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Abstract— Morphing attacks currently are a threat to face
identification systems, which is why various morph detection
systems are being investigated. The most-used method for mor-
phing is the landmark-based method. Therefore, it is possible
that novel morph detection systems are overfitted to detect
landmark-based morphs. This research addresses methods to
construct fundamentally different morphs using latent spaces.
One approach uses Principal Component Analysis (PCA) for
generating morphs. We found that PCA is not suitable and
explain why. We also used a Variational Auto Encoder (VAE)
to create a method for creating morphs through latent spaces
which was more successful. The resulting morphs are not
convincing enough to fool an existing face recognition system,
but they are close. These VAE-based morphs were tested on
an existing morph detection system, which was trained on
landmark-based morphs, and it was not able to detect any
of the novel morphs we created using the VAE-based method.

I. AN INTRODUCTION TO MORPHING, PCA AND VAES

Identification through facial image recognition is used
in many applications, such as unlocking your phone or at
border control. At border control, this process is sometimes
automated. The problem is, that both the software and border
officials that perform this identification can be tricked by
morphed facial images[8].

A morphed facial image is a combined image of two
different faces. If person A wants to fool a recognition system
to believe he/she is actually person B, person A can can com-
bine a picture of him/herself with a picture of person B. The
resulting picture is called a morph. When an identification
system looks at this morph, it will consider person A and
the morph as a match, while also considering person B and
the morph as a match. The most-used method for morphing
images consists of landmark detection, triangulation, warping
and blending. The resulting morphs are hard to detect for
computers and humans alike[16].

This research attempts to find new methods of creating
morphs, so new morph detection techniques have a wider
spectrum of morphs to measure their performance with. The
first method that has been looked into is principal component
analysis (PCA). PCA is a method to achieve dimensionality
reduction whilst keeping maximum information density. The
other method that has been looked into is based on variational
autoencoders (VAEs). VAEs are neural networks trained to
encode and decode data with small information loss. Once
such a neural network is trained, it can effectively achieve the
same: reduce data size, while keeping as much information
as possible.
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An image can be reconstructed from the reduced data.
Though their methods differ, both PCA and VAEs can per-
form such a reconstruction. Even though some information
is lost during compression of the data, an image can be
reconstructed. The more data is lost, the lesser the quality of
the resulting image. We refer to the compressed data as the
latent space. The general idea of morphing is then equal for
both methods:

1) Compress facial images A and B into vectors in the
latent space

2) Create a new latent vector by combining the vectors
of A and B

3) Construct a morph by reconstructing the new latent
vector

The combination of vectors A and B into a new latent
vector can be done in different ways. For example, the
average of the vectors A and B can be taken: 0.5 ·A+0.5 ·B.
However, either subject could also be given a more prominent
place in the resulting vector, by putting more weight on that
value. This results in the following: α · A + (1 − α) · B,
where alpha is a factor to give more prominence to one of
the subjects. In both cases, experimentation is needed to see
if these morphed images are realistic and if they would fool
established facial recognition systems such as FaceVACS
[5][1] and also see if they would fool humans.

The novel morphing techniques were evaluated using
existing morph-detection systems. Since the novel methods
did not exist (or at least were not widely used) when these
systems were made, these systems were trained on landmark-
based morphs. We therefore expect them to perform worse
on detecting morphs created using our novel methods.

The remainder of this paper is structured as follows. In
chapter II the research questions are outlined. An overview
of the related work is summarised in chapter III. The theory
of the research is further explained in chapter IV and the
experiment setup on how this theory was used to answer the
research questions is outlined in chapter V. In chapter VII
we then proceed to interpret the results of the experiments;
what do they mean and have they answered our questions?
Finally in chapter VIII we address some options for future
work that could improve our results.

II. RESEARCH QUESTIONS

Can we use latent spaces to create convincing morphs?
1) Can PCA and VAE be used to create convincing

morphs?
a) How well can an identification system distinguish

between the morphs and the two subjects of the
morph?



b) How well can existing detection systems detect
such morphs?

2) Are the novel morphs and more traditional morphs
fundamentally different?

