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Abstract  

This thesis consists of two projects focusing on how 5G can be used to make vehicles safer. The 
first project focuses on conceptualizing near-future use cases of how Advanced Driver Assistance 
Systems (ADAS) can be enhanced through 5G technology. Four concepts were developed in 
collaboration with various industry partners. These concepts were successfully demonstrated in a 
proof-of-concept at the 5G Automotive Association (5GAA) “The 5G Path of Vehicle-to-Everything 
Communication: From Local to Global” conference in Turin, Italy. This proof-of-concept was the 
world’s first demonstration of such a system. The second project focuses on a futuristic use case, 
namely remote operation of semi-autonomous vehicles (sAVs). As part of this work, it was explored 
if augmented reality (AR) can be used to warn remote operators of dangerous events. It was 
explored if such augmentations can be used to compensate during critical events. These events are 
defined as occurrences in which the network conditions are suboptimal, and information provided 
to the operator is limited. To evaluate this, a simulator environment was developed that uses eye-
tracking technology to study the impact of such scenarios through user studies. The simulator 
establishes an extendable platform for future work. Through experiments, it was found that AR can 
be beneficial in spotting danger. However, it can also be used to directly affect the scanning patterns 
at which the operator views the scene and directly affect their visual scanning behavior. 
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Sammanfattning 

Denna avhandling består av två projekt med fokus på hur 5G kan användas för att göra fordon 
säkrare. Det första projektet fokuserar på att konceptualisera användningsfall i närmaste framtid av 
hur Advanced Driver Assistance Systems (ADAS) kan förbättras genom 5G-teknik. Fyra koncept 
utvecklades i samarbete med olika branschpartner. Dessa koncept demonstrerade i ett proof-of-
concept på 5G Automotive Association (5GAA) “5G Path of Vehicle to to Everything 
Communication: From Local to Global” -konferensen i Turin, Italien. Detta bevis-of-concept var 
världens första demonstration av ett sådant system. Det andra projektet fokuserar på ett långt 
futuristiskt användningsfall, nämligen fjärrstyrning av semi-autonoma fordon (sAVs). Som en del av 
detta arbete undersöktes det om augmented reality (AR) kan användas för att varna fjärroperatörer 
om farliga händelser. Det undersöktes om sådana förstärkningar kan användas för att kompensera 
under kritiska händelser. Dessa händelser definieras som händelser där nätverksförhållandena är 
suboptimala och information som tillhandahålls till operatören är begränsad. För att utvärdera 
detta utvecklades en simulatormiljö som använder ögonspårningsteknologi för att studera 
effekterna av sådana scenarier genom en användarstudie. Simulatorn bildar en utdragbar plattform 
för framtida arbete. Genom experiment fann man att AR kan vara fördelaktigt när det gäller att 
upptäcka fara. Men det kan också användas för att direkt påverka skanningsmönstret där 
operatören tittar på scenen och direkt påverka deras visuella skanningsbeteende. 

Nyckelord 

Augmented-reality, 5G, Avancerade förarassistanssystem, Fordon-till-fordon, Fordon-till-allt, 
Fjärrkörning, Ögespårning, Augmented-reality, Internet-of-Things 
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1 Introduction 

The introduction of 5G has great potential for many stakeholders within the transportation 
domain. It can support a lot of communication types that enable scores of opportunities for new use 
cases to make traffic safer, faster, and more sustainable. Two of the most critical areas include 
vehicle-to-vehicle (V2V), where vehicles relay signals to each other, and vehicle-to-everything 
(V2X), where vehicles communicate with any potential artifact that has sensors, such as traffic lights 
and smartphones [1, 2]. 

This thesis focuses on two threads of work. Both explore how 5G can contribute to increasing safety 
in operating vehicles. One part focuses on systems that aid the individual to drive more safely and 
avoid accidents, also known as ADAS. Here, the focus is on applying augmented reality inside of the 
vehicle itself. The other focuses on future use cases in which semi-autonomous vehicles are being 
remotely monitored from a control tower. Here, the focus is on applying augmented reality to aid 
the operator in preventing dangerous events. Therefore, the augmented reality is used as a ‘remote 
ADAS’ to improve safety in the remote operating of vehicles. 

This chapter covers the specific challenges that are addressed within the thesis, their context, as well 
as the goals and structure of the thesis. 

1.1 Vehicle Autonomy 

A self-driving car, also referred to as an autonomous vehicle (AV), is a car able to drive itself 
safely through its environment, with little to no human input or corrections [3]. Exciting recent 
developments in fields such as computer vision and machine learning have resulted in a massive 
surge of attention for autonomous vehicles in the last few years. However, at this very moment, a 
commercially available and fully self-driving vehicle hasn’t become a reality yet. Although some 
vehicles are marketed as self-driving, such as the Tesla Model S [4], these cars can be considered 
operating at a “level-2” out of the 5-level scale as defined by The American Highway Traffic Safety 
Administration (NHTSA) [5]. These levels can be summarized as follows: 

Level 0 - No Automation: the driver performs all the tasks; 

Level 1 - Driver Assistance: the driver controls the vehicle, but some automated features assist 
the driver (such as cruise control); 

Level 2 - Partial Automation: vehicle has combined functions that are automated, such as 
acceleration and steering, but the driver needs to be continuously engaged during operation; 

Level 3 - Conditional Automation: the driver is still a necessity, but the driver does not require 
to monitor the environment until notified; 

Level 4 - High Automation: under certain conditions, the vehicle is capable of performing all 
driving functions. The driver may still take control of the vehicle; 

Level 5 - Full Automation: the vehicle is capable of performing all driving functionalities under 
every condition. 

Modern vehicles currently provide partially automated features. These technologies are referred to 
as ADAS (Advanced driver-assistance systems). They are electronic systems that assist the driver 
during the operation of the vehicle through automation, adaption, or enhancements for improving 
vehicle safety and driving experiences [6]. New functionalities of ADAS implementations include 
technologies such as cruise control and parking assistance. The systems that are on the market 
today mostly focus on sensors that are present in the car itself. By using input from multiple data 
sources such as radar, LIDAR (similar to radar, but uses light), camera, and ultrasound, ADAS 
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systems can get a (basic) understanding of the world around the vehicle. However, these systems are 
currently limited by what sensors onboard of the vehicle can measure by themselves.  

Next-generation ADAS are likely to leverage the capabilities of 5G wireless connectivity to enable 
use cases in which sensor-data in between other vehicles (V2V - vehicle-to-vehicle) and traffic 
infrastructure and pedestrians (V2X - vehicle-to-everything) are being shared [7]. A big advantage 
of such data-exchange is that other participants in traffic can be made aware by third-parties’ 
detections; 

1.2 5G Technology 

5G is the fifth generation of wireless technology for digital cellular networks. Before the technology 
is discussed in further details, and its impact on the automotive industry, the following provides 
short summary of what previous generations have enabled: 

1G: Mobile Voice calls 

2G: Mobile Voice calls and SMS 

3G: Mobile web browsing 

4G: Mobile video consumption and higher data speeds 

Comparing 5G to 4G will bring the following: 100 times faster data rates, significantly reduced 
latency (1-10ms compared to 40-50ms) and the ability to dedicate part of the 5G network to a 
specific service, also referred to as network slicing [8]. 

For vehicles, a 5G network brings excellent benefits when it comes to communicating with other 
traffic participants. Although, vehicles on today's 4G network can already broadcast information 
such as location, speed, and direction. 5G opens the door to many time-critical use cases as well as 
use cases that require more data to be streamed between parties than current 4G networks can 
handle. An example of a time-critical use case is when vehicles need to negotiate whose turn it is to 
cross at an intersection between sAVs (Semi-Autonomous Vehicles) as they approach the crossing. 
An example of a use case in which both increased data streaming and lower latency become 
essential is related to remote monitoring or controlling of sAVs. In the case of remote driving, the 
vehicle is not fully autonomous. Instead, it relies on cooperation with a remote operator that can 
take control of the vehicle when necessary. The vehicle can also be considered to be a cooperative 
vehicle, rather than being an autonomous vehicle; given that it will still rely on the human-in-the-
loop. 

There exists one major challenge for these types of use cases. This lies in probably the biggest 
shortcoming of 5G technology: it’s range of operation is very small compared to its previous 
generations. A 5G cell can serve cellular data within a range of about 250 meters in optimal 
conditions [9]. By comparison 4G wavelengths have a range of about 10 miles [10]. Another issue on 
top wavelength is that the signals of 5G can be easily hampered by physical obstacles due to their 
shorter wavelengths. Small objects such as leaves on a tree or natural events such as rain can 
already decrease the effective range of a 5G cell. Another factor that has to do with the range of a cell 
is handovers. These handovers occur whenever a cellular device moves ‘closer’ from one base station 
to another. During the handover, there is a time in which no 5G connectivity will be sent to the 
receiver. However, they may still receive 4G or 3G during that period. As a result, however, the 
amount of uplink the vehicle has available is much lower, and the data that can be sent in an 
amount of time is significantly reduced. If a cooperative vehicle sends a video-stream to its 
controller, then this video stream will be sharply reduced in quality. An example of this can be seen 
in figure 1.  
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What makes such events dangerous is that critical details about traffic can disappear as a result of 
these glitches when the remote operator relies on a video stream to asses the situation at hand. 
Pedestrians, for example, can disappear completely from sight and be at risk as a result of these 
handover situations. 

 

 

 

 

For any use case that is enabled through 5G it is essential to keep these factors in mind. The 
challenge is that many systems always need to remain operational, even when the network quality 
may not be up to the “5G standard” that they are designed for. What this means, is that these 
systems need to have possible fall back solutions. For example, for remote monitoring or operation 
of vehicles, this means that the system should provide additional fall back mechanisms. These 
mechanisms should compensate for events when data that is being streamed - such as the video - is 
in very poor quality.  

1.3 About both projects 

As discussed in the previous section, 5G technology has a great potential for automotive use cases. 
However, there are also big challenges to overcome. In this thesis, two areas of work will be 
explored: 

1) One focus area of this thesis will explore the potential of 5G for ADAS use cases. The 
challenge of this work is to build the world's first 5G enhanced ADAS system. This is done 
through the creation of a proof-of-concept of various ADAS implementations on a live and 
operational 5G network. This work is done in collaboration with KTH and Ericsson, 
including various partnering companies that will be introduced later. The goal is to present 
this system during the 2019 5GAA Conference in Torino, Italy [11]. From now on, this work 
will be referred to as the "Torino Demo".  

Figure 1: Two situations that illustrate the dangerous effects of a base-station handover and 
how it reduces the quality of the video-stream temporary. 

Case 1: Two pedestrians in the distance disappear as the vehicle is approaching them 

Case 2: A pedestrian distance disappears as the vehicle is approaching while making a turn to the right 
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2) The other area of the thesis investigates one of the significant challenges for remote 
monitoring and driving of vehicles. Namely, creating a fall back solution that augments the 
video stream from a remotely operated vehicle if the network doesn’t cover an area or is 
performing poorly due to other unexpected events. The aim is to compensate for poor video 
streaming quality using AR (augmented reality), to improve the capabilities of the 
operator/observer to recognize possible dangerous events to maintain the safety of 
operation.  

The overarching research questions are related for both parts of the thesis: 

1) How can we develop a proof-of-concept that demonstrates ADAS enhanced through 5G? 

2) Can AR be used to improve the ability of a remote observer of a vehicle to detect dangerous 
events during critical moments in which the data stream to them is limited? 

Based on theory and background, both these questions will be defined more concretely in the 
following chapters. 

1.4 Purpose 

Both parts covered in this thesis aim to contribute to their own individual purpose. This is in line 
with our vision on how futuristic some concepts may be. The integration of ADAS concepts using 5G 
technology is less futuristic than remotely monitoring sAVs. The aim of the work on the ADAS is 
therefore focused on what can be achieved in the next product-cycle. Whereas the work on the 
remote driving scenario is focused on the a more distant timeframe. 

For the Torino Demo, the purpose is to demonstrate various implementations of ADAS enhanced 
through 5G. Within this demonstration, both V2V and V2X use cases will be integrated and shown 
as part of a cohesive scenario. So far, a working implementation of such a system hasn’t been 
demonstrated before. As part of this purpose, it demonstrates the capabilities of how safety in 
vehicles can be further improved through these technologies. Additionally, it provides a glimpse of 
near-future possibilities of commercial systems. Furthermore, at the time of writing, many countries 
are still introducing their 5G infrastructure [12]. Having a 5G network is essential for both remote 
driving, as for V2V and V2X ADAS systems.  Although it is a necessary step, policy around vehicle 
autonomy needs to be expanded as well [13]. Demonstrating its capabilities at events such as the 
5GAA conference - which many policy makers and journalists attend - can aid facilitating these 
discussions. 

Currently, research is ongoing into building systems that enable remote driving. One example of 
such efforts is current work being done by ITRL (Integrated Transport Research Lab) [14] in 
Stockholm, Sweden. This specific use case is therefore farther away into the future before it will be 
rolled out commercially. As part of this work, the aim is to build a simulator that can be used to 
evaluate the AR interactions through eye-tracking. As part of this experiment, other actors in traffic, 
such as pedestrians and vehicles, will be augmented to aid in their detection. The simulator will be 
capable of playing video fragments and apply augmentations to the video in real-time. By making 
use of eye-tracking technology, the AR interaction can be evaluated through a user study. The 
simulator will be developed in such a way that it can be easily extended, meaning that other videos, 
as well as AR-interaction(s) can be added in future work. Furthermore, by focusing on technology 
that is already available for the detection of such actors from video images, the implementation can 
also be handed over to ITRL should it prove to be successful. 
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1.5 Goals 

For the Torino Demo, the goal is to contribute to the creation of a proof-of-concept demonstration 
of 5G enhanced ADAS services. This project contributes to the world's first realization of such a 
technical demonstration. Achieving this can aid in opening the discussion around policy for 5G and 
vehicle autonomy. Furthermore, it also provides a platform to showcase upcoming technology, 
which could help with marketing and commercialization efforts. 

For the work on the monitoring of remote vehicles, the goal is to design and evaluate AR-
interactions on their effectiveness for aiding in spotting dangerous events. An example of such an 
event is when the network cannot deliver a video stream to the control tower in an adequate quality. 
The work aims to investigate if AR can be used to compensate for such events, and thereby improve 
the safety of operation. 

1.6 Method 

For the work on the Torino Demo, the main contribution is the development of an HMI (Human 
Media Interface) for the inside of the vehicle, as well as ideation and development of various V2V 
and V2X use cases. These efforts are done in collaboration with KTH, Ericsson, and partnering 
companies (Audi, Qualcomm, TIM, Pirelli, Italdesign, and Tobii). 

