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Abstract

UAVs for indoor mapping applications are normally equipped with bulky and expen-
sive sensors such as LiDAR or depth cameras. However, this task should be performed
using light, small and inexpensive platforms, more agile to move in confined spaces. An
additional challenge is given by the absence of the GNSS signal that limits the localiza-
tion capabilities of the UAV. In this research, the real-time indoor mapping capabilities
using only a monocular camera installed on a commercial low-cost UAV (DJI Tello) are
investigated. The limitations of traditional monocular SLAM approaches are the lack of
scale of the scene and the reduced density of points in the generated map. Deep learn-
ing methods are nowadays able to estimate depths from single images, although these
products are often affected by large outliers. The proposed method integrates SLAM al-
gorithms and CNN-based single image depth estimation algorithms in order to densify
and scale the data and deliver a map of the environment, suitable for exploration, in real
time. The details of the implemented algorithms, the training strategy of the network as
well as the tests on each element of the proposed methodology are reported in this work.
The results achieved in a real indoor environment are also presented, demonstrating the
potential of this solution in the rapid exploration of unknown environments.
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1 Introduction

1.1 Motivation and problem statement

Until a few years ago, UAVs (Unmanned Aerial Vehicles) were mainly seen in the military do-
main as expensive pieces of equipment, while their cost has dropped significantly in the last
few years, becoming commonplace in the consumer market. People are discovering more
and more possible use cases of these consumer drones. This is largely thanks to UAVs be-
coming cheaper and easier to operate than ever before, resulting in a lower entry barrier.

The UAV market is even estimated to reach 45.8 billion by 2025, according to [7]. Over this
period, the small UAV segment is expected to grow at the highest CAGR (Compound Annual
Growth Rate) with an increase in demand from both military and non-military applications.
This is largely thanks to the demand for inspection, surveillance, and reconnaissance appli-
cations, both military and enterprise.

New markets and use cases are being found for UAVs at a very rapid rate. For example,
farmers are using aerial photography for high precision farming. By taking multi spectral im-
ages from the air, farmers can detect which crops need the most fertilizer and which don’t,
allowing for very efficient use of resources. UAVs are being used for inspecting hard to reach
areas. A good example of this is wind turbine inspection. Previously this was a very time con-
suming task, requiring long shutdowns of the turbine, and the inspection would have to be
done manually. However, with the rising popularity of UAVs, this task has almost completely
been replaced, requiring only a fraction of the time and cost it takes to send in workers.

Being able to set out a mapping mission beforehand and let the drone fly autonomously
to collect data and give useful insights about the targeted area with minimal operator inter-
action has made UAVs an invaluable tool. The ease of use and low price point of current UAVs
have been in large responsible for this tremendous market growth.

However, these applications still require human intervention, limiting the scalability of
these solutions. In order for these systems to be easily scalable, a high level of autonomy is
very important. Having to send out and train people on how to use the systems can be a bot-
tleneck for growth for certain applications. This increased demand for autonomy in UAVs has
attracted a lot more attention [8], [9], [10], [11], [12].

An area where autonomous drones have not yet become commonplace, are indoor en-
vironments. Companies like Flyability are already working on indoor inspection UAVs[13],
using cages around the drone so it can safely bump into obstacles. These drones are used to
inspect the insides of caves, oil and gas storage units, and sewers, to name a few. The UAVs
however, are still controlled manually, requiring trained pilots to be sent out, or requiring the
training of local employees before the UAVs can be deployed. This lack of indoor autonomy
has several reasons. It is a lot harder to autonomously (and manually) fly UAVs indoors due to
there being a lot more obstacles than in the outdoor airspace. Where outdoors, GNSS is used
for localization and navigation, this is unsuitable for indoor usage due to its low accuracy and
inability to function indoors. The GNSS signals do not always penetrate into the houses, and
the satellite signals bounce around on surfaces, reducing the accuracy even further if they do

1



manage to reach the GNSS receiver.
To circumvent these problems, UAVs are often outfitted with a suite of sensors that aids

them with indoor navigation. For high accuracy indoor localization, external motion-tracking
systems can be used, however, these require the environment to be modified beforehand,
making it less versatile. In order for the UAV to localize itself completely autonomously, with-
out external sensors, the go-to solution has been SLAM (Simultaneous Localization and Map-
ping). SLAM algorithms use external sensors to create a map of the environment and are able
to localize within this map.

In early research on indoor navigation and localization for UAVs, LIDAR sensors were
used to perform the task of both mapping and localization [14] [15]. LIDAR sensors use ro-
tating laser sensors to measure the distances surrounding the sensor. An advantage of using
these 2D LIDAR sensors was that they could utilize the navigation and path planning algo-
rithms that were developed for ground robots, where these sensors were already commonly
used. The sensor would be attached to a gimbal below the UAV in order for it to stay level.
The LIDAR would be used to generate a 2D occupancy grid in which the robot can then lo-
calize using laser-based SLAM algorithms. This 2D approach was less then ideal, as one of
the main features of UAVs is that they can move around in 3D space. This was also due to the
limitations of the LIDAR at the time, mainly providing scans in a single plane. A problem with
implementing LIDAR on UAVs is that these sensors are relatively expensive, heavy and large,
especially compared to cameras. Making them unsuitable for smaller UAVs.

Improving on these solutions, RGBD (RGB+Depth) and stereo camera systems are utilized[16]
[12]. These systems allow the construction of 3D occupancy maps. Relying on visual SLAM
instead of laser-based SLAM, making them a lot more versatile, however, the systems often
require more computation power.

Aiming to develop a fully autonomous UAV, capable of indoor flight is SKYDIO, utiliz-
ing machine learning and stereo cameras [17]. Due to its size however, it is not yet suitable
for general indoor use. Where conventional stereo cameras use two forward facing cameras,
these systems use multiple fish-eye stereo cameras with overlapping fields-of-view, spread
out over the UAV. Their system enables them to generate 360°collision maps and perform
navigation tasks. This same trend, in using machine learning for object avoidance and track-
ing is also done at DJI, however, they do not yet have a fully autonomous UAV commercially
available.

The problem with all these approaches is that adding all these sensors not only increases
their costs up into the thousands of dollars but because of the vast array of sensors required,
these drones need to be larger, louder and heavier, not to mention more dangerous, all things
which negatively impact their use in indoor environments.

Therefore, making UAVs as inexpensive and lightweight as possible is vital for making
them suitable for autonomous indoor use. This would open up a whole set of use cases,
such as drones, or even swarms of drones exploring damaged buildings that have suffered
structural damage or other environments that are too dangerous for humans to explore. All
this while not having to worry about losing thousands of dollars of research equipment.
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In addition to this, being lightweight is advantageous for battery life and thus the range
of flight. The weight of the UAV is also important for legal reasons as UAVs that weigh under
250 grams are exempt from registration with the FAA (Federal Aviation Administration) in the
USA.

Therefore, solving the problem of reducing the size, weight, and cost of the UAV while
still maintaining as much of the capabilities provided by the more cumbersome and more
expensive sensors like LIDAR, depth cameras and GPS is vital for increasing the applicability
and integration rate of autonomous UAVs for use in indoor environments.

1.2 Research identification

Using simple, small and inexpensive monocular cameras to achieve the same functionality
provided by GPS, depth cameras or LIDAR for localization and obstacle avoidance would al-
low for a drastic reduction in cost, weight and size of UAVs. This is the minimal sensor suite
a lot of lower-end consumer drones are equipped with. Monocular cameras are also capable
of being used for visual SLAM, though with certain limitations, providing localization infor-
mation. However, even though visual SLAM produces maps, these maps are designed to be
used for localization and are not suitable for path planning or obstacle avoidance. The maps
produced by visual SLAM generally consist of low density pointclouds. These pointclouds,
due to the nature of visual SLAM, lack information about low texture areas like blank walls.
Therefore another approach must be taken in order to obtain maps suitable for navigation
and obstacle avoidance. In the before mentioned research, these obstacle maps, which can
be used for navigation, are constructed using the dense depth data provided by the depth
sensors, fused with the position information from SLAM.

However, a limitation of these single monocular cameras, as opposed to RGBD cameras,
stereo cameras, or LIDAR, is that they lack the ability to obtain this depth and scale informa-
tion, limiting their use for constructing a metric 3D map of the environment that could be
used for navigation purposes.

These are all problems that need to be solved efficiently before these cameras can be used
for autonomous exploration.

Therefore this research will focus on designing a system that can be used by a low cost
UAV equipped with a single monocular camera to construct navigable, metrically scaled 3D
maps, of indoor environments that can be used for navigation and obstacle avoidance.
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1.3 Research objectives

The main objective of this thesis is to develop and evaluate a completely monocular single
camera system that can be implemented on low-cost UAVs to allow for real-time autonomous
indoor exploration and navigation. Adding the capabilities of dense map generation and
scale estimation on top of monocular SLAM.

