes the time and volume
average over the vertical flux times the temperature at some interval. Secondly, Nusselt can be evaluated
at the plates by computing the local flux:

Nu0,1 = −
〈
∂T

∂z

〉
A,t

|z=0,1, (32)

where Nu0 and Nu1 denote the Nusselt numbers evaluated at the bottom and top plates respectively
(Kunnen, 2008). Within the code, output data from both these methods is available. In the file ‘nusse.out’
the volume averaged data is collected (Equation 31), whereas the file ‘boute.out’ collects data for the
Nusselt evaluations at both plates (Equation 32). The three data sets will be used to compare amongst
each other as an indication of statistical stability and to obtain a more reliable average value of the
Nusselt number. More details about time averaging can be found in the dedicated subsection below.
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Simulation Roω Ro∗

S0 ∞ ∞
S1

0.2

0.125
S2 0.1
S3 0.05
S4 0.02
S5

0.1

0.4
S6 0.2
S7 0.1
S8 0.08
S9 0.05
S10 0.02
S11 0.01

Table 1: Overview of conducted simulations. All simulations were performed for Ro0 = 1010 (Ω0 ≈
0),Ra = 108,Pr = 6.4 with resolution nθ = 257, nr = 129, nz = 257.

Conducted simulations

As mentioned before we base ourselves on the simulations done by Bob Beunen. We supplement these
with three extra simulations for the same frequency Roω = 0.2. In addition we provide seven simulations
at frequency Roω = 0.1. As a baseline we have simulated the non-rotating case. In table 1 an overview
of conducted simulations can be found. All MRRB simulations (S1-S11) were restarted from the non-
rotational simulation (S0) as this results in a faster converging rate (Beunen and Kunnen, 2019).

Time series of the Nusselt number

In Figure 3 one can see a typical example of a Nusselt time series. The simulation reaches a statistically
stationary state after about 80 non-dimensional time units (Beunen and Kunnen, 2019). To be on the
safe side a cut-off time after 300 non-dimensional time units was therefore chosen. Using this cut-off
time, an average value Nusselt was calculated by taking the time average over the remaining 200 time
steps. Figure 4 shows the time convergence of the Nusselt number for the same example as used in Figure
3. The Nusselt value converges to a 95% confidence interval of 78.11 ± 0.55, or a time averaging error
< 1% with this time averaging method. Decreasing this time averaging error would require a significant
increase in simulation time, while the current method is sufficiently accurate for all purposes of this study.

In addition to averaging over time, the determination of the Nusselt number was further improved
by averaging over the three data sets that use different methods of evaluating the Nusselt number. In
all our simulations these three different Nusselt numbers, Nu,Nu0,1, were within a 1% margin of each
other, suggesting that our simulation results are accurate.

Resolution requirements

For simulation S9 a resolution analysis was performed. In Figure 5 the values of Nusselt can be seen
for different numbers of grid points. In our main simulations a grid of 257× 129× 257 was used, which
corresponds to a total amount of grid points N ≈ 8.5 × 106, as illustrated in Figure 5 by the vertical
dashed line. The Nusselt values for this resolution do not seem to match the horizontal black lines,
this is because the main simulations were restarted from 200 non-dimensional time units of non-rotating
RB convection and were time averaged over 300 non-dimensional time units instead of 100. Therefore
more accurate values, as represented by the horizontal lines, have been achieved. The fact that these
lines correspond to the Nusselt number for the finest grid confirms that the resolution that was used, in
combination with the time averaging technique as discussed before, provides an accurate determination
of the Nusselt number under these input parameters.

As a first indication of convergence it’s good to look at the three differently calculated values of the
Nusselt number to see if they converge. However, this does not automatically imply that the resolution
is adequate. Besides looking at the convergence of the Nusselt number it is also important to look at
how the underlying flow structures are captured. In general it holds that if underlying flow structures are
well-captured, then the Nusselt number is also well-captured, but not necessarily the other way around
(Kooij et al., 2018). A way to check this is to plot the temperature gradient along a line and look at the
amount of grid points that capture a temperature change. In this case two vertical lines were chosen in the
bulk of the flow and close to the sidewall respectively. Figure 11 in the appendix shows the temperature
gradient across these lines for simulations S9 and S10. It appears that even though for both simulations
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Figure 3: Typical time series of the Nusselt number. This example is taken from the volume averaged
evaluation (Equation 31) of simulation S9 (Roω = 0.1, Ro*= 0.05).