III. OTHER RESEARCH IN THIS FIELD

A. Morph creation

Morphing an image is the process of gradually trans-
forming one image to another and stopping somewhere
along the way. The image therefore resembles both the
starting and target image. The idea of using morphed face
images to fool facial recognition systems stems from [8].
They manually morphed images using photo editing software
and the resulting images were accepted by common facial
recognition systems. This means that the facial recognition
system regarded the resulting image and the original images
to be images of the same person. For human operators,
it would also be hard to distinguish between the morphs
and genuine images. The effects of this were measured in
[7], which concludes that current systems are easily fooled
by manipulated images. Their suggested solution is to no
longer accept images brought in by citizens during document
issuing, but instead make a capture of the person in question
at the moment of document issuing. However, this approach
has its own drawbacks, such as no longer allowing online
document requests, and realistically will not be implemented
any time soon.

Fig. 1. Landmark detection and triangulation [17]

The most commonly used morphing procedure is based on
landmarks. First, these landmarks are detected in both faces.
Then these landmark-points are triangulated. See figure 1 for
an example of landmark detection and triangulation. These
triangles are then warped to match, after which the pixel
values are interpolated for a value 0 < α < 1, where 0
means the morph will be identical to the first input image
and 1 means it will be identical to the second input image.
Another method is to draw corresponding lines on both
images, for example around the mouth or nose. Then for each
pixel the distance to each line is calculated and using these
distances, corresponding pixels are found and interpolated,

Fig. 2. Morph made using landmark detection, triangulation, warping and
blending [17]

creating a morphed image. The drawn lines are usually based
on facial landmarks, making this method very similar to the
first method. For an example of a resulting landmark-based
morph, see figure 2. The procedure for creating landmark-
based morphs is outlined in figure 3.

Fig. 3. Landmark-based morphing procedure

[6] used the first method and suggested that an optimal
value for α is between 0.2 and 0.3. Values closer to 0.5
make it more likely that humans will not accept the morphed
image if the two source faces are not very much alike.

A distinction is to be made between full morphs, as
described above, and splicing morphs as described in [16].
They use the same first steps to create a morphed image,
but then cut out the facial region and paste it back into one
of the original images. This results in an image with fewer
visible artifacts that resulted from the morphing process.

Many variations on the methods described above have
been used to generate datasets of morphed images. For
example, [28] and [24] use Poisson blending to improve
the splicing method and further remove blending artifacts.
[19] uses a combined method, taking the advantages of both
complete morphing and spliced morphing.

Another method used in generating morphed images is the
use of generative adversarial networks (GANs). [12] shows
this on a broad level and [3] uses this technique specifically
for face morphing attacks. However, thus far this has only
been performed on 64x64-pixel images, so the results have
no real-world applicability yet.

Many open source solutions are available to apply the
above techniques, most of which use OpenCV[17].

B. Morph detection

Various methods have been investigated to detect morphed
images. For example, [24] trained a Convolutional Neural
Network (CNN)[15] to detect morphed images. However,
they also generated the morphed images themselves, which
could mean the network has been overfitted to their morphing
method. [21] train a CNN on both digital and scanned pic-
tures. They also generate their own dataset and seem to have
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used rather high quality images. [20] use an SVM classifier
to detect morphs after extracting Binarized Statistical Image
Features (BSIF) on the images. They obtained their dataset
by first taking the pictures themselves and secondly also
making the morphed images from those pictures. Again, this
could lead to overfitted machine learning. The third detection
method [18] is based on image degradation analysis. They as-
sume that a morphed image creates certain blending artifacts.
Therefore, an authentic image will have more detectable
corners in the image than morphed images.

[6] perform a technique they call ’demorphing’ to attempt
to retrieve the original images of the subjects in order to de-
tect that a morph had been entered. Without their technique,
a criminal has 60-70% chance to fool an automated border
control (ABC) system, with their technique that lowers to
2.9-18.8%, for the best chosen α values. Their system only
reports 1-2% false warnings. However, their demorphing
technique assumes a morphing technique based on landmark
triangulation. Therefore, it may perform much worse on
different morphing techniques.

The problem with most morphing detection approaches is
the underlying data. They are usually trained and/or tested on
databases with one type of morph. Those that are trained on
multiple types of morphs can still be fooled easily by simple
image manipulation techniques, as clearly demonstrated in
[26].