To achieve this, several research objectives have to be addressed:

1. Generate a navigable map of an area using only a single optical camera in real-time.

(a) What are the existing approaches to generating navigable maps using monocular
cameras?

(b) How can a single optical camera be used to localize within an unknown area?

(c) How can depth information be obtained from this camera?

(d) How can the scale of the scene be determined?

(e) What is the best method to construct a navigable map using the depth, scale, and
localization information?

2. Determine the quality of the designed system.

(a) How accurate is the localization?

(b) What is the accuracy of the obtained scale?

(c) How accurate are the obtained depth images?

(d) How accurate is the final obstacle map?

1.4 Thesis structure

First the current state of the art is discussed, providing insight in current similar research,
highlighting the current solutions comparing their strengths and weaknesses. This is fol-
lowed by the methodology, describing the developed solution and discussing the system
structure and design choices. Going more in depth into the inner workings of the system.
In order to evaluate the performance of the designed system, several experiments are then
conducted, aiming to give insight into the different strengths and weaknesses. Finally, the
results are discussed, looking into any possible improvements that could be made in future
research.
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2 State of the art

In this section the current state of the art is researched. Looking into what is already available
and how similar problems are being solved at the moment. First the localization problem is
discussed, looking at the different methods that are used for tracking using monocular cam-
era systems. Then different methodologies of obtaining the scale and depth information in
these systems is reviewed. The different methodologies used for constructing and storing ob-
stacle maps are then presented. Finally, works are reviewed that use different methodologies
for combining SLAM and obstacle map generation.

2.1 Localization

In order to localize the UAV using only the camera data, visual SLAM (Simultaneous Locali-
sation And Mapping) is used. SLAM is the process of creating a map of an area and localizing
oneself in this map. This map can be a model or a representation of aspects of interest de-
scribing the environment where the robot is operating. The different aspects of the map differ
per algorithm, in the case of visual SLAM, the map is often represented as a 3D pointcloud.

The SLAM problem has seen a rise in attention in the last decade, as, for example, the
self-driving car industry has shown a vast demand for robust and accurate localization so-
lutions. Also, the emergence of indoor applications like augmented reality, which require
robust localization in GPS denied environments has pushed the field further in recent years.
SLAM offers an appealing solution to localization in any environment, even if there is no pre-
existing localization infrastructure in place, making it very versatile.

SLAM systems generally fall into one of two categories, laser-based, and visual-based.
The laser-based systems rely on LIDAR to create laser scans, which are used to create a map
of the area. Recently, most of the research is directed at visual SLAM, which uses camera im-
ages to localize and map the area. Visual SLAM (or vSLAM) can be much cheaper compared
to laser-based SLAM since inexpensive, off the shelf cameras can be used, and you no longer
need relatively expensive LIDAR equipment.

Currently, the two major state of the art methods for visual monocular SLAM[18], direct
based, and feature-based. Early examples of feature based vSLAM include PTAM [19], imple-
menting keyframes and parallel tracking and mapping threads. Meanwhile in the direct field,
one of the main works that popularized it was DSO (Direct Sparse Odometry)[20].

Feature-based methods function by extracting a set of unique features from each image.
These features are unique points (also called keypoints) that can be identified in an image.
By matching the same points in multiple views, these algorithms can determine the different
positions from which the points were observed. An example of this so-called feature match-
ing can be seen in figure 1.

Direct methods do not rely on a sub representation of the image, but compare the en-
tire images to reference them, and use image intensities to obtain information about loca-
tion and surroundings. An advantage of these direct methods also is that they generate a
denser representation of the environment then feature-based methods that only generate
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Figure 1: Example of feature matching. By matching the same features in multiple views the
change in camera position can be determined.

sparse pointclouds[21]. As mentioned, SLAM creates a map, this is its own internal repre-
sentation of the environment. In the case of vSLAM these maps can be represented as point
clouds, where, in the case of feature based SLAM for example, each point in the pointcloud
is a triangulated keypoint. These point clouds can vary in density but mainly fall into one of
three categories:

Sparse pointcloud Often produced by feature-based SLAM, these point clouds contain only
a small subset of the environment. Since they are mostly generated by using extraction
of corners and blobs, they often only represent the regions around the boundaries of
objects. Textureless areas like walls, ceilings, and floors often contain very few points
as fewer keypoints are detected here.

Semi-dense pointcloud These point clouds are denser than the sparse point clouds, often
showing a lot more information about the area as more and smaller details are in-
cluded. However, often textureless regions are still missing in these maps. This is the
type of point cloud produced by direct SLAM methods.

Dense pointcloud These maps include every detail of the environment. However, visually
pleasing, they are not as useful concerning SLAM as they are often very computation-
ally intensive to generate, and since not every detail of the environment is of impor-
tance, less dense representations are often used. These dense pointclouds are pro-
duced using algorithms like semi-global matching or image matching algorithms, match-
ing all the pixels of the image. Dense point-clouds are typically generated as an addi-
tional step after SLAM. They are not compatible with real-time needs in most cases.

Currently, one of the most robust and complete feature-based SLAM implementations
is ORB-SLAM [22], which is based on PTAM [23] and implements ORB features[24], it uses
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these features for all core tasks like determining the movement, creating a 3D map repre-
sentation, relocalizing when tracking is lost and detecting if areas are being re-observed (so-
called loop closures), making the system more efficient, reliable and straightforward. ORB
SLAM has further been developed to also incorporate depth images for better performance
in ORB SLAM2[25]. A significant advantage of ORB SLAM is that it is open-source, and has a
very active community working with the codebase. Because of this, there are many improved
and modified versions available, along with a large amount of documentation and detailed
descriptions of the inner workings of ORB SLAM. A downside, however, is that it produces
very sparse point clouds since, as mentioned in [25], the goal is long term and globally con-
sistent localization instead of building the most detailed dense reconstruction. The author
of ORB SLAM does suggest a method to densify this sparse point cloud in [26], as to compete
with the point clouds generated by direct methods.

LSD-SLAM[27] is one of the best performing, open-source, implementations of direct
monocular SLAM. It shows very promising results, and being a direct method also produces
denser point clouds. This method tracks the motion of the camera towards reference keyframes
and at the same time estimates semi-dense depth at high gradient pixels in the keyframes. An
advantage of this method is that the semi-dense depth maps are more easily augmented for
navigation purposes. However, they still avoid low gradient areas, like flat walls, leaving room
for improvements.

When looking at the benchmarks in [28], it shows that ORB SLAM is more accurate then
LSD-SLAM. It is also noted that ORB SLAM is more robust, as LSD-SLAM is more dependent
on the quality of the camera and more susceptible to illumination changes then ORB SLAM.

2.2 Scaling and depth estimation

A shortcoming of monocular SLAM is the lack of real-world scale. This is a massive drawback
of using monocular systems, especially when concerning control and navigation. The robot is
unable to take into account the distances between points, as the scale being used is arbitrary.
For example, sending velocity commands to the robot can have unexpected results, requiring
additional feedback control systems for the system to function correctly.

For the SLAM system to work with a real-world scale, it requires an additional measure-
ment of the real world, which can be integrated into the resulting map. Commonly used
methods are depth sensors like stereo cameras[29], which use the distance between the two
cameras (stereo baseline) as a ground truth measurement; alternatively, structured light cam-
eras like the Kinect project a pre-determined pattern from which distances can be calculated.
Not only can these distance cameras be used to determine the scale of the scene, but they also
help with SLAM performance, having pixel-wise depth information can help with triangulat-
ing features in the map. In ORB SLAM2[25], for example, using the distance camera allows
feature points to be classified into nearby and far away points. Where the nearby feature
points are used for accurate translation and rotation calculations as they are often more ac-
curate, and the far-away points are used to provide accurate rotation information but weaker
translation information.

Several alternative methods have been suggested and developed to obtain the scale. An
often-used system in UAVs is Visual Inertial SLAM (VI-SLAM), where IMU measurements
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serve as odometry and are fused with the SLAM measurements, often utilizing a Kalman
filter[30]. This has an added benefit that the system is also less reliant on vision for track-
ing. If the vision system loses tracking, for example, due to an unlit area, or a sudden camera
jerk, this can be compensated for by the odometry. In [31] the authors of ORB SLAM suggest
a modification to ORB SLAM as to scale the scene using measurements collected by the IMU
of the UAV.

Alternatively, a simple, and frequently implemented solution is using ground truth mark-
ers or ground control points [32]. These markers are easily recognizable patterns (for exam-
ple, a checkerboard) with a pre-known size and sometimes a known location. Image vision is
then used to detect the marker in the scene and scale the world accordingly. A downside of
this approach, however, is that it requires augmentation of the scene beforehand, placing the
markers in the area, making its usefulness quite limited.