To test the designs, they are built into a functional prototype, which can be evaluated using the 
simulator. The user test involves participants observing a vehicle as its driving through a city. For a 
section of the test, video stream quality will be poor, while augmentations will be applied. Eye-
tracking technology will be used to analyse how both lower video quality and augmentations, can 
affect the user's ability and behaviour during the test. 

1.7 Structure of the thesis 

Given that this thesis encompasses the documentation of two projects, this document has been split 
up into three parts. The first part is what you, as a reader, are reading right now. It aims to 
introduce the thesis as well as cover common concepts that both parts of the work share. The second 
part of the thesis aims to cover the work and research that has been done through the exploration of 
the effects of AR for remote observation of vehicles and the development of the simulator 
environment. Finally, the third part of the thesis covers work that has been done on the Torino 
Demo, World’s-first demonstration of 5G enhanced ADAS. This structure generally reflects the 
order in which work has been done during the thesis as well. 
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2 Background 

This chapter provides background information about technology and techniques used within this 
project, as well as related work on automotive projects. Topics covered include augmented reality, 
object detection, and eye-tracking technology.  

2.1 Augmented Reality 

Augmented Reality (AR) is a technology that enhances objects that reside in the real world by 
adding computer-generated perceptual information to it. Although visual applications of AR are 
probably the most common, it should be noted that other sensory modalities can be included as 
well, such as sound and smell [15]. At its core, AR can be defined as a system that fulfills three 
features: a combination of real and virtual worlds, real-time interaction, and accurate 3D 
registration of both virtual and objects in the physical world [35]. In 1992, the term “Augmented 
Reality” was first used [16]. This is when the first embodiment of AR was created in a head-mounted 
display (HMD). This device provided virtual information based on the position of the head in real-
time.  

   

  

 

Today, AR has also found its commercial applications within vehicles but not in the form of a 
wearable device, yet. Instead, the automotive industry has mostly been focused on developing 
alternative AR solutions. An example of an application is a Head-Up Display (HUD) by Audi, as can 
be seen in figure 2. This functionality displays information such as the current speed at which the 
vehicle is driving, as well as warnings about traffic situations (e.g., crossing pedestrians in the dark) 
[17]. Although this application is a relatively small and modest AR interface, there are also futuristic 
concepts out there to create a full-size holographic windshield for cars [18]. Although there is lots of 
interest from the industry for such technology, no such technology is commercially available, yet.  

2.1.1 Augmented Reality in previous work 

In previous research, AR has also been a topic of interest for applications within vehicles, and it 
has many potential applications. For example, AR has been used to study training scenarios [19] as 
well as in studies focusing on applying AR to explain the driving decisions made by an AV [20]. 
Other works focus on adding functionalities that cars do currently not support, such as conference 

Figure 2: A render of a Heads Up Display found in modern Audi vehicles. Image obtained from [17] 
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calls. In [21], a driving simulator was used to test the effects of using an HMD for AR video calling 
while driving a vehicle. 

Various studies have focused on using AR to improve the ability of the driver to assess danger. In a 
study by Tran et al. [22], a proposal is presented for the usage of AR through a HUD to assist drivers 
in making left turns across oncoming traffic. In this given scenario, the driver must make many 
judgment calls to carry out manoeuvres in a safe manner. To validate their designs, they made use 
of a simulator that allowed for testing with and without aid from the AR system, so that the results 
could be compared (figure 3). Although they had a small number of participants (four that 
completed the study, three withdrew due to motion sickness), they still gained valuable insights into 
how to improve the interaction in the future. 

 

 

In [23], it is explored how AR cues can be used to direct the attention of the driver to potential 
roadside hazards. In this study, participants were evaluated based on their response time in 
detecting hazards. For this study, a simulator was used as well. Based on their findings, they claim 
that AR cues did not distract the drivers or impair their ability to assess danger. 

What’s notable is that many of these studies, simulators have been created to test the proposed 
interactions with the users. In most of these cases, large screens were used with the aim of creating a 
more realistic effect.  

2.2 Object Detection 

Object detection is a computer vision technique in which semantic objects of a particular class 
(e.g., humans, cars, traffic signs) are detected within digital images and videos [24]. The obtained 
output of these techniques can be applied for anchoring augmentations on top of objects appearing 
in videos in real-time (figure 4). Therefore, this work is so relevant to be used within the simulator.  

 

Figure 3: The simulator environment used in Tran et al. [22]. 
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In recent years, the capability of detecting objects in images has significantly increased thanks 
to new developments in Machine Learning (ML) by applying Deep Neural Networks (DNN’s) [25]. 
As part of the advances in both ML and computing power, it is now possible to detect up to at least 
80 classes in real-time (above 30fps) using hardware that is still considered “consumer-level” as has 
been shown in previous works [26][27]. 

2.3 Eye-tracking 

Eye-tracking is the process of either measuring the point of gaze or the motion of an eye in relation 
to the head. An eye tracker is a device capable of measuring the eye positions and its movement. 
Modern eye trackers achieve this through video analysis. Modern trackers, project patterns of near-
infrared light on the eyes of the person of which they aim to measure the gaze. Then, through image 
processing, the gaze points are calculated [28]. An example of such an eye-tracker is the wearable 
Tobii Pro 2 glasses (figure 5). Other eye trackers approach this by estimating purely on video [29]. 
Although these solutions don’t require any external or wearable hardware, they tend to be less 
accurate. 

 

 

 
The application of eye-tracking devices has also been used in research related to driving vehicles. 
Most of the identified research has focused on measuring eye gaze behaviours to detect if the driver 
is showing signs of fatigue or drowsiness [30][31]. Other studies have focused on using eye positions 
and pupil diameters to measure possible distractions in traffic [32]. Furthermore, other work has 
also focussed on devices present in the car itself, such as a navigation system [33] or while 
navigating a menu on the car’s HMI [34].  

Figure 4: the image on the left is the input-image given to Yolo. The image on the right 
shows the bounding boxes as well as the class-labels that were obtained through YOLO. 

Figure 5: The Tobii Pro 2 glasses worn by a driver. Obtained from [28]. 





 Description of both systems | 11 

 
 

3 Description of both systems 

This chapter will describe the two systems developed as part of this thesis. First, there is the 
simulator environment that is used within the user research on AR for remote driving. Second, there 
is the Torino Demo system. This chapter will describe both systems from the perspective of the user. 
Technical details of its implementation will be discussed in the following chapters.  

3.1 The Simulator Environment Overview 

For the simulator, the main goal is to produce a setup that can be used to evaluate AR 
interactions. These AR interactions are within the context of improving safety and remote operation 
or monitoring of (semi-) autonomous vehicles. It does so by exposing the user to different videos of 
a vehicle driving through heavy traffic in different urban locations. For each video, a different type 
of ‘AR assistance’ can be applied to the video (or left out). The system can also deteriorate the 
quality of the video to simulate remote driving conditions in sub-optimal coverage areas. Users will 
watch these videos on a large screen in front of them, while wearing glasses that can track their eye-
gaze. An overview of this system can be seen in figure 6. 

 

 

 

Users will be given the task to press the spacebar on the keyboard in front of them, in case they 
spot danger. For example, when a pedestrian jaywalks and the vehicle, they are monitoring would 
need to brake. As the user is observing each scene, and reporting for possible danger, the simulator 
works in the background to collect and store research-relevant data for later analysis automatically. 
The system observes where the participant looks on the monitor. Also, it notes what objects they are 
looking at and if they reported any dangerous scenario on a frame by frame basis (figure 7). 

Although the aims of this work are focussed on safety, the set-up of the simulator was done in such a 
way that it could be adapted to other purposes with great flexibility. Furthermore, the selection and 
implementation of the used technology were done in such a way that the simulator could easily be 
translated into a real working system.  

In its way, the simulator also aims to be a realistic reproduction of what could be achieved in the 
present day. This also implies that all augmentations are being applied in real-time to the video, 
meaning that videos can be swapped without the need for pre-processing in any way. 

 

Figure 6: The set-up for the simulator environment. Participants will be seated in front 
of a large display while wearing the Tobii Pro 2 Glasses. 
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3.2 The Torino Demo Overview 

The goal for this system is to simulate the experience of how, in the near future, ADAS could 
assist the drivers through unification of various ADAS systems. For the demo, participants are 
seating in the back seats of the vehicle. While a professional driver brings them along a set of 
scenarios and a guide in the front passenger-seat talks about each scenario, acting as a tour-guide 
(Figure 8). In this setup, the driver also serves as an actor that wears eye-tracking glasses and is 
supposed to act as an actual driver having access to these upcoming technologies. Unlike the 
simulator system, the goal is not to study the eye-gaze of the participant for the Torino Demo.  

 

 
 

 

Just as for the simulator, the augmentations are shown on display. However, this time it's on the 
inside of the vehicle, on the HMI. A video stream captured by the dashcam will be shown alongside 
other elements of the car's HMI (which have been left out of Figure 8 for illustrational purposes). 

Figure 7: The eye-gaze reading obtained from the Tobii Pro 2 glasses will be mapped to a coordinate on the monitor for 
and logged for every video frame. Additionally, it will be logged if the participant looked at an object. 

Figure 8: The set-up for the Torino Demo. Participants will be seated on the rear-seats of 
the vehicle. Augmentations will be shown on the HMI of the vehicle. 
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However, note that the wearer of the glasses will be gazing at the objects outside of the car, rather 
than the objects on the screen (Figure 9). 

 

 

3.3 Used Technologies 

Both systems share a common set of technologies: object detection and eye-tracking. Furthermore, 
for both systems, openFrameworks [36] was used for bundling all pieces of the system together. 

3.3.1 openFrameworks 

openFrameworks (OF) is an open-source C++ toolkit distributed under MIT License. The 
framework is, according to its creators, meant to be used for experimentation and facilitating the 
creative process [36]. OF is a flexible framework that allows creatives and developers alike to 
leverage libraries such as OpenCV (Open Source Computer Vision Library [OpenCV Source]) while 
also integrating additional hardware such as cameras. Although the framework is extensive, in the 
sense of having its own “batteries included,” it is also a very extensible framework. There exist many 
add-ons for OF, and it has a relatively active community. 

3.3.2 Object Detection 

YOLO (You Only Look Once), is a Convolutional Neural Network (CNN) that is used for the 
object detection [26] in both systems. Essentially, what it does is take an image as an input, and as 
output provides the probability estimation wherein the particular image objects are present, as well 
as their dimensions (figure 10). This combination of location and size of an object, in an image, is 
also commonly referred to as a bounding box [44]. These bounding boxes can then be used as 
anchoring points for augmentations. 

Although there are many ways in which object detection can be performed, YOLO offers a few 
significant benefits compared to other methods: 

- The most significant benefit is speed: YOLO can perform real-time object detection - up to 
45 frames per second - on an NVIDIA GeForce GTX 1080 Graphical Processing Unit (GPU);  

- The network understands generalized object representations, so it also works on artwork. 
Within the context of the thesis, this meant that in theory, it was also able to differentiate 
between road signs (e.g., ones with cars or pedestrians on them);  

- It is open-source and even has pre-trained weights, made available by the author and 
community contributors [27, 45]. 

Figure 9: The system will map the object being gazed at to the HMI inside the vehicle. This is where 
the augmentation will be displayed on the video feed obtained by the dashcam. 
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Implementing YOLO in openFrameworks 

To integrate YOLO, an open-source implementation by Github user AlexeyAB was used as a starting 
point [43]. As with any neural network, one can use their training data, but in this case, the pre-
trained models were sufficient. The model can detect a range of relevant objects that one finds in 
everyday traffic (e.g., people, cars, trucks, traffic signs, and traffic lights). Although one could use 
techniques such as transfer learning, in which the only classification layers are retrained, to improve 
the performance, this was deemed to be unnecessary.  

Although the original repository by AlexeyAB provides some installation instructions, this process is 
not straightforward, and many pitfalls were discovered along the way. Therefore, the time has been 
invested in documenting more detailed installation instructions for others to use in the future. 
These are included in [46]. 

3.3.3 Eye-Tracking 

The Tobii Pro Glasses 2 (from now on referred to as “the glasses”' for conciseness) is an eye-
tracking device used in the thesis for eye tracking purposes [37]. These glasses consist of two parts:  

1) The head unit, which captures the field of view of the wearer and measures the orientation 
of the eyes to determine the gaze location. This process is done with four cameras for each 
eye and measures at a rate of 50 to 100 Hz. The head unit weighs 45 grams, which makes 
them slightly heavier than an average pair of glasses. 

2)  The recording unit, which is a small box that is connected by a cable to the glasses. This box 
stores the calibration data of the wearer. It also acts as a streaming component for the video 
and data stream. This component weighs 312 g but, unlike the glasses, doesn't have to be 
worn as it can also be put on e.g., a table. 

For the purposes of the project, this device offers a few essential benefits:  

- It is a wearable eye tracker that looks and feels relatively similar to a regular pair of glasses;  

- Offers eye gaze data about what the user is looking at in real time. This data is accessible 
through their device API and can be streamed in real-time;  

Figure 10: illustrating the output obtained from the YOLO network. The network returns a vector containing 
all detected objects and provide their positions (width, height, x and y position) in the 
image as well as their respective label and probability. Figure was obtained from [53]. 
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- It is also equipped with a Full HD wide angle camera (H.264 1920 x 1080 pixels at 25fps), 
which when the glasses are worn are positioned just above the nose-bridge. This positioning 
provides an ideal perspective w.r.t to what the wearer is seeing. This camera feed can be 
streamed live over RTSP, which is a protocol for streaming data (such as video);  

- As a device, the glasses are very easy to use for the user, as they don’t need any training. 
Furthermore, the calibration process is quick and straightforward, which is a great benefit 
compared to other eye trackers. 

 
Implementing Eye-Tracking in openFrameworks 

Two main components had to be integrated within openFrameworks. First, there is the video 
stream from the camera on the head unit. This process goes relatively straightforward, as OpenCV 
[40] allows you to stream over RTSP (Real-Time Streaming Protocol), a video source through the 
VideoCapture class implementation [41].  

For obtaining the eye gaze data, it is a bit more complicated. Luckily, there is an open-source 
controller for accessing eye-tracking data for the Tobii Glasses Pro 2 on Github, which implements 
their official API in an effortless way [37, 38]. However, this implementation is based on Python and 
does not directly interface with openFrameworks (which is based on C++). Therefore, the quickest 
way around this to stream the data from the controller over UDP (User Datagram Protocol) over a 
local port on the computer and read this port using openFrameworks’ ofxUDPManager 
implemenation [39]. 
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4 Technicalities of fusing Eye-Gaze and Object-Detection 

This chapter aims to shed light on the challenges that were faced with regards to working with 
wearable eye-trackers in combination with object detection algorithms. Additionally, strategies that 
were applied to counter these challenges will be discussed as well. Although this thesis won't go into 
depth on all technical parts as much as this particular one, this topic is a core part of the technical 
efforts that have been worked on. 