IV. MORPH CREATION IN THE LATENT SPACE

A. Normalise face pictures

Before we start training models to create morphs, we need
to have a good dataset. We used the FRGC-dataset [4] and
normalised the pictures from that set. We used 126 subjects
for our testing set, which consists of two different images
of each subject. The remaining images of those subjects and
other subjects in the FRGC-dataset are used for training. This
is a total of 24.332 images in the training set.

Fig. 4. Image normalisation process

For our PCA-approach we wanted the center of the eyes
to always be in the exact same position, such that the biggest
variance would be the differences between faces of different
people. Therefore, each image goes through the procedure in
figure 4. An example of a start image and normalised image
using N = 160 and M = 55 is given in figure 5. These are
the parameters we used for normalisation.

Fig. 5. Example normalisation of image

B. Principal Component Analysis

Using principal component analysis (PCA) for analysing
faces was first done in [25]. The technique was later extended
to use for facial recognition in [27].

A problem with using PCA for constructing images is that
the result is likely to be blurry if PCA is used conventionally.
[2] attempts to improve this by first reshaping the face to an
average so the key facial features align better. However, this
results in faces with all the same shape. A solution to this
using so called eigenshapes is used in [10]. They also use
PCA to generate new faces. This can be useful for example in
the composition of faces from witness information. However,
PCA thus far has not been used for generating face morph
images.

To construct morphed images using PCA, we first went
through the following training phase: take N images of D×
D pixels, map each value in the range 0− 255 to the range
0− 1, then we put all pixel values for 3 colour channels, in
one row of D2 × 3 values. We then have N rows of 0 − 1
values on which we perform PCA. From that we take M
principal components, also called eigenvectors or eigenfaces.
After the training, we can create morphs using the following
procedure: take image A and image B, map the pixel values,
put them in single rows. Then project these rows on the prior
chosen M principal components. This results in two latent
vectors, LA for image A and LB for B. We then combine
these two latent vectors using Lnew = α ·LA+(1−α) ·LB ,
where α is as explained in section I. We can now reconstruct
an image by reversing the new latent vector Lnew.

These steps are also outlined in figure 6.

Fig. 6. PCA based morphing procedure
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C. Variational Autoencoder (VAE)

The other technique we used to attempt creating morphs is
called variational auto encoders [14] [22]. Auto encoders are
a certain type of neural network where the dimensions of the
layers of the network are large on the outside and small in
the middle. The outer layers, the starting and ending layers,
are of size equal to the size of the normalised images. An
image is then fed through the network and some image comes
out. A loss-function then determines how well the network
has performed and the outcome, the loss, is used to train
the network through back propagation. A properly trained
network will therefore output an image comparable to the
input image. However, the middle of the network consists
of a layer of low dimension. Therefore, this layer contains
an encoding of the image. We call this encoding the latent
space of the auto encoder. An example of this is given in
figure 7.

Fig. 7. VAE example

Variational auto encoders are a variation on that which
tries to find a normal distribution of the latent space. Because
of this normal distribution, any latent vector within that
distribution will have a more predictable decoded image. By
changing values in latent vectors or selecting new, random
latent vectors, a VAE can be used to generate new data. In
our research, VAEs are used so the average latent vector
(as explained in the next paragraph) between two subjects is
more likely to decode into a convincing morph.

To create morphs, we separate the left and right half of the
VAE, so we can use the left half for encoding images and
the right half for decoding latent vectors. Morphing is then
simply done by encoding two images using the left half of
the VAE into the latent space, combining their latent vectors
into a new vector and then decoding this new vector using the
right half of the VAE into a new image. A visual overview
of this VAE-based morphing is given in figure 8.

Fig. 8. VAE morphing

A variation on VAEs called β-VAE might be useful for
generating morphs. This variation pushes the training of
the VAE such that each node in the smallest layer, the
latent space, is uncorrelated to the other nodes in that layer.
Therefore, they should all learn something different about the
input image. This could lead to a latent space in which each
node represents a particular facial feature, therefore further
separating this technique from landmark-morphing which is
not based on facial features.

The steps to build a VAE-morpher are outlined in figure
9.