Another method is to utilize a single depth measurement from a laser or sonar sensor[33].
These sensors utilize properties like the speed of light and sound to determine the distance
to a single point. Since the scale of the SLAM maps is equal in all dimensions, it is possible to
use these altitude sensors to do a linear depth measurement and correct the scale using this
measurement[33].

Nevertheless, these methods all require additional sensors. New researches have been
conducted in leveraging depth estimating neural networks to improve the performance of
monocular SLAM systems. In [34], a method is suggested to use a depth estimating CNN in
order to determine the scale for each keyframe. Following this same approach, in the work
of [35] this same concept is used with even further integration into the ORB SLAM system.
Here the depth input of RGBD ORB SLAM2 is modified by substituting the depth camera
information with a CNN, improving the initialization procedure of ORB SLAM2. By feeding
the depth estimations, also the near and far away points can be differentiated and utilized. A
similar method is developed in [2] for LSD-SLAM. In this research, the neural network is not
only used to optimize the performance of the SLAM system with depth information but also
shows the possibilities of fusing semantic labels (pixel-wise object classification) within the
constructed 3D map.

2.3 Obstacle map generation

For robots to navigate around an area in 3D, they require a map to use for navigation and
obstacle avoidance. There are several methods to generate these maps from monocular im-
ages and also different methods of representing the space in 3D. ORB-SLAM2 only produces
a sparse point cloud representation of the environment, which is not suitable for navigation
since large portions of the environment could be missing.

In this section, different methods are discussed on how to incrementally generate a navi-
gable map that can be used for exploration.

Mesh based One way of representing a complex geometric environment is using meshes.
One advantage of these meshes is that they are less computationally intensive then
point clouds, for example, since they only require a small subset of points to represent
a large surface. An example of a mesh is illustrated in figure 2 In [36], a mesh-based
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Figure 2: Example of a mesh reconstruction. Image source: [1]

approach is suggested, which would allow computationally constrained systems to re-
construct the environment using only the CPU using sparse features. This approach
uses the sparse features and camera poses from either SLAM or a given ground truth to
estimate the depth in each frame. This is done by triangulating the feature points.

In [1] the point cloud generated by ORB SLAM2 is used for mesh generation. Handling
localization and mesh generation in the same pipeline makes the system a lot more
computationally efficient. In the work of Rosinol et al. [37] this combination of SLAM
and mesh generation is even further developed, where the generated mesh is also used
to improve the positioning. The pose estimation is performed by ORB SLAM, and the
generated point cloud is then used to construct the mesh in real-time. This resulting
mesh structure is then used to detect regularities in the scene, like walls and other flat
surfaces. These constraints of the scene are then used as boundary conditions to im-
prove the pose estimation even further.

An advantage of these mesh maps is that they require relatively low computation power
to generate. However, they do still have shortcomings as they are based on feature
points. Requiring them to make assumptions on low texture regions where no points
are detected, often assuming they are flat surfaces. They also don’t address the scale
ambiguity.

Direct semi-dense maps and sparse densification These are approaches that use either di-
rect methods to produce a semi-dense point cloud or attempt to densify a sparse point
cloud in order to obtain a denser representation of the environment. There are also im-
plementations that combine both feature-based and direct methods[38]. The sparse
point clouds generated by feature-based SLAM approaches like ORB SLAM are not
dense enough to be used as a navigable map. In [26], the authors of ORB SLAM suggest
a method to increase the density of the generated sparse point clouds using a prob-
abilistic semi-dense mapping approach running in a parallel thread alongside their
SLAM algorithm. This is based on the underlying approach of LSD-SLAM. In [39], a
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novel approach is implemented to enrich the sparse point cloud generated by ORB-
SLAM. A K-Means clustering algorithm is used to determine the planes in which the
keypoints reside. Additional points are then added within these planes. This, however,
also has its limitations, as it’s mainly focused on structured environments like corridors
with mostly planar surfaces. A recurrent problem with the feature-based SLAM ap-
proach is their inability to obtain features in low-gradient regions. To circumvent this
problem, most approaches either ignore these surfaces or assume that low-gradient
regions correspond to planar surfaces, which is not always the case.

Dense pointcloud reconstruction A lot of research has already been done into multi-view
stereo reconstruction [40] [41] [42] [43]. Most of the commercially available approaches
for 3D reconstruction are described in (Remondino et al., 2014). However, the com-
putational load needed by these techniques has always prevented real-time usage in
robotics applications, which have been favoring RGBD cameras for this task.

More recent researches [44] [45] have opened the door to real-time capabilities due to
their high parallelizability, allowing them to make use of powerful modern GPUs. This
live dense reconstruction from a single moving camera is further developed in DTAM
[46], VI-MEAN[47] and REMODE[48].

The construction of very dense representations of the environment is often not done in
real-time due to the large amount of data that has to be processed. These dense point
clouds are often more accurate but require a lot more computation power then sparser
approaches.

In the survey research of [21], the state of visual SLAM and reconstruction is researched,
mainly in dynamic environments. It is concluded that many advances have been made
in this front, but that handling missing, noisy, and outlier data remains a future chal-
lenge for most techniques and that SFM approaches suffer from high computation
costs due to their every pixel approach.

Machine learning and hybrid approaches Machine learning algorithms attempt to simulate
the way that humans learn. Neural networks are trained using large datasets to rec-
ognize patterns in the data. In the case of images, Convolutional Neural Networks
(CNNs) are often utilized. These types of networks analyze images and are able to rec-
ognize and obtain information from images that would be very difficult if done with
conventional algorithms. Besides the algorithms of 3D reconstruction using CNN on
stereopairs [17] [49], monocular depth estimation algorithms have been developed for
the specific purposes of collision avoidance and depth estimation. These networks are
trained to estimate depth from single RGB images. This, in combination with the po-
sition information obtained by SLAM, enables the possibility to construct dense 3D
maps from these individual depth images.

Monocular depth estimation can be categorized into three learning approache: super-
vised, unsupervised, or semi-supervised. Supervised learning techniques train the net-
work using labeled data (i.e depth maps), for example, obtained using depth cameras
and using a loss function and regression techniques to train the network like DORN[50].
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The works of [6] implemented a fully convolutional encoder-decoder architecture with
novel UpProjection blocks. These UpProjection blocks enable the network to perform
similarly to de-convolution blocks while requiring fewer parameters, and thus result in
a smaller, faster, more efficient network.

Unsupervised deep learning approaches have the advantage of not requiring any la-
beled depth data, which is often more challenging to obtain, especially for large scale
outdoor scenes where depth cameras are often unreliable. The work of [51] uses epipo-
lar geometry constraints of stereo image pairs to generate disparity images and train the
network using a reconstruction loss function. More recent works build upon this un-
supervised trend, including generative adversarial networks or GANs, like in [52] where
the network is training, and improving itself with self synthesized disparity images. The
network is basically trying to continuously fool itself and then tries to learn from its
mistakes.

Other semi-supervised methods like [53] have also been introduced, combining sparse
depth measurements from LIDAR sensors with stereo image pairs for improved train-
ing results.

In addition to depth estimation, there is also depth completion, where sparse depth
measurements are integrated into the depth prediction to, for example, fill in the gaps
produced by sparse LIDAR sensors. This allows the system to attain a much higher level
of robustness and accuracy. In [5], the work of [6] is improved by integrating sparse
depth predictions into the network, requiring very few samples, claiming a 50% root-
mean-square error improvement on indoor datasets with only 100 samples.

Recently, these neural networks are frequently being integrated into state of the art
SLAM systems. In [2], LSD-SLAM, which is a direct monocular SLAM algorithm, is im-
proved by using the CNN designed in [6], to provide scale correction. Additionally, a
second CNN is running in parallel with the depth estimation network to provide se-
mantic segmentation of the images. As shown in figure 3, these semantic labels give
additional insight into the scene, differentiating between floors, ceilings, and other
household objects.

In [35], the work of [6] is integrated to improve the startup procedure of ORB SLAM2 by
substituting the depth images that are usually provided by a depth camera.

A recurring problem with these depth predicting neural networks is that occluding
boundary regions tend to be overly smooth and shape details are lost in the process. In
[54], a fascinating method is developed to solve this boundary problem, where sparse
features obtained from SLAM and CNN-predicted dense depth maps are fused to ob-
tain a more accurate dense 3D reconstruction. This approach converts the generated
depth maps into a mesh for each keyframe, this mesh is then fused together with the
map points of that frame to obtain a more accurate and scaled representation.
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In the research of [55], a CNN is developed that uses pose information and multiple
overlapping images to generate more accurate depth maps. Where the other networks
only use single images, using multiple images allows the network to obtain more infor-
mation about the scene to produce more accurate results.

Figure 3: The 3D reconstruction data can be fused with semantic information to gain a deeper
understanding of the scene. Image source: [2]

2.4 Localisation and obstacle map generation

In this section the research focusing on combining monocular SLAM and map generation
with the aim of navigation and obstacle avoidance is given. Looking at the different methods
that are used for localization, the different types of obstacle maps used, and the different
methods used for determining the scale.

