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Summary 
 

Dominogames are a variant of monominogames (Timmer), the big difference being that players now 

play dominoes instead of monominoes. Whereas monominoes take up exactly one cell, dominoes take 

up two. This means they can be played horizontally or vertically. This also means that players can leave 

gaps in the game board that cannot be occupied, for example when a player plays horizontal over a 

single vertical domino. Obviously, when the game board has an odd number of cells, the game always 

ends up with at least one empty cell. Following up on the researches about monominogames (Timmer), 

and dominogames (Klomp and van Dorenvanck), this research is focussed on proving how two-column 

games will progress with any number of rows and what the payoffs will be. For this we assume both 

players play rationally. What we are looking for is what we, in this research, call Equilibrium Plays. A 

game can progress through different move sequences. If in a move sequence there exists no move by 

either player that could be changed to gain a higher payoff for the corresponding player, the move 

sequence is called an Equilibrium Play.  

Dominogames are denoted by 𝐷(𝐶, 𝑅). Here, 𝐷 stands for dominogame, which has 𝐶 columns and 𝑅 

rows. When, for example, the bottom two rows are completely filled up (halfway through the game), 

and the rest isn’t yet, we speak of a raised game. Let’s say there are four rows left and there are only 

two columns. Then the game that is left is a raised two-column game with four rows. This is denoted 

by 𝐷(2, 4)+2. It was a six-row game, but the bottom two rows are already occupied and now there are 

only four rows left.  

Klomp and van Dorenvanck showed us, in their research, what they thought were the Equilibrium Plays 

for two-column games with up to nine rows. In these nine Equilibrium Plays a certain pattern could be 

found that repeated itself after every four rows. With proof that this pattern holds, we could predict 

the final state of the game and calculate the payoffs for the players for two-column games with any 

number of rows. The pattern repeating itself after every four rows immediately leads to thinking about 

mathematical induction. If we prove the first few Equilibrium Plays correct, we can use this knowledge 

to prove what the Equilibrium Play of any two-column game is. For this we use a certain lemma: If we 

know what the Equilibrium Play of a certain 𝐷(𝐶, 𝑅) game is, then this is also the Equilibrium Play of a 

𝐷(𝐶, 𝑅)+𝑞 game for any 𝑞. We used this to prove the payoffs and the final state of the game for any 

𝐷(2, 𝑟) game, using the knowledge of the payoffs and the final state of the game for the 𝐷(2, 𝑟 − 1) 

game. But, because the pattern only seemed to repeat itself after every four rows, the induction proof 

had to be split up into four parts, one for every group of row numbers: 𝑅 𝑚𝑜𝑑 4 = 0, 𝑅 𝑚𝑜𝑑 4 = 1, 

𝑅 𝑚𝑜𝑑 4 = 2 and 𝑅 𝑚𝑜𝑑 4 = 3. Also, for the induction basis we needed the proofs for the first four 

two-column games because of this, instead of only the first. Using mathematical induction in this way, 

we proved that the payoffs of any two-column dominogame could be calculated using the formulas of 

table 1. Here, the functions 𝑉1 and 𝑉2, are the payoffs for player one and player two respectively. For 

any two-column game, for example the 𝐷(2, 17) game, one must determine in what row category this 

game falls. This would be 𝑅 𝑚𝑜𝑑 4 = 1, meaning that 𝑘 = 4. Now, one can use the corresponding 

formulas to calculate the payoffs of player one and player two for the Equilibrium Play of this game. 

 V1, R V2, R 

𝑅 = 4𝑘 8𝑘2 + 𝑘 8𝑘2 + 3𝑘 
𝑅 = 4𝑘 + 1 8𝑘2 + 7𝑘 + 2 8𝑘2 + 5𝑘 
𝑅 = 4𝑘 + 2 8𝑘2 + 9𝑘 + 3 8𝑘2 + 11𝑘 + 3 
𝑅 = 4𝑘 + 3 8𝑘2 + 15𝑘 + 7 8𝑘2 + 13𝑘 + 5 

Table 1: Formulas for calculating the payoffs of two-column games 
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The nature of this proof also tells us that the final state of 𝐷(2, 𝑅) games is indeed following the 

pattern found in the first nine Equilibrium Plays. Also, this proof tells us that unoccupied cells never 

occur in the Equilibrium Plays of 𝐷(2, 𝑅) games. 

Also, some research on three-column games and four-column games was done. For three-column 

games the first four Equilibrium Plays were found, and for four-column games the first five were found. 

These Equilibrium Plays also gave some presumptions about how the game would progress when more 

rows would be added. These would be useful for further research, just like the presumptions of Klomp 

and van Dorenvanck were very useful for this research. 

The research was concluded with some perceptions and insights acquired during this research, and a 

few suggestions for further research.  
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1 Introduction 
 

The Research of Mathematics is a part of the master M-ECB. The research was done under supervision 

of Dr. J. B. Timmer of Mathematics of Operations Research (MOR). I followed the courses Graph 

Theory, Game Theory and Discrete optimization prior to this research. 

This research is about dominogames, a variant of monominogames (Timmer, Aarts, van Dorenvanck, 

& Klomp, 2017). Dominogames were also previously researched (van Dorenvanck & Klomp, 2010), with 

a few differences to the rules. Monominogames are played with monominoes, whereas dominogames 

are played with dominoes. A monomino fills up only one cell of the game board, and dominoes fill up 

two adjacent cells. The goal of the game is to try to maximize the payoff. Units of payoff are earned by 

playing domino’s in certain rows or columns. Each cell occupied by a player on row 1 earns him one 

unit of payoff. A cell occupied on row 2 is worth two units of payoff, and so on. 

The main goal of this type of research is to find out what moves the players make if they play rationally. 

If both players played a game rationally, and every move was made to fully maximize each player’s 

own payoff, the move sequence is called an Equilibrium Play. In Equilibrium Plays, there exists no move 

that could have been played differently to increase the payoff of the corresponding player. In 

dominogames, players have extra options each turn, because they may choose to play their domino 

horizontally or vertically. Sometimes, playing horizontally may leave a gap that cannot be filled 

anymore during the remainder of the game. These cells will be left unoccupied, and the payoff units 

of these cells are then wasted. In games with an odd number of cells, there is always at least one empty 

cell at the end of a game, because players fill up two cells each turn. These extra choices and the 

possibility of leaving gaps make dominogames a bit more complicated than monominogames. This 

research was started by finding Equilibrium Plays for Dominogames with two columns and any number 

of rows. After that we found some perceptions and insights for games with three and four columns as 

well.  

Any perceptions and insights gained during this research will be written down. Also, recommendations 

will be given for potential students that want to follow up this research.  
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2 Theory 
 

This chapter will cover monominogames and dominogames, as well as some games that have 

similarities to monominogames and dominogames. Also, some relevant theory that will be useful for 

the research will be covered here. This chapter will conclude with the research question and a 

paragraph about the setup of the research. 

 

2.1 Monominogames 
 

The dominogame that will be researched is a variant of similar monominogame. That is why this 
monominogame will first be introduced. 
 
The monominogame (Timmer, Aarts, van Dorenvanck, & Klomp, 2017) is a game that is played by two 
players. It has some similarities to the game ‘four in a row’, but a big difference is that the monomino 
game only ends when the board is full and there are no more moves possible. Instead of trying to be 
the last one to make a move (‘four in a row’ or ‘chess’), both players are only interested in optimizing 
their own payoffs. The game is played on a rectangular board of C columns and R rows, so the board 
consists of C x R cells. The notation 𝑀(𝐶, 𝑅) indicates a monominogame with C columns and R rows. 
The game is played with pieces called monominoes. These can cover exactly one cell of the board. The 
columns are numbered 1 to C, with the leftmost column being column 1. The rows are numbered from 
1 to R, with the bottom row being row 1. Having a monomino in a row i ∈ {1, 2, …, R} gives the player 
a payoff i. The game is played by two players, player 1 and player 2. Player 1 always begins. Each turn 
the players pick a column and place one monomino at the lowest available cell. When a player has a 
choice between cells of the same row the player chooses the column with the lowest number. The 
game only ends when all cells on the board are covered, which happens after C x R moves. After this 
each player counts their total payoff. The goal of the game is for each player to maximize their own 
payoff. The players are not interested in having a greater payoff than their opponent, only in 
maximizing their own payoff. 
 

2.2 Dominogames by Klomp and van Dorenvanck 
 

Dominogames (van Dorenvanck & Klomp, 2010) are an extension of monominogames. Instead of 
playing with monominoes, players play with dominoes. Dominoes are game pieces that cover more 
than one cell of the game board. In the article by Klomp dominoes were described as game pieces with 
lengths equal to the number of columns. This means the dimensions of dominoes are 1xC. Because of 
the rectangular form of the dominoes, players have to take into account the position as well las the 
orientation of the dominoes they place. The players can either play their dominoes vertically or 
horizontally. The notation 𝐷(𝐶, 𝑅) indicates a dominogame with R rows and C columns. 
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2.3 Other games with similarities to monomino- and dominogames 
 

2.3.1 Four in a row 
 

Four in a row is a well-known game for two players. The rules are quite different, but the game basically 

uses a square board and both players play with single-cell chips (this is basically what monominoes 

are). The chips also fall down to the lowest possible row in a column, just like with monominogames. 

Both players use different colours so that they can distinguish each other’s chips. In four in a row the 

size of the board is fixed (R and C are fixed) and players are not obliged to place their chip in the left 

most column if multiple cells on the same row are free. For visualization this game can be a basis for 

monomino games. In fact, two people could actually play a monominogame with a four in a row board 

and its chips. The rules of four in a row are quite different from monominogames though. In four in a 

row, the players don’t try to score points, but they try to make the last move. Each player tries to get 

four chips in a row, either horizontally, vertically or diagonally. When one player places a chip and gets 

four in a row, the game is finished and this player wins the game. This also means the board rarely ever 

gets completely filled with chips. As a result of these rules the players always try to work against each 

other, whereas in monominogames players are only interested in their own gains. In short, the 

mechanics of four in a row are the same, but the rules are different. 

 

2.3.2 Tetris 
 

Tetris is a well-known computer game. It is played by only one 

player. Tetris is played on a rectangular board like in 

monominogames. The board may be any size, but the standard 

size is 10 cells wide and 20 cells high. The game is played with 

game pieces called tetriminoes. Tetriminoes are pieces that 

take up four cells and are shaped differently as shown in figure 

1. One piece at a time will show up at the top side of the game board. After it appears it will start to 

fall down. While the tetrimino is falling, the player can move it left and right, or he can rotate it. After 

the tetrimino hits the bottom of the board or another tetrimino that was placed before, the next 

tetrimino will appear. When all cells of a row are filled the row is emptied and all cells above this row 

that were filled will move down by one. Clearing a row grants points to the player. The goal is to try to 

fit the tetriminoes together as tightly as possible. When a player doesn’t manage to clear enough lines, 

and the game board is filled up so that no other tetrimino fits, he loses. Tetris can never end in the 

player’s victory. The player can only hold on for so long before an inevitable loss, so the goal is to try 

and get the highest score before losing. 