Fig. 9. VAE based morphing procedure

VAEs are able to do what they are made for, because of
the structure of the neural network. However, within this
structure many variations are still possible. First of all, the
VAE we designed is a convolutional neural network[15],
which means that we use some convolutional layers. This
approach was chosen because convolutional networks have
shown to be effective for networks processing images. A
convolutional layer has the following parameters: kernel size,
stride size, padding size and output kernels. In our network,
each convolutional layer is followed up by a maxpooling-
procedure[23]. Our network consists of an encoder and
decoder part. The encoder consists of four convolutional
layers and one fully connected layer. The decoder consists
of five deconvolutional layers, that attempt to reverse the
process of the encoder. Table I shows the structure for the
VAE.

The fully connected layer actually consists of two layers
of both 256 nodes. These are both fully connected to the
output of the last convolutional layer of the encoder. The
output of these fully connected layers is used for the repara-
materization trick from which the latent vector is calculated.
In effect, one of these two layers represents the mean and
the other the standard deviation. From these two 256-length
vectors, we calculate the latent vector, which is then used as
input for the first layer of the decoder.

An important aspect of a VAE, and any neural network, is
the loss function. We found during the training of the network
that it would not capture detail very well. The output images
would remain blurry. We therefore introduced an extra factor
to the loss function that is intended to describe the loss in
detail between the input image and the reconstruction the
network makes.

1) Binary Cross Entropy (BCE) loss or reconstruction
loss: this loss is a pixel-by-pixel loss between the input
and output images of the network. Each epoch during
training, this loss had a value between 0.55− 0.6.
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TABLE I
LAYER STRUCTURE OF ENCODER

Encoder

Input image size Kernel size Stride Padding Output kernels Maxpooling size Activation function
160 4 2 2 32 2 Rectified Linear Unit
40 4 2 2 64 2 Rectified Linear Unit
10 3 2 2 128 2 Rectified Linear Unit
3 3 2 2 256 2 Rectified Linear Unit

Decoder

Input image size Kernel size Stride Padding Output kernels Maxpooling size Activation function
1 2 2 0 256 1 Rectified Linear Unit
2 2 2 0 128 1 Rectified Linear Unit
4 4 2 0 64 1 Rectified Linear Unit
10 4 4 0 32 1 Rectified Linear Unit
40 4 4 0 3 1 Sigmoid

Learning rate: 0.001
Optimisation method: Adam

2) Kullback Leibler Divergence (KLD) loss: this loss
measures the difference between the distribution of
the latent space our network has learned and a normal
distribution. Each epoch during training, this loss had
a value between 11, 000−13, 000. However, we scaled
this value by 10−6 so it would not force the network
to a normal distribution too much. The result of this
is that we effectively built a regular auto encoder. We
tried various ways of fitting it to a normal distribution
among which gradually increasing the contributing fac-
tor of this KLD-loss. However, we always found that it
would either not contribute enough for the distribution
to be close to normal, or it would contribute so much
that all the reconstructions looked very much alike.
This is further discussed in section VIII.

3) Gaussian highpass loss or detail loss: this loss is
intended to measure how much detail has been lost in
reconstruction. We do this by comparing a gaussian
highpass version of both the input and output and
measuring the distance between them. The gaussian
highpass of an image is calculated by taking a gaussian
blur of an image and substracting that of the image.
An example is shown in figure 10. Each epoch during
training, this loss had a value between 1.7− 1.9.

This results in the following formula: loss = BCE +
0, 000001 ·KLD + detail

Fig. 10. Highpass image example, the right image is brightened to make
the effect visual

For training the VAE, we used a learning rate of 0.001,

V. EXPERIMENTS AND RESULTS

A. Goal of the experiments

In general, the goal of the experiments is to answer the
research questions. Therefore, the following experiments cor-
respond to the aforementioned research questions in section
II. To answer question 1a, we first had to build the morphing
systems. The design of these systems is further explained in
sections V-B.1 and V-B.2. We then performed an experiment
to test them which is addressed in V-B.5. Question 1b is
addressed in section V-B.3. Question 2 is partly answered
by section V-B.3 and partly by section V-B.4. Table II
visualises which experiment is intended to answer which
research question.

TABLE II
RESEARCH QUESTIONS AND EXPERIMENTS

Research question / Experiment V-B.5 V-B.3 V-B.4
1a x
1b x
2 x x

All source code produced for this research is open sourced
at [11].