The first section deals with a problem that arose when dealing with small objects in a scene in 
combination with slight inaccuracies in the eye-tracking detection. 

The second section describes two scenarios in which the eye gaze estimation had to be mapped to a 
different surface. This section consists of two parts. In the first part, it is about how the eye gaze 
estimation was mapped to a coordinate on a monitor. This was directly applied within the thesis to 
make data analysis possible through the simulator system. The second part describes how eye gaze 
readings were used to estimate which object was being looked at, from the perspective of a 
secondary camera. This was used within the Torino Demo to determine at which object(s) the driver 
was gazing. 

4.1 Dealing with inaccurate gaze-readings 

This section describes the implementation and strategy behind a measure for “correcting gaze 
readings” that were applied during the early stages of the work. This problem appeared while 
working on early exploration of what could be achieved with the available hardware. This work was 
done before defining the goals for both the remote driving study as for the Torino Demo. 

The goal of this technical exploration was to try to combine YOLO object detection with the Tobii-
glasses eye-tracking capabilities. In other words: could we create a demo set-up, that would 
demonstrate the integration of both components? And by doing so, what kind of expectations 
should we have of such a system with regards to its capabilities? 

By having such a system, we could estimate the feasibility of further possibilities. Now, that it is 
possible to detect what object a user was looking at, it allowed for testing the reliability such a 
system would be for future use cases. 

In its essence, this demo set-up did the following: 

1) Obtain the current video-frame from the glasses and pass them into the YOLO object 
detection.  

2) Obtain where the wearer of the glasses was gazing.  

3) Test if the gaze-location of the wearer was inside of a bounding-box from a detected object.  

4) Trigger a specific interaction (e.g., playing a sound) if the wearer was looking at a specific 
object. 

Upon realisation of this prototype, it became clear that there were three problems: 

- Detecting user-gazing at small objects accurately was troublesome. This was mainly due to 
small inaccuracies in the gaze-detection. This, combined this with a small bounding box 
could result in a false-negative scenario where the user's gaze was placed outside of the 
bounding box (figure 11 – left image); 

- Bounding boxes are somewhat an awkward spatial-representation of real-world objects, as 
most of them - except for devices - do not exactly fit in the shape of a rectangle very well. 
This leads to false positives for larger objects in general;  
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- Smaller bounding boxes could be contained within other bigger bounding boxes: what if the 
user was looking at a mobile phone being held by someone? This, combined with the 
previously mentioned issues, resulted in false-positives for the larger objects and false-
negatives for the smaller object (figure 11 – right image). 

 

 
 

 
Therefore, the goal was set to implement a system that would compensate the bounding boxes 
somewhat to prevent the issues described above. The chosen approach was to make use of a 
simplified set of “Steering Behaviours,” as described by Reynolds [50].  

 

 
 

 
Within this model, movement is modelled as a “desire” toward an object, which results in a force 
being applied to the agent, which in turn causes the agent to move towards its desire(s) (figure 12). 
This steering-vector can be used within the system to make assumptive corrections w.r.t eye-gaze 
readings. The benefit of this model is that multiple objects can emit a desire to the vehicle at once, 
and the movement is a result of the force applied by the sum of the desires emitted by every object. 
Furthermore, the system is time-based which means that corrections made by the desires (the 
bounding boxes), happen over time. In practice, what this means is that when the user keeps gazing 
at an object, the correction effects get more expressive over time. Meaning, that if a user keeps 
waiting - in anticipation of a response from the system - the steering behaviours will correct the 
estimated eye-gaze position (figure 13). 

 

 

Figure 11: Illustrating two issues with using identified through the first prototype that 
combined eye-tracking with YOLO Object-Detection. 

Figure 12: Figure illustrating the force-vectors that are applied to Reynolds’ vehicles. Figure obtained from [50]. 
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To implement this, the following changes were made to the demo:  

- The eye-gaze estimation, used to determine where the user was actually gazing, was 
decoupled from the measured eye-gaze provided by the glasses. The measured gaze, 
provided a steering behaviour for the estimated eye-gaze by applying a force to the 
estimated gaze position;  

- Bounding boxes also applied a force to the estimated eye-gaze. The smaller the bounding 
box, the bigger the force they applied. Bounding boxes only provided their force once the 
estimated eye gaze was in near proximity to them. 

An example implementation can be found on the GitHub at [47], the code itself is reusable for 
openFrameworks based projects and comes with an example so that it’s effects can be tried out. In 
the end, for the thesis, these strategies were not applied in the final deliverables. The reason for this 
is that over time the requirements for detecting “relatively small objects” and “small objects within 
bigger objects” were no longer relevant.  

4.2 Mapping eye-gaze to a different surface 

In this section, two scenarios will be discussed in which the eye-gaze readings are mapped to a 
different image than the one being provided by the glasses. The first case is about a scenario that 
happened during the user research, and the second is about a challenge that arose during the set-up 
for the Torino Demo. 

For the user research using the simulator environment, participants will be watching a video being 
played on a computer screen while wearing the Tobii glasses. The main data that the system needs 
to be able to derive here is which objects in the video did a user (not-) see, and where exactly was 
their gaze focused on a given point in time. In order to allows for this, the system needs an 
understanding of what objects are currently in the video, as well as which position the gaze of the 
participant is fixed on. The main challenge here is mapping the gaze position (real world) to a 
position on the screen (virtual).  

For the Torino Demo, the driver of the vehicle will be wearing the glasses while encountering 
various sets of events. Some of these require understanding of what is happening outside of the 
vehicle (real world) in combination with understanding where the driver’s gaze is located (real 
world, but different perspective). 

Both cases have two things in common:  

1) Essentially, there are two video inputs for each scenario. In the case where the participant is 
looking at a video on screen, one input source is the video being displayed, while the other 

Figure 13: Illustration of how coupling the eye-gaze coordinate to a Reynolds’ vehicle fixes 
previous discussed issues with detecting eye-gazes at small objects. 
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input comes from the video-stream from the camera on Tobii Glasses. However, for the 
Torino-demo the glasses will be worn by the driver of the vehicle while the second video 
source is provided by a dashcam installed on the vehicle.  

2) They share the goal of mapping a gaze position obtained from the glasses, to another 
surface. In the case of the user study, the goal is to map the gaze from the glasses, to a 
position on the monitor. While for the Torino-demo, the goal is to map the gaze position of 
the glasses, to a dashcam capturing objects in front of the vehicle. 

The first part of this section discusses the issue of mapping an eye-gaze position to a coordinate on a 
monitor screen. The second section describes a simple strategy that was applied to map “roughly” 
the eye gaze position to a different camera. Additionally, unapplied measures that could have been 
implemented for better performance, are also mentioned. 

4.2.1 Gaze position to monitor-coordinate mapping 

For the user research using the simulator system, participants will be seated in front of a large 
screen while their gaze position on the screen will be measured. Additionally, it will track what 
object is being gazed at (e.g., a pedestrian or a vehicle).  

One may wonder, why the glasses were used at all for this specific set-up. Especially, given that 
Tobii also has a non-wearable product in its portfolio for detecting the gaze position on a computer 
display. Although this option was considered, it was deemed to be better to use the glasses. The 
reason why this device configuration did not suffice is that it doesn't work as well for a large display 
that would necessarily cover most of the participant's field of view. This was a design-driven 
decision given the goal was to emulate the conditions of being in a real-car, and therefore having a 
large field of view was deemed more valuable. Furthermore, being able to accurately measure the 
eye gaze location on the screen also reduces data analysis efforts. The coordinates can be stored in a 
document, automating a part of the data gathering.  

Now, the question remains how the eye gaze location can be accurately mapped to a different 
surface, such as a computer screen. This location can be approximated by mapping a 2-D vector (the 
eye-gaze reading) contained within a plane (the video-frame from the glasses), with a non-fixed 
orientation in 3D-space, to a plane with a fixed orientation in 3D-space (the monitor). The exact 
position of the monitor depends on the participant, factors that influence this are: their height, 
distance to the monitor, and such. An overview can be seen in figure 14.  

To make this mapping successful, it is necessary to know where the eye gaze intersects with the 
computer screen, which can be obtained by knowing the orientation and position of the camera in 
the glasses w.r.t to the monitor. There are multiple ways to achieve this, but it was decided to do this 
by using an ArUco marker [48], displayed on the screen, as a reference point. The main reasons to 
select the ArUco marker for this effort are:  

- The detection of ArUco markers did not require any additional hardware and was therefore 
both inexpensive and fast to implement;  

- Markers can be detected extremely fast allowing it to be done in real-time. This has the 
benefit that in case the user would move during the experiment, the results would still be 
accurate;  

- The original library is written in C++ and is supported through the community version of 
OpenCV, a library that was already used within the project;  

- It can easily be scaled to multiple displays, as each ArUco marker also has an unique 
identifier. Therefore, the same solution could work for a set-up with multiple monitors as 
well;  
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- Using YOLO to detect the screen coordinates wouldn’t work here: the possible tilt of the 
screen cannot be considered. By using an ArUco marker, this tilt can be included as well. 

 

Before you can make use the ArUco library, it is necessary to calibrate the camera that you’re 
going to use. A camera can be calibrated through the ArUco library as well by taking pictures in 
various poses w.r.t to a ChArUco board (figure 15). Which is essentially a chessboard with 
ArUco markers contained in the white squares. During this camera calibration process, the 
intrinsic parameters and distortion coefficients are obtained [49]. This process only needs to be 
done once if the camera optic is not modified (which is the case for the glasses, as its camera 
does not change its optic). Once the camera is calibrated, it is possible to detect markers. 

 

 
 

 

 

Figure 14: Illustrating the process of mapping an eye-gaze reading on the video-frame to a coordinate 
on the monitor displaying the video in the simulator environment. 
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The following pipeline was implemented to determine if the participants gaze was within the bounds 
of the monitor, and at which location: 

1) First, the video frame obtained from the glasses is converted to an OpenCv Matrix. Then, it’s 
passed on to the detectMarker function in the ArUco library. Which returns a vector 
container in which each element contains the properties of the marker. Note, this also 
implied that the system updates the position of the monitor in the video-frame for every 
frame. 

2) By finding the ArUco marker in the videoframe, four coordinates are obtained: one for each 
corner of the marker. Based on these corners, two orthogonal vectors can be obtained: 
vector-A (bottom left and bottom right corners) and vector-B (bottom left and top left 
corners). These vectors have a magnitude equal to the relative size of the marker w.r.t to the 
video-frame.  

3) Then, by multiplying the magnitude with a fixed scalar, these two vectors can describe the 
size, location and orientation of the monitor. The size of this scalar depends on the relative 
size of the marker w.r.t to the monitor.  

4) Then, vector-A is moved to the left corner of the monitor by a fixed factor, while vector-B is 
moved to the centre of the marker (in between the bottom left and bottom right corners).  

5) These two line-vectors can now be used as a relative-axis system to determine the eye-gaze 
location on the screen. By finding a point that is both closest to the eye-gaze coordinates 
within the plane describing the monitor and containing the line-vectors, the X and Y 
coordinates can be obtained. Note, this is an approximation that works due to the nature of 
the experiment’s set up, as it can be assumed that videoframe and the plane describing the 
monitor are (nearly) parallel to each other.  

6) Finally, in case the closest point on the line-vector, to the eye-gaze location is either the start 
or end point of either vector, it can be assumed that the location of the eye gaze is not within 
the monitor. 

As for the purpose of research within the thesis, the implementation was left at this level of technical 
fidelity. There are a few things that can be taken in consideration for possible future work to 
improve the current pipeline:  

- Currently, the coordinates on the screen are estimated based on finding the point on the 
line vectors that is closest to the location of the eye-gaze. However, this is only accurate 

Figure 15: A printed CharUcoBoard that can be used to calibrate the ArUco classifier. 
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when the wearer of the glasses is positioned relatively parallel to the screen. It would be 
more accurate to take a possible perspective-correction w.r.t to the screen in consideration 
as well. By doing so, the pipeline should refer to the orthogonal line intersection with the 
line-vector, rather than the point on the line-vector that is closest to the eye-gaze position.  

- For this pipeline to work, the ArUco marker must always remain visible. Which 
unfortunately, also results in the participant seeing the marker as well, at all times. A more 
elegant solution would be to hide the marker somehow or choose for a different system 
altogether that is less visible to the naked eye.  

- In theory, this system should work for an arbitrary number of surfaces, as long as you don’t 
run out of ArUco marker-IDs, you’re good to go. However, the current code-base only works 
for one specific ArUco marker as this use case was not taken into further consideration. For 
future work, this presented pipeline might be an interesting starting point. 

4.2.2 Mapping a gaze position to different camera 

During a specific part of the Torino Demo, the challenge was to demonstrate that it was possible 
to register that the driver had seen a pedestrian crossing the street on the HMI of the vehicle. Now, 
the Tobii glasses provide their own video-stream. However, due to specific reasons, it was decided 
that the video stream of the dashcam was to be displayed on the HMI.  

Phrasing it differently, the glasses had to be used to detect if the pedestrian had been seen, but the 
feedback had to be shown on a different video, with a different perspective than the glasses. What 
makes this challenging, is that the video-stream that is used for the detection if the pedestrian had 
been seen, has a different outlook on the scene than the dashcam does. Furthermore, simply testing 
if a “person” had been seen, wouldn’t suffice as looking at once hands would also trigger this.  

Do note that the approach described in this section is intended for a controlled environment in 
which there is an object - such a pedestrian or a vehicle - that should be highlighted on the onboard 
HMI. Unlike the method described in the previous section, the goal is not to obtain a precise 
location. Rather, the intention is to derive which object outside of the vehicle is being gazed at. As 
for the purpose of the Torino Demo, this is deemed enough. Coming at the cost of having a lower 
accuracy and precision; the method does not require any special referential markers. This was 
considered a major benefit given that the implementation should be visibly hidden from 
participants. 

In short, the method intends to isolate detected objects outside of the vehicle - specifically 
pedestrians - and determine if the gaze is focussed on them. Should the gaze be focussed on such an 
object, it should be highlighted on the HMI:  

1) The first step runs the object detection on both video frames - from both the dashcam and 
the glasses - and stores the results in a separate vector.  

2) The next step is to filter-out any objects that are not of the right class-label. All detected 
objects that are not pedestrians are filtered from both vectors.  

3) For the vector that stores the result coming from the glasses, it is essential to remove false 
positives. The most common false positives in this set-up are the hands of the driver on the 
steering wheel, as these are classified with a “person” label as well.  Therefore, the system 
needs to be capable of discriminating between hands inside of the vehicle and the 
pedestrians outside. The easiest way to remove those is to only consider detections with a 
human label that have their bottom coordinate above a certain height. Another factor to 
take into consideration is the area covered by the bounding box. The driver’s hands tend to 
produce a way bigger bounding box than pedestrians do (due to relative distance).  
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4) Finally, in case the system needs to account for multiple pedestrians, it may need to 
disambiguate between them. An easy implementation to solve this is to sort the bounding 
boxes in both vectors (e.g., by top-left coordinate of the bounding box) so that 
disambiguation becomes possible (figure 17). 