 

2.3.3 Pentominoes 
 

Pentominoes (Orman & Hilarie, 1996) is a game for two players that is played on an 8x8 board. The 

game is played with pieces called pentominoes, which are pieces that cover 5 cells of the board. 

Pentominoes come in different shapes. The first player that is unable to make a move loses the game. 

The game ends when no other move is possible. There is no scoring system like in monominogames or 

Figure 1: the seven kinds of tetriminoes 
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dominogames. The pentominoes can be placed anywhere on the board, and don’t necessarily have to 

be placed on the bottom row. 

 

2.3.4 Dominono 
 

Dominono (Gardner, 2000) is a game that resembles tic-tac-toe. It can be played on a sheet of paper. 

Both players pick a symbol to play with. For example, one player uses crosses and the other uses circles. 

Unlike tic-tac-toe, where players try to get three in a row, players now try to avoid making a domino. 

A domino is created by having two of your symbols adjacent to each other horizontally or vertically, 

but not diagonally. The players try to avoid creating a domino, hence the name dominono. Whoever 

creates a domino loses the game. In this game players do not necessarily have to mark the bottom row 

first. The size of the board is not fixed. Also, just like in four in a row, players try their best to work 

against each other instead of only playing for their own gains. 

 

2.4 Dominogames in this research 
 

The dominogames that have been researched here are again a variant of the before mentioned 

dominogames, only now the dominoes always have dimension 1x2 regardless of the number of 

columns. This means that dominoes always cover 2 cells of the game board. Also, when players have 

a choice between cells of the same row, they do not have to pick the leftmost column(s) anymore. This 

can sometimes lead to situations where one player can block certain options for the other player. For 

example, in the game 𝐷(3,2), there is a difference in placing the first domino vertically in column 1 or 

column 2. Even though both options give player 1 the same amount of points, the latter deprives the 

other player of the option to place their domino horizontally. Whether this is advantage for player 1 

or not may depend on the exact situation. 

 

2.5 Game Theory 
 

Game Theory will be used to study these dominogames. Game Theory is used for analysing situations 

and predicting outcomes in situations with strategic interactions between decisionmakers/players. In 

Game Theory we look at the choices each player has and how these choices affect the choices of each 

other. Many types of games can be analysed using Game Theory. In some games the players have to 

cooperate, and in some games, they play against each other. Dominogames are non-cooperative 

games (Nash, 1951) because the players play against each other for themselves. In such games each 

player has a payoff function that each player wants to maximize. Players are rational, selfish, for they 

only care about maximizing their own payoff. Unlike games like Rock-Paper-Scissor, dominogames 

consist of a series of decisions. The players make moves in turn, instead of simultaneously. At every 

point in the game both players know what moves the other player made. This information can be used 

to decide what move to make next. In such games we speak of ‘perfect information’ (Peters, 2008). 

Both players are fully informed on their opponents’ moves. An example of a game where this is not 

the case is a card game like poker, because each player hides his cards from his opponent. The best 

strategy of each player depends on the strategy the other player uses. When the game is finished and 
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neither player could have increased their payoff by changing strategies, then this set of moves (by both 

players) is called a ‘Nash- Equilibrium’ (Peters, 2008) (Groenewoud, 2011). The Nash-Equilibrium is one 

of the most central concepts in game theory.  

 

2.6 Nash Equilibria 
 

The goal of the game is for each player to maximize his payoffs. When a player covers a cell in row i, 

this generates a payoff of i units. The goal is not to defeat the other player, but instead each player 

tries to maximise their own total payoff, regardless of the other player’s payoff. This means that each 

player doesn’t try to minimise the other player’s payoff and cares only for his own payoff. An 

interesting question is how the game will progress assuming both players do the best possible move 

every turn. Playing an optimal move means the player could not have improved his payoff by playing 

another move. In game theory we call this concept a ‘Nash Equilibrium’ (Peters, 2008) (Groenewoud, 

2011).  

 

2.7 Extensive form games and backwards induction 
 

A game in extensive form is described by a game tree. Game trees exist of nodes and edges. Each node 

is either a decision node or an end node. Each edge corresponds to an action of a player. 

Monominogames and dominogames are extensive form games. They can be described by game trees. 

Figure 2 shows the game tree of an 𝑀(2, 3) game for three players (Prakken, 2018). Here, the rules 

say that when a player can play a monomino on the same row of two or more columns, he always has 

to play the leftmost column. Next to each node we see which player has the next move, and what the 

state of the game is. For example, 3:[1,1,0] means that it is now player three’s turn, and column 1 and 

2 both have one cell occupied. Under each end node the payoffs of each player are given. Basically, 

the game tree describes every decision each player can make and what the payoffs for each player will 

be for every move sequence.  

 

Figure 2: Game Tree of an M(2, 3) game for three players 
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Using backwards induction on an extensive form game, one can find the Nash Equilibrium of the game. 

All thick edges together describe this Nash Equilibrium. This method is called backwards induction 

because when applied, one starts at the end nodes and works his way to the top node. This means one 

starts by looking at the last move of the game, and then works backwards through the sequence of 

moves that are played each turn. Starting at an end node, you thicken the next edge if this decision is 

optimal for the player’s payoff at this point. If this is done for the whole game tree there may be one 

or more routes of thick edges that go from the starting node all the way to an end node. If all players 

play rationally, they should always play along these thick routes. This way, all players try to maximize 

their own payoff. A move sequence along only thick edges will be called an Equilibrium Play. In figure 

2, we can clearly see the difference between a Nash Equilibrium and an Equilibrium Play. All thick edges 

together describe the Nash Equilibrium, while the Equilibrium Play is only described by the leftmost 

path of thick edges that goes all the way from the top to the bottom. Only the Equilibrium Plays will 

be researched, since it saves us from a lot of unnecessary work.  

Figure 3 shows what the board would look like in the end (green: player 1, yellow: 

player 2, blue: player 3). By backwards induction we have proved that this is what a 

finished 𝑀(2, 3) game for three players looks like when all players play rationally.  

Of course, the more rows and/or columns a game has, the more moves there are to 

be made, and the bigger the game tree grows. This research is about dominogames, 

and dominoes can be played horizontally or vertically. Because of this extra decision 

each player has to make, game trees grow even bigger. Drawing game trees to apply 

backwards induction to can get (too) elaborate very quickly. This is why this is only 

useful for games with a relatively small game board. 

 

2.8 Research Questions 
 

During this research the main question is: 

What are the payoffs for each player in dominogames of the form 𝐷(𝐶, 𝑅) for two players, 

when both players play Equilibrium Plays and 𝐶 ≤ 4? 

This question will be split up into sub-questions: 

- What are the payoffs for each player in 𝐷(2, 𝑅) games for two players, when both players 

play Equilibrium Plays? 

- What are the payoffs for each player in 𝐷(3, 𝑅) games for two players, when both players 

play Equilibrium Plays? 

- What are the payoffs for each player in 𝐷(4, 𝑅) games for two players, when both players 

play Equilibrium Plays?  

Figure 3: The 
Equilibrium Play of 
an M(2, 3) game 
for three players 
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3 Model 
 

The dominogames studied in this research are extensive form games played by two players. The game 

is played on a game board existing of C columns and R rows. The notation for dominogames is 𝐷(𝐶, 𝑅). 

This describes the number of columns and rows of the game. The players play with pieces called 

dominoes, game pieces that fill up two adjacent cells of the board. The dominos are inserted at the 

top of the game board, after which the domino falls down to the bottom or on top of another domino. 

Since dominoes fill up two cells, players can either choose to insert it horizontally or vertically (not 

diagonally). Each player plays one domino per turn and then his turn is immediately over. When no 

more dominos fit anywhere, the game ends. A domino only fits when it covers two cells of the game 

board. 

A cell occupied on row 𝑟 generates 𝑟 payoff units for the player owning that domino. This means that, 

for example, cells on row 5 generate 5 payoff units each and cells on row 37 generate 37 payoff units 

each. A domino played vertically occupies two cells on two different rows, which means these two cells 

generate different payoffs. The payoffs for player one and player two are denoted by 𝑣1 and 𝑣2 

respectively. The goal for each player is to maximise his own payoff. The players don’t care for the 

payoff of the opponent, only for their own payoff. So, this game is not about defeating the opponent. 

If, for example, a player plays horizontal over another single vertical domino, this leaves a gap under 

the horizontal domino. Such a move is allowed, but it means that these cells will remain unoccupied 

for the rest of the game. Leaving such gaps shortens the game and reduces the total payoff that can 

be generated. 

In this research, dominogames will be visualised with green and yellow colours for player one and 

player two respectively. We will denote the payoff earned by player one and two as 𝑣1 and 𝑣2 

respectively. In figure 4 we see two Equilibrium Plays of 𝐷(2, 2) games. Since both are basically 

mirrored variants of each other, we will just view these two as one and the same move sequence. We 

will do this whenever mirrored variants of move sequences exist. 

 

Figure 4: Two mirrored variants of an Equilibrium Play 
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4 𝐷(1, 𝑅) games 
 

Because these games have only one column, players cannot play their dominoes horizontally, which 

makes these games rather easy to research. In fact, there exists only one move sequence for each kind 

of 𝐷(1, 𝑅) game. Still, to lay a foundation for this research, we will show how these games are played 

out.  

When there is only one column, players can only play vertical in this column. This means that the 

players have to keep stacking dominoes on top of each other until no more dominoes fit the game 

board. Figure 5 illustrates this. 

 

Figure 5: the Equilibrium Plays of D(1, R) games 

Of course, we can imagine how 𝐷(1, 𝑅) games with ten or more rows will be played out. These 

Equilibrium Plays are trivial. Now we will try to formulate the payoff functions for both players so that 

we can calculate the payoff of either player for any number of rows. 

For player one we see that any time when 𝑅 𝑚𝑜𝑑 4 = 2 (𝑅 = 4𝑘 + 2) and 𝑅 𝑚𝑜𝑑 4 = 3, he gets to 

play 𝑘 + 1 dominoes. For 𝑅 𝑚𝑜𝑑 4 = 0 and 𝑅 𝑚𝑜𝑑 4 = 1 player one gets to play only 𝑘 dominoes. 

Player one’s first domino is worth 3 units of payoff. The second is worth 11, the third 19, and so on. 