B. Setup of the experiments

1) Build morpher based on PCA: We found that creating
morphs through PCA does not work. The best image that can
be created with PCA is exactly equal to adding up the two
source images and dividing by 2. This is in a situation where
all information is retained, which is not the goal of PCA.
This is because all PCA operations are linear operations.
The problem is shown in figure 11 where all blocks with an
apostrophe indicate latent-vectors. In the upper half of the
image we see the intended procedure for creating a morph
through PCA. In the bottom half however, we see what
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Fig. 11. PCA problem

happens if we first add up the two source images and then
put it through the same procedure. The result is the exact
same image.

2) Training the morpher based on VAE: After training our
VAE-model for quite a while, we can the reconstructions
it makes of the input images look like the input image,
as intended. Some images however, are too hard for it to
accurately reconstruct, because of posture, hair or other
variations that are relatively scarce in the dataset. In figure
12 we see a reconstruction that is not accurate and in figure
13 we see one that was reconstructed seemingly better.

Fig. 12. Relatively bad reconstruction by VAE

Fig. 13. Relatively good reconstruction by VAE

In both images we can see that, even though we use the
detail loss, it has difficulty reconstructing detail in the image.
The reconstructions are always blurry compared to the input

image. Since the model only seems to be able to reconstruct
blurry-looking images, the morphs are also blurry. In figure
14 we see a few morphs generated by our model using the
earlier described methods.

Fig. 14. From left to right: input A, reconstruction of A, morph,
reconstruction of B, input B

3) Test morphs on existing detector: The goal of this
research is not only to create convincing morphs, which is
addressed in the next section, but also to generate morphs
that are fundamentally different from morphs created using
the conventional triangulation approach. If our morphs are
not detected by a detection system that is effective in
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detecting triangulation morphs, then our morphs are therefore
fundamentally different.

We tested our morphs on an existing identifier that is
based on detecting local binary patterns (LBPs). To train
this system we generated landmark-based morphs with the
same dataset, including normalisation, as that we used for our
VAE. The detection results are shown in III. The detector was
able to detect 100% of the landmark-based morphs during
testing, but was unable to detect any of our novel morphs.

TABLE III
MORPH DETECTION SCORES

Detected
Landmark morphs 100%
VAE morphs 0%

4) Difference between morphing methods: Another way
of measuring how different our novel morphs are from the
landmark-based morphs is by measuring the distance be-
tween the two. By distance, we mean the measured distance
by a face recognition system. To test this, we used a python
implementation[9] of a face recognition model[13] by dlib.
The method is as follows: take pictures of two different
subjects SubjectA and SubjectB. Create a landmark-based
morph from these two images and create a novel morph from
these two images. Then measure the distance between these
two morphs. If the distance is small, it means the morphs are,
in the eyes of the face recogniser, very alike. If the distance
is high, it means they are different.

In figure 15 we see an example of two subjects and morphs
created with the two different methods.

Fig. 15. An example of the different morphing methods

We measured the distances for the two morphing methods
for a total of 249 morphs. The distances between these two
morphs are plotted in figure 16. This figure shows that, from
the perspective of the identifier, the two morphing systems
are not very alike. The orange part is for combinations of
subjects for which the VAE-morph was accepted as both
subject A and B. We see that these successful morphs are
more like the landmark-based morphs than when we look at
all morphs combined, but are still quite different.

5) Test morphs with source images on existing identifier:
If our morphs are not convincing, they are of no use.
Therefore, we want to know whether or not our morphs can
be used to fool a face recognizer. For this we used the one as

Fig. 16. Distances between the novel and landmark-based morphing
methods

described in section V-B.4. To run this experiment we need to
have two different pictures of two different subjects. We call
these subjects SubjectA and SubjectB and there respective
samples A1, A2, B1 and B2. Samples A1 and B1 get passed
through our network resulting in latent vectors (LA1, LB1)
and a reconstruction (RA1, RB1). To create a morph from
samples A1 and B1, we calculate Lmorph = LA1+LB1

2 .
That morph is then passed through the decoder part of the
network, resulting in a morph.