In [3] the point cloud generated by LSD-SLAM is used to construct a 3D obstacle map
using OctoMap[56], which is a very memory efficient voxel mapping package. This map is
then used in combination with the Move-it Package to control and navigate the UAV in 3D
space. An example of the constructed obstacle map is shown in figure 4. It is noted, however,
that the high processing power required by the CPU for both algorithms can be a limiting
factor. Another noted limitation is the lack of scale for monocular vSLAM, which they suggest
to be solved by using ground truth markers.

The developers of LSD-SLAM also developed a method for monocular autonomous drone
exploration[57]. Building upon the semi-dense point cloud generated by LSD-SLAM, an Oc-
toMap is generated. A specialized exploration algorithm is developed to take into account
the fact that LSD-SLAM only determines the depth at high gradient pixels; texture-less areas
are not directly observed. Due to these areas not being observed correctly, large portions of
the map can remain unknown, which is something that other exploration and navigation sys-
tems do not take into account. This can cause them to become stuck on these unexplorable
areas. An ultrasonic range sensor and air pressure sensor are used to determine the scale of
the map. They do note on a problem with OctoMap and LSD-SLAM, the system is unable
to handle loop closures. When a loop closure occurs, the poses at which the depth maps
of keyframes were integrated into the OctoMap change and become outdated, requiring the
whole map to be regenerated using the updated keyframe poses. This operation lasts for sev-
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eral seconds while the UAV is hovering on the spot, waiting until the exploration maneuver
can proceed.

In [58] a slightly different approach is presented. Here VINS-Mono is used, which is a
real-time SLAM framework for Monocular Visual-Inertial Systems[30], that fuses IMU and
monocular image data to determine a scaled state estimation. For depth map generation,
they are using a fisheye camera, from which they extract two distortion-free virtual pinhole
images in order to provide a 180-degree horizontal FOV. These two images are then processed
to extract a depth image. It is noted that this is a fragile and highly nonlinear process that
requires accurate camera-IMU extrinsic calibration and proper estimator initialization, re-
quiring specialized wide-angle cameras to function. A similar approach has been attempted
in [47], which also utilizes VINS and TSDF-fusion[59] where spatial stereo images are used to
generate a navigable map in real-time.

In [39], another obstacle avoidance method is shown. In this research, instead of using a
semi-dense SLAM approach, they are using the feature-based ORB SLAM. In order to be able
to use this spare point cloud for navigation, they densify it first. This is done by first fitting a
plane to each cluster of points in the point cloud. The normal vector of these points is then
classified using the K-Means clustering algorithm to determine which plane direction this
plane belongs to, using this information, they line up groups of planes and add additional
points according to the mean normal vector. The scale of the map is determined using the
sonar of the UAV.

Figure 4: Example of an OctoMap obtained using the semi-dense ptointcloud generated by
LSD-SLAM. Image source: [3]

2.5 Summary

For indoor localization, monocular SLAM is used in almost all research. Multiple different
algorithms for SLAM are available and are either direct or feature-based. There is also a rise
in using machine learning for pose estimation; however, these are not yet at the level of con-
ventional SLAM algorithms. The two most frequently implemented are either ORB SLAM or
LSD-SLAM. With the main difference between them being that ORB SLAM is feature-based,
and produces sparse point clouds, and LSD-SLAM being direct based, producing semi-dense
point clouds. In [3], an overview is given of different SLAM approaches being used by UAVs for
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indoor navigation. In this research, the results of ORB SLAM and LSD SLAM are compared,
both state of the art vSLAM algorithms. Here it is concluded that even with the low-quality
camera, ORB SLAM is more robust then LSD-SLAM.

The obstacle map generation shows a clear trend using the point cloud generated by the
SLAM systems to generate a navigable map. These solutions either use the dense point cloud
generated by direct methods to build a navigable map directly, or use a feature-based SLAM
method and then densify the resulting sparse point clouds. There are also the approaches
which use the SLAM system only for localization and then use a structure from motion algo-
rithm to generate a map of the environment. These, however, struggle with real-time perfor-
mance due to their high-density approach and are more often used for post-processing then
real-time obstacle map construction.

The most commonly used method to obtain the scale of the map is to use external sen-
sors like IMUs, distance sensors, or depth cameras. An added advantage of using IMUs is their
ability to complement the localization provided by SLAM by providing an additional source
of odometry, allowing these VI (Visual Inertial) systems to overcome temporary visual track-
ing failures. Recently, depth estimating CNNs, are being utilized more frequently to improve
on SLAM systems, providing scale, assisting in initialization, and improving pose estimation,
for example. The dense depth predictions of these networks can also be utilized to generate
obstacle maps of the environment. These depth predictions can also be fused with semantic
information, making the constructed maps more insightful.

For generating an obstacle map, either from semi-dense point clouds, densified sparse
point clouds, or depth predictions, voxel maps are the most common solution. Mesh maps
are also used in several cases. However, these are less suitable for path planning than voxel
maps. The same goes for dense depth maps produced by SFM approaches like REMODE.
Though visually pleasing, these dense point clouds, when used for navigation, are often con-
verted into more efficient, lower resolution, voxel maps.

For voxel maps, OctoMap is by far the most commonly used solution. Not only is it used
most often for storing the maps, but also when it comes to designing path planning algo-
rithms.
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3 Methodology

The generation of a navigable map using monocular visual SLAM algorithms is currently per-
formed, either utilizing semi-dense point clouds generated by direct SLAM methods or by
densifying feature-based methods and converting these into voxel maps. These solutions still
have shortcomings, requiring external sensors for scale estimation and making assumptions
about low-texture surfaces. To address these issues, a hybrid SLAM-CNN approach is de-
veloped with a single pipeline for generating obstacle maps and providing scale estimation,
utilizing the sparse point cloud generated by ORB SLAM to improve the depth predictions.
These depth maps are then fused, using OctoMap to generate a dense obstacle map that can
be used for path planning.

In figure 5 an overview of the system design is shown.
The system is implemented using ROS, where each row is run as a node, and dataflows

are managed using a publish/subscribe model which allows the individual nodes to commu-
nicate. The workings of ROS are further explained in section 3.1.

The UAV that is being used is a DJI Tello, it communicates over WiFi, and publishes a
video stream. This video stream is then received by the SLAM node and the CNN node.

For positioning, ORB SLAM is used, due to its robust performance, even while using lower
quality cameras and under different lighting conditions. The SLAM system takes the RGB im-
ages published by the UAV as input and uses these for localization. The localization is pub-
lished as an unscaled pose, as the system is monocular in nature, it is using an arbitrary scale.
The SLAM system is feature-based, so the map consists of triangulated 3D feature points.
This sparse point cloud is unsuitable for obstacle avoidance, but does contain a lot of useful
information about the environment. Just like the pose, the feature map generated by SLAM
does not have a correct scale.

In order to obtain the scale and create dense depth maps, a Convolutional Neural Net-
work (CNN) is used. This network takes individual RGB images as input, and uses them to
compute a dense metric depth map, where the value of each pixel represents the estimated
distance from this point to the camera in meters. This network first uses an initialization pro-
cedure to estimate the scale that SLAM is operating in by comparing the sparse depth map
and the estimated depth map, and then uses this scale to correct for the unscaled pose and
the unscaled spare depth map. After this procedure, the sparse depth map is used by the
CNN to improve the accuracy of the depth images that are generated. The pose and depth
estimates are then combined to generate a 3D occupancy map. For this, OctoMap is used.
OctoMap provides a very memory efficient method of storing the occupancy of 3D spaces. In
the following sections these components are explained in more detail.
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Figure 5: Simplified overview of the implemented architecture.
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3.1 ROS

ROS (Robotic Operating System) is a robotics framework and toolkit, not a real operating sys-
tem as the name would suggest. It provides a communication framework based on publishers
and subscribers that allows different programs to transmit information like sensor data, ei-
ther locally, or over the network. Each program can be run as an individual node. These nodes
are a way to encapsulate each program and registers them with a master node. This way, in-
dividual nodes can find other nodes and communicate with them. Each node can subscribe
to specific topics on which data, like camera images or other sensor readings, are published
and also publish data to these topics. This allows for simple and reliable communication be-
tween different pieces of software and also makes it possible to visually inspect messages like
point clouds and maps using separate helper tools.

3.2 UAV

To conduct the tests, the DJI Tello is used, shown in figure 6. This is a small, lightweight
UAV, costing $99 at the time of writing. It uses WiFi for communication and an SDK that is
provided to help developers. Several external libraries are available to control the Tello from a
PC or laptop, allowing video streaming, receiving telemetry, and sending commands. It uses
an internal positioning system, fusing IMU data and data the Vision System for more stable
flight and to prevent drift. Even though the Tello has an internal IMU, the SDK does not allow
reading the raw sensor data, only the positioning data. This instrument is, however, a good
example of an inexpensive, off the shelf, commercial UAV.