Figure 4: Nusselt number from the volume averaged evaluation (Equation 31) of simulation S9 (Roω = 0.1,
Ro*= 0.05) for different amounts of time averaging samples. Black solid line: average value of Nusselt;
blue dashed line: 95% confidence interval.
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Figure 5: Time averaged values of Nu (blue squares), Nu1 (red asterisks) and Nu0 (black circles) on a
semilogscale. Here N is the total amount of grid cells nθ×nr×nz. The vertical dashed line represents the
resolution used in all simulations. The horizontal black lines represent the three values from simulation
S9 (Roω = 0.1, Ro*= 0.05) with a restart from the non-rotational simulation and a longer time-averaging
period.

S9 and S10 the three different time averages of Nusselt coincide within a 1% margin, simulation S10 does
not seem to have an adequate amount of grid points to adequately capture temperature gradients within
the underlying flow structure.

It is therefore that simulations S4, S10 and S11 (with Ro* ≤ 0.02) will be considered merely an
indication of an achievable Nusselt number, while the other simulations can be expected to be accurate
depictions of fluid behaviour under these conditions. It is possible that due to this lower resolution the
value of Nusselt has been overshot slightly (see Figure 5), however the consistency in Nusselt number
over the three different evaluations strongly suggests that the qualitative increase of the Nusselt number
is still valid. In the scope of this master thesis it was not possible to redo these simulations at a higher
resolution. Simulation times already exceeded four weeks for these high amplitude cases, so in order to
increase the resolution it would be necessary to decrease simulation times, for example by performing
them on parallel cores.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Isosurfaces for T*=0.45 (blue) and T*=0.55 (red). (a) Non-rotational simulation at time = 200;
(b-f) Roω = 0.1 at time = 500 for Ro*=0.4 (b), Ro*=0.2 (c), Ro*=0.1 (d), Ro*=0.05 (e), Ro*=0.02 (f)

3 Qualitative changes under high amplitude modulation

Two important qualitative changes can be seen in the flow structure under MRRB convection: high mixing
at the plates, and a large temperature gradient at half height near the sidewall. This can be illustrated
for example by looking at isosurface plots of flow snapshots, see Figure 6. These figures indicate that the
flow structure transitions from vertical plumes into two more or less homogeneous halves that meet in the
middle of the cylinder. At the upper plate it can further be seen that the temperature field close to the
plate is completely smoothed out for high amplitude modulation in contrast to the cell structure that can
be seen for the non-rotational case. As mentioned in section 2 the simulation for Ro*=0.02 suffers from
a low amount of grid points compared to the size of the flow structures. This can be seen in Figure 6f as
the isosurface looks grainy, indicating rough gradients of the temperature field. For the higher amplitude,
and therefore larger Euler force it seems that either small scale structures are more present in the flow or
the rate of change of the temperature increases. Both effects might cause this under-captured isosurface
plot.

Contour plots at various heights (Figure 7) show clearly that mixing close to the plates is more efficient
for higher amplitude modulation. In Figure 7m we can see the two more or less homogeneous halves meet
in the middle, resulting in sharp temperature gradients. Figure 15 in the appendix further highlights this
sharp temperature gradient at half height along vertical rings near the sidewall.

Furthermore the in-code statistical tools were used to obtain average and RMS values for temperature,
pressure and velocity (Verzicco and Orlandi, 1996). These have been averaged both over time and over the
angular direction. The most interesting effects can be seen for the temperature fluctuations (RMS values)
in Figure 12 and for the mean vertical velocity in Figure 13, both in the appendix. The temperature
fluctuations confirm that fluctuations close to the top and bottom plates are damped, while fluctuations
at half height increase for higher modulation amplitudes. In Figure 13 we can see that we get a horizontal
division line at half height and a vertical division line around r = 0.35 which divides the cylinder in four
approximately equal volume sections. In addition to this division it can also be seen that the mean
(absolute) axial velocity gets larger for higher amplitude modulation by a factor of about 2 between
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(a) S0, z = 0.002 (b) S0, z = 0.03 (c) S0, z = 0.5 (d) S0, z = 0.97 (e) S0, z = 0.998

(f) S6, z = 0.002 (g) S6, z = 0.03 (h) S6, z = 0.5 (i) S6, z = 0.97 (j) S6, z = 0.998