The next domino is always worth 8 more than the last domino. This is because the next domino is 

raised by four rows relative to the last domino, so both of the cells it occupies earn 4 extra units of 

payoff. That makes an extra payoff of 8 units. For 𝑅 𝑚𝑜𝑑 4 = 0 and 𝑅 𝑚𝑜𝑑 4 = 1, the payoff function 

for player one is then: 

𝑣1 = ∑(3 + 4 ∙ 2 ∙ 𝑖)

𝑘−1

𝑖=0

= ∑(3 + 8𝑖)

𝑘−1

𝑖=0

 

Here, 3 is the payoff of the first domino (the one on the bottom two rows). 4 ∙ 2 ∙ 𝑖 is the extra payoff 

that the other dominoes are generating. For summations we know that: 

∑ 𝑖

𝑛

𝑖=0

= ∑ 𝑖

𝑛

𝑖=1

=
1

2
𝑛(𝑛 + 1) 
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Therefore, the payoff function V1 can be written as: 

∑(3 + 8𝑖)

𝑘−1

𝑖=0

= 3𝑘 + ∑ 8𝑖

𝑘−1

𝑖=0

= 3𝑘 + 8 ∑ 𝑖

𝑘−1

𝑖=0

= 3𝑘 + 8 (
1

2
(𝑘 − 1)𝑘) = 4𝑘2 − 𝑘 

When 𝑅 𝑚𝑜𝑑 4 = 2 or 𝑅 𝑚𝑜𝑑 4 = 3, player one gets to play one more domino, so the same function 

cannot hold. The payoff function for these two row groups is: 

𝑣1 = 3 + ∑(3 + 4 ∙ 2 ∙ 𝑖)

𝑘

𝑖=1

= 3 + 3𝑘 + 8 ∑ 𝑖

𝑘

𝑖=1

= 3 + 3𝑘 + 8(
1

2
(𝑘(𝑘 + 1)) = 4𝑘2 + 7𝑘 + 3 

 

Player two always gets to play 𝑘 dominoes, which is why there is only one payoff function for him: 

𝑣2 = ∑(7 + 4 ∙ 2 ∙ 𝑖)

𝑘−1

𝑖=0

= 7𝑘 + 8 ∑ 𝑖

𝑘−1

𝑖=0

= 7𝑘 + 8 (
1

2
(𝑘 − 1)𝑘) = 4𝑘2 + 3𝑘 

The payoff functions for both players are shown in table 2: 

Row group 𝑣1 𝑣2 

𝑅 𝑚𝑜𝑑 4 = 0 and 𝑅 𝑚𝑜𝑑 4 = 1 4𝑘2 − 𝑘 4𝑘2 + 3𝑘 
𝑅 𝑚𝑜𝑑 4 = 2 and 𝑅 𝑚𝑜𝑑 4 = 3 4𝑘2 + 7𝑘 + 3 4𝑘2 + 3𝑘 

Table 2: The payoff functions for D(1, R) games 

Now, to calculate the payoff for player one for any 𝐷(1, 𝑅) game, you have to decide in what row 

group the number of rows falls. Then you can decide the value of 𝑘, and you substitute this value in 

the correct payoff function for player one. For player two you only have to decide the value of 𝑘 and 

then substitute this in the payoff function for player two. 

We now know what the payoff functions for 𝐷(1, 𝑅) games are, and how the move sequences 

progress. This concludes the research for 𝐷(1, 𝑅) games.  
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5 𝐷(2, 𝑅) games 
 

5.1 The first nine Equilibrium Plays of D(2, R) games (Klomp and van Dorenvanck) 
 

 

Figure 6: the first nine Equilibrium Plays of D(2, R) games 

The unique Equilibrium Plays of the first nine 𝐷(2, 𝑅) games are as shown in figure 6 (van Dorenvanck 

& Klomp, 2010). If we follow the pattern of these nine games, we could practically predict how 

subsequent games would play out. The specific pattern of the 𝐷(2, 4) game seems to be repeated a 

lot (two vertical dominoes on top of two horizontal ones). When 𝑅 = 5, we see that player one plays 

horizontal first, and then the 2x4 pattern of the 𝐷(2, 4) game is played again. Only now player two 

initiated the 2x4 pattern. When 𝑅 = 9, we see that another 2x4 pattern is stacked on top of the 

Equilibrium play of the 𝐷(2, 5) game. The pattern seems to be repeating with every four rows added. 

The first four Equilibrium Plays of 𝐷(2, 𝑅) games will now be proved. 

For 𝑅 = 1, player one can only play horizontal, and then the game is finished. Player one gets two 

payoff units and player two gets zero. 

For 𝑅 = 2, player one will play vertical, and player two will then play vertical in the other column. This 

generates 3 units of payoff for both players. If player one would play horizontal, then player two could 

only play horizontal as well, but then player one would give one unit of payoff over to player two.  
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For 𝑅 = 3, the following move sequences are possible (figure 7): 

 

Figure 7: move sequences for D(2, 3) games 

Green indicates dominoes played by player one and yellow indicates dominoes played by player two. 

Using backwards induction on the corresponding game tree, we can easily see that the second move 

sequence is the Nash Equilibrium. This generates a payoff of 7 for player one and a payoff of 5 for 

player two. 

For 𝑅 = 4, the following move sequences are possible (figure 8): 

 

Figure 8: move sequences for D(2, 4) games 

Again, using backwards induction on the corresponding game tree, we can see that the second move 

sequence is the Nash Equilibrium. This generates a payoff of 9 for player one and a payoff of 11 for 

player two. 

These four equilibrium plays match the Equilibrium Plays of Klomp and van Dorenvanck in figure 6 

perfectly. 
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5.2 The presumed optimal payoff functions 
 

Because the pattern seems to be repeating itself after every four games, we formulate the payoff 

functions in four groups: 

- R mod 4 = 0 (or: R = 4k  with k ∈ ℕ ) 
- R mod 4 = 1 (or: R = 4k+1  with k ∈ ℕ ∪ {0}) 

- R mod 4 = 2 (or: R = 4k+2  with k ∈ ℕ ∪ {0}) 

- R mod 4 = 3 (or: R = 4k+3  with k ∈ ℕ ∪ {0}) 

Now, for each of these four groups, payoff functions for player one and player two, V1 and V2 

respectively, will be formulated. 

R=4k: 

It looks like the 2x4 pattern of the 𝐷(2, 4) game is being repeated over and over. Looking at the 𝐷(2, 8) 

game, we see two of these patterns on top of each other. Therefore, at the 𝐷(2, 12) game, we expect 

three of these patterns on top of each other, and so on. The presumed optimal payoffs functions V1 

and V2 of player one and two can therefore be formulated as following: 

𝑉1 = ∑(9 + 4 ∙ 4𝑖)

𝑘−1

𝑖=0

= 9𝑘 + ∑ 16𝑖

𝑘−1

𝑖=0

= 9𝑘 + 16 ∑ 𝑖

𝑘−1

𝑖=0

 

𝑉2 = ∑(11 + 4 ∙ 4𝑖)

𝑘−1

𝑖=0

= 11𝑘 + ∑ 16𝑖

𝑘−1

𝑖=0

= 11𝑘 + 16 ∑ 𝑖

𝑘−1

𝑖=0

 

In the summation each term represents the payoff of one 2x4 pattern. For 𝑖 = 0, the payoff for player 

one is 9 and the payoff for player two is 11 (figure 6). The next 2x4 pattern (for 𝑖 = 1) is raised by four 

rows. Then each cell is worth 4 extra units of payoff. So, for each player, the payoff for this 2x4 pattern 

is raised by the number of cells occupied multiplied by the number of rows the pattern is raised. In the 

2x4 pattern both players occupy 4 cells, and in the summation 4i indicates by how many rows the 

pattern is raised. 

Recall that: 

∑ 𝑖

𝑛

𝑖=0

= ∑ 𝑖

𝑛

𝑖=1

=
1

2
𝑛(𝑛 + 1) 

Therefore, the payoff functions V1 and V2 can be written as: 

𝑉1 = 9𝑘 + 16 (
1

2
(𝑘 − 1) ∙ 𝑘) = 8𝑘2 + 𝑘 

𝑉2 = 11𝑘 + 16 (
1

2
(𝑘 − 1) ∙ 𝑘) = 8𝑘2 + 3𝑘 

For 𝑅 𝑚𝑜𝑑 4 = 1, 𝑅 𝑚𝑜𝑑 4 = 2 and 𝑅 𝑚𝑜𝑑 4 = 3, the number of rows doesn’t fit an exact number of 

repeating 2x4 patterns. However, we see in figure 6 that in these cases some initial moves are played, 

after which a raised game with 𝑅′ 𝑚𝑜𝑑 4 = 0 is left These initial moves match the first three 

Equilibrium Plays. From that point on the 2x4 pattern will be repeated again. The player starting this 

pattern varies, which is important because the payoff for the player that initiates this pattern is lower. 
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The payoff functions for 𝑅 𝑚𝑜𝑑 4 = 1, 𝑅 𝑚𝑜𝑑 4 = 2, and 𝑅 𝑚𝑜𝑑 4 = 3 can be formulated similarly to 

the payoff functions for 𝑅 𝑚𝑜𝑑 4 = 0: 

R=4k+1: After player one plays horizontal, player two initiates the 2x4 pattern. Player one gets a payoff 

of 2 for the first horizontal play. Since it’s now player two’s turn, the players swap roles in the 2x4 

pattern. This means player one now gets a base of 11 payoff units per 2x4 pattern and player two gets 

a base of 9 payoff units. The number of rows the 2x4 pattern is raised is now 4i-3. 

𝑉1 = 2 + ∑(11 + 4 ∙ (4𝑖 − 3))

𝑘

𝑖=1

= 8𝑘2 + 7𝑘 + 2 

𝑉2 = ∑(9 + 4 ∙ (4𝑖 − 3))

𝑘

𝑖=1

= 8𝑘2 + 5𝑘 

R=4k+2: First both players play vertical in separate columns, generating 3 payoff units for both players. 

The base payoffs of 9 and 11 units are swapped again because player one now initiates the 2x4 pattern. 

The number of rows the 2x4 pattern is raised is now 4i-2. 

𝑉1 = 3 + ∑(9 + 4 ∙ (4𝑖 − 2))

𝑘

𝑖=1

= 8𝑘2 + 9𝑘 + 3 

𝑉2 = 3 + ∑(11 + 4 ∙ (4𝑖 − 2))

𝑘

𝑖=1

= 8𝑘2 + 11𝑘 + 3 

R=4k+3: First player one plays horizontal, and then both players play vertical in separate columns. This 

generates 7 payoff units for player one and 5 payoff units for player two. The base payoffs of 9 and 11 

units are swapped again because player two now initiates the 2x4 pattern. The number of rows the 

2x4 pattern is raised is now 4i-1. 