Now, this system makes distinctions based on very elementary properties. It works for a controlled 
environment, but it won’t suffice for a system in the real world. For further accuracy in 
discriminating between pedestrians (and false alarms like hands), the system could also take factors 
such as colour-histograms into consideration. Another aspect would be to take overall luminance 
around the eye gaze location into account, as it’s likely to be brighter outside of the vehicle (during 
the daytimes). This could also help to discriminate between looking outside and people inside of the 
vehicle. These further optimizations were not implemented, as this was not considered relevant for 
the Torino Demo.  

 

   
 

 

 
 

 

 

 

 

Figure 17: An image captured during an early iteration of the work. On the left image, the perspective from the Tobii Pro 
2 Glasses can be seen. The small blue box is the current gaze-point as obtained through the glasses. 
The image on the right, is the video-frame from the dashcam. The object the user is gazing at on the 
left video frame, is augmented on the right frame by the technique discussed in this section. 

Figure 16: Illustrating the set-up for the Torino Demo where two camera’s are involved. The top 
image shows the perspective from the Tobii Pro 2 Glasses. The bottom image 
shows the perspective from the dashcam onboard of the vehicle.  
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5 Implementation of the simulator environment 

This chapter describes the main dependencies used within the simulator environment. The first 
section covers technical details, such as the used hardware and software, allowing others to recreate 
or repurpose the set-up. If this is not the intent or interest of the reader, this part can then be 
skipped. The second part focuses on the implementation of the simulator itself. 

 

 

5.1 Dependencies 

This section covers the hardware and software that were used for creating the simulator 
environment that was later used during the user study. 

5.1.1 Hardware 

The application was running on an Alienware 17 R5 laptop, which at the time of writing is 
considered a high-end computer, running the Windows 10 operating system equipped with 16GB of 
installed RAM, an Intel Core i7 8-core CPU, and an NVIDIA GTX 1080 GPU. This high-end 
hardware is required for ensuring the application can do all the processing necessary in real-time so 
that the simulator can render the scene at 30 frames per second minimum.  

To measure the eye-gaze of the participants, a Tobii Pro Glasses 2 [37] was used. This mode 
provides an 82° horizontal and 52° vertical visual angle, which is large enough for the given set-up. 
Furthermore, the eye-gaze can be sampled either in 50 or 100Hz, which means that for every video-
frame that is shown to the participant, a new sample can be taken (given that the simulator 
environment will run at 30 frames per second).  

For displaying the application to the user, an external display was used; a 40-inch Samsung 
UE40D8005 LED-TV. 

Figure 18: An overview of the simulator environment displaying a 
video that used within the user-study.  
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5.1.2 Software 

The simulator was developed in C++ using openFrameworks (OF) version 0.10.1 as its main 
framework. A few modifications have been made to OF specifically: 

1) First, OpenCV version 3.4.6 was used instead of the OpenCV version that is shipped with OF 
out of the box. The primary motivation to use this version instead, was that it allowed for 
the detection of the ArUco markers. This was achieved by compiling the official 3.4.6 release 
together with the community add-ons, which includes the ArUco functionalities.  

2) Second, in order to allow OF to interface with this version of OpenCV, a wrapper called 
ofxCV was used, which is an OF community add-on [51]. In order to achieve real-time object 
detection, Yolo v3 was used [26]. For this set-up, the pertained weights provided by the 
original creator of Yolo J. Redmon, were used for running the network classifications 
[Darknet weights]. To speed up the detections of YOLO, the GPU-accelerating library CUDA 
10.0 was installed using cuDNN 7.2.  

3) Third, the obtained gaze readings from the glasses were sent over UDP on a local address 
and read into main OF-application using ofxNetwork library, a networking library from 
openFrameworks. 

5.2 Implementation overview 

This section provides an overview of the workings of the simulator. The most critical components of 
the system are presented in a chronological order in which they are programmatically executed as 
well. 

5.2.1 Scene and augmentation configuration 

In essence, the simulator environment, plays a set of videos in a defined sequence. Before the 
simulator begins, it is possible to configure in which order the video scenes should be displayed. 
They will be displayed one after the other. However, in between scenes, the system temporarily 
pauses itself, which allows for displaying a tutorial screen of what is to come when the play function 
is resumed. Additionally, for each video scene, multiple factors can be preconfigured:  

- The video quality can be reduced if desired. This can be used to simulate the (harmful) 
effects of having sub-optimal data streaming conditions; 

- A predefined augmentation can be added to the scene. This can be used for flexibly testing 
and comparing the added information augmentations across the scenes. 

This was set up in such a way that it can be used to simulate augmentations based on information 
from camera-based object detection. However, a custom video can be used just as well if the 
augmentation effect is added through video editing software manually. This would be most 
interesting in case the augmentation-layer has requirements that cannot be met with currently 
available technology yet. 
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5.2.2 Object Detection 

During the program loop, the simulator will grab the most recent frame from the video that is being 
played. It will then pass it through the object detection pipeline to obtain the bounding boxes of the 
objects recognized within the scene. The neural network better known as ‘YOLO’ is used for this 
object detection. Note that if the quality video is set to be reduced, the object detection will still 
make use of the full-quality version. 

5.2.3 Drawing the scene 

During the rendering process, the simulator draws the scene in various layers. From the bottom up, 
this is how the scene is rendered:  

1) First, the current video frame will be drawn in the level of quality that is predefined.  

2) Should a scene be playing that is configured to make use of any form augmentation, then 
this layer is drawn next. The augmentations are drawn directly on top of the latest video 
frame.  

3) An ArUco marker is drawn in the bottom-centre of the screen for obtaining eye-gaze data. 

5.2.4 Measuring the eye-gaze 

When the video scene is playing, the simulator will make use of the ArUco marker in combination 
with the Tobii Pro 2 glasses to determine where the research-participant is gazing on the screen. A 
more detailed description of this process can be found in section 4.2.1. 

 

Figure 19: Augmentations applied to pedestrians can be seen in this image.  
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5.2.5 Logging data 

As the participant is observing the scene, the simulator can store relevant metrics that allow for 
data analysis later. For example, of the current video scene that is being played, it can be logged 
where the participant is gazing on the screen. If the gaze was focussed at an object (detected by 
YOLO), then this can be registered as well.  

Naturally, for every frame, it can also log what scene was currently playing, at which video-quality, 
and which augmentation effect was added to it. In essence, this allows one to reconstruct the scene, 
as well as indicate where the user was gazing at that given frame. 
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6 Experiment methodology  

The purpose of this chapter is to give an overview of the method used for the experiment to collect 
data for evaluating the AR interactions using the simulator system.  

First, the research questions and related hypotheses are presented. The second section covers the 
used data collection techniques. The third and last section includes the experimental design of the 
study.  

6.1 Research questions and hypothesis 

The goal of this experiment, is to find an answer to the following questions:  

1. Can the use of AR compensate for situations in which the quality of the video is dramatically 
lowered? 

2. Can the implementation of AR be used to guide the user’s attention to the most critical 
situations in traffic? 

Based on these questions, the following hypotheses are developed for the experiment:  

H0. In case the video quality is lowered, participants will be more capable of detection danger      
when AR is applied to augment pedestrians and vehicles.  

H1. In case the video quality is lowered, participants will need to scan the scene less in case AR 
is applied. 

Participants will each be shown four videos fragments, amongst which there are two variables that 
are varied amongst them: 

1.  The quality-level of the video that is shown to the participants (100%, or 10%, where 100% 
implies shown in high definition - HD).  

2. The type of AR that is used to augment pedestrians and vehicles in the video (more on this 
in section 6.3.2). 

6.2 Data Collection 

In total, 16 participants took part in the experiment. All participants were recruited from the same 
country of origin (China). The benefit of recruiting participants from a similar background and 
comparable driving experiences is that it would eliminate possible biases introduced due to cultural 
differences w.r.t traffic experiences [52]. All participants were in possession of a Chinese driver's 
license. There was no direct preference to recruit Chinese participants specifically. However, an 
opportunity presented to recruit participants from a relatively similar background through a 
Chinese student community. Given that past experiences and cultural background influence danger-
estimation in traffic, this was seen as a benefit rather than a disadvantage for the research. Cinema 
vouchers were given to all the participants, as a 'thank you' for their contribution.  

6.3 Experimental Design 

This section discusses the testing set up, the augmentations that were tested during the study, the 
overall testing procedure, and finally, the data that has been collected.  
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6.3.1 Test Environment 

The experiment was divided into four scenarios. In each scenario, the participants were shown a 
different video fragment of a vehicle driving through the city of Boston, USA [54]. The order in 
which these videos were shown was changed per participant. During the third and fourth sections, 
augmentations were also applied to the video. Each video had a length of roughly two and a half 
minutes. In total, the experiment lasted approximately 15 to 20 minutes. 

 

 
The videos were recorded with the camera positioned on the hood of the vehicle, which almost 
provides a first-person perspective. This allows for a good overview of the events happening in 
traffic. Additionally, this video material was selected thanks to the high quality of the video, the 
passive and errorless driving style of the driver, and the contrasting disobedience of traffic-laws by 
the other traffic participants.  

The task that was given to each of the participants was to observe the traffic situation presented in 
the videos and mark possible events that they would classify as a dangerous event. A dangerous 
event was defined as an event to which they, as a driver, would need to respond (for example, a 
pedestrian jaywalking in front of your vehicle that makes it necessary for you to reduce your speed 
to prevent a collision). 

Participants were able to mark a dangerous event by pressing the space bar on the keyboard in front 
of them at the moment they identified one. Before the start of the experiment, participants were 
familiarised with their tasks to be performed during the set-up phase of the experiment. In-between 
different videos, a tutorial screen was displayed that reminded participants of their task, as well as 
what type of augmentation would be shown. This message was accompanied by a preview frame of a 
scene illustration of what the augmentations would look like in the next part.   

6.3.2 Augmentation Effects 

Although the order in which each of the video-fragments was shown to the participant was shuffled, 
the sequence which certain augmentation effects occurred remained consistent. 

 
Test 1 - High Quality Video - No Augmentations. 

The purpose of this scenario was to register the eye-gaze of the participant, without any possible 
augmentation effect interfering with their natural observation behaviour. Additionally, it also 
provided an accessible and relatable entrance to the experiment and its set up. The cumulative 
results of this testing scenario would later be used during the analysis phase as a base-case to 
compare the following scenarios. 

 

Figure 20: The overview of the structure of the user-study. 
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Test 2 - Low Quality Video - No Augmentations. 

For this scenario, the quality of the video was reduced — by 90% compared to the first video — to 
create a ‘blurry-effect’ in which details are eroded from the scene. The aim was to measure how 
participants observe a situation in case vision conditions is sub-optimal. Also, it would provide 
insight if participants would be able to recognise danger just as well as they did in the previous part. 

 

Test 3 - Low Quality Video - Basic Augmentations. 

In the third scenario, augmentations will be shown for the first time in the user test. Both cars and 
pedestrians will be given a distinctive and bright border to make them stand out from the scene (no 
matter where they appear on the screen). Vehicles are given a violet border, while pedestrians are 
given a mint-green border. These colours were selected for both their high contrasting values with 
the video and the other type of border colour. Like the previous test, video is shown in a lower 
quality. 

 

Test 4 - Low Quality Video - Smart Augmentations. 

In the last scenario, another type of augmentation is applied to the video. Unlike the previous 
round, augmentations are only shown depending on specific conditions. First of all, augmentations 
are shown in case the object (be it a pedestrian or vehicle), is in a direct line in front of the vehicle. 
Vehicles are given a white border with a lightly reduced opacity level. The opacity level and border 
thickness increase if the vehicle is in the same lane and gets closer to the vehicle. The border 
thickness also increases if the vehicle is approaching the driving lane from the side without slowing 
down (e.g., at a crossing), as can be seen in the example with the vehicle on the left. Pedestrians are 
given a specific colour, depending on how close they are to the car, and how close they are to the 
centre of the vehicle. Pedestrians that are close to the centre of the vehicle and are in close proximity 

Figure 21: Illustrating the four different visual-effects used in four sections of the user-study 
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are given a red border. In case they are further to the side, the border will fade from orange to green. 
In case they are completely on the side of the road, no border is shown. 

 

 
 

 

6.3.3 Test Procedure 

Before the start of the experiment, participants signed a consent form in which the experiment 
was explained. Afterward, an explanation was given about the procedure of the research. This was 
also the moment that Tobii Pro 2 glasses were given to the participants, and they were asked to wear 
them.  

This was followed up with the calibration procedure for the glasses. During this procedure, 
participants are asked to look at a calibration graphic for a few seconds. Once the glasses were 
calibrated to the participant’s sight capacity, the experiment started. After the experiment, an 
unstructured interview was held to inquire about the participants experience with the 
augmentations in general. 

6.3.4 Data Collection 

For data analysis purposes, metrics were automatically logged into a CSV file during the 
experiment by the simulator. For each test, the following metrics were saved for every individual 
frame of each video shown: the participant ID, the screen dimensions, the video that is being played, 
the video-frame that is visible at the time of logging, the quality of the video frame, if the participant 
saw an object, if the participant gazed at a person if the participant gazed at a vehicle. 

6.3.5 Trial Run 

Prior to the start of the experiments, a trial run was organized in which 8 participants 
participated. The goal of this trial run was twofold. First of all, it was done to confirm that the 
simulator worked as expected for when the real experiment would take place. The second reason 
was done out of curiosity what would happen if the video quality would not be reduced during the 
experiment. As part of this trial run, four of these trial-participants didn’t experience the second, 

Figure 22: This figure illustrates the location of the “danger-zone”. Pedestrians that walked in 
this area, were given a red border colour (instead of green) as they moved 
closer the vehicle.  
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third and fourth segments with a reduced video quality. Instead, they were shown all segments in a 
high video quality (see figure 23 for an overview).  

 

 
However, upon analysis of the data, it was found that the differences in eye-gaze behaviour amongst 
Group-A was more significant compared to Group-B. Therefore, it was decided to continue the 
experiment as planned and use all available participants to test the effects of the augmentations on a 
video with reduced video quality.

Figure 23: An overview of the trial run’s testing procedure in which 8 participants participated. 
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7 Results and Analysis 

This chapter discusses the analysis of the data obtained through the user study. The first section 
discusses how the validity of the collected data was assessed, and how decisions were made with 
regards to what data could be used for what purposes. The following section discusses the analysis 
and comparison of eye gaze behavior for each of the four tests that have been conducted during the 
user study. The third section will discuss the analysis and findings from the events marked as 
‘dangerous’ by participants and compare these across the tests. Finally, an overall discussion of the 
findings can be found at the end of this chapter.   