(k) S9, z = 0.002 (l) S9, z = 0.03 (m) S9, z = 0.5 (n) S9, z = 0.97 (o) S9, z = 0.998

Figure 7: Horizontal cross-sections of three flow snapshot for simulations S0 (non-rotational) at time =
200, S6 (Ro*=0.2) at time = 500 and S9 (Ro*=0.05) at time = 500 at various heights. Same colours
represent the same temperature, dark blue: T = 0 and dark red: T = 1.

figures 13c and 13d. This increase in axial velocity might be cause for a more efficient heat transport.
For simulation S9 (Roω = 0.1,Ro∗ = 0.05) additional flow statistics can be found in figure 14 in the
appendix. From the mean radial velocity, figure 14a and the mean axial velocity as in figure 13d, we
expect that there is a sort of double convection roll structure in the r-z plane, underneath the extremely
dominant fluctuations in the angular direction (Figure 14b). This is illustrated in Figure 8 where the mean
axial and radial velocities are combined in a vector plot. The flow structure under MRRB convection
seems to consist of a counterclockwise convection roll at the bottom plate and a clockwise convection
roll at the top plate, that meet at half height. It can also be seen in Figure 14 that the axial and
radial fluctuations are very small compared to the angular fluctuations. This r− z flow structure is thus
relatively stable. Whereas the vector plots in Figure 8 only show relative motion, in Figure 13 we can
see that the (absolute) mean velocity in the axial direction increases for higher amplitude modulation.

For RRB convection it is known that for higher rotation rates fluid motion in the axial direction
is suppressed, which is called the Taylor-Proudman effect (Wu et al., 2006). This would generally be
balanced by the effect of Ekman pumping, where thermal plumes become vortices due to the rotational
forces and efficiently suck hot (cold) fluid from the bottom (top) plate to transport it vertically (Stevens
et al., 2013). In geometrically confined RB convection heat transport is enhanced by a different stabilizing
mechanism, where the flow pattern perfectly fits within the geometry, resulting in more efficient fluid (and
heat) transport (Chong et al., 2015). In our case we see yet again a stabilizing mechanism. Under the
highly fluctuating angular motion a very stable (low fluctuations) r−z double convection roll arises which
reaches higher (average) velocities for higher amplitude modulation. This stable flow pattern effectively
transports hot (cold) fluid from the bottom (top) plate, towards the sidewalls, up (down) to about half
height and then back to the bottom (top) plate through the middle of the cylinder. This explains both
effects of fast mixing at the plates (due to high horizontal velocities close to the plate) and the large
gradient at half height (since that is where the two circulations meet). These effects, in turn, provide an
explanation for the increased Nusselt number in these cases.
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(a) S0 (non-rotational) (b) S5 (Ro*=0.4) (c) S6 (Ro*=0.2)

(d) S7 (Ro*=0.1) (e) S9 (Ro*=0.05) (f) S10 (Ro*=0.02)

Figure 8: Vector plots for the mean (averaged over time and theta) radial and axial velocities for a (half)
vertical slice through the cylinder. Arrow sizes are normalized independently, therefore equal arrows
across subfigures do not represent equal velocities.
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Figure 9: Achieved Nusselt values for the various simulations on a loglog scale. Blue squares: Roω = 0.2,
including previous results by (Beunen and Kunnen, 2019); red circles: Roω = 0.1; horizontal line: Nusselt
number for the non-rotating situation; dashed line: y = c · (Ro∗)−0.45. Open circles and square indicate
the simulations with small scale structures which were not well-captured on the used simulation grid.

4 Increased Nusselt number for high amplitude, high frequency
modulation

In Figure 9 the results for the Nusselt numbers are presented. They have been averaged over time and
over the three different data sets that were obtained. For higher amplitudes (lower Rossby numbers)
the Nusselt number increases extremely up to a 335% enhancement compared to the non-rotational case
for the lowest amplitude of Ro*=0.01. Instead of finding an optimal value of Ro*, we instead see an
asymptotic behaviour that sets on from about Ro* < 0.2. Furthermore, whereas significant influence of
Roω was found by Beunen for lower amplitudes, this influence vanishes for this asymptotic region. In
Figure 9 a potential scaling is plotted through our data points with formula y = 19.1 · (Ro∗)−0.45. These
constants were based on the data that was obtained. In Figure 16 in the appendix a compensated graph
can be found for this possible scaling of (Ro∗)−0.45. Such a compensated graph magnifies the differences
between the data and the proposed scaling law. In this case the values are quite close, and a scaling law
of (Ro∗)−0.45 could be possible. We have however not found a physical reasoning that would imply such
a scaling.