𝑉1 = 7 + ∑(11 + 4 ∙ (4𝑖 − 1))

𝑘

𝑖=1

= 8𝑘2 + 15𝑘 + 7 

𝑉2 = 5 + ∑(9 + 4 ∙ (4𝑖 − 1))

𝑘

𝑖=1

= 8𝑘2 + 13𝑘 + 5 

 V1, R V2, R 

𝑅 = 4𝑘 8𝑘2 + 𝑘 8𝑘2 + 3𝑘 
𝑅 = 4𝑘 + 1 8𝑘2 + 7𝑘 + 2 8𝑘2 + 5𝑘 
𝑅 = 4𝑘 + 2 8𝑘2 + 9𝑘 + 3 8𝑘2 + 11𝑘 + 3 
𝑅 = 4𝑘 + 3 8𝑘2 + 15𝑘 + 7 8𝑘2 + 13𝑘 + 5 

Table 3: Presumed Optimal Payoff Functions 

Table 3 shows the presumed optimal payoff functions that we just formulated. Still assuming the 

pattern holds for any number of rows, one can calculate the optimal payoff of either player one or 

player two by checking the number of rows of a certain game, deciding in which category it falls, and 

picking the correct payoff function for either player one or player two. For example, if you want to 

know the optimal payoff for player two in a 𝐷(2, 15) game, you start by looking at the number of rows. 

A 𝐷(2, 15) game has 15 rows, which falls in the category 𝑅 = 4𝑘 + 3, because 4 ∙ 3 + 3 = 15. Note 
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that in this case 𝑘 = 3. Then we pick the payoff function from the column V2, to calculate the optimal 

payoff for player two in this game. 

 

5.3 Proving correctness of the Presumed Optimal Payoff functions correct: 
 

These optimal payoff functions all hold for the first four 𝐷(2, 𝑅) games. But what about subsequent 

games? If we want to calculate the optimal payoff for any 𝐷(2, 𝑅) game, we have to prove that these 

formulas hold for any 𝑘 ∈ ℕ. For this we need Lemma 1. 

Lemma 1: Any proven Equilibrium Play, for example the Equilibrium Play of the 𝐷(2, 7) game, would 

also be the Subgame Equilibrium Play for any 𝐷(2, 7)+𝑞 game. Here q signifies that a game is reduced 

to another 𝐷(2, 𝑅) game when q rows have already been filled. 

Lemma 1 must be true because in any raised game, the payoffs of all cells are raised linearly. If we look 

closely at the opening moves of the first nine Equilibrium Plays, we see that it looks like when 

𝑅 𝑚𝑜𝑑 4 = 2, player one plays vertical, and player two plays vertical in the other column. This leaves 

a 𝐷(2, 𝑅 − 2)+2 game. By Lemma 1, players should then play the same moves as they would in a 

𝐷(2, 𝑅 − 2) game. For 𝑅 𝑚𝑜𝑑 4 = 0, 𝑅 𝑚𝑜𝑑 4 = 1 and 𝑅 𝑚𝑜𝑑 4 = 3 it looks like player one always 

plays horizontal first, leaving a 𝐷(2, 𝑅 − 1)+1 game immediately, with player two having the next 

move. Since these opening moves leave a raised game with one or two less rows, we can formulate 

new situational payoff functions 𝑊 consisting of the payoff of these opening moves and the payoff of 

the raised games and try to prove that these equal the presumed optimal payoff functions 𝑉 from 

table 3. This means we are using induction to prove the next theorem: 

  

Theorem 1: 

- If 𝑅 𝑚𝑜𝑑 4 = 2, player one will play vertical in the first column and player two will play vertical 

in the right column, leaving a 𝐷(2, 𝑅 − 2)+2 game with player one having the first move. 

- If 𝑅 𝑚𝑜𝑑 4 = 0, 𝑅 𝑚𝑜𝑑 4 = 1, or 𝑅 𝑚𝑜𝑑 4 = 3, player one will play horizontal first, leaving a 

𝐷(2, 𝑅 − 1)+1 game with player two having the first move. 

- For the situations mentioned in the first two parts of this theorem, the situational payoff 

functions 𝑊 equal the presumed optimal payoff functions 𝑉. 
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5.4 Proof of Theorem 1: 
 

Induction will be used to prove theorem 1. 

 

5.4.1 The induction basis 
 

The functions shown in table 3 will be proved correct using induction. The first step is to show that 

these functions are true for 𝑘 = 0. Because for 𝑅 𝑚𝑜𝑑 4 = 0 there exists no game for 𝑘 = 0, the 

functions will have to be shown true for 𝑘 = 1 in this case.  

 V1, R V2, R 

𝑅 = 4 ∙ 1 = 4 8 ∙ 12 + 1 = 𝟗 8 ∙ 12 + 3 ∙ 1 = 𝟏𝟏 
𝑅 = 4 ∙ 0 + 1 = 1 8 ∙ 02 + 7 ∙ 0 + 2 = 𝟐 8 ∙ 02 + 5 ∙ 0 = 𝟎 
𝑅 = 4 ∙ 0 + 2 = 2 8 ∙ 02 + 9 ∙ 0 + 3 = 𝟑 8 ∙ 02 + 11 ∙ 0 + 3 = 𝟑 
𝑅 = 4 ∙ 0 + 3 = 3 8 ∙ 02 + 15 ∙ 0 + 7 = 𝟕 8 ∙ 02 + 13 ∙ 0 + 5 = 𝟓 

Table 4: Payoffs of the first four D(2, R) games 

These payoffs match the payoffs of the first four Equilibrium Plays in figure 6 perfectly, giving us an 

induction basis for every group of row numbers. Also, the opening moves fit theorem 1 perfectly. 

 

5.4.2 The situational payoff functions W 
  

Of course, there are more ways to open a game than the two situations mentioned in section 1.3 (these 

are situations 1 and 2). Figure 9 shows four different situations for a start of any 𝐷(2, 𝑅) game. Green 

still represents the occupied cells for player one, and yellow represents occupied cells for player two. 

The first situation leaves a 𝐷(2, 𝑅 − 1)+1 game, where player two has the first move. The second and 

third situations leave 𝐷(2, 𝑅 − 2)+2 and 𝐷(2, 𝑅 − 3)+3 games respectively, with player one having the 

first move. The fourth is the situation does not leave a raised game immediately because column 2 is 

not occupied. This makes situation 4 a bit more difficult, so it has to be split up into different variations 

later on. 

For each of the four starting situations, payoff functions W will be formulated. They will generally exist 

of the direct payoff the situation generates and the payoff of the 𝐷(2, 𝑅 − 𝑞)+𝑞 game that is left. If 

the optimal situational payoff functions W match the presumed optimal payoff functions V from table 

3, the proof is complete. This will have to be done for all four groups of row numbers separately, 

because we already know that situations 1 and 2 both occur.  

Figure 9: the four different opening move situations 
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Explanation of the situational payoff functions W: 

Example (situation 1): 𝑊1,𝑅 = 2 + 𝑉2,𝑅−1 + 1(𝑅 − 1 − 𝑎) = 𝑉2,𝑅−1 + 𝑅 + 1 − 𝑎 

When situation 1 is played, player one plays horizontal. This generates the first two units of payoff. 

Then, players are playing a 𝐷(2, 𝑅 − 1)+1 game with player two having the next move. This means 

that the move sequence of a 𝐷(2, 𝑅 − 1) game will be played, with player one and player two 

switching roles. Therefore, on top of the 2 units already generated, player one gets the payoff that 

player two would get in a 𝐷(2, 𝑅 − 1) game (𝑉2,𝑅−1). However, because this game was raised by 1, for 

every cell occupied by player one, he generates 1 extra unit of payoff. When 𝑅 − 1 is even, both players 

occupy 𝑅 − 1 cells of the raised game. When 𝑅 − 1 is odd, player one occupies two less cells than 

player two in the raised game. In this case, the number of cells occupied by player one should be 

reduced by one. Therefore, the functions contain a parameter 𝑎 ∈ {0, 1}, with a being 0 if 𝑅 is even 

(because then 𝑅 − 1 is odd), and a being 1 if 𝑅 is odd. So, 𝑅 − 1 − 𝑎 signifies the number of cells 

occupied by player one in a 1-raised game where player two has the first move. All these cells generate 

1 extra unit of payoff, hence the term 1(𝑅 − 1 − 𝑎). After this the function 𝑊1,𝑅 was just reduced to 

a simpler form. 

The function 𝑊2,𝑅 for situation 1 and the functions 𝑊 of situation 2, 3 and 4 for both players are built 

in a similar way. Only for situation 4 in 𝑅 𝑚𝑜𝑑 4 = 2, the payoff functions are formulated directly. 

 

The situational payoff functions: 

Situation 1:  

𝑊1,𝑅 = 2 + 𝑉2,𝑅−1 + 1(𝑅 − 1 − 𝑎) = 𝑉2,𝑅−1 + 𝑅 + 1 − 𝑎 

𝑊2,𝑅 = 0 + 𝑉1,𝑅−1 + 1(𝑅 − 1 + 𝑎) = 𝑉1,𝑅−1 + 𝑅 − 1 + 𝑎 

Situation 2: 

𝑊1,𝑅 = 3 + 𝑉1,𝑅−2 + 2(𝑅 − 2 + (1 − 𝑎)) = 𝑉1,𝑅−2 + 2𝑅 + 1 − 2𝑎 

𝑊2,𝑅 = 3 + 𝑉2,𝑅−2 + 2(𝑅 − 2 − (1 − 𝑎)) = 𝑉2,𝑅−2 + 2𝑅 − 3 + 2𝑎 

Situation 3: 

𝑊1,𝑅 = 3 + 𝑉1,𝑅−3 + 3(𝑅 − 3 + 𝑎) = 𝑉1,𝑅−3 + 3𝑅 − 6 + 3𝑎 

𝑊2,𝑅 = 6 + 𝑉2,𝑅−3 + 3(𝑅 − 3 − 𝑎) = 𝑉2,𝑅−3 + 3𝑅 − 3 − 3𝑎 

Situation 4: 

Situation 4 does not immediately leave a raised game, so we cannot build the optimal payoff functions 

for this situation in the same way as the other situations. Therefore, the payoff function for this 

situation will now be explained and given separately for 𝑅 𝑚𝑜𝑑 4 = 0, 𝑅 𝑚𝑜𝑑 4 = 1, 𝑅 𝑚𝑜𝑑 4 = 2 

and 𝑅 𝑚𝑜𝑑 4 = 3. Figure 10 shows variations of a few moves played after the move sequence of 

situation 4 is played. 
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Figure 10: Variations of situation 4 

𝑹 𝒎𝒐𝒅 𝟒 = 𝟎: 

Variation 4a is very disadvantageous for player one, because player two constantly takes the maximum 

payoff in every set of four rows. He can avoid this variation by playing horizontal like in variation 4c, or 

playing vertical in column 2 like in variations 4d, 4e and 4f. If player one would again play vertical in 

column 1, player two would just play along and do the same, so 4b would never happen. Variation 4d 

is bad for player two because he will turn the 2x4 stacking pattern to the advantage of player one. 