7.1 Assessing the validity of the data 

One factor that came to light while visualising the raw data, through using MATLAB’s plotting tools, 
was that for six of the participants the eye gaze measurements were likely recorded incorrectly. The 
cause is most likely their own glasses that some participants requested to wear underneath the Tobii 
Pro 2 Glasses. Given that this affects the eye-gaze readings, it was decided to not make use of this 
data for the comparison of eye gazing behaviour across the tests. The data was still considered 
useful for the comparison of dangerous events across use cases and was included in that part of the 
analysis. An example of valid data can be seen in figure 24. An example of faulty data can be seen in 
figure 25. 

7.2 Comparing eye-gaze behavior 

The first step taken to analyse the data was to make use of a three-dimensional histogram that 
expressed the eye gaze behaviour across all of the participants, for each type of augmentation. To 
achieve this, all the eye gaze data - that were measured during the same type of augmentation - were 
concatenated into one data set. As for visualisation, it was chosen to use a bin size of 120x120 pixels. 
By using this configuration, 16 bins fit in the x-dimension, while 9 fit in the y-direction (based on 
the screen resolution 1920:1080). This effectively divides the screen in squares of which the volume 
indicates the quantity of gaze points that are recorded within these coordinates. In figures 26-29, an 
overview can be seen of the obtained histograms. 

Across each of them, the area with the most measurements - the highest bins - is roughly just below 
the centre of the screen. This is also rather explainable given that this is the height of the horizon, 
and that while driving in traffic, most things you should pay attention to happen in front of you 
(e.g., other vehicles in the same lane or a crossing pedestrian). Based on these histograms, a few 
additional observations can be made when comparing it to the base condition (1), which had no 
augmentations and displayed the scene in high video quality: 

1) For (2) and (3), noticing the wider spread of gaze measurements, it is apparent that eye 
gazes were not as focussed as much as they were on the centre during (1).  

2) For (4) there is more focus around the centre of the screen. The spread of gaze points is less 
wide then it is for (1), meaning the participants were mostly gazing at the centre. 

One possible explanation, for why during (4) the participants were more focussed with gazing 
around the centre of the screen is that this was the area from where the augmentations could be 
observed. Unlike for (3), where augmentations were also applied, the augmentations were only 
visible during (4) once the object was near the centre of the screen as well. 
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Figure 24: Raw data obtained during the experiment. The blue lines illustrate the eye-gaze path. 
The red dots indicate frames in which the participant gazed at an object. 

Figure 25: Raw data obtained during the experiment that contains an error and was discarded from the set. The blue lines 
illustrate the eye-gaze path. The red dots indicate frames in which the participant gazed at an object. 

 



Results and Analysis | 37 

37 
 

 
 

 

 

 
 

 

Figure 26: Histogram displaying all gaze-readings obtained during the first section of the experiment. 

Figure 27: Histogram displaying all gaze-readings obtained during the second section of the experiment. 

Figure 28: Histogram displaying all gaze-readings obtained during the first third of the experiment. 

Figure 29: Histogram displaying all gaze-readings obtained during the fourth section of the experiment. 
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Although these histograms give some visual insight into how eye gaze behaviour varied across each 
of the augmentations, it does not yet show to what extent. To gain insight into this, it was decided to 
take the analysis of the data one step further. 

The first step taken was to normalize the data across each of the augmentations. Now, based on 
the normalized data a 3D surf plot can be created which can be used to express the probability 
distribution that a gaze measurement fell in a certain probability region. Then, by taking a contour 
plot at various intervals, a map can be made of how much a certain probability maps out a region on 
the screen. The chosen probability intervals were selected based on experimentation. 10% was the 
highest probability that still generated a measurable area whereas 0.5% was the lowest probability 
that did not completely cover the screen, incremental steps of 0.5% were taken in between these 
bounds. Then, by taking a large sample of random points, and testing the coordinates falls within 
the bounds of a probability area, it can be calculated what fraction of the screen is covered by this 
specific probability area. The total number of random coordinates chosen was N=100000. 
Increasing this number any further did not improve the accuracy of the sampling method.  

For each augmentation, the results can be seen in figure 29-34. The markings at which the 
smart augmentations are triggered have been overlaid for reference. Note, this area marks the 
driving lane from the perspective of the camera. during the video the driver's vehicle stood in front 
of a traffic light waiting for it to turn green. This might have caused the participants to focus on this 
more than during (1) and (4). Furthermore, it was assumed that for (4), the participants were more 
focussed with gazing around the centre of the screen, as this was the area from where the 
augmentations could also be observed. Unlike for (3), the augmentations were only visible during 
(4) once the object was near the centre of the screen as well. 

When comparing the effects of the augmentations on the gazing behaviour of the participants, it 
becomes clear both have rather opposing effects. For the “basic augmentations”, the width of the 
gazing behaviours is the widest when comparing it to the others. As for the “smart augmentations”, 
this visualization illustrates how much focus there is on the centre of the screen, where the “smart 
augmentations” are being applied to it. The sides of the screen - where no augmentations are being 
applied - is barely looked at all. In figure 30-33, the surface areas of each probability surface can be 
compared. 
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Figure 30: Probability density areas displaying all gaze-readings obtained during the first section of the experiment. 

Figure 31: Probability density areas displaying all gaze-readings obtained during the second section of the experiment 
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Figure 33: Probability density areas displaying all gaze-readings obtained during the third section of the experiment. 

Figure 32: Probability density areas displaying all gaze-readings obtained during the fourth section of the experiment. 
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7.3 Recognizing Dangerous Events 

Besides the eye gaze movement, the simulator also kept track in which frame participants spotted 
danger. Participants marked this moment, by pressing the space bar on the keyboard in front of 
them. Unlike the gaze behaviours, all datasets were deemed useful, as this part of the analysis did 
not depend on the eye gaze readings. 

 

 
 

Figure 34: Total area coverage per probability density area for a given eye-gaze 
percentage per section of the experiment. 

Figure 35: Bar chart illustrating per video and section the amount of times a 
“dangerous event” was marked by a participant. 
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In figure 35, an overview can be seen on the times per test in which the participants marked a 
dangerous event. What stands out, based on this data, is that the video and augmentation 
combination that has the most dangerous moments tends to be different depending on what type of 
augmentation was applied to the scene. In other words, video 2 seems to look a lot more dangerous 
with basic augmentations.  

However, this is also where the subjectivity of the participants comes to light. Based on a closer 
inspection of the data, it was found that while some participants only marked just one or two events 
as dangerous per video, one participant marked up to eleven per video. Bearing in mind that the 
participants cycled through the videos in chronological order, it becomes apparent why this cycle of 
“most dangerous moments” changes through the data. Although all participants, that were recruited 
to participate in this study, were from the same country or origin (China), it did not equalize the 
danger perception as much as initially hoped. Therefore, to gain more insight into how the 
augmentation effects affected how well it increased (or worsened) performance of the participants 
in spotting dangerous situations, a different analysis approach was chosen.  

By taking the participants' performance for each video, where participants watched it in a high video 
quality without any augmentations as a baseline, the effects of a lower video quality - with or 
without augmentations - can also be compared. Here, performance is defined as: ‘how well were 
participants able to naturally spot danger in the scene where their performance is assumed to be the 
baseline’ which can be compared with the other results. The comparison is done on an investigation 
into which participants saw the danger first (e.g., the baseline vs. low video quality and smart 
augmentations) and possible cases in which danger was not seen at all. First, it was manually 
investigated for which events in the video multiple participants marked it as a dangerous event. By 
doing so, various scenarios have been identified that were then further investigated. In Appendix B, 
some of these events are highlighted as examples. Through this approach, three general trends were 
observed, namely: 

- First, participants that saw the video fragment in the low video quality - without 
augmentations - performed worse compared to all other groups of participants seeing the 
same scene in different conditions. In some cases, the danger wasn’t even noticed at all. 
What also stood out, was that this group had various events marked that can be assumed to 
be false positives as well;  

- When augmentations were applied to the video scene, participants tended to notice and 
mark the dangerous events sooner than participants who saw the same video fragment 
without any augmentations in a high video quality;  

- When seeing the scene with the smart augmentations applied to it, the location at which the 
danger appeared on the screen started to matter a lot. Participants tended to notice 
dangerous events the fastest as long as the danger appeared near the centre of the screen. 
Contrary to this, for example when a pedestrian jaywalked onto the street appearing from 
the side of the screen, this group tended to perform generally worse. For the “basic 
augmentations” this effect was less noticeable, as the participants also tended to notice 
danger coming from the side of the screen, which is also in-line with the data previously 
obtained. 

One possible explanation to why participants performed better at detecting danger near the centre 
of the screen, is that this is where their visual attention was focussed. Namely, participants tended 
to focus a lot more on the centre of the screen once the “smart augmentations” were applied to it. 
Therefore, it is likely that they were focussed on this area, at the cost of scanning the periphery of 
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the screen. In other situations, where the dangerous event starts away from the centre (e.g., a 
pedestrian jaywalking coming from the pedestrian lane), participants tended to be more delayed in 
noticing the danger. Although this could be caused by the participant’s focus on the centre of the 
screen as well, there is also another possible explanation. Given that the borders that were being 
applied shifted to red, it might have caused the participants to wait for this border to become red 
before signalling the observed danger. When the danger appears at the centre of the screen, it likely 
already got a red border from the beginning, and therefore did not result in a delayed reaction. 

7.4 Discussion 

Based on the obtained results, there are a few noteworthy topics to expand upon. First, the data 
provides insight into how remote drivers or observers are impacted by a low-quality video stream. 
Second, there are findings on how augmented information can be served to them to improve their 
performance in assessing danger in remotely monitoring for danger. Third, there are also findings 
from these results that shed light on how the augmentations that are served to the user can be 
further improved.  

As expected, participants performance was at its lowest the video scene was seen in a low video 
quality without any augmentations applied to it. As details disappear from the scene, it becomes 
harder to spot smaller objects such as pedestrians crossing the street. It should be noted that driving 
or monitoring in such conditions does not necessarily reflect a realistic scenario. In a more realistic 
remote driving/monitoring scenario, the video quality would only occasionally drop from time to 
time due to limited bandwidth availability or simply a bad connection. Therefore, the video would 
shift between various levels of quality depending on network conditions. Still, these results give 
interesting insights into how much performance can drop as a result: from slower reaction times in 
noticing pedestrians crossing the street to not realizing they are present in the first place. It also 
raises the question if a different type of augmentation can be applied to a video stream depending 
on the severity of the network disruption. For example, the video stream could show no 
augmentations as long as the video stream conditions are sufficient, but dynamically switch once the 
quality drops below a given standard. These augmentations could then be used to compensate for 
the loss in quality and highlight the positions of pedestrians and vehicles. 

Based on the data that was obtained from playing the videos using two types of augmentations, a 
few conclusions can be drawn. One expected takeaway is that simply applying bounding boxes to all 
objects in the scene is not effective. It likely causes too much clutter all around the screen and 
participants do not perform better compared to when they see a scene in a low video quality without 
augmented borders. However, what is improved in participant performance, is spotting occasional 
smaller objects (such as pedestrians) which would otherwise go unnoticed. Therefore, a case can be 
made for even applying this type of not smart augmentations to a scene to increase the ability of the 
observer to disambiguate between objects in a scene.  

One unforeseen finding was that the “smart augmentations” would result in a decrease in scanning 
behaviours. From a case-by-case analysis, it indicates that these augmentations are helpful for 
spotting danger around the centre of the screen, while worsening participants’ performance at the 
periphery. Although further research would be required, it raises the question whether the overall 
performance can increase if augmentations would only be applied based on where the participant 
would be gazing, rather than at a fixed location on the screen. By doing so, the participants view 
would not be guided as much and still allow them to freely scan the scene while having access to the 
same information-layer augmented to it. 
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8 Future Work and Conclusion 

In this section, suggestions for future work and the overall conclusion for the first part of the thesis 
are presented.  

8.1 Future Work 

There are multiple possible expansions that would improve this body of work; this section aims 
to discuss some of the possible angles that could be taken into consideration when expanding upon 
this work. Two directions are suggested in this section; future work for improving the simulator and 
expanding upon the AR capabilities. 

8.1.1 The Simulator Environment 

So far, most research efforts have been put into creating the simulator environment alongside 
testing the effects of a few basic augmentations. Due to time constraints, minimal effort was put into 
involving user feedback into how the augmentations should be displayed. Future research work 
could investigate in what manner this information could be served through AR most effectively. 
Doing so would likely significantly improve the user experience of the augmentations. For example, 
what sort of design suits best for warning: should the notification be displayed on the object itself, 
or would the driver have more benefit with a warning message in a fixed location. Other modalities 
could also be explored, sound or embedded light interactions are also possible future directions to 
explore.  

Besides expanding the research that has been done thus far, the Test Bed itself could also be further 
improved for research purposes. Another consideration for further improvements would be to 
integrate more types of measurements w.r.t user perception of the augmentations. One example 
could be to add physiological sensors such as galvanic skin response (GSR) so that factors such as 
stress can be measured as well. This could give more in-depth insights into how the AR messages 
are being displayed. 

8.1.2 The Augmentations 

One comment that was frequently by some of the participants, was that it would be very helpful 
to have an augmentation that indicates lane lines for when the video quality is in a bad state. 
Although the current augmentations give an overview of some entities in traffic, it is not enough to 
accurately judge if the vehicle is driving appropriately.  

Other types of augmentations could also be explored using the testbed. For example, displaying the 
intention of the vehicle by augmentation the lane in which the vehicle is going to be driving in would 
likely add great value to the experience. Other possible augmentations would be to display 
information with regards to both the environment and the vehicle itself, such as the speed limit and 
what speed the vehicle is currently driving at. Figure 36 showcases what these augmentations could 
look like.  

Additionally, during this research, focus was put on testing interactions where AR provides 
information without the user specifically requesting it. Another interesting angle would be to create 
the interactions as such so that they appear once the user gazes at an object (e.g., showcase time to 
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green at an intersection) or warn of danger that the user hasn’t observed yet and disappears once 
noticed. 

 

 

 

 

8.1.3 Human-trained danger detection 

Another direction for future work that was discussed -but not explored in this work - is that the 
simulator environment could potentially be used to obtain training data for a machine-learning 
model for “danger-classification”. By collecting a large dataset of research-participants observing 
the vehicle driving through the city (while scanning for dangerous scenario’s), a dataset could be 
obtained to train such a classifier based on their eye-gaze readings. In this model, it would be 
assumed that the areas where most gaze-points are, are the most critical areas and objects that 
should be payed most attention to by the remote observer. Then, this classifier could be used to 
augment those areas and objects to guide the gaze of the remote observer. 