DJI Tello Specifications
Price $99.-
Dimensions 99mm ×92.5mm ×41mm
Weight 80g
Propeller 3"
Sensors Altitude sensor, barometer, IMU, 720p camera
Communication 2.4GHz WiFi

Camera
Photo 5MP (2592×1936)
FOV 82.6°
Video HD720P, 30FPS
Format JPG(Photo); MP4(Video)
Image Stabilization Electronic Image Stabilization (EIS)

Flight Performance
Max Flight Distance 100m
Max Speed 8m/s
Max Flight Time 13min
Max Flight Height 30m
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Figure 6: DJI Tello Edu edition.

3.3 SLAM

The SLAM system is based on ORB SLAM 2, this is a feature-based SLAM implementation
for monocular systems but also supports RGB-D and stereo camera setups. It is built on the
monocular feature-based ORB-SLAM and is adequately named after the ORB (Oriented FAST
and Rotated BRIEF) descriptor. Currently, it is one of the best performing SLAM systems
and is ranked as the third-best performing open-source visual SLAM implementation on the
KITTI benchmark.

3.3.1 ORB feature descriptor

ORB SLAM is feature-based, meaning it uses feature matching to determine the position.
There are several methods to find these features in an image; in this case, the ORB descriptor[24]
is used. Oriented FAST and Rotated BRIEF (ORB) has been developed as an efficient and
viable alternative to SURF. ORB is, in short, a fusion of FAST keypoint detector and BRIEF
descriptor with several modifications to improve the performance.

ORB SLAM creates an image pyramid. The reasoning behind this is that it allows for fea-
ture extraction on different levels of scale. Due to the nature of image features obtained from
FAST, they might miss out on features when only using a single level of scale. This can be
solved by using an image pyramid, as shown in figure 7. An image pyramid is a multiscale
representation of a single image where each layer consists of a downsampled version of the
previous layer. ORB detects key points in each layer of the image using FAST, making it par-
tially scale-invariant. The number of scale levels and the scale factor are tunable parameters
in ORB SLAM, but commonly eight levels are used with a scale factor of 1.2.
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Figure 7: An image pyramid with five levels of scale. [4]

All the matched key points that have been found by the FAST algorithm are then con-
verted into a binary feature vector that uniquely describes the feature. This is done using
BRIEF[60]. The default implementation of BRIEF, however, cannot handle rotations, so ORB
SLAM then uses an improved version, namely rBRIEF(rotation-aware BRIEF). rBRIEF uses an
optimized pattern for picking the test points, which was learned from a large set of points by
maximizing variance and minimizing correlation.
After all the features are extracted, ORB SLAM undistorts them using the provided camera pa-
rameters. This means ORB SLAM never has to undistort the whole image, only the features.
This allow to reduce the computational time preventing the need to undistort the complete
image.

3.3.2 Tracking, mapping and loop closure

The system of ORB SLAM consists of 3 main threads running in parallel, each handling a sep-
arate task in the process. The tracking thread takes in new images and uses them to estimate
the new position, the local mapping and loop closing threads are responsible for building and
optimizing the map of the area. Each of these processes is described in more detail below.

Internal map The map generated by ORB SLAM consists of map points and keyframes. Keyframes
are special frames that store information about the camera pose, camera parameters,
the extracted ORB key points for the frame, and the observed map points. The reason-
ing behind using keyframes is that storing every frame would be wasteful, only frames
that contain a lot of information are worth storing. Each map points represents an ob-
served feature in 3D world coordinates and stores information about every keyframe
from which it was observed.
ORB SLAM makes use of graph theory. These graphs are mathematical structures used
to model relations between objects. These graphs consist of nodes, and these nodes are
connected by edges representing their relation. Keyframes and map points are used to
build a covisibility graph. In this graph, keyframes are represented as nodes. If two
keyframes share at least 15 map points, the nodes are connected.

Tracking The tracking thread takes in new camera frames and uses these for estimating the
current pose. It is also responsible for deciding when an image should be used as a new
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keyframe. When a new frame is received, the ORB feature points are calculated. By
using feature matching between the current frame and the previous frame, the camera
movement is determined.

Then, a decision is made if the current frame should be used to create a new keyframe
or not. ORB SLAM creates a lot of keyframes to be more robust to hard to track camera
movements, especially rotations. However, they later go on to discard a lot of redun-
dant keyframes to be able to keep the computational cost of the mapping low. In order
for a frame to become a keyframe, the following criteria must be met:

• 20 frames must have been processed since the last time tracking was lost, in order
be certain relocalization was successful.

• The local mapping thread must be idle. However, if more then 20 frames have
been processed since the last keyframe, the local mapping thread is paused to
allow for a new keyframe to be inserted.

• The frame must contain at least 50 feature point matches.

• The number of point matches between the current frame and the reference frame
must be less than 90%.

Local Mapping The local mapping thread takes new keyframes generated by the tracking
thread and is responsible for keeping the map up to date and optimizing it. When a
new keyframe is received, it first checks if any map points should be removed if they
are not reobserved often enough, even though they should be visible. This could be, for
example, because objects were moved. After this, new map points are created by trian-
gulating feature matches between the new keyframe and the keyframes with which it
shares the most map points.

When no keyframes are waiting in the queue, local bundle adjustment is performed.
Bundle adjustment is a method to jointly optimize the estimated camera positions and
the triangulated position of the 3D map points. In order to determine which param-
eters and frames should be used for this bundle, the covisibility graph is used. This
is done using the graph optimization library g 2o, which is able to deal with the large
amount of parameters efficiently by restructuring the optimization problem.

Loop closure Over time, small errors in position can add up. This causes position drift. So
when traveling large distances and then returning to the same position, chances are the
start and end position do not exactly overlap due to all these small errors. Loop closure
is used to solve this. When the same scene is observed after a certain traveled distance,
the drift error can be determined and corrected.

To do this, the similarity between the most recent keyframe and its neighbors in the
co-visibility graph is calculated. The lowest score is then compared to the rest of the
keyframes. If the similarity score of another keyframe is higher than the lowest similar-
ity of one of the neighbors, the keyframe is considered a loop closure candidate. The
candidate is only used if three consecutive possible candidates have been found.
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After a loop closure, global bundle adjustment is started to optimize all the keyframes
within the loop that was closed.

3.3.3 Sparse depth map

In most state of the art depth estimation networks, only the RGB image is used. However,
SLAM also produces a sparse depth map by triangulating the ORB feature points between
frames. By combining this depth information with the RGB image, a more accurate depth
estimation can be obtained.

In order to transfer this sparse depth image to the CNN, the map points in the keyframe
are converted into a depth image which is published using ROS. The distance between each
visible map point and the current camera position is calculated, then the x and y pixel coor-
dinates of this point in the current frame are determined to construct a sparse depth image.

The image is then shared using ROS topics with other nodes that need it. The distance of
each map point to the camera image is still unscaled at this point. This scale is later deter-
mined and compensated for in the depth estimation network.

3.4 CNN based depth estimation and densification

Single image depth estimation uses RGB images as input to estimate the distance from the
camera to each pixel in meters. This is done using a depth estimating Convolutional Neural
Network (CNN). These types of networks are trained using a large amount of images as in-
put, and then continuously improving it by minimizing the error between the output of the
network and the actual desired output.

SLAM also produces a depth map, however, this depth map only consists of a small amount
of triangulated feature points, and has an arbitrary scale, making it unsuitable for obstacle
avoidance. By fusing the sparse depth map generated by SLAM with the CNN, a denser, more
accurate depth map can be obtained.

These sparse depth samples are used as an additional input for the CNN to obtain more
accurate depth estimates. This is done by modifying the CNN to not only taking a RGB im-
age as input, but also a sparse depth image, containing a small amount of depth samples
triangulated by SLAM.

An example of the inputs, output and ground truth is shown in figure 8, where the RGB
input of the network is shown in (a), the sparse depth input is shown in (b), the output of
the CNN, the predicted depth image, is shown in (d) and the ground truth is shown in (c).
The depth images in this figure are shown in a color format for clarity, however, in reality
the produced depth map consists of only a single channel, where each pixel value equals the
distance in meters.
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Figure 8: Sparse to dense Example. Image source: [5]

In this section, the inner workings and development of the depth estimation network are
described.

•Network Architecture A description of the structure of the depth estimation network.

•Data augmentation How the images are augmented before training.

•Sampling How the sparse depth samples are obtained for training.

•Training datasets Description of the dataset used for training.

•Scale estimation Describes how the scale is determined from the depth samples.