Looking at variations 4e and 4f, player 2 is choosing between going to the repeating pattern 

immediately (4e), or prolonging the vertical stacking game (4f). Assuming both players keep stacking 

vertically, player one takes the upper hand in one column and player two then takes the upper hand 

in the other column. From row 5 and up the payoff is divided equally between the players. When 

playing variation 4e, player 2 has the advantage of the stacking pattern that follows, because he will 

always have the upper of the two horizontal dominoes in each 2x4 pattern. This means player two 

prefers variation 4e over 4f. Variation 4e is favorable over variation 4c for player one because they will 

basically play out the same, with variation 4e generating 3 more units of payoff for player 1. This means 

the optimal variation of situation 4 is variation 4e. When 𝑅 = 4𝑘 and the game starts with variation 

4e, the payoff functions are: 

- Player 1: 

𝑊1,𝑅 = 6 + 𝑉1,𝑅−4 + 4(𝑅 − 4) = 𝑉1,𝑅−4 + 4𝑅 − 10 

- Player 2: 

𝑊2,𝑅 = 14 + 𝑉2,𝑅−4 + 4(𝑅 − 4) = 𝑉2,𝑅−4 + 4𝑅 − 2 

𝑹 𝒎𝒐𝒅 𝟒 = 𝟏: 

When 𝑅 𝑚𝑜𝑑 4 = 1, and players keep stacking vertically in one column, one cell will be left on row R. 

Player one will then choose to play horizontal on the top row, ending the game. This leaves a lot of 

empty cells in column 2. We assume that this is not favorable for either player. When situation 4 

occurs, players will want to stop stacking vertically in column 1. Player 1 favours 4c over 4b, because 

4b will leave a raised game with 𝑅′ 𝑚𝑜𝑑 4 = 2 (here R’ is the number of rows left in the raised game). 

This gives player two the more advantageous 2x4 repeating pattern. Player 1 gets this pattern if he 

plays horizontal himself like in variation 4c, leaving a raised game with 𝑅′ 𝑚𝑜𝑑 4 = 0. If player one 

would play vertical in column 2, player two would play horizontal like in variation 4d. This would leave 

player two with the advantageous repeating pattern. This is why player one prefers to play variation 
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4c when 𝑅 𝑚𝑜𝑑 4 = 1. This leaves a raised game with 𝑅′ 𝑚𝑜𝑑 4 = 0, where player two has the first 

move, giving player one the advantage of the repeating pattern. 

- Player 1: 

𝑊1,𝑅 = 13 + 𝑉2,𝑅−5 + 5(𝑅 − 5) = 𝑉2,𝑅−5 + 5𝑅 − 12 

- Player 2: 

𝑊2,𝑅 = 7 + 𝑉1,𝑅−5 + 5(𝑅 − 5) = 𝑉1,𝑅−5 + 5𝑅 − 18 

𝑹 𝒎𝒐𝒅 𝟒 = 𝟐: 

Variation 4a represents the move sequence where players keep stacking vertically in one column until 

it is full, after which they well start stacking in the other column until that one is also full. Since R is 

even, an exact number of vertical dominoes fits in each column. Since 𝑅 𝑚𝑜𝑑 4 = 2, player one will 

come out on top in column 1. But then player two will start in column 2, and will come out on top 

there. Their payoffs will both be equal (or half the total payoff). If player two plays horizontal at some 

point, like in variation 4b, he will give away the advantage of the 2x4 pattern that will follow up on this. 

This means his payoff will be less than half the total payoff. If player one decides to play horizontal at 

some point like in variation 4c, he will give away the advantage of the 2x4 pattern and generate less 

than half the total payoff. Player one could also play vertical in column 2 at some point, instead of 

playing vertical in column 1, like in variations 4d, 4e, and 4f. At this point, player two will keep stacking 

in column 1, because this way he will come out on top in both columns. Variation 4e also gives the 

advantage to player two. So, the best outcome of situation 4 for player one is to get half the total 

payoff, because diverting from this strategy at this point will give player two the advantage. When 

player two diverts, he gives away the advantage in the same way. So, situation 4 will play out like 

variation 4a. When the payoff of both players is half of the total payoff of this game, their functions 𝑊 

are: 

𝑊 =
1

2
∙ 2 ∑ 𝑖

4𝑘+2

1

=
1

2
(4𝑘 + 2)(4𝑘 + 3) =

1

2
(16𝑘2 + 20𝑘 + 6) = 8𝑘2 + 10𝑘 + 3 

𝑹 𝒎𝒐𝒅 𝟒 = 𝟑: 

If both players keep stacking in column 1 (variation 4a), in the end there will be one row left for player 

two to play horizontal. Player two would rather play horizontal (variation 4b) at some earlier point, 

because this would leave a raised game with 𝑅′ 𝑚𝑜𝑑 4 = 0, with player one starting. This gives player 

two the advantage of the repeating 2x4 pattern. This also leaves fewer empty cells. But then player 

one would rather play horizontal (variation 4c) earlier than player two, because this gives the 

advantage of the repeating 2x4 pattern over to him. Player one would also rather do this this than play 

vertical in the other column, like variations 4d, 4e and 4f. 4d gives player two the advantage player one 

could have in 4c. 4e plays out like 4c, with an extra payoff of 7 units, player one still having the 

advantage. If player two tries to keep stacking in column 1, and tries to draw player one with him into 

this strategy, player one comes out on top with the horizontal domino. Because variation 4d is bad for 

player one, he will play horizontal himself, like in variation 4c. After this a raised game will be played 

with 𝑅′ 𝑚𝑜𝑑 4 = 2, with player two having the first move. We know that this is advantageous for 

player one. 

The payoff functions in this situation are: 

- Player 1: 

𝑊1,4𝑘+3 = 13 + 𝑉2,𝑅−5 + 5(𝑅 − 5) = 𝑉2,𝑅−5 + 5𝑅 − 12 
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- Player 2: 

𝑊2,4𝑘+3 = 7 + 𝑉1,𝑅−5 + 5(𝑅 − 5) = 𝑉1,𝑅−5 + 5𝑅 − 18 

 

The functions 𝑊 will now be written as functions of 𝑘, replacing 𝑅 with either 4𝑘, 4𝑘 + 1, 4𝑘 + 2 or 

4𝑘 + 3, depending on the group of row numbers.  

 

5.4.3 The Induction Hypothesis 

 

We assume that the presumed optimal payoff functions 𝑉 from table 3 are correct for a number of 

rows up to 𝑅 − 1. Now we try to prove that these functions are also correct when the number of rows 

is 𝑅. We can do this by proving that the situational payoff functions 𝑊 that match the opening moves 

of the group of row numbers are equal to the presumed optimal payoff functions 𝑉. 

 

5.4.4 The optimal situational payoff function W for 𝑅 𝑚𝑜𝑑 4 = 0 
 

We want to prove that 𝑊 = 𝑉 only for situation 1, because figure 6 shows us that when 𝑅 𝑚𝑜𝑑 4 = 0, 

player one starts by playing horizontal. The functions 𝑊 will now be written as functions of 𝑘 for each 

situation. Note that 𝑎 = 1 because 𝑅 is even. Also, a star above an equality sign (≛) means that the 

induction hypothesis is plugged in. 

Situation 1:  

- Player 1: 

𝑊1,𝑅 = 𝑊1,4𝑘 = 𝑉2,𝑅−1 + 𝑅 + 1 − 𝑎 = 𝑉2,4𝑘−1 + 4𝑘 + 1 − 1 = 𝑉2,4(𝑘−1)+3 + 4𝑘

≛ 8(𝑘 − 1)2 + 13(𝑘 − 1) + 5 + 4𝑘 = 8𝑘2 + 𝑘 

- Player 2: 

𝑊2,𝑅 = 𝑊2,4𝑘 = 𝑉1,𝑅−1 + 𝑅 − 1 + 𝑎 = 𝑉1,4𝑘−1 + 4𝑘 − 1 + 1 = 𝑉1,4(𝑘−1)+3 + 4𝑘

≛ 8(𝑘 − 1)2 + 15(𝑘 − 1) + 7 + 4𝑘 = 8𝑘2 + 3𝑘 

Situation 2: 

- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−2 + 2𝑅 + 1 − 2𝑎 = 𝑉1,4𝑘−2 + 2 ∙ 4𝑘 + 1 − 2 ∙ 1 = 𝑉1,4(𝑘−1)+2 + 8𝑘 − 1 

≛ 8(k − 1)2 + 9(𝑘 − 1) + 3 + 8𝑘 − 1 = 8𝑘2 + 𝑘 + 1 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−2 + 2𝑅 − 3 + 2𝑎 = 𝑉2,4𝑘−2 + 2 ∙ 4k − 3 + 2 ∙ 1 = 𝑉2,4(𝑘−1)+2 + 8𝑘 − 1 

≛ 8(𝑘 − 1)2 + 11(𝑘 − 1) + 3 + 8𝑘 − 1 = 8𝑘2 + 3𝑘 − 1 

 

Situation 3: 
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- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−3 + 3𝑅 − 6 + 3𝑎 = 𝑉1,4𝑘−3 + 3 ∙ 4k − 6 + 3 ∙ 1 = 𝑉1,4(𝑘−1)+1 + 12k − 3 

≛ 8(𝑘 − 1)2 + 7(𝑘 − 1) + 2 + 12𝑘 − 3 = 8𝑘2 + 3𝑘 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−3 + 3𝑅 − 3 − 3𝑎 = 𝑉2,4𝑘−3 + 3 ∙ 4k − 3 − 3 ∙ 1 = 𝑉2,4(𝑘−1)+1 + 12k − 6 

≛ 8(𝑘 − 1)2 + 5(𝑘 − 1) + 12𝑘 − 6 = 8𝑘2 + 𝑘 − 3 

Situation 4: 

- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−4 + 4𝑅 − 10 = 𝑉1,4𝑘−4 + 16k − 10 = 𝑉1,4(k−1) + 16k − 10 

≛ 8(k − 1)2 + (k − 1) + 16k − 10 = 8k2 + 𝑘 − 3 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−4 + 4𝑅 − 2 = 𝑉2,4𝑘−4 + 16k − 2 = 𝑉2,4(𝑘−1) + 16𝑘 − 2 

≛ 8(𝑘 − 1)2 + 3(𝑘 − 1) + 16k − 2 = 8𝑘2 + 3𝑘 + 3 

 

 

Figure 11: Reduced tree diagram for 𝑅 𝑚𝑜𝑑 4 = 0  

Figure 11 proves that situation 1 always occurs when 𝑅 𝑚𝑜𝑑 4 = 0. These functions 𝑊 equal the 

functions 𝑉 for 𝑅 𝑚𝑜𝑑 4 = 0.  
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5.4.5 The optimal situational payoff function W for 𝑅 𝑚𝑜𝑑 4 = 1 
 

We want to prove that 𝑊 = 𝑉 only for situation 1, because figure 6 shows us that when 𝑅 𝑚𝑜𝑑 4 = 1, 

player one starts by playing horizontal. The functions 𝑊 will now be written as functions of 𝑘 for each 

situation. Note that 𝑎 = 0 because 𝑅 is odd.  