To validate if such a classifier would be useful in the context of remote driving, a Wizard of Oz demo 
could be created first. To create such a demo, a much smaller dataset is needed, which is a huge 
benefit (possibly, it can even be curated by the researcher(s)). For this demo, no ML-model would 
be necessary: objects that were frequently gazed during the “training-stage” could be augmented by 
a rule-based system without making use of ML.  

8.2 Conclusions 

In the first part of this thesis, it was investigated if AR could be used to compensate for a 
reduced video quality during the remote observation of a remotely driven vehicle. A simulator 
environment was created that made use of eye-tracking technology to measure the effects of the 
augmentations on the video stream presented to the observer. This simulator was capable of playing 
videos of a vehicle through a city, as well as applying augmentations in real-time to these videos. 
These augmentations made pedestrians and vehicles stand out more from their environment. The 
simulator was used in a user test to evaluate two different applications of Augmented Reality.  

As part of this research experiment, participants were exposed to four different scenarios in which 
their task was to monitor a remotely driven vehicle. Based on collected data, eye gaze behaviors 

Figure 36: Envisioning of a future work direction in which the sides of the road are also 
augmented, as well as a speed-meter in the bottom of the screen. 
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across participants for every scenario were compared, as well as their ability to spot dangerous 
events across these scenarios.  

The first case served as a “control case” where no augmentations are applied to the video, and the 
video is shown in high video quality. In the second scenario, the video quality was severely reduced. 
From the findings, it appeared, as expected, that participants had a harder time recognizing the 
danger, and they needed to scan the video more intensively. In the third scenario, a “basic” 
augmentation was applied to the video in real-time through object detection techniques. As part of 
this basic augmentation, pedestrians and vehicles were given a bright colored border to make them 
stand out more from their environment. The video was shown in a reduced quality, just like the 
second scenario. What the data showed was that even this early-stage implementation improved the 
participants' ability to recognize dangerous scenarios. However, participants still had to look around 
more extensively compared to the base-case. In the final scenario, a “smarter” augmentation was 
applied to the video. With this type of augmentation, only objects near the center of the vehicle 
where being augmented. This significantly improved the ability of the participants to recognize 
danger.  

What stands out from these findings is that augmented reality can be used to compensate for a drop 
in video quality when it comes to recognizing dangerous events to some extent. However, it should 
be noted that it can also possibly lead to non-beneficial effects as well, such as that observers no 
longer check-in places where augmentations are not being shown. For future work, this could be a 
potential area to explore in further detail. The simulator that was developed as part of this research 
can serve as a platform for future work. Due to the way it was built, the augmentations could also be 
tested in an actual remote driving scenario. 
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9 The First 5G Enhanced ADAS In A Real Vehicle 

This section of the thesis covers: the work done to build a demonstration of various ADAS use cases 
enhanced through 5G. The first part covers the ideation and overview of these use cases. The second 
part gives an overview of the teams and companies that collaborated on this project, as well as the 
planning and logistics for how the demo was showcased at the event. The third part discusses the 
implementation of all the components developed as part of this thesis. Finally, the outcomes of the 
demo, the media in which it was discussed, and possible future works are covered as well.   

9.1 ADAS use cases 

Four different ADAS systems were developed. Amongst these systems, four demonstrations of V2V 
(vehicle-to-vehicle) and three V2X (vehicle-to-everything) cases. The concepts behind these ADAS 
implementations were based on a brainstorm held by KTH and Ericsson. The topic in focus for the 
brainstorm was the available technology for the demo, and how these could be applied to create 
compelling use cases (figure 37). An overview of the data-flows for each use case can be seen in 
figures 37-40. 

 

 
 

 

V2V – Aquaplaning (figure 38) 

This use case demonstrates a sensor sharing scenario between two vehicles. The first vehicle detects 
the beginning of aquaplaning (1), and sends out a warning (2). The vehicles approaching this 
location then will get a warning message (3). On the HMI of this vehicle, the lane where the danger 
has been detected will be augmented. Based on this information, the driver can either slow down or, 
if possible, change to a different lane. 

 

Figure 37: Pictures taken from the whiteboard during the various brainstorm 
sessions that were held during this part of the project. 

Figure 38: Illustration of the data-flow in the aquaplaning use case. 
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V2V and V2X - Road Incident (figure 39) 

For this use case, the first vehicle is involved in a road incident and needs to break urgently. Upon 
the emergency brake, a warning broadcast will be sent out (1). The vehicles approaching this 
location then get a warning message (2). On the HMI of the upcoming vehicle shows a warning 
message related to the just happened accident in front of them and in how many meters it can be 
expected to encounter it. The second part of this use case entails the beginning of a video stream to 
the authorities from the second vehicle (3). Based on this information, it can be investigated if 
emergency services, such as an ambulance, needs to be sent to the scene (4). Therefore, this part of 
the use case could also be considered a V2X use case. 

 

 
 

 

V2X - Sign Translation (figure 40) 

This use case involves a situation where a driver is confused by a traffic sign and aids them in 
understanding it. For example, when driving in a foreign country that has a different standard for 
traffic signs. The system inside of the vehicle detects that the driver is trying to understand the sign 
by using eye-tracking (1) (e.g., by staring for too long at the sign). Upon detection, the sign is 
translated through a cloud-service (2) and its translation is shown on the HMI of the vehicle (3). 

 
 

 

 

Figure 39: Illustration of the data-flow in the road incident use case. 

Figure 40: Illustration of the data-flow in the sign translation use case. 
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V2X - VRU Detection (figure 41) 

Consisting of two separate components, this use case demonstrates the detection of out of sight 
vulnerable road users (VRU), who are being distracted by their phone. Both parties have been 
sending their GPS locations to the cloud (1). The first component focuses on alerting the driver that 
a pedestrian, who is currently out of the line of sight, will soon cross the vehicle's path (2). For the 
pedestrian, a warning will appear on their phone that a vehicle is approaching as well as from which 
direction it will approach (2). Then, once the pedestrian has been detected by the driver - confirmed 
through eye-gaze (3) - the pedestrian receives notifications that they've been seen by the driver (4). 

 

 
 

 

9.2 Planning and Logistics 

9.2.1 Collaborative Partners 
 

In order to make the demo feasible, responsibilities were divided amongst the participating 
companies and their respective teams. This section aims to give an overview of the responsibilities 
each partner took upon them. 

Audi provided the vehicles to be used for the demo: an A-8 and Q-8. The Q-8 was selected as 
Vehicle-A, while the A-8 was used for Vehicle-B. 

Ericsson provided the interface for Vehicle-B by sharing the data through MQTT. Over this 
interface, position data and aquaplaning measurements (from the Pirelli-tires) were sent. 
Additionally, Ericsson took on responsibility for overall project management. Besides coordination 
between partners, this also included responsibilities such as ensuring that the Lingotto rooftop track 
was available.  

Italdesign Giugiaro took on the responsibility to ensure that the hardware integration within 
both vehicles was taken care of. For Vehicle-A, this included the power supply and fixture for the 
laptop, the camera near the rear mirror, and a connection to the HMI so that the laptop could take 
over display-functionalities on the onboard HMI. Additionally, they provided the visual-designs for 
the interface elements to be displayed on the HMI in Vehicle-A. This was done to ensure a seamless 
integration between the HMI design and Audi’s brand design requirements. These designs were 
based on low-fidelity mock-ups provided by KTH. During the demo, they also provided the crew of 
Vehicle-A (both driver and tour-guide), as well as the actor for the VRU-role. 

Figure 41: Illustration of the data-flow in the VRU detection use case. 
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Pirelli provided their cyber-tires, which are capable of detecting various levels of aquaplaning. 
These tires were installed on Vehicle-B (the Audi A-8). Furthermore, to ensure that aquaplaning 
would be possible on the roof, they engineered solution to ensure that water would stay on the roof 
(as much as possible). To broadcast the detection of the aquaplaning, they collaborated with 
Ericsson. They also provided a certified driver during the event; given that the driver needed to 
drive relatively fast while aquaplaning on a rooftop, this came in handy. 

TIM (Telecom Italia), provided the 5G-coverage for the Lingotto track. In collaboration with 
Qualcomm, they ensured that the 5G-coverage was sufficient for the demo. Qualcomm also provided 
5G-routers that were installed in both vehicles. 

Tobii Pro, provided three sets of their Tobii-Pro glasses to be used for the demo. They also 
provided hardware such as power banks. 

The primary responsibility of the author (KTH), in regard to technically implementing the 
planned use cases, was to provide an integrated HMI-experience for Vehicle-A. What this included 
was the following: 

- Ensure that the fidelity-level of the HMI was on “production-level,” based on the designs 
provided by the designers from Italdesign Giugiaro; 

- Develop the sign-detection and classification pipeline;  

- Develop the VRU-detection and augmentation pipeline; 

- Develop AR-augmentation effects for the aquaplaning notification; 

- Communication of the status of Vehicle-A with Laptop-C, so that the correct information 
could be displayed on the screen. 

In collaboration with Pietro Lungaro (KTH), other components were taken care of, such as 
setting up a geo-fenced area, used for triggering certain events during the demo, as well as planning 
out the overall architecture of the demo set-up. Furthermore, Pietro Lungaro took the responsibility 
of creating a dashboard displaying all events on a map and providing additional information in the 
visitor area of the demonstration. 

9.2.2 (Remote) Collaboration 
 

        Given that the teams were situated in different countries (e.g., Audi - Germany, KTH - Sweden, 
IDG - Italy), weekly meetings were arranged over Skype to keep the teams synchronized on the 
processes. Teams would follow-up with each other outside of these meetings, in case collaboration 
between project members was necessary. An example of such collaboration happened during the 
design of the HMI, where KTH provided IDG with a set of mock-ups that were then branded and 
styled by IDG, to be technically implemented by KTH.  

Before the demo, there was one opportunity to meet-up in Turin and attempt to integrate some of 
the systems already. Various challenges appeared during this meeting. First of all, time was 
minimal, with only two days available for testing. Only one of the two vehicles were available 
(Vehicle-B), and the Pirelli-tires were not installed yet. As we were unable to test on the rooftop of 
the Lingotto building on the first day, most tests were performed on a nearby parking lot. Most of 
these tests were to confirm various components, such as the power supply installed for the high-
performance laptop and internet-access through the Qualcomm modem.  

One week before the demo, all team members and material were present to test and refine the demo 
set-up over the course of the week. Most of the critical components were verified prior to the demo, 
but full integration had not been tested before. For the first three days, the most focus was put on 
implementing, testing, and making each use case more robust. In the remaining days, most time 
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was spent refining the demo with regards to the timing of certain events, adding geo-location 
triggers, and improving the overall story of the demo. The main challenge faced during these final 
days was balancing the engineering-efforts versus the pr-efforts as multiple filming sessions had 
been planned. These sessions collided with the much-needed time for ensuring the demo would run 
smoothly. In the end with a combined effort from all involved parties, all components were 
implemented in time. 

9.2.3 Spatial Arrangement of the Demo 
 

        This section aims to provide an overview of how the different use cases were arranged along the 
Lingotto rooftop. 

When it came to arranging the different use cases spatially, a view key considerations had to be 
taken into account. First, the aquaplaning use case could only be performed on specific parts of the 
rooftop due to the challenges in controlling the water-level, and due to the water splashing off the 
rooftop. Given that the lower floors of the Lingotto building are occupied by a mall, a location was 
picked so that the water would not splash down onto innocent passersby visiting the mall. 
Additionally, Vehicle-B needed to achieve a certain speed unless no aquaplaning would occur and 
therefore no detection either. Therefore, the vehicle needed a certain runway to get up to speed as 
well. 

For the sign-detection use case, there was a soft-requirement regarding the position of the sun. If 
the sun were to shine directly onto the sign, there was a risk of the classifier being unable to detect 
the sign. Prior testing in Stockholm, proved to be no issue, but during the testing in Italy, the 
brightness proved to pose a challenge. Therefore, it had to be placed so that it got minimal exposure 
to direct sunlight. This was done to increase the robustness of the classifier.  

Finally, a requirement was set that the demo should not last for more than 5 minutes, including on- 
and off-boarding of passengers. It was assumed that this procedure would take about one minute, 
given that the passengers were given a short introductory talk by the guide on board of the vehicle 
prior to the start of the demo. As for on- and off-boarding the passengers, this preferably had to 
happen close to the tent where the demo was being presented.  

All of these factors resulted in various trade-offs that had to be made. In the end, an arrangement 
was proposed that satisfied all the hard-requirements and took most wishes into account. Figure 42 
provides an overview of the location of where each use case happened. 
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9.3 System Implementation 

        The following section will discuss various parts of the technical implementation done by the 
author for the 5GAA demo. This section mainly aims to cover some of the strategies and techniques 
used to develop the demo. 

9.3.1 Design and implementation of the user interface 
 

        Based on the use cases, various concepts for the user interface of the onboard HMI were 
developed. These were discussed with Italdesign, who refined the designs to be in line with Audi’s 
brand standards. Figure 43 presents the overview of the user interface as these were implemented in 
the demo. 

9.3.2 Total System Overview 
 

In figure 44, a total overview of the system, and all its technical components, are shown. In total, the 
Torino Demo required three laptops. One laptop was installed in each of the vehicles, and one 
laptop was used for displaying a real-time map of the rooftop displaying where each vehicle was at a 
given time. In both cars, 5G antennas were installed so that internet connectivity could be provided. 
The laptop displaying the map received internet by tethering with a 5G smartphone. 

 

Figure 42: Illustration of how each use case was spatially arranged on 
the rooftop of the Lingotto building in Turin, Italy. 
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9.3.3 Hardware 
 

Compared to the simulator, discussed previously in the thesis, this application ran on slightly more 
powerful hardware. The developed application was running on an Alienware 17 R5 laptop, running 
the Windows 10 operating system and equipped with 16GB of installed RAM, an Intel Core i9 CPU, 
and an NVIDIA GTX 1080 GPU.  

The application was displayed on the onboard HMI of the vehicle. Italdesign modified the vehicle so 
that the onboard system could be bypassed and so that the Alienware computer could directly 
connect - through HDMI - with the display. The computer itself was securely mounted in the trunk 
of the vehicle (figure 44). A clipping mechanism, including cushioning, was installed so that the 
computer could be safely secured. To get access to the 5G network, the computer was connected to a 
prototype 5G-router from Qualcomm. The router and its shark fin antenna can also be seen in the 
figure. Powering the computer proved to be a big challenge: the vehicle itself was not able to provide 

Figure 43: Designs for the User Interface of the HMI provided by Italdesign. 