•Intrinsic parameters of the neural network Goes into detail about how the network han-
dles different camera parameters.
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3.4.1 Network architecture

Figure 9: The network architecture builds upon ResNet-50, however, the fully-connected
layer at the end of ResNet is replaced by a decoding layer (bottom row). Image source: [6]

The depth estimation network used to complete the depth predictions is based on [5], which
uses sparse sets of depth samples and RGB images as input to predict a high resolution depth
image. The architecture is based on the state of the art depth prediction system by Laina et al
[6], shown in figure 9.

This architecture has an encoder, decoder structure, where the encoder process the input
information and converts it into so called feature maps, these feature maps are then stacked
together to produce the output of the encoder. These feature maps are a denser representa-
tion of the input information, storing more detailed information about the observed data in
a format that can be processed by the decoder component of the network.

The goal of this encoding layer is to give the higher-level neurons larger receptive fields,
thus capturing more global information about the image.

The encoding layer of the network is based on ResNet-50[61], which uses Residual con-
nections that allow the network to retain information between layers, this allows for much
deeper networks that would otherwise not be possible.

In the realized implementation, the weights resulting from training using imagenet [62],
which is a large dataset consisting of images of rooms, animals, materials among other things,
have been used as starting point for training.

Training such a complex network from scratch requires large amounts of time and com-
puting power, unavailable to most. To avoid having to retrain the network from scratch for
the task of depth estimation, a method called transfer learning is utilized. The same weights
that were used from imagenet are used as a starting point for encoding data into the feature
map. However, the last average pooling layer and linear transformation layer, found at the
end of ResNet, used to attach the labels to objects in the images, is replaced with a new depth
decoding layer designed by Laina et al[6]. This depth decoding layer uses an up-sampling
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strategy with up-projection blocks. Chaining these up-projection blocks allows high-level in-
formation to be more efficiently passed forward in the network while progressively increasing
feature map sizes. This enables the construction of their coherent, fully convolutional net-
work for depth prediction. This fully convolutional approach allows for an architecture that
contains fewer weights while still providing good results.

A loss function is used as a metric for optimizing the network during training using re-
gression. Experiments in both [6] and [5] have shown that L1 shown in equation 1 produced
the best results on the RGB-based depth prediction problems. This is the Least Absolute De-
viations function, which tries to minimize the error of all the absolute differences between
estimate and the ground truth.

L1 = mean(|y − ŷ |) (1)

3.4.2 Training datasets

For training, the NYU Depth v2[63] dataset is used. This dataset contains 48521 indoor im-
ages, of which 655 are used for validation, the rest is used for training. These images are all of
the indoor scenes and have been recorded with a Kinect camera at a resolution of 640×480
pixels. This dataset also includes labeled depth images, which would allow for training se-
mantic information into our network in the future. The dataset includes different types of
rooms, like basements, bathrooms, bedrooms, offices, and dining rooms, all taken from 3
different cities. An example is shown in figure 10, which shows different rooms with their
depth images and class labels. The kinect uses a structured light sensor to estimate the depth.
By projecting a pre-determined pattern of infrared light, and observing the deformation of
this pattern, the depth of the observed scene can be calculated. However, the random error
of depth measurements increases quadratically with range, reaching 4 cm at 5 meters [64],
which is the described maximum range of the sensor.
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Figure 10: Samples of the RGB image, the raw depth image, and the class labels from the NYU
Depth Dataset V2.

3.4.3 Data augmentation

In order to improve the robustness of the network, the training data is modified before each
training iteration in order to prevent oferfitting and get more usage out of the same amount
of data. This is done in the following ways:

• Rotation: Color and depth images are rotated at random to simulate different observa-
tion angles. The angles are chosen at random between r ∈ [−5,5]

• Color Normalization: The RGB images are normalized using mean substitution and
division by the standard deviation.

• Color Jitter: The brightness, contrast and saturation of the RGB images are each scaled
at random by ki ∈ [0.6, 1.4].

• Flipping: There is a 50% chance that the image is flipped horizontally.

• Sample noise: In order to help the network better handle small reprojection errors, a
small amount of noise is added to the distance measurements.

In addition to these pre-processing steps that are used only for training, the images are
also cropped at the center to make sure the input to the network is a consistent size.
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3.4.4 Depth Sampling

The training dataset provides a series of RGB images and their matching depth images. The
network uses an RGB image and a sparse depth image as input and evaluates them using
the depth images as ground truth. The RGB images and depth images are provided with
the dataset, however, the sparse depth images are not, and still need to be generated during
training.

In order to provide the network with sparse depth samples during training, so called spar-
sifiers are used, converting the ground truth depth images into sparse subsets that can be
used as input during training. The most common way to design this sparsifier is to randomly
sample points from the depth image. However, this does not adequately represent the way
3D points are obtained in ORB SLAM.

To make sure the depth estimation network is optimally using the depth samples ob-
tained by ORB SLAM, an ORB based sparsifier is developed. This allows the network to take
full advantage of the information provided by ORB points, as ORB uses an edge detector,
which provides samples mainly at the edges of objects. This way, edges of tables, for exam-
ple, provide significantly more samples than the surfaces of tables. This information can be
used by the network to improve the depth prediction.

A downside of the ORB edge detector is that textureless areas do not provide as many
feature matches, making it harder to get depth estimates in these areas, often resulting in
lower accuracy. This can either be mitigated by filtering out low texture areas when doing
reconstruction, taking an area around each sparse sample and then creating a convex-hull
surrounding these points.

Running an ORB detector on an image provides a large set of key points, this can be up
to several thousand points per image. However, in ORB SLAM, not all these keypoints are
translated into map points. Thus the number of depth samples during training should also be
limited to best match the actual implementation. To accommodate for this, the sparsifier can
be trained with a varying number of sparse samples, keeping it around a specific expectation.
This way, the network is trained to be more robust to changes in the sparsity of the samples
in different frames.

3.4.5 Intrinsic parameters of the neural network

A drawback of neural networks is that the intrinsic parameters, like focal length, of the camera
that is used to record the training data, are embedded into the network weights. Not only this,
but the network also crops the images to make sure the input size is consistent, changing their
resolution. To correctly reproject the depth images into the world coordinate system, these
differences need to be reflected in the focal length and depth images.

To correct the camera’s intrinsic parameters of the sensor for the change in resolution
resulting from cropping the image equation 2 is used. Where f is the focal length in the x
and y directions of the frame, c is the optical center, and r is the ratio by which the scale is
reduced from input image to output of the CNN.
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Ann =
 fx rx 0 cx rx

0 fy ry cy ry

0 0 1

 (2)

3.4.6 Scale calculation

As mentioned before, monocular SLAM uses an arbitrary scale. This limits the applications
of monocular SLAM tremendously. The point-clouds produced by SLAM are therefore scaled
using the information obtained using the trained CNN that provides metric depth informa-
tion of the scene. This would otherwise require additional external sensors to correct, how-
ever, using the CNN this can all be done using only the camera.

In order to correct for this arbitrary scale, an initialization procedure is introduced, where
the scale ratio between the SLAM pointcloud and CNN depth estimations is determined. This
is done over a set amount of keyframes, using the triangulated map points obtained by SLAM
and the matching depth estimates obtained by the CNN. By determining their ratio, the scale
is obtained.

During this initialization procedure, the sparse depth map is not used as input for the
CNN. Because of this, the results of these initial depth estimations are less reliable, which has
to be taken into account when determining the scale.

As result of the CNN no longer having access the sparse depth measurements as input, a
side effect is that it no longer provides depths at further distances. The maximum depth the
CNN predicts is limited to roughly 4 meters. This is most likely due to the fact that at these
larger distances, the CNN depth estimates, obtained only from RGB data, are relatively less
accurate, and the resulting errors are larger then the errors at closer ranges. This could cause
the CNN to rely more heavily on the more accurate sparse samples at these longer distances
compared to the shorter rangers. Causing the CNN to ignore depth information contained in
the RGB data at these ranges.

To improve the results of the scale measurements, a modified z-score (also called the stan-
dard score) is used. This is a numerical measure to describe a value’s relation to the mean of
its group. In this filter, the median of the group is used instead of mean values, as the median
is more robust to outliers.

Using equation 3, a vector of ratios is determined, where Dor b and Dnn are the vectors of
the depths of each ORB map point that has been observed up to now, and their correspond-
ing pixel depth value determined by the CNN. Then the MAD (median absolute deviation) is
determined4, where S̄ is the median of the observed scales. Then equation 5 is used to deter-
mine the scale with respect to the MAD score for point i . Equation 6 is then used for filtering,
where f is the threshold value used to determine if the scale at index i should be omitted.
Larger values of f result in a broader range of scale indexes to be included. The scale sor b

map is
then determined by minimizing the squared error after filtering. In figure 11, the results of the
median filtering can be observed for different values of f with the black x-axis representing
the mean of the unfiltered data.

Using this filtering approach, a more accurate scale estimate can be obtained. However,
in order to obtain as many usable scale measurements, it is recommended to mainly observe
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nearby objects.