 

Situation 1: 

- Player 1: 

𝑊1,𝑅 = 𝑉2,𝑅−1 + 𝑅 + 1 − 𝑎 = 𝑉2,4𝑘 + 4𝑘 + 2 ≛ 8k2 + 3𝑘 + 4𝑘 + 2 = 8𝑘2 + 7𝑘 + 2 

- Player 2: 

𝑊2,𝑅 = 𝑉1,𝑅−1 + 𝑅 − 1 + 𝑎 = 𝑉1,4𝑘 + 4k ≛ 8k2 + k + 4k = 8k2 + 5𝑘 

Situation 2: 

- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−2 + 2𝑅 + 1 − 2𝑎 = 𝑉1,4𝑘−1 + 2(4k + 1) + 1 = 𝑉1,4(𝑘−1)+3 + 8𝑘 + 3

≛ 8(𝑘 − 1)2 + 15(𝑘 − 1) + 7 + 8𝑘 + 3 = 8k2 + 7𝑘 + 3 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−2 + 2𝑅 − 3 + 2𝑎 = 𝑉2,4𝑘−1 + 2(4k + 1) − 3 = 𝑉2,4(𝑘−1)+3 + 8k − 1 

≛ 8(k − 1)2 + 13(k − 1) + 5 + 8k − 1 = 8𝑘2 + 5𝑘 − 1 

Situation 3: 

- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−3 + 3𝑅 − 6 + 3𝑎 = 𝑉1,4𝑘−2 + 3(4k + 1) − 6 = 𝑉1,4(𝑘−1)+2 + 12k − 3 

≛ 8(k − 1)2 + 9(𝑘 − 1) + 3 + 12k − 3 = 8k2 + 5𝑘 − 1 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−3 + 3𝑅 − 3 − 3𝑎 = 𝑉2,4𝑘−2 + 3(4k + 1) − 3 = 𝑉2,4(k−1)+2 + 12k 

≛ 8(k − 1)2 + 11(𝑘 − 1) + 3 + 12k = 8k2 + 7𝑘 

Situation 4: 

- Player 1: 

𝑊1,𝑅 = 𝑉2,𝑅−5 + 5𝑅 − 12 = 𝑉2,4𝑘−4 + 5(4k + 1) − 12 = 𝑉2,4(k−1) + 20k − 7

= 8(k − 1)2 + 3(k − 1) + 20k − 7 = 8k2 + 7𝑘 − 2 

- Player 2: 

𝑊2,𝑅 = 𝑉1,𝑅−5 + 5𝑅 − 18 = 𝑉1,4𝑘−4 + 5(4k + 1) − 18 = 𝑉1,4(k−1) + 20k − 13

= 8(k − 1)2 + (k − 1) + 20k − 13 = 8k2 + 5𝑘 − 6 
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Figure 12: Reduced tree diagram for 𝑅 𝑚𝑜𝑑 4 = 1 

Figure 12 proves that situation 1 always occurs when 𝑅 𝑚𝑜𝑑 4 = 1. These functions 𝑊 equal the 

functions 𝑉 for 𝑅 𝑚𝑜𝑑 4 = 1.  
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5.4.6 The optimal situational payoff function W for 𝑅 𝑚𝑜𝑑 4 = 2 
 

We want to prove that 𝑊 = 𝑉 only for situation 2, because figure 6 shows us that when 𝑅 𝑚𝑜𝑑 4 = 2, 

players start by playing vertical in one column each. The functions 𝑊 will now be written as functions 

of 𝑘 for each situation. Note that 𝑎 = 1 because 𝑅 is even. 

Situation 1: 

- Player 1: 

𝑊1,𝑅 = 𝑉2,𝑅−1 + 𝑅 + 1 − 𝑎 = 𝑉2,4𝑘+1 + 4k + 2 ≛ 8k2 + 5𝑘 + 4k + 2 = 8k2 + 9𝑘 + 2 

- Player 2: 

𝑊2,𝑅 = 𝑉1,𝑅−1 + 𝑅 − 1 + 𝑎 = 𝑉1,4𝑘+1 + 4k + 2 ≛ 8k2 + 7k + 2 + 4k + 2 = 8k2 + 11𝑘 + 4 

Situation 2: 

- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−2 + 2𝑅 + 1 − 2𝑎 = 𝑉1,4𝑘 + 2(4k + 2) − 1 = 𝑉1,4𝑘 + 8k + 3 

≛ 8𝑘2 + 𝑘 + 8𝑘 + 3 = 8𝑘2 + 9𝑘 + 3 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−2 + 2𝑅 − 3 + 2𝑎 = 𝑉2,4𝑘 + 2(4k + 2) − 1 = 𝑉2,4𝑘 + 8k + 3 

≛ 8𝑘2 + 3𝑘 + 8𝑘 + 3 = 8𝑘2 + 11𝑘 + 3 

Situation 3: 

- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−3 + 3𝑅 − 6 + 3𝑎 = 𝑉1,4𝑘−1 + 3(4k + 2) − 3 = 𝑉1,4(k−1)+3 + 12k + 3 

≛ 8(k − 1)2 + 15(𝑘 − 1) + 7 + 12𝑘 + 3 = 8𝑘2 + 11𝑘 + 3 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−3 + 3𝑅 − 3 − 3𝑎 = 𝑉2,4k−1 + 3(4k + 2) − 6 = 𝑉2,4(𝑘−1)+3 + 12k 

≛ 8(𝑘 − 1)2 + 13(𝑘 − 1) + 5 + 12𝑘 = 8𝑘2 + 5𝑘 

Situation 4: 

 

When the payoff of both players is half of the total payoff of this game, their functions 𝑊 are: 

𝑊 =
1

2
∙ 2 ∑ 𝑖

4𝑘+2

1

=
1

2
(4𝑘 + 2)(4𝑘 + 3) =

1

2
(16𝑘2 + 20𝑘 + 6) = 8𝑘2 + 10𝑘 + 3 
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Figure 13: Reduced tree diagram for 𝑅 𝑚𝑜𝑑 4 = 2 

Figure 13 proves that situation 2 always occurs when 𝑅 𝑚𝑜𝑑 4 = 2. These functions 𝑊 equal the 

functions 𝑉 for 𝑅 𝑚𝑜𝑑 4 = 2.   
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5.4.7 The optimal situational payoff function W for 𝑅 𝑚𝑜𝑑 4 = 3 
 

We want to prove that 𝑊 = 𝑉 only for situation 1, because figure 6 shows us that when 𝑅 𝑚𝑜𝑑 4 = 3, 

player one starts by playing horizontal. The functions 𝑊 will now be written as functions of 𝑘 for each 

situation. Note that 𝑎 = 0 because 𝑅 is odd.  

 

Situation 1: 

- Player 1: 

𝑊1,𝑅 = 𝑉2,𝑅−1 + 𝑅 + 1 − 𝑎 = 𝑉2,4𝑘+2 + 4k + 4 

≛ 8k2 + 11k + 3 + 4k + 4 = 8k2 + 15𝑘 + 7 

- Player 2: 

𝑊2,𝑅 = 𝑉1,𝑅−1 + 𝑅 − 1 + 𝑎 = 𝑉1,4𝑘+2 + 4k + 2 

≛ 8𝑘2 + 9𝑘 + 3 + 4k + 2 = 8k2 + 13𝑘 + 5 

Situation 2: 

- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−2 + 2𝑅 + 1 − 2𝑎 = 𝑉1,4𝑘+1 + 2(4k + 3) + 1 = 𝑉1,4k+1 + 8k + 7 

≛ 8k2 + 7k + 2 + 8k + 7 = 8k2 + 15𝑘 + 9 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−2 + 2𝑅 − 3 + 2𝑎 = 𝑉2,4𝑘+1 + 2(4k + 3) − 3 = 𝑉2,4k+1 + 8k + 3 

≛ 8k2 + 5k + 8k + 3 = 8k2 + 13𝑘 + 3 

Situation 3: 

- Player 1: 

𝑊1,𝑅 = 𝑉1,𝑅−3 + 3𝑅 − 6 + 3𝑎 = 𝑉1,4𝑘 + 3(4k + 3) − 6 = 𝑉1,4k + 12k + 3 

≛ 8k2 + k + 12k + 3 = 8k2 + 13𝑘 + 3 

- Player 2: 

𝑊2,𝑅 = 𝑉2,𝑅−3 + 3𝑅 − 3 − 3𝑎 = 𝑉2,4k + 3(4k + 3) − 3 = 𝑉2,4𝑘 + 12k + 6 

≛ 8k2 + 3k + 12k + 6 = 8k2 + 15𝑘 + 6 
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Situation 4: 

- Player 1: 

𝑊1,4𝑘+3 = 𝑉2,𝑅−5 + 5𝑅 − 12 = 𝑉2,4𝑘−2 + 5(4𝑘 + 3) − 12 

≛ 8(𝑘 − 1)2 + 11(𝑘 − 1) + 3 + 20𝑘 + 3 = 8𝑘2 + 15𝑘 + 3 

- Player 2: 

𝑊2,4𝑘+3 = 𝑉1,𝑅−5 + 5𝑅 − 18 = 𝑉1,4𝑘−2 + 5(4𝑘 + 3) − 18 

≛ 8(𝑘 − 1)2 + 9(𝑘 − 1) + 3 + 20𝑘 − 3 = 8𝑘2 + 13𝑘 − 1 

 

 

Figure 14: Reduced tree diagram for 𝑅 𝑚𝑜𝑑 4 = 3 

Figure 14 proves that situation 1 always occurs when 𝑅 𝑚𝑜𝑑 4 = 3. These functions 𝑊 equal the 

functions 𝑉 for 𝑅 𝑚𝑜𝑑 4 = 3. 

  

5.4.8 Concluding the proof of theorem 1 
 

For each of the four groups of row numbers we have shown what the optimal opening situation is. 

These optimal opening situations match theorem 1. Also, we have shown that the payoff functions 𝑊 

of these situations equal the presumed optimal payoff functions 𝑉 from table 3. This completes the 

proof of theorem 1. The presumed optimal payoff functions 𝑉 were indeed optimal. This means that 

in any 𝐷(2, 𝑅) game, given that the players play rationally, we can calculate the payoff of each player 

whatever the number of rows is. 

This also proves that when both players think rationally, they will never leave empty cells in 𝐷(2, 𝑅) 

games by playing horizontal over a single vertical domino. 
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6 𝐷(3, 𝑅) Games 
 

6.1 The Equilibrium Plays of the first four 𝐷(3, 𝑅) games 
 

The proof of the continuing pattern in 𝐷(2, 𝑅) games makes us believe there may be a repeating 

pattern every four rows in games with more columns as well. Because of this, let’s first try to find the 

Equilibrium Plays of the first four 𝐷(3, 𝑅) games and see what we find. 

𝐷(3, 1) games: 

This is trivial. Player 1 plays horizontal and then the game is over. 