Figure 44: An overview of all the technical components used within the Torino Demo. 
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the power necessary due to the power-consumption levels of the high-end computer. Therefore, a 
power supply and transformer were installed in the trunk so that adequate power could be provided 
throughout the day. Finally, To measure the eye-gaze of the driver, a Tobii Pro Glasses 2 was used 
[37]. This is the same model of Tobii glasses as was used during earlier user research. 

 

 
 

9.3.4 Software 
 

The interface for the HMI was developed in C++ using openFrameworks (OF) version 0.10.1 as its 
main framework. A few modifications have been made to OF specifically (for further information on 
these, please refer to section 4.1.2 of this thesis document). 

9.4 Implementation of the use cases 

9.4.1 Aquaplaning 
 

       The cyber-tires from Pirelli handled the detection of the aqua-planing. These tires would 
continuously publish a warning-level through the CAN bus of the vehicle. A laptop present within 
this vehicle would broadcast once the early stages of aquaplaning were being detected. This 
broadcast also included the GPS-location of the detection. 

Upon receiving the message from Vehicle-B, Vehicle-A would trigger the Aqua-Planing use case. On 
the dashboard of the vehicle, a video-stream from the dashcam would be displayed, with a lane 
augmentation on top of the video. The lane-augmentation indicated in which lane the aqua-planing 
was being detected. The location of the lane could be calibrated apriori to the demo. Given that the 
pavement on the roof of Lingotto, best described as a single broad lane without markings, it did not 
allow to develop a lane-detector within the time-scope of the project, this approach was chosen. 

The lane-augmentation consisted of a set of four vectors, one for each “corner” of the lane. Based on 
these vector-coordinates, a polygon was defined in which translucent red-rectangles would flow 
towards Vehicle-A. This flow of rectangles was created through a time-based animation. The height 
at which each rectangle was displayed was time-based; meaning that over time, the rectangles would 
descend towards the bottom of the screen. This created the illusion of a flowing stream of red-
rectangles towards the vehicle on the HMI.  

Figure 45: The laptop that was running the application displayed in Vehicle-A was hidden in the trunk of the 
vehicle, alongside with the other hardware such as the router and power supply. 
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For creating each of the rectangles, the top-left corner was used as a reference point. The position of 
this rectangle was based on a mapping-function between the location of the top and bottom corners 
of the lane-polygon. In turn, the position of the top left corner of each rectangle determined the 
vertical-position of the other rectangle-corners. Their horizontal-position was determined by the 
line-vectors obtained by subtraction of the left and right coordinate-vectors. 

Once vehicle-A had passed the location in which Vehicle-B had initially detected the aquaplaning 
danger, the animation on the dashboard stopped. Furthermore, an MQTT-message was broadcasted 
to notify laptop-C that this use case had ended. 

9.4.2 Sign Translation 
 

       For detecting the traffic sign, it was initially assumed that the same neural network-based object 
detector, previously applied in earlier research during the thesis, could be reused. However, upon 
testing with the actual traffic sign that was designated to be used within the demo, it became 
apparent that the network was incapable of detecting the sign reliably. A choice had to be made; 
either retrain the neural network through transfer-learning with added training data on the specific 
sign or develop a classifier by hand. 

Due to the approaching deadline, the decision was made to use a heuristics-based solution, rather 
than retraining the CNN through transfer-learning. The remainder of this section will discuss the 
implementation of this system. 

By making use of the Tobii-glasses in a novel way, various shortcuts could be taken in the 
development of the classifier. First of all, the gaze-position of the user was already a given, as these 
were being provided by the glasses, as well as a current ‘point of view’ perspective from the driver of 
the vehicle. Therefore, this allowed for a crucial ‘region of interest’ filter. The classifier only needed 
to be capable of identifying the traffic scene in an area around the current gaze-position; rather than 
within the original image. 

 

 

 

To start this process, the current image-frame from the Tobii-glasses is obtained first. Then, based 
on the position of the eye-gaze, a subsection around the gaze-location is cropped from the image 
frame. This patch is the area of interest for the rest of the steps in the classification process: 

- First, the color space was converted from an RGB (Red, Green, Blue) to HSV (Hue, 
Saturation, Value) color space. This allows for more robust detection of specific colors, such 
as red stroke around a traffic sign. This is followed up by two thresholding filters that only 
let red-pixels through. The output of this step is a binary Matrix where each non-red pixel is 
indicated with a 0, and every red-pixel is indicated with a value of 1. 

- The second step is an eroding operation of achieving noise-reduction. The goal of this step is 
to remove individual small patches of red pixels from the Matrix. Each non-red pixel, as 

Figure 46: Illustration of the steps in the sign-recognition pipeline: first the image is thresholded based on 
color values; then, the corners in the sets of contours are identified; the system then 

looks for a contour with three sides. 
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obtained from the previous step, is increased in relative-size, by setting neighboring indices 
to 0. The output of this step is a binary Matrix where noisy patches of red-pixels have been 
set to 0. 

- The third step uses a built-in OpenCV-algorithm to find contours in the Matrix. Each 
contour is a set of fitted-lines that in unison produce a polygonal shape. The output of this 
step is a set of contours of which each contour outlines a shape that has been identified 
within the Matrix. 

- The fourth and final step is the classification step. In this step, for each contour-based 
shape, it is checked if the shape fits the description of a triangle, a shape that consists of 
three contours. For each shape that consists of three contours, it is assumed to be a triangle. 
However, there might still be some noise left in the image; and false-positives might still 
throw off the classifier. Therefore, a final check is done within this step, we only assume the 
triangle to be belonging to a traffic sign if it has a significant perimeter. Small triangles 
(assumed to be the results of noise) are therefore not considered. In case a triangle with a 
significant perimeter is identified, the confidence score is incremented.  

This process is also illustrated in figure 46. Once this score reaches its ceiling (obtained by 
identifying a red-triangle in 20 subsequent frames), it is assumed that the wearer of the glasses is 
looking at the traffic sign. At that point, the user interface shows the translated sign on the HMI. 

9.4.3 VRU Detection 
 

       For detecting the “vulnerable road user” (VRU), both GPS and object detection were applied. 
Given that within the demo, the location of the VRU was static (and wouldn’t change over the day), a 
geo-location was selected upon which the VRU-scenario would be triggered. Additionally, the VRU-
scenario would only be triggered in case the car was heading in the right direction. Therefore, in the 
first half of the lap, the scenario couldn’t be triggered as the vehicle was approaching the sign-
detection scenario.  

Once the scenario started, an MQTT message was sent with the purpose of sending a warning to the 
VRU that a car was approaching. Within the car, the object-detecting was used to detect the VRU 
within the video provided through the dash-cam of the vehicle. Once they became visible, the VRU 
was then augmented on the dashboard of the vehicle by adding a translucent orange rectangle on 
top of them. Simultaneously the video, from the Tobii glasses, was also analyzed by the object 
detector. Once it was identified that the driver had seen the VRU, the translucent rectangle would 
shift to a green color. Once this happened, another MQTT-message would be fired, which in turn 
would show the VRU (on their phone application) that the driver of the approaching vehicle had 
seen them. After the driver had spotted the VRU, the scenario would end itself after a few seconds, 
giving the guide some time to explain what just happened. 

9.4.4 Road Incident  
 

       Vehicle-B initiated the beginning of this use case. Given that an incident was being simulated, a 
button was pressed from within the car after the vehicle performed a hard-brake. This button-press 
activated the sending of an MQTT-message, which would then be interpreted as the detection of an 
accident. 

For Vehicle-A, this implied that the Road-Authorities use case was ready to begin. Given that the 
vehicle was already streaming the video’s (dashcam and Tobii Glasses) to Computer-C, nothing had 
to change in this regard; Computer-C handled this by displaying the stream of both cameras on its 
monitor. As for Vehicle-A, on the dashboard, a video-stream from the dashcam was displayed, with 
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a warning message augmentation indication that an accident had happened a few meters in front of 
them. The MQTT-message provided by Vehicle-B also included the GPS location at which the button 
had been pressed. Once Vehicle-A passed this location, the scenario would end, and the dashboard 
would return to normal. At the same time, Vehicle-A would send an MQTT-message indicating that 
the use case had ended and that the stream no longer had to be displayed on the monitor of 
Computer-C.  

10 Outcomes, Future Work and Conclusion 

10.1 Outcomes 

Based on our estimations, we assume over 200 participants were able to experience the demo 
during the day. The whole system was able to run nearly non-stop for the entire event without any 
unforeseen events. Only one crash occurred, but the issue was identified and solved within ten 
minutes. In the days that followed, the work was featured in various news articles that were 
released, including publishers such as Wired, la Repubblica, Automoto, and others [56, 57, 58, 59, 
60, 61]. Figure 47 provides a visual overview of the four use cases that were demonstrated during 
the event. 

 

 
 

10.2 Future Work 

Although many different ideas eventually made their way into the final product that was shown 
during the conference, not all ideas were selected to be implemented. Given the logistics of the event 
- especially the hard requirement that the demo should not take longer than 5 minutes - some ideas 
couldn't possibly be squeezed into the available time. Two of these non-implemented ideas 
particularly stand out, because they would have enabled visitors to take a more active role within the 

Figure 47: Overview of the use cases as they were demonstrated during the event. The images in the video have 
been composed based on a video made by the 5GAA [55]. 
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demo. The first idea, it was considered to have the visitors wear the Tobii Pro Glasses. One of the 
main roadblocks here was the calibration procedure. There was unfortunately not enough time to 
recalibrate for every participant in between the runs of the demo. Should a future demo or project 
aim to do something, then it would be advisable to use the same Tobii API interface that was used 
within this project. As part of that API, the calibration procedure can be triggered without the need 
to start the Tobii software, which is the most time-consuming procedure of the calibration. The 
other idea was initially planned to be implemented but was canceled due to the path visitors had to 
take after the end of our demo. In this idea, participants would be able to try out the app that was 
developed for the VRU use case, and see the warning message appear on the screen of the 
smartphone. 

Besides reconsidering the suggestions mentioned above, there are also other possible challenges to 
explore in future work. For example, another possible angle for future work could be centered 
around how this setup could be made "transportable." Currently, two vehicles and many other 
pieces of side-equipment were necessary to demonstrate the use cases. Not only does this make the 
setup costly to replicate, it also prevents the demo from being shown at locations where this amount 
of required space is not available. Alternatively, at the cost of immersion, it could be explored if the 
demo could be shrunk to a simulator environment. 

10.3 Conclusion 

As part of this chapter of the thesis, four different ADAS use cases were implemented in an actual 
vehicle. The use cases spanned various themes, ranging from sensor sharing in a vehicle-to-vehicle 
scenario to a safety system for vulnerable road users through in a vehicle-to-anything setting. This 
work was the world's first ever demonstration of such a system using a 5G network to enhance its 
functionalities. To achieve this, various teams from different companies had to collaborate to make 
this happen. The work was successfully demonstrated at the 5G Automotive Association (5GAA) 
“The 5G Path of Vehicle-to-Everything Communication: From Local to Global” conference in Turin, 
Italy. During the day, more than 200 participants experienced the demo and the work was covered 
in various press releases. 
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Appendix A: Yolo Installation Instructions for openFrameworks 

Note: this document can also be found on https://github.com/MdMxMyr/Yolo_for_openFrameworks_Guide 
Where t has active links to the mentioned resources 

 
Part one: installing Darknet and YoloV2 
 
Please note, these instructions were written for a computer running the Windows 10 
Operating System. Furthermore, it is recommended that the computer you’re currently 
working with has an NVIDIA GPU installed. If not, you can try to follow the guide at your risk 
and skip all CUDA related steps in it. 
 
First, there is a list of resources that need to be downloaded: 

• This forked Darknet repository by AlexeyAB https://github.com/MdMxMyr/darknet 
• Visual Studio 2017 Community Edition which can be downloaded at Visual Studio 

Older Downloads - 2017, 2015 & Previous Versions 
• CMake >3.8 which can be downloaded from CMake Downloads 
• The NVIDIA CUDA toolkit 10.0 CUDA Toolkit 10.0 Archive 
• cuDNN Archive. Note, that you need the cuDNN for CUDA 10.0 for Windows 10 

specifically  
• OpenCV 3.4.6 for Windows, which can be downloaded from OpenCV Releases 

 
Installation instructions: 

1. First, and foremost, install Visual Studio 2017 (VS2017) before installing the NVIDIA 
toolkit. If you already installed CUDA before installing VS2017, it is recommended to 
uninstall CUDA and do a reboot first. During the installation process, the Wizard will 
ask if you want to install additional Workloads and Individual Components. Select the 
following Workloads:  

1. .NET desktop development 
2. Desktop development with C++ 
3. Universal Windows Platform Development 
4. Python development 

 
Finally, make sure the following Individual Components (second tab) have been 
selected. Do note, not all of them are selected by default, so please check with care: 

5. C# and Visual Basic Roslyn compilers 
6. MSBuild 
7. Static analysis tools 
8. .NET Framework 4.6.1 SDK 
9. .NET Framework 4.6.1 targeting pack 
10. Text Template Transformation 
11. Visual Studio C++ core features 
12. Visual C++ 2017 Redistributable Update 
13. VC++ 2017 version 15.9 v14.16 
14. Windows 10 SDK (10.0.17763.0) 
15. Windows Universal CRT SDK 
16. Windows 8.1 SDK 
17. C++/CLI support 
18. VC++ 2015.3 v14.00 (v140) toolset for desktop 
19. Visual C++ compilers and libraries for ARM64 
20. C++ Universal Windows Platform tools for ARM64 
21. Visual C++ compilers and libraries for ARM 
22. Visual C++ tools for CMake and Linux 
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23. VC++ 2017 version 15.9 v14.16 Libs for Spectre (ARM) 
24. VC++ 2017 version 15.9 v14.16 Libs for Spectre (ARM64) 
25. VC++ 2017 version 15.9 v14.16 Libs for Spectre (x86 and ARM64) 
 

3. After having selected all the Workloads and Individual Packages, you can download 
and install them. This process will take a while, providing an excellent moment to grab 
a coffee while the installer does its work. After the installation is complete, make sure 
to run VS2017 at least once and reboot your computer before doing the next step. 
 

4. In case you haven’t done so already, it is worth to make sure your GPU drivers are up 
to date. Given that you’re following this guide, it is safe to assume that the computer 
you’re currently working with has an NVIDIA GPU. Probably the easiest way to keep 
your GPU drivers up to date is through NVIDIA GeForce Experience which can be 
downloaded from NVIDIA's GeForce Experience website. Make sure you also check if 
your GPU has the latest drivers after installing 
 

5. Once your system is rebooted, it is time to install CUDA 10.0. This process is very 
straightforward; just follow the standard installation procedure given by the installation 
Wizard. Note that during the end it will notify you that CUDA tools for VS2017 has 
also been installed (hence why it needs to be installed prior to CUDA). Once again, 
reboot your computer so that the Windows PATH variables can be updated. 
 