S = Dor b

Dnn (3)

M AD = medi an(|S − S̄|) (4)
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M AD
(5)
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Figure 11: Median filter for different threshold values of f . The x axis represents the mean of
the unfiltered data.

3.5 Depth image filtering

The depth estimations of neural networks can have sub-optimal solutions at distance jumps,
for example, when looking over an object like a desk, with a wall in the far background. Here
the network makes smooth edges, going from the desk to the wall. An example of such an
issue is shown in figure 12. Here the camera is looking over a cubicle with a wall in the back-
ground. For the error metrics, these gaps are not detrimental, as they only occur in a small
subset of the whole image. However, when used to construct an obstacle map, these floating
pixels can have a negative effect, especially when fusing depth maps from different perspec-
tives.
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To improve the quality of the depth estimates, they are filtered using a statistical outlier
removal. In this algorithm, all points in the point cloud are stored as a KD-tree, which is a
data structure that allows the data to be efficiently searched for nearest neighbors. For each
point, the mean distance from it to its n nearest neighbors is determined. Then all points
whose mean distances are outside an interval defined by the mean and standard deviation of
the entire set are considered outliers and removed from the image.

In the figure, the original estimate is shown in red. Here you can see that the jump from
cubicle to the wall is filled with very sparse points. The filtered point cloud is shown in blue,
removing these distance jumps and improving overall obstacle map quality.

Figure 12: Example of depth estimation crossing distance gaps. Filtered image is shown in
blue, raw data is shown in red.

Another improvement that can be made with filtering is in low texture areas. Due to ORB
using an edge detection algorithm, points in low texture areas like walls are often missing,
causing these areas to reduce the overall quality of the 3D reconstruction often. These areas
can also be filtered out to improve the reconstruction. This is done by combining two filters.

First, a radius around each depth sample is selected, as the estimate close to triangulated
map points are often more accurate. Then a convex hull (see figure 13) is used that encloses
these points so that the depth information bounded within this area is also included. This
way surfaces surrounded by sample points that don’t include a lot of texture themselves, for
example, a desk, where the corners of the desk have matched features, but the desk itself is
bland, are still included.

3.6 Map construction

Ground-based robots often use 2D occupancy grids for path planning. This works since these
robots only move in a 2D plane. UAVs, however, can move in 3D space, requiring a different
type of map.

29



Figure 13: Example of a convex hull, a surface encapsulating all the points within, with no
corners bent inwards.

In order to store and fuse the depth estimate from each frame, OctoMaps[56] are used.
Octomaps provide a very memory efficient and relatively fast probabilistic 3D mapping pro-
cedure. This means that it can integrate probability into the occupancy, allowing them to take
into account measurement noise and incorrect measurements that are being reobserved. In
addition, octomap is able to differentiate between, free, occupied and unknown space (see
figure 14).

Octomaps are also very memory efficient. They can transform point clouds into a much
more efficient structure. A point cloud of, for example, 3 million points can be depicted as
only a few hundred voxels (see figure 15). As in the case of obstacle avoidance, there is very
little loss of valuable information, as long as the voxels are of an adequate resolution to be
able to avoid the obstacles.

Figure 14: Left: Pointcloud data. Center: Octree structure generated from pointcloud data,
showing occupied voxels. Right: Octree structure also showing free voxels.

Figure 15: Left: Example of how octomap estimates occupancy using differed voxelsize. Right:
representation of octree structure.
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To be able to construct the octomap, the individual filtered depth images are converted
into a 3D point cloud, using the camera parameters and the estimated pose to convert them
into the world coordinate system. This point cloud is then integrated into the octomap. Oc-
tomap keeps track of the probability of each leaf of the node being occupied using proba-
bilistic occupancy grid mapping. Using equation 8, the probability that a voxel is occupied is
determined. In this equation, the probability that voxel n is occupied given the measurement
zt is denoted by the log probability term P (n|zt ), and the result of the previous estimate is de-
noted as P (n|z1:t−1). This allows octomap to take into account the probabilities and noise of
the input system, in this case, the CNN.

A common assumption of a uniform prior probability P (n) = 0.5 is assumed. So a node is
assumed to be occupied if the occupancy probability is P (n) > 0.5 and free otherwise.

To simplify this computation equation 8 can be rewritten using the log-odds notation
shown in equation 9 and 10. This allows for a faster and less computationally intensive way to
update the probability since you no longer have to do multiplications, only additions. Since
the log-odds values can be converted into probabilities and vice versa, only the log values are
stored in the nodes instead of the actual probability.

P (n|z1:t ) =
[

1− 1−P (n|zt )

P (n|zt )

1−P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1−P (n)

]−1

(8)

L(n|z1 : t ) = L(n|z1:t−1)+L(n|zt ) (9)

L(n) = log

[
P (n)

1−P (n)

]
(10)

A clamping policy is used to set an upper and lower bound to the occupancy estimate,
with a minimum and maximum. This results in equation 11. By using this clamping method,
it limits the number of updates that are needed to change the state of a voxel. This way, a
voxel that has been observed to be occupied for a long time won’t need to be observed as free
for a similar amount of times to be considered as a free area, allowing the octomap to adapt
to change quickly.

L(n|z1 : t ) = max(mi n(L(n|z1:t−1)+L(n|zt ), lmax ), lmi n) (11)

When tuning the octomap parameters, the most important parameters are hit/miss and
min/max. Where a hit is the probability P (n|zt ) when a voxel is occupied, and a miss is this
same probability when the voxel is registered as free. The min/max are used to set the limits
in equation 11.

These are provided as probabilities and are converted in the log-odds space, so the prob-
abilities are added (hit) or subtracted (miss) until they reach min or max in log-space. So
increasing hit or miss probability values that are added/subtracted causes octomap to trust
the sensor more, where decreasing them makes it trust the sensor less. Similarly, increasing
the min and decreasing the max allows for fast updates at the cost of more noise in the depth
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map and visa versa.
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4 Experiments & Results

In order to evaluate the system and its performance, several tests are conducted.

CNN encoder architecture and sampling density The CNN can be trained using different
parameters, like the ResNet architecture and the amount of sparse samples that are
used. With these experiments different training parameters are compared to find ob-
tain the best performance.

CNN depth sampling methodology During training, different methodologies are developed
to obtain sparse depth samples. In this experiment, these different sampling strategies
are compared and evaluated to obtain the best performance during implementation.

ORB map point accuracy The network uses sparse depth samples obtained by ORB SLAM
to improve the CNN depth estimations. In order to gain insight into the accuracy of
these points several tests are performed.

Scale estimation The network uses an initialization procedure to correct for the arbitrary
scale of monocular ORB SLAM. In these tests, the accuracy of this scale estimation is
evaluated. Looking at how accuracy improves over the number of frames used for ini-
tialization

Tracking performance The tracking accuracy of SLAM is greatly increased by the scale es-
timation. In order to observe how accurate and reliable its positioning information is,
several tests are conducted, comparing the designed system with comparable state of
the art systems and multi camera solutions.

Depth estimation and filtering Several tests are conducted to evaluate the performance and
accuracy of the monocular depth estimates. Comparing the results to the current state
of the art. Additionally, in order to obtain the highest quality obstacle maps, additional
filtering is applied. The performance of the system before and after filtering is also
compared.

Reconstruction and integration The system should be implemented on an inexpensive UAV.
In order to evaluate how the system performs on a UAV, the reconstruction of an indoor
testing environment is evaluated by using a Tello UAV.

4.1 Experimental setup

In this section, the evaluation criteria are described and explained. Using a set of benchmark
datasets the performance of the system is evaluated within different unique scenarios to gain
a better understanding of its strengths and weaknesses. To gain insight into the performance
of each dataset, a set commonly used metrics are used to evaluate the performance of the
CNN. Then, these results are used to gain a better understanding of the influence this has on
the performance of the SLAM system. These metrics were mainly selected to gain insight into
the rate of error and different types of errors, but it was also important to be able to compare
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our system to other state of the art solutions. That is why it was important to use the same
evaluation criteria and matching datasets that were used in similar research.

4.1.1 Evaluation dataset

In order to make sure tests can be conducted in a repeatable and comparable manner, a
benchmarking dataset is required. For this purpose the TUM RGB-D benchmark dataset [65]
was selected. It provides different scenarios with depth and image recordings made by a
Kinect. A ground truth trajectory of the Kinect movement is also recorded using a motion
capture system. The sequences contain both color and depth images in full resolution at
30Hz. Multiple types of recordings have been done, using ground robots, dynamic scenes
where people are moving, and handheld static scenes. In this report, only the handheld
recordings of static scenes are used. A subset of these recordings, consisting of 3 scenarios,
are used for performance evaluation. Examples frames of these scenarios are shown in figure
16 to give an understanding of what these scenes look like.

The abbreviations that are used to indicate the benchmark rooms are shown in table 1.