𝐷(3, 2) games: 

There are six possible move sequences for 𝐷(3, 2) games. Figure 15 shows these move sequences, and 

backwards induction on the corresponding game tree shows that the fourth and the sixth move 

sequence are Equilibrium Plays. These two Equilibrium Plays are very similarly played out. The 

difference is that when player 1 plays vertical in column two, he deprives player two of the opportunity 

to play horizontal. As we can see in the fifth move sequence, this move wouldn’t be favorable for player 

two anyway. Therefore player 1 has no reason to play vertical in column 2 rather than column 1. 

Because of this, we take the fourth move sequence as the main Nash Equilibrium. 

 

Figure 15: the game tree of D(3, 2) games 
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𝐷(3, 3) games: 

                 * 

 

Figure 16: move sequences of D(3, 3) games 

In figure 16, move sequences of 𝐷(3, 3) games are shown. As we can see, things just got a lot more 

elaborate by just adding one row. These 29 move sequences were all found manually, working very 

systematically. After these 29 move sequences no more could be found, but in this way, we cannot 

prove that there are no other possible move sequences. What we can do is prove which of these move 

sequences is an Equilibrium Play. When you look at the game tree (not shown), the sixth move 

sequence of the first row is the only Equilibrium Play (it is marked by a ‘*’ above it). But because we 

might have forgotten one or more move sequences (one of which might be an Equilibrium Play), we’d 

still like to prove that the Equilibrium Play found with the game tree is actually an Equilibrium Play. 

Proof: In a 𝐷(3, 3) game, both players get to play up to two moves. Both moves of player one are 

optimal for him, so he actually has the maximal payoff he could get. Because of this, player one will 

definitely want to go down this road. Player two could have chosen to play vertical on his first move. 

Doing this in column 3 would result in move sequence #7 of figure 16, not an Equilibrium Play (by 

backwards induction). Doing this in column 2 would result in move sequence #2, also not an 

Equilibrium play. Playing horizontal on top of player one’s first vertical domino leaves the players with 

move sequence #3, again not an Equilibrium Play. The only option left for player two’s first move, is to 

play horizontal in columns 2 and 3. After this, player one plays his optimal second move, and player 

two plays the only move left to do. 

𝐷(3, 4) games: 

We just saw how quickly the number of different move sequences escalated by just adding one row. 

We can expect there to be a lot more move sequences with 𝐷(3, 4) games. The harder this task 

becomes to do manually, the more unreliable the results are. This is why we tried to prove an 

Equilibrium Play for 𝐷(3, 4) games in a different method. Assuming player one doesn’t want to start 

with playing vertical (because player two will just play vertical on top of him), he will start horizontal. 

Playing vertical anywhere will now be bad for player two, because player one will play either horizontal 

or vertical on top of his last domino. The best thing to do now is to play horizontal on the same columns 
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as player one just did. Now both players play vertical on top of the horizontal dominoes to claim cells 

of the highest row. The moves played until now form the 2x4 repeating pattern of 𝐷(2, 𝑅) games. Now 

there’s just one empty column left. Player one has to play vertical, and player two plays vertical on top 

of him. In figure 17 we see the result. This move sequence is definitely to the advantage of player two, 

because he has the advantage in the 2x4 pattern, and also in the single column next to it. After the 

first two horizontal plays, player one could have played vertical in the only empty column left. But then 

a 𝐷(3, 2) game would be left, for three vertical dominoes to be played. This leaves exactly the same 

result as the afore mentioned move sequence. So, what if player one actually does start vertical? He 

has to do so in one of the side columns, or else he would have the lowest payoff possible with three 

dominoes. Then player two immediately plays vertical on top of him, and then a 2x4 empty space is 

left. We know what happens from 𝐷(2, 𝑅) games. In the next four plays the 2x4 repeating pattern will 

be played, ending the game. We see that no matter what, the result will be a 2x4 repeating pattern 

started by player one, and one column where player one has the bottom vertical domino and player 

two has the upper vertical domino. We just described three paths to this end result. These are three 

routes on the game tree, making them three different Equilibrium Plays in reality. But because the 

pattern is exactly the same in all three, let’s just see them as one and the same Equilibrium Play. 

 

Figure 17: the Equilibrium Play of D(3, 4) games 

 

𝐷(3, 5) games: 

After a quick look into these games we came to the following Equilibrium Play (figure 18). 

 

Figure 18: Potential Equilibrium Play of D(5, 3) games 
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6.2 The results 
 

In figure 19 we see the Equilibrium Plays of 𝐷(3, 𝑅) games with up to four rows. For two rows, only 

the most straightforward Equilibrium Play is shown. The Equilibrium Play on the right-hand side of 

figure 14 is not shown, because it is so similar. 

 

Figure 19: The first four Equilibrium Plays of D(3, R) games 
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7 𝐷(4, 𝑅) Games 
 

For dominogames with four columns we will do the same as we did for dominogames with two 

columns. We try to formulate payoff functions for calculating the payoffs of the Equilibrium Plays for 

each player. We suspect that with four columns the pattern of the 𝐷(2, 𝑅) Equilibrium Plays will be 

doubled.  

 

7.1 The Equilibrium Plays of the first four 𝐷(4, 𝑅) games 
 

Let’s first try to find the Equilibrium Plays of the first four 𝐷(4, 𝑅) games to see if these are doubled 

versions of the Equilibrium Plays of 𝐷(2, 𝑅) games. For each number of rows an explanation will be 

given. A visualisation can each time be found in figure 20. Each domino is again marked by a number, 

indicating the turn in which the domino was played. 

1 row: 

The first two are pretty trivial. When there is only one row, both players just play horizontal. Another 

Equilibrium Play is when player one plays horizontal in columns 2 and 3. Player two would not be able 

to make a move in this case, but it gives player one the same payoff as the first Equilibrium Play. 

However, we will dismiss this Equilibrium Play because the only reason for player one to play it is to 

oppose player two, and defeating the opponent is not the purpose of this game.  

2 rows: 

When there are two columns the players only play vertical. This is because if any player plays 

horizontal, the other player just reacts by playing horizontal on top of that to steal one unit of payoff. 

This is disadvantageous for the player who played horizontal first, so neither player will want to do 

this.  

3 rows: 

This is where things get interesting. We found three Equilibrium Plays for 𝐷(4, 3) games (again, see 

figure 20). The first one is where both players fill up row 1 by playing horizontal next to each other. 

This leaves a 𝐷(4, 2)+1 game, and we just showed what the Equilibrium Play of that game is. The 

second is actually the doubled version of the Equilibrium Play of a 𝐷(2, 3) game. We already suspected 

this would be an Equilibrium Play. These first two Equilibrium Plays are a lot like each other, as you can 

clearly see in the figure. The third however, is a little different. Here, player one starts by playing 

vertical instead of horizontal. If player two would now play vertical in column 2, player 1 would play 

horizontal in columns 1 and 2, and would gain the upper hand of the game. Instead, player two plays 

vertical in column 3 (or 4). This makes player one play a vertical domino first, after which player two 

also plays vertical. Then both players play horizontal. As is visual in the figure, Player one occupies all 

cells in columns 1 and 2, and player two occupies all cells in columns 3 and 4. The players basically tell 

each other: “Let’s just share the total payoff equally by each minding our own half of the game board.”  

4 rows: 

When there are four rows players will never want to play vertical in an empty column. If a player does 

this, the other player will just counter by playing vertical in the same column. This is very 

disadvantageous for the player with the bottom vertical domino, so he will never do this. So, player 
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one has to start by playing horizontal. If he plays horizontal in columns 2 and 3, player two will do the 

same. Now Both players have to play vertical in columns 2 and 3, because they want to occupy these 

cells of the most valuable rows. Two non-adjacent columns are left now, in which player two both ends 

up on top. So, player one cannot start horizontal in columns 2 and 3. The only opening move for player 

one that is left is playing horizontal in columns 1 and 2 (not counting the mirrored variant where he 

plays horizontal in columns 3 and 4).  

In figure 20 we see the results that we have found so far. 

 

 

Figure 20: Equilibrium Plays for D(4, R) games with 1-4 rows 

 

7.2 𝐷(4, 5) games 
 

We have found the Equilibrium Plays of 𝐷(4, 𝑅) games with a number of rows up to four. For each of 

these four types of games an Equilibrium Play was found that was in fact a doubling of the Equilibrium 

Play of the corresponding 2-column game. However, in 𝐷(4, 3) games, more Equilibrium Plays were 

found. Especially the third one was interesting because there, player one starts the game with a 

different opening move. What impact will these extra Equilibrium Plays have on games with more 

rows? Lets first look at 𝐷(4, 5) games. According to our assumption that any equilibrium play in a game 

with 4 columns is a doubling of the Equilibrium Play of the game with 2 columns and the same number 

of rows. This is shown in figure 21 as example 1. Both players have equal payoff. However, we see that 

if player two changes his first move from horizontal in columns 1 and 2 to horizontal in columns 3 and 

4, this leaves a 𝐷(4, 4)+1 game, in which player two is able to get more than half of the total payoff. 

This is shown in example 2. This means that our assumption was not correct, because the pattern is 

not the Equilibrium Play pattern of a 𝐷(2, 5) game doubled. But it gets even more interesting. If player 

one opens with a different move, namely vertical in column 1, he is still able to get half the total payoff. 

This move sequence is shown in Example 5. Note that after the first four moves in this Equilibrium Play 
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(Ex. 4), a 𝐷(4, 3)+2 is left. We already saw that 𝐷(4, 3) games had three different Equilibrium Plays, 

which means 𝐷(4, 5) games must have at least a many. 

 

 

Figure 21: Examples of D(4, 5) games 
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8 Perceptions 
 

This chapter will contain a few perceptions and insights acquired during this research. These are mostly 

presumptions that haven’t been proved. This chapter is meant for giving a head start to another 

student that potentially want to continue this research. 

 

8.1 Equilibrium Plays have at most one empty cell 
 

As we know, players may leave empty cells by playing horizontal over a vertical domino, or by playing 

horizontal over one half of another horizontal domino. But every time players make one of these 

moves and leave empty cells that cannot be occupied anymore, the total number of moves of the game 

will be cut. For example, in a 𝐷(3, 4) game, there are 12 cells and both players have at most three 

moves. If player one plays vertical and player two plays horizontal on top of it, two empty cells will be 

left unoccupied. This means that player two has only one move left after this first move of his, instead 

of two. Less moves means less opportunities to score payoff units. If player one is the one to leave 

these two empty cells, it will still cost player two a move. But now player two has no reason not to 

leave empty cells, because the next time it will cost player one a move. So, player one leaves himself 

vulnerable as well when he leaves empty cells. The more cells left empty, the more payoff units it will 

cost both players. Sometimes, at the end of a game, it may be optimal for a player to leave empty cells 

that will cost the other player a move, but these move sequences can probably not be Equilibrium 

Plays. In dominogames with an odd number of rows and columns, there are obviously an odd number 

of cells. This means there has to be at least one cell unoccupied at the end of these games. 

Now you may be wondering if, to find Equilibrium Plays manually, this means that we can just dismiss 

any move sequence without unoccupied cells, or with just one unoccupied cell. The answer is no. Let’s 

have a look at a part of the proof of chapter 5 (figure 22). This is the same figure as figure 12 of section 

5.4.5.  