To see how well our morphs work, we measure various
distances between faces. This is done by encoding the faces
in two vectors of size 128 and measuring the euclidean
distance between those two vectors. The distance, 0 − 1,
is a metric for how different two faces are, supplied by the
face recognition system. A low number means two faces are
likely from the same subject, a high number means they
are different. The face recognition model uses a threshold
of 0.6, meaning that anything below that threshold indicates
two faces belong to the same subject.

For a morph to fool the recognition system, this means
that the distance between the morph and samples A2 and B2

should be below the threshold. Besides that, we also measure
the genuine and imposter scores:

• Sample 1, sample 2: this indicates how different the
two sample images of the subject are. This is also
the distance that is measured with regular uses of an
identifier: it compares a live image of a subject with a
reference picture. This distance is commonly known as
the genuine score.

• Sample 2, morph: this indicates how much the morph
and the subjects are alike. The goal of the morphs is to
make this distance close to the genuine score. We use
sample 2 to resemble a situation where a live image
is compared to a morph reference picture. We call this
score the morph score.

• Sample 1 A, sample 2 B: this is the distance between the
two different subjects. I.e. the situation where subject B
tries to identify as subject A. This is commonly known
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as the imposter score.

Fig. 17. Genuine, morph and imposter scores for the novel method

In figure 17 we see the genuine, morph and imposter
scores. The y-axis is labeled twice, since there are only 126
subjects and thus genuine scores, whilst there are 126∗125

2
combinations of subjects and thus morph and imposter
scores. A perfect identification system will have the genuine
and imposter scores completely separated. If the morph
scores are equal to the imposter scores, it means they are
not working. If they are equal to the genuine scores they are
working. We can see that the morphs are in the middle, but
more on the imposter side of the scores. However, we can
also see that some morphs certainly overlap with the genuine
scores, indicating that some successful morphs are present.

Fig. 18. Morph scores and imposter scores plotted

To further examine these scores, we can look at figure 18.
In this graph we can see lots of morphs plotted. On the X-
axis is the distance between subject A and B; the imposter
score. On the Y-axis is the distance between the morph and
either subject A (orange) or B (blue); the morph score. The
lines indicate the threshold of the face identification system.
Thus, all successful morphs are below the horizontal line.

If a morph is successful, it does not imply that it also
looks convincing to the human eye. In figure 19 we see an

Fig. 19. Odd looking, but successful morph between a man and a woman

example of a successful morph. In this case we morphed a
man and a woman and the resulting morph is accepted for
both subjects, but to the human eye this is not convincing at
all.

Fig. 20. Successful morph that looks better

However, in figure 20 we see another successful morph,
but one that looks much better.

Fig. 21. Successful morph between two men that look alike

In figure 21 we see an example of two men that look alike.
The distance between the subjects’ original images is already
below the threshold. The resulting morph is as well for both
subjects.

VI. DISCUSSIONS

In figure 17 we see the distribution of our three scores:
genuine, morph and imposter. The figure shows that most of
the morphs are below the threshold of 0.6, but that quite a
lot are also below that threshold. This indicates that although
the morphs are not successful on average, we have generated
there are successful morphs, such as figures 19 and 20.

We can also see in figure 17 that the distribution of the
morphs is shifted to the left compared to the imposter scores.
This indicates that overall, our morphs do improve the scores
and thus make it harder for a face recognition system.

In figure 18 we see a clear pattern from the bottom left to
the top right. This means that the less subject A and B look
like each other, the less the resulting morph will look like A
and B and vice versa. If subject A and B do not look like each
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other, their imposter score will be higher than 0.6. I.e. most
imposter scores will be on the right side of the vertical line.
If a morph is successful, the distance to it and subject A or B
will be lower than 0.6, thus be below the horizontal line. The
morphs that therefore truly fool the system are in the lower
right quadrant: morphs that are below the threshold whereas
the distance between the subjects is above the threshold.

This analysis of our morphs gives us an answer to re-
search question 1 and its sub-questions: yes we can create
convincing morphs. For a criminal to be successful, he/she
does not need all morphs or even for the majority of them
to be successful; just one successful morph suffices.

To answer research question 2 we added another experi-
ment in section V-B.4. In that experiment we use the face
identifier to measure the distance between the landmark-
morph and the novel morph of the same subjects A and
B. The distribution of that distance in figure 16, shows that
the morphs are clearly different. Quite some of these morphs
are so different that the identifier regards them as different
people, seeing their distance is above the 0.6 threshold. This,
combined with the experiment in section V-B.3 gives us an
answer to question 2: yes they are fundamentally different.