6. After the reboot, the cuDLL libraries can be added to CUDA. Start by extracting the 
ZIP file that was downloaded earlier. Then, add the contents of the zip file to the 
directories in the CUDA installation folder. By default, the directory path is 
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 (now 
referred to as CUDA_PATH): 

1. Add ‘cudnn64_7.dll’ to CUDA_PATH/bin 
2. Add ‘cudnn.h’ to CUDA_PATH/include 
3. Add ‘cudnn.lib’ to CUDA_PATH/lib/x64 

 
7. Then, it is time to extract OpenCV. Open the OpenCV executable downloaded earlier 

and choose a directory where you would like to install OpenCV. I would personally 
recommend something like C:\opencv\3.4.6 
 

8. Before it is time to build the repository, it is advised to check if the System Variables 
and PATH variables have been set accordingly. In case you have rebooted your 
system during the earlier steps, most of the process should have happened 
automatically already, but checking doesn’t you any extra. 
For the System Variables, check if these exist, and if not create them. In case you 
had to add one, make sure to reboot your system after finishing this step.  

1. Make sure there is a “CUDA_PATH” and a “CUDA_PATH_V10_0” 
variable that have an address assigned to it which is identical to the 
address used step 4. 

2. Also check for a “OpenCV_DIR” System Variable with an address 
linking to OPENCV_DIR\build\x64\vc15 where OPENCV_DIR is 
the directory at which you’ve extracted it in step 5. 

3. Double click on PATH in System variables and make sure the following 
paths are present: CUDA_PATH\bin and CUDA_PATH\libnvvp 
where CUDA_PATH is the directory used in step 4. 
 

9. Create a new directory where you would like to unpack Darknet. Then, extract and 
add the Darknet Repository ZIP file in this directory. Remember this location for step 
9. This location will now be referred to as DARKNET_PATH. 
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10.  Now, extract the CMake ZIP, and open cmake-gui in the /bin directory: 

1. Once the GUI appears, click on “Browse Source” and add the 
DARKNET_PATH/darknet-master 

2. Then, click on “Browse Build” and add the same directory; 
DARKNET_PATH/darknet-master 

3. Click on Configure and make sure “Visual Studio 15 2017 win64” is selected 
as the generator for this project. Then press configure again. 

4. Now, an error may appear stating that a configuration openCVConfig.cmake 
has not been found. You can add this one manually by clicking on “Ungrouped 
Entities” and then on OpenCV_DIR and replace the value with the following 
path: C:\opencv\3.4.6\opencv\build\x64\vc15\lib (or your own 
OPENCV_PATH). Then hit the configure button again 

 
11. Now press Generate, and CMake should state “Generating done”. You can now close 

CMake. 
 

12. Go to DARKNET_PATH/darknet-master/build/darknet and open 
yolo_cpp_dll.sln. In case VS2017 asks if you’d like to upgrade the solution, do not do 
this. Make sure you’ve set the compiler to “Release” and “x64”. Then, build the 
solution in the solution Explorer Menu. Should the compiler throw an error that 
“opencv” or “opencv2” couldn't be found, then make sure 
C:\opencv\3.4.6\opencv\build\include is included as an Additional Include 
Directory. You can navigate to this menu through the following path: Project > 
Properties > Configuration Properties > C/C++ > General > 
Additional Include Directories. Then, you need to go to Project > 
Properties > Configuration Properties > Linker > General > 
Additional Library Directories and add 
C:\opencv\3.4.6\opencv\build\x64\vc15\lib 
 

13. Now open yolo_console_dll.sln. Again, do not update in case prompted. Make 
sure you’ve set the compiler to “Release” and “x64”.  Build this solution as well. 
 

14. Finally, download a set of weights for Yolo V3 from the authors Dropbox (weights 
stored for archiving purposes, but obtained from PJR Eddy originally) and add these 
to DARKNET_PATH\darknet-master\build\darknet\x64. Now, if you run 
darknet_yolo_v3.exe, a console window should open and after a while, a YOLO-
classified image of a dog and a bike should appear. 
 

15. After all these steps, you’ve just installed Yolo V3, congratulations! 
 

Part 2 - Including YOLO V3 in openFrameworks 
 
Now that you have YOLO V3 up and running, you might want to include it in an 
OpenFrameworks project. This section aims to give you a quickstart to achieve this. This 
guide assumes that you’ve followed the steps in the previous section. 
 

1. First, you will need to download the openFrameworks (OF) library for VS2017. You 
can download the library from their website. 

2. Although it is not necessary, it is recommended to also install the OF addon for 
VS2017. You can do this through launching VS, then in the toolbar, go to Tools > 
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Extensions and Updates…. From there, search for “openFrameworks plugin for 
Visual Studio 2017” by Arturo Castro and Half Scheidl. Install it and reboot VS.  

3. Once VS is rebooted, in the toolbar, go to File > New > Project… and then 
navigate to Visual C++ > openFrameworks to create a OF-project. The project-
Wizard will then ask you for the path to your OF-library. This is the Zip file you 
downloaded in step 1 of this section. Unpack the library and set the path to the 
library-directory. The Wizard will test if you’ve linked the right directory in case of 
doubt. 

4. Once your project is generated, it is recommended to test if everything works thus far 
by trying to build the “starter project”. You can do this by pressing CTRL + F5 in VS. 
Make sure your compiler is again set to “Release” and “X64”. If, after compiling, 
you’re presented with both a Command Prompt and another window with an empty-
grey background, all works as intended. 

5. Now, comes the tricky-part, which is adding the YOLO V2 library (note, V3 uses the 
V2 library for some reason) to the project: 

1. First, in the Solution Explorer, right-click on your projects name (note, 
not the solution itself nor the OF library) and go to Add > Existing 
Item…. From the menu, you want to go to the Darknet Build directory, 
which is DARKNET_PATH/darknet-master/build/darknet/x64 
and select the “yolo_cpp_dll.dll” and “yolo_cpp_dll.lib”. 

2. Then, you should add OpenCV to this project as well. This goes 
similarly as in the previous guide when you build YOLO V3 library: in 
VS2017, go to Project > Properties > Configuration 
Properties > C/C++ > General > Additional Include 
Directories and 
add  C:\opencv\3.4.6\opencv\build\include is included as 
an Additional Include Directory. Make sure that you Apply the changes 
when closing the window. Finally, you need to go to Project > 
Properties > Configuration Properties > Linker > 
General > Additional Library Directories and add 
C:\opencv\3.4.6\opencv\build\x64\vc15\lib. Once again, 
remember to click on Apply. 
 
 

6. Now, you should be able to import YOLO V3 into your project in openFrameworks. 
The project should compile without issues, but it doesn’t execute correctly, as some 
critical resources are missing. Therefore, you will still need to add some files to the 
bin directory of your project. Click on the project in the Solution Explorer and go to 
“Open Folder in File Explorer” and go to the bin-directory. Now to this directory, copy 
the following files: 

1. From DARKNET_PATH/darknet-master/build/darknet/x64 
copy “yolo_cpp_dll.dll”. Also, copy the “yolov3.weights” that were 
downloaded and copied to this version in the previous section. (Link to 
download the weights) 

2. Also copy the entire DARKNET_PATH/darknet-
master/build/darknet/x64/cfg directory, as well as the 
DARKNET_PATH/darknet-master/build/darknet/x64/data 
directory. 

3. From DARKNET_PATH/darknet-
master/3rdparty/pthreads/bin copy pthreadVC2.dll 
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7. After having completed these steps, go to this Github Repository and copy the code 
from ofApp.cpp and ofApp.h to your own project (you can also replace the files in 
the /src directory of your OF project). Now when you compile the project, the code 
shall output the detected objects to the Command-Prompt window. If this all works, 
you’ve got YOLO V3 in openFrameworks all set up! 
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Appendix B: Dangerous events marked by participants 

This appendix contains the analysis of eleven events of which most participants, across each testing-
cycle, marked them as dangerous.  

In the first section, annotations have been provided to further context, as well as which group of 
participants recognized the dangers first. For each event, the person (or group) that caused the 
dangerous event is marked with a red border for visibility. To illustrate their path, arrows have been 
added to the images. Additionally, an outline has been added to demonstrate where the cause-of-
danger was initially coming from. A blue indicator has been added to illustrate the path of the vehicle.  

The second section contains an overview for each event showcasing the exact order in which each 
group managed to spot the danger first. To determine this, the average performance of the group was 
considered.  

 

 

 

Section 1 

1. Jaywalker with dog; From the far-away 
The event 
A pedestrian happens to cross the street while walking their 
dog. The vehicle needs to slow down to let them pass safely. 
 
Observation 
What stood out from this event, is that the group that did 
not receive any augmentations, didn’t seem to recognize the 
danger. It can therefore be assumed that they were unable 
to recognize the pedestrian well enough without any 
augmentations applied to the video. Once the 
augmentations were applied, the participants were able to  
recognize the event. 
 
 
 

2. Red car switching lanes; From the right lane 
 
The event 
The red vehicle overtakes the vehicle in front of it (it’s 
standing still). It does so, without giving any sign with their 
blinkers. The vehicle needs to slow down to let the vehicle 
pass. 
 
Observation 
The participants that were shown this video in a lower video 
quality without any augmentations performed the worst. 
The participants that saw the video in a high quality 
performed similarly to the groups that saw the video in 
lower quality with augmentations applied to it (for both 
smart and basic augmentations). 
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3. Van-driver leaving the vehicle: From the far-left 
 
The event  
While the vehicle is waiting at the intersection, there is a 
dry-cleaning-service van on the left from which a person 
appears through it’s side-door. The danger lies in the fact 
that the man might leave the vehicle and stand in front of 
the vehicle. 
 
Observation 
What makes this case interesting compared to many others, 
is that no augmentations are being applied to the danger in 
this situation. The augmentations were only applied to 
pedestrians and vehicles. The clothes were not recognized 
as part of it. However, what is noticeable in the data, is that 
the participants that saw this video in lower quality with smart augmentations applied to it, didn’t 
seem to notice the danger at all (with the exception of one participant, but much later than all other 
participants). A possible explanation is that this event happened away from the center of the screen 
and that this area didn’t get a lot of eye-gazes during the tests with the smart augmentations being 
applied. 
 

4. Jaywalker appearing behind a vehicle:  
From near the centre 

 
The event 
As the vehicle is overtaking a vehicle that is standing still, a 
pedestrian that has already started to cross the road pop-
ups from behind the vehicle; the driver needs to slow down. 
 
Observation 
What stood out from this event is that the participants that 
did not receive any augmentations, while seeing this event 
in a low-quality video, did not recognize this danger at all. 
Additionally, in this case, the group with the low-quality 
video that did receive augmentations happened to press 
way earlier then the group that viewed in high video quality 
with no augmentations applied to it. 
 

5. Vehicle changing lanes; Coming from the far-left lane 
 
The event 
As the vehicle is approaching the traffic lights, a vehicle from 
two-lanes to the left suddenly changes lanes to the rightest 
lane. 
 
Observation 
In this event, the group that saw this in low quality with 
smart augmentations performed just as well as the group 
that saw this video in high quality. This event is, therefore, 
an exception where this group outperformed the others, even 
with the danger coming from the side. The most likely 
explanation for this might be that the smart augmentations 
were also applied for objects moving to the center of the 
screen in a fast way. Therefore, this vehicle also got a border applied to it, even though it can all the 
way from the side. Like most events, the group that saw this event in low video quality without 
augmentations performed the worst, recognizing the danger much later. 
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6. Jaywalker crossing the street; Coming from the right 

 
The event 
A pedestrian happens to cross the street from the right. The 
vehicle does not need to slow down just yet though, as it 
happens from quite far away. 
 
Observation 
Although, strictly speaking, there is no danger yet, the 
participants still marked this as a dangerous scenario. What 
is interesting about this event, regardless, is that the 
participants who saw this event in low quality with smart 
augmentations waited much longer before marking this 
event. Given the distance at which the pedestrian crossed the 
road, the border color that was applied was subtle and green 
at the start of the event. As the color switches to yellow, participants started to mark the event as 
dangerous. It is interesting to consider what potential influence the color-shift of the augmentation-
border possibly had on the assessment of the level of danger. 
 
 
 

7. Vehicle overtaking another vehicle;  
From near the centre 

 
The event 
A vehicle decides to overtake a van that’s standing still. 
Multiple vehicles follow this vehicle. In this situation, the 
focus is on the first vehicle that makes this maneuver. The 
driver needs to slow down because of this. 
 
Observation 
Like other events where the event starts from near the 
center of the screen, the participants that see this video in 
low quality with smart augmentations outperform the 
others. By just a small margin, however, the participants 
that saw this event in high quality outperformed them. 
 
 
 

8. Vehicle overtaking another vehicle;  
     From near the centre 

 
The event 
This event happens just after the events of 7. Multiple 
vehicles follow the first car. By now however, the driver 
needs to stop completely in order to also let this last vehicle 
through. 
 
Observation 
Like the previous event, where the event starts from near 
the center of the screen, the participants that see this video 
in low quality with smart augmentations outperform the 
others.  
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9. Group of jaywalkers: From the right near the centre 

 
 
The event 
A group of jaywalkers decides to cross the street. The 
vehicle needs to stop completely to let the stream of 
pedestrians pass. 
 
Observation 
The participants that had augmentations applied to their 
low-quality video performed like the participants that saw 
this event in high quality. The overall observation is very 
similar to event 6. However, this time the event happened 
closer to the center of the screen: which is what gave the 
smart augmentation a slight edge here. 
 
 

10. Vehicle overtaking another vehicle;  
       From near the centre 

 
The event 
From the far left, a pedestrian decides to run across the 
street. The vehicle needs to slow down as a result of this. 
 
Observation 
The participants that saw this event in a low quality with 
augmentations, outperformed the participant seeing this 
video in high quality. The basic augmentations performed 
best here. The most plausible explanation for this would be 
that for the smart augmentations no border would be shown 
initially (given that the pedestrians comes from the far left), 
and that these participants mostly focused around the 
center of the screen; away from the pedestrian. 
 
 

11. Vehicle overtaking another vehicle;  
      From near the centre 

 
The event 
A vehicle decides to overtake a van that’s standing still. The 
driver needs to slow down as the car partly blocks the other 
lane during this maneuver. 
 
Observation 
Again, for events that happen near the center of the screen, 
the participants that witness the event in low quality with 
smart augmentation are the first to notice it. This is then 
followed by the high quality video participants. 
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Ranking overview 
 
The table below provides an overview of how many times a certain event was spotted first, 
second, third, fourth, or not all, for each category.  
 
What is noticeable, is that if that one case in which danger wasn’t noticed by the smart 
augmentations, then it’s score would have been similar to the high video quality’s 
performance (based on this ranking model). 
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