 

Figure 22: Reduced tree diagram for R mod 4 = 1 
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The four situations represent the four opening move sequences played in 𝐷(2, 𝑅) games. Here, the 

number of rows is 𝑅 = 4𝑘 + 1. Here, player one plays horizontal, to have the payoff of situation 1. If 

he would have played vertical, we see that player two would have played horizontal to have the payoff 

of situation 3. But that means player two would have left two empty cells. Because player one doesn’t 

play vertical, situation 3 indeed doesn’t lead to an Equilibrium Play. But if we had just dismissed 

situation 3 because of the unoccupied cells, we would assume player one would have preferred to play 

vertical because then player two would play vertical in the other column, ending up in situation 2. We 

would have found a false Equilibrium Play. This means that we cannot just dismiss any move sequence 

with two or more empty cells to find Equilibrium Plays manually. But, if you think you have found an 

Equilibrium Play that has two or more unoccupied cells, it probably isn’t an Equilibrium Play.  

 

8.2 The opening moves and vertical stacking 
 

When the number of rows is even, you can sometimes quickly see if playing vertical is a good move. 

When the number of rows is 𝑅 = 4𝑘, for example, and player one plays vertical, player two can just 

play vertical in the same column. This way, player one has 7 units of payoff on the first move, and 

player one only has three. Player one started this move sequence, and is already 4 units of payoff 

behind player two. Player one could continue this strategy by playing vertical in the same column again, 

but then he gains 11 units of payoff, and if player two then repeats the move as well, he gains 15 units 

of payoff. Because 𝑅 = 4𝑘, player two will come out on top when this move sequence continues like 

this. This means that this move sequence is very advantageous for player two, but not for player one. 

At every move he gives two units of payoff over to player two. If player one was to start playing vertical 

in another column, then player two would play vertical in that column as well. Now player two 

dominates two columns. Just by trying out these kind of move sequences, we can see that playing 

vertical on the bottom row is not a very good move for either player. This is why we often see players 

start by playing horizontal when 𝑅 = 4𝑘. 

Something similar goes for when 𝑅 = 4𝑘 + 2. Now, if both players were to stack vertical dominoes in 

one column, player one would come out on top. This means that player one may want to start playing 

vertical, but player two doesn’t really want to follow up on it. Instead, what we often see in Equilibrium 

Plays, is that players first fill up the bottom two rows with vertical dominoes. 

When the number of rows is odd and players start to stack vertically on top of each other, always one 

empty cell will be left in that column. A player could play horizontal then to gain the maximum number 

of payoff units possible in one move, but that also leaves one column full of empty cells. This is bad for 

both players, because these units of payoff are lost for both. On the other hand, if the player skips out 

on this horizontal move in the top row, and plays something else instead, his opponent might make 

this move. Then he will at least get the units of payoff of this top row. At some point, one player wants 

to make this move, and both players want it for themselves. This situation is rather tricky. Instead, 

what we often see in Equilibrium Plays is that players play horizontal on the first move, instead of 

vertical. 

Using these insights, we can sometimes easily tell when a move sequence is not an Equilibrium Play, 

and what move sequences may actually be Equilibrium Plays. Of course, you have to check the 

potential Equilibrium Plays still. 
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8.3 𝐷(3, 𝑅) games 
 

Equilibrium Plays for 𝐷(3, 𝑅) games with up to four rows were found. In search of an Equilibrium 

Play for 𝐷(3, 5) games, we came to the conclusion shown in figure 23: 

 

Figure 23: Presumed Equilibrium Play for D(3, 5) games 

In this Equilibrium Play we cannot see any hints of the Equilibrium Plays for 𝐷(3, 𝑅) games with up to 

four rows. With three rows, the cell in the middle stays empty, but with 5 rows, apparently a cell in 

column 3 apparently stays empty (or column 1 in the mirrored variant that is not shown). There is no 

sign of a pattern here, which makes it hard to find more Equilibrium Plays. Therefore, the research on 

𝐷(3, 𝑅) games is concluded without a guess on what the next Equilibrium Plays are going to look like. 

 

8.4 𝐷(4, 𝑅) games 
 

In these games we found the Equilibrium Plays of games with up to 5 rows. In 𝐷(4, 3) games we found 

three different Equilibrium Plays, and in 𝐷(4, 5) games we found that the optimal move sequence for 

both players started with filling up the first two rows, leaving a 𝐷(4, 3)+2 game with again three 

different Equilibrium Plays. More interestingly, at the start of a 𝐷(4, 5) game, we see that the players 

may each want to stick to their own half of the game board until there are three rows left, dividing the 

payoff equally as well. At the last three rows, either of the three Equilibrium Plays that were found for 

𝐷(4, 3) games may be played. We suspect that this concept will continue in games with an odd number 

of rows, as shown in figure 24. We also suspect to see this concept in other games with an even number 

of columns (except for games with two columns). 
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Figure 24: Suspected Equilibrium Plays of D(4, R) games with an odd number of rows 

When there are an even number of rows, we suspect that the only Equilibrium Plays will be a 

doubling of their 2-column variants. This means that the payoffs are double the payoffs of the 2-

column variants as well. 

Also, when the number of rows is odd, the number of columns is even and 𝐶 ≥ 4, we suspect that 

both players will stick to their own half of the game board as well, as shown in figure 24. 
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9 Conclusion and Discussion 
 

9.1 Conclusion 
 

On dominogames with one or two columns, we have found exactly how each game will progress when 

players play rationally. Research was also started on games with three and four columns, but the 

results of these haven’t exactly been proved. This is because whenever you add a column to the game, 

the players have so many more options each turn that there are just too many possible move 

sequences to research for Equilibrium Plays. Perceptions and insights about dominogames with three 

and four columns were still written down in chapter 8.  

During the research on dominogames with one and two columns, we found that a certain pattern of 

dominoes repeated itself after every four rows. Because of this the proof of the correctness of the 

payoff functions for games with two columns had to be split up into four different parts of row groups: 

𝑅 𝑚𝑜𝑑 4 = 0, 𝑅 𝑚𝑜𝑑 4 = 1, 𝑅 𝑚𝑜𝑑 4 = 2 and 𝑅 𝑚𝑜𝑑 4 = 3. Here, for example, 𝑅 𝑚𝑜𝑑 4 = 2 means 

that 𝑅 = 4𝑘 + 2 and that we are looking at games with 2, 6, 10, 14, 18, 22, … rows. The payoff 

functions are functions of this 𝑘. 

Dominogames with one column are very straightforward. Players have only one option each turn, so 

they have to play it every time. This means that players keep stacking vertical dominoes on top of each 

other in the only column of the game board. This is a very trivial solution. Also, the payoff functions 

for both players were found. These are shown in table 5. 

Row group 𝒗𝟏 𝒗𝟐 

𝑅 𝑚𝑜𝑑 4 = 0 and 𝑅 𝑚𝑜𝑑 4 = 1 4𝑘2 − 𝑘 4𝑘2 + 3𝑘 
𝑅 𝑚𝑜𝑑 4 = 2 and 𝑅 𝑚𝑜𝑑 4 = 3 4𝑘2 + 7𝑘 + 3 4𝑘2 + 3𝑘 

Table 5: The payoff functions for D(1, R) games 

Dominogames with two columns were a bit more complicated because the extra column means extra 

options to play for the players. A certain 2x4 repeating block was found, and using this, the proof was 

completed by splitting it up into the four mentioned parts. In table 6 we see the payoff functions for 

both players, for each of the mentioned row groups. 

Row group 𝒗𝟏  𝒗𝟐 

𝑅 = 4𝑘 8𝑘2 + 𝑘 8𝑘2 + 3𝑘 
𝑅 = 4𝑘 + 1 8𝑘2 + 7𝑘 + 2 8𝑘2 + 5𝑘 
𝑅 = 4𝑘 + 2 8𝑘2 + 9𝑘 + 3 8𝑘2 + 11𝑘 + 3 
𝑅 = 4𝑘 + 3 8𝑘2 + 15𝑘 + 7 8𝑘2 + 13𝑘 + 5 

Table 6: The payoff functions for D(2, R) games 
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9.2 Discussion 
 

While the payoff functions of the two-column games are proven to be correct, the proof is not 100% 

solid. In this proof we made a distinction between four different opening situations. The first three of 

these provided raised games, but the fourth didn’t. Because situation 4 didn’t provide a raised game, 

we could still not use the payoff of such a game for the payoff function. We had to split this situation 

up into a few variations again, so that we could manually try out how the game would progress. 

Sometimes certain moves could easily be dismissed because it would set the player at a great 

disadvantage. With trial and error, we found out how the game would probably progress until a raised 

game was eventually left, so that we could continue the proof in the same way we could with the first 

three opening situations. Even though the part about opening situation 4 is very credible, we haven’t 

actually proven it.  

On games with three and four columns we found the Equilibrium Plays for games with up to five rows. 

For the three-column games there is proof for games with up to three rows. For four-column games 

there is proof for games with up to two rows, and there is a not quite 100% solid proof for three-row 

games. The Equilibrium Plays for games with four and five rows were found by trial and error. Since 

there are so many possible move sequences, we haven’t tried them all out. Still, we believe we are 

right about these Equilibrium Plays. These results make for a good starting point for further research.  

 

9.3 Recommendations and suggestions for further research 
 

In this research we started by manually finding Equilibrium Plays of 𝐷(2, 𝑅) games. With up to four or 

five rows, this wasn’t too hard to do. As the number of rows grew, however, we saw an exponential 

increase in the number of possible move sequences. When we started adding columns the number of 

possible move sequences started growing even faster. We think we managed to find all possible move 

sequences for 𝐷(3, 3) games, but if we added any more rows or columns, we found that that there 

would be just too many possibilities. At a certain point we just cannot prove anymore that we have 

found all possible move sequences. We may just miss a move sequence that turns out to be an 

Equilibrium Play. For this reason, if someone wants to continue this research, we highly recommend 

using simulations. You can find the code for similar games online (see chapter 3: Theory). From there 

you may be able to build a code for dominogames. 

Of course, if someone wants to continue this research, it is a good idea to try to find the Equilibrium 

Plays for games with more columns. Maybe there is some sort of pattern between all games with an 

odd or even number of rows. Then you can also probably formulate the payoff functions for the 

Equilibrium Plays. 

Another interesting thing to look at is the number of unoccupied gaps in Equilibrium Plays. In this 

research it is stated that there can be at most one unoccupied cell in Equilibrium Plays, namely in 

games with an odd number of cells. In games with an even number of cells there can be no such 

gaps. This is likely to be true, but it has not been proven yet. 

My last suggestion also has to do with such unoccupied cells. The question is: If there are one or 

more unoccupied cells, where would it be then? Maybe this question is easier to answer if you have 

proven that there can be at most one unoccupied cell in Equilibrium Plays.  
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