VII. CONCLUSIONS

In this research we have tried to answer the following
questions:

1) Can PCA and VAE be used to create convincing
morphs?

a) How well can an identification system distinguish
between the morphs and the two subjects of the
morph?

b) How well can existing detection systems detect
such morphs?

2) Are the novel morphs and more traditional morphs
fundamentally different?

In order to answer these questions, we built two morphing-
systems; one based on Principal Component Analysis (PCA)
and one based on Variational Auto Encoders (VAEs). The
PCA-based morphing system turned out to be impossible to
make, therefore answering it’s respective half of question 1.

The VAE-based system yielded good results as we have
seen in the experiments and discussions. We built a system
based on a convolutional neural network with in the middle
of the network a small, fully connected layer, resulting in a
latent space. The left half of the network encodes the image
into the latent space, whereas the right half decodes the latent
space into an image. Using these halves separately, we can
encode two different images, average their latent spaces and
decode the result into a new image. That resulting image is
then a morph of the input images.

The analysis and discussion of the distances, as presented
in section VI gives us an answer to research question 1a:
yes, it is possible to find a morph between two subjects that
the identifier will recognize as both subjects.

The experiment in section V-B.3 shows us that these
morphs are truly different from the landmark-based morphs
and that an existing detection system, which successfully
detects landmark-morphs, cannot detect our novel morphs.
This gives us an answer to research question 1b.

In conclusion, this means that VAEs can indeed be used
to create convincing morphs, therefore answering question
1.

To be useful, these morphs should also prove to be fun-
damentally different from landmark-based morphs. Because
if not, why go throught the effort of generating such morphs
if the landmark-based method holds the same result. In
the discussions we saw two experiments that show that
the novel morphs are indeed fundamentally different from
the landmark-based morphs. Giving research question 2 the
answer: yes.

VIII. FUTURE WORK

We tried a number of variations to improve our results
and thus our morphs. However, more variations can still be
looked into that could hold better results. A few suggestions
are following.

1) Different structures for the VAE: In our research
we tried used convolutional layers with certain parameters.
Tweaking these parameters or adding more layers might
hold different results. For example, it’s possible that our
max-pooling procedure loses too much information which
might in turn be part of the cause our reconstructions are
blurry. Experimenting with different structures could make a
difference.

Another improvement in this regard could be to train
on higher resolution images combined with a bigger latent
space. We first trained our model on a smaller latent space
which resulted in reconstructions with even less detail than
we have now.

As discussed in section IV-C, the network we eventually
trained and tested is effectively a regular auto encoder
and not a variational auto encoder. We attempted different
methods of implementing the variational part:

1) Find a static factor for the KLD-loss such that a normal
distribution is approached by the network while still
having good reconstructions (low BCE-score).

2) First train the network without the KLD-loss, but once
the network has learned to make good reconstructions,
add in the KLD-loss.

3) Gradually build up the KLD-loss by multiplying the
KLD-loss with the epoch number.

None of the above methods yielded good results for our
research. However, other methods could be attempted to
better introduce the variational part of the VAE.

2) Initialising the network with an average face: In the-
ory, the purpose of the model is to learn what makes subjects’
faces unique and capture that in the latent space such that
it can reconstruct it. To that extend, initialising the weights
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of the neural network in such a way that it will reconstruct
an average face, could help the training of the network focus
more on what makes subjects’ faces unique and could in turn
improve the amount of detail in the reconstructions.

3) Different datasets: In this research we use a large
dataset with 126 different subjects. The images in the dataset
are normalised up to a certain degree. However, variations in
posture and emotional expression are still present and could
cause too much variation for the model to learn. To make
a convincing morph between two subjects, it does not need
to learn all this variation. Therefore, adjusting the dataset to
contain homogeneous facial expressions and postures could
improve morphing results, whilst having no effect on the
quality of the morph.

4) β-VAE: In section IV-C we discussed the option of
using a variation on VAEs called β-VAE. In this research
we did test this variation, so it is still worth trying to see if
that yields better morphs.
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