In Figure 10 some time series for the Nusselt number are shown for simulations with different ampli-
tudes. For all simulations it can be seen that the Nusselt number fluctuates over time. For the higher
amplitudes these fluctuations are more extreme. In spite of these fluctuations the Nusselt number con-
sistently remains at a significantly increased value, which confirms that the underlying flow structure
shows stability in enhancing the heat transfer. Lastly, it must be mentioned that the large fluctuations
at Ro*=0.02 might also be due to the under-captured small scale structures for this simulation.
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Figure 10: Time signals from the volume averaged derivation of the Nusselt number (equation 31). Black:
non-rotational (S0); magenta: Ro*=0.2 (S6); green: Ro*=0.1 (S7); red: Ro*=0.05 (S9); blue: Ro*=0.02
(S10).

5 Concluding remarks

Direct numerical simulations were conducted for MRRB convection in a cylindrical domain. Based on
the hypothesis of the bachelor project by Bob Beunen, this study provides a broader parameter sweep
which confirms that indeed incredibly high Nusselt numbers can be achieved, a quadruplication compared
to the non-rotational equivalent for these fluid parameters. The added Euler force for this type of RB
convection causes an alternative stabilizing mechanism to emerge, different from the LSC and vertical
plumes that are found in confined and rotational RB convection respectively. Despite the dominant
angular fluctuations, a surprisingly stable double convection roll structure appears in the r − z plane.
The average velocity of these convection rolls seems to correlate with the amplitude of the modulation
resulting in an asymptotic behaviour which seems to follow a scaling law. Attention needs to be given
to optimizing the simulation process, as the main limiting factor of this research has proven to be the
computational time. This could be done by looking into options for parallel simulation on multiple
cores. A lower computational cost would pave the way for repeating such a parameter sweep at higher
Rayleigh numbers, whilst taking better care of the resolution requirements. It will be worthwhile to see
whether the flow structure in this asymptotic region holds for different fluid parameters. Lastly, more
experimental results alongside the DNS would benefit this research. It remains to be seen whether the
found asymptotic region is achievable in an experimental setting, although the study by Niemela et al
shows promising results in this direction. Experimental verification of this effect could subsequently open
up possibilities for industrial applications of modulated rotating Rayleigh-Bénard convection.
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6 Appendix

(a) (b)

(c) (d)

Figure 11: Temperature gradient along a vertical line; Ro∗ = 0.05,Roω = 0.1, time = 500 for (a) r = 0.08
(in the bulk) and (b) r = 0.47 (close to the sidewall); Ro∗ = 0.02,Roω = 0.1, time = 500 for (c) r = 0.08
(in the bulk) and (d) r = 0.47 (close to the sidewall).
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(a) (b) (c) (d)

Figure 12: Temperature fluctuations (RMS) for simulations (a) S0, non-rotational; (b) S5, Ro*=0.4; (c)
S7, Ro*=0.1; (d) S9, Ro*=0.05.

(a) (b) (c) (d)

Figure 13: Mean vertical velocity for simulations (a) S0, non-rotational; (b) S5, Ro*=0.4; (c) S7, Ro*=0.1;
(d) S9, Ro*=0.05.

(a) (b) (c) (d)

Figure 14: Additional statistical quantities for simulation S9 (Ro*=0.05); (a) mean radial velocity, (b)
angular fluctuations (RMS), (c) radial fluctuations (RMS) and (d) axial fluctuations (RMS).
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Figure 15: Angular-averaged temperature as fucntion of height, close to the sidewall at r ≈ 0.47. For
simulations S0, non-rotational (black solid line), S5, Ro*=0.4 (blue long dashed line), S7, Ro*=0.1 (red
short dashed line) and S9, Ro*=0.05 (green dotted line). Vertical and horizontal dashed lines represent
half height and average temperature respectively.

Figure 16: Compensated Nusselt values Nu · (Ro∗)0.45 for the various simulations. Blue squares: Roω =
0.2, including some previous results by (Beunen and Kunnen, 2019); red circles: Roω = 0.1
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