Table 1: Benchmark scene notations

Notation Dataset

TUM1 freiburg3_long_office_household
TUM2 freiburg2_desk
TUM3 freiburg3_structure_texture_far
TUM4 freiburg3_nostructure_texture_near_withloop

4.1.2 Depth Estimation Evaluation

To measure the performance of the network, several error metrics are used for evaluation.
These evaluation metrics are shown in equation 12, 13, 14 and 15. In these equations y is a
matrix of the target pixel depths in meters and ŷ is the depth estimate in meters.

The MAE in equation 12 is used to determine the Mean Absolute Error (MAE) of each
frame. This gives the most basic insight into what the magnitudes of the errors are. However,
this metric can be a bit deceptive, as scenes with only objects in close proximity result in very
low errors. In contrast, larger-scale scenes can have relatively small errors at large distances
result in a large MAE. To gain insight into the relative error, the absrel metric is used, described
in equation 14. This is the absolute relative error, giving an error measurement relative to the
size of the ground truth. To gain insight into the spreading of the error, the root-mean-square
error (RMSE) is used, described in equation 13. This determines the standard deviation of
the prediction error, giving insight into how spread out the error is from the optimal solution.

The perc. depth (δ10) is determined using equation 15 and is represents the percentage
of pixels whose depth estimation error is less then 10% with respect to the ground truth.
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(a) TUM1 (b) TUM2 (c) TUM3 (d) TUM4

Figure 16: Four benchmark scenarios from TUM RGB-D dataset used for evaluation.

M AE = mean(|ŷ − y |) (12)

RMSE =
√

mean(|ŷ − y |2) (13)

absr el = mean

(∣∣∣∣ ŷ − y

y

∣∣∣∣) (14)

δ10 =
max{ ŷ

y , y
ŷ } < 1.10

n(y)
(15)

4.1.3 SLAM evaluation

To evaluate the performance and accuracy of the SLAM system, the approach described in
[65] is taken as a guideline as it is commonly used in evaluating different SLAM systems. The
research describes the datasets which are used for evaluation and also highlights different
metrics used to evaluate the trajectory.

Relative Pose Error (RPE) This metric gives insight into the local accuracy of the trajectory
over a fixed time interval. Therefore the RPE corresponds to the drift of the trajectory.
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To determine the RPE equation 16 is used, where SE(3) represents the Special Euclidean
Group in 3 dimensions, which is the group of simultaneous rotations and translations
for a vector and 4 is the fixed interval between pose estimates.

For a sequence of n camera poses, the root mean squared error (RMSE) over all the
time indices of the translational component is used. It should be noted that in some
research, the mean error instead of the RMSE as these are less influenced by outliers.
To determine the RMSE for the RPE, equation 17 is used, where trans(Ei ) refers to the
translational components of the relative pose error Ei . As described in [65], if desired,
additionally, the rotational error can also be evaluated. However, it was usually found
that the comparison by translational errors was sufficient as rotational errors show up
as translational errors when the camera moves. The choice for the fixed time interval
between the estimates, 4 is left up to the reader. However, it is suggested for visual
odometry to use 4= 1 f r ame, as it would directly relate to the drift per frame, making
it a logical choice.

Ei = (P−1
r e f ,i Pr e f ,i+4)−1(P−1

est ,i Pest ,i+4) ∈ SE(3) (16)

RMSE(E1:n) =
√

1

n

n∑
i=1

‖trans(Ei )‖2 (17)

Absolute Trajectory Error (ATE) This metric uses corresponding poses which are directly
compared between estimate and reference, given their pose relation. This is used to
evaluate the global consistency of the trajectory. To determine the error, equation 18
is used, where R represents the rigid-body transformation corresponding to the least-
squares solution that maps the estimated trajectory onto the ground truth trajectory.
Similar to the relative pose error, shown in equation 19, the root mean squared error
over all the time indices of the translational components are used.

Fi = P−1
r e f ,i RPest ,i (18)

RMSE(F1:n) =
√

1

n

n∑
i=1

‖trans(Fi )‖2 (19)

4.2 CNN encoder architecture and sampling density

When designing the depth estimating network, different design choices have to be made.
Two very crucial parameters are the encoder architecture and the number of sample points.
To gain insight into how these parameters influence the performance, the network is trained
using two different encoder architectures, each with an increasing amount of sparse point
samples.
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As mentioned, there are two main implementations of the encoding layer used, ResNet18
and ResNet50. ResNet18 consists of 18 layers and ResNet50 of 50 layers, requiring more pa-
rameters, thus more GPU memory and computation time. Using the NYU depth dataset,
consisting of both RGB Depth pairs, the network is trained using a different number of sparse
point samples for input. The sparsifier that is used to obtain sparse depth samples from the
training set is the Uniform Random Sampler, which takes samples with a small deviation
around the set amount in an attempt to make the network more robust to variations in the
number of samples. Both networks are evaluated using a different number of depth sam-
ples to determine what the improvements are on its performance. Both the ResNet18 and
ResNet50 architectures are evaluated using 100, 200, 300, and 400 sparse depth samples. The
results of these tests are shown in table 2.

4.2.1 Results

Looking at the results of ResNet18, it shows that including just 100 sparse samples already
greatly improves the performance, reducing the RMSE by almost half. The more samples are
used, the more accurate the system is. However, it can also be observed that using additional
depth samples does experience some sort of diminishing return. Using 400 samples provides
significantly less benefit than increasing the samples from 200 to 300, for example.

ResNet50 overall performs better then ResNet18, but the same diminishing return can
also be seen here. When using 400 samples, the performance is quite similar. However, the
GPU time (the amount of time it takes for the GPU to process a single image) and the amount
of memory that ResNet50 requires is also considerably higher. Henceforth the ResNet18 ar-
chitecture is used for the remainder of the experiments.

Table 2: Different sparse depth sample sizes compared to performance using both ResNet18
and ResNet50.

ResNet18 ResNet50
Points MAE[m] absrel RMSE[m] δ10 time[s] MAE[m] absrel RMSE[m] δ10 time[s]
0 0.439 0.165 0.592 0.435 0.012 0.413 0.157 0.562 0.463 0.020
100 0.191 0.072 0.309 0.793 0.007 0.165 0.058 0.279 0.852 0.020
200 0.137 0.049 0.240 0.879 0.010 0.146 0.051 0.252 0.878 0.046
300 0.134 0.047 0.231 0.887 0.011 0.137 0.047 0.232 0.899 0.045
400 0.129 0.046 0.218 0.897 0.012 0.119 0.042 0.212 0.907 0.039

4.3 CNN depth sampling methodology

The default method of training the network is done by sampling random points from the
depth image. This does not accurately represent the way depth samples are obtained with
ORB SLAM, as here, an edge detector is used to triangulate the 3D position of points. To
account for this, the ORB sampler was implemented, as described in section 3.4.4.
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To gain insight into how the sampling strategy influences the performance, the network
is trained using both the default sampling strategy (UAR) and the new ORB sampling strat-
egy. First, the training results of both networks are shown, then the integration results are
evaluated to see how well the sparsifiers translate into real-world scenarios. The integration
of both networks is tested on scenarios from the TUM dataset, described in section 4.1.1. The
sparse depth samples are obtained using ORB SLAM running in RGB-D mode, so no scale
correction is performed yet.

4.3.1 Results

Looking at table 3, it shows that the training results using UAR sampling performs signifi-
cantly better than the network trained using ORB samples. This is to be expected since the
uniform sampler is able to obtain diverse depth points on every point of the scene. In con-
trast, the ORB samples are mostly located on edges of objects and almost non-existent in
textureless areas, giving it less information.

However, when looking at the integration tests, the results are reversed. It shows that uni-
form sampling does not perform as well anymore when the samples are no longer obtained
uniformly. The network that was trained using ORB samples on the other hand, while not
performing as well during training, is able to perform better than the uniformly sampled net-
work on all of the TUM scenes based on all of the evaluation criteria.

What is observable is that there is a large difference between the performance of differ-
ent scenes. Especially TUM2 and TUM1 perform worse then the other scenes. This can be
accounted to the effect of them being relatively large rooms, as seen in figure 16, both scenes
are recorded in a large machine hall, focusing on a desk in the center, but also containing
objects in the far distance. This combination of far away, and nearby samples can cause the
distance jumps, as shown in figure 12. This is also confirmed by the relatively high RMSE,
compared to the MAE and absrel, indicating a larger spread in error.

Even though the uniform sampling performs better in training, when it is used in scenar-
ios where the sparse measurements provided are no longer uniform, the performance drops
significantly. The network that was trained using ORB sampling, however, does perform as
well or better. Showing that the sparse structure obtained using edge detection does provide
additional information about the scene that can boost depth estimation performance. These
patterns are not recognized by the network when it is trained with random samples, whereas
the edge detector allows the network to more clearly utilize this information and integrate
into depth predictions.

4.4 ORB map point accuracy

The depth estimating CNN uses the sparse depth measurements obtained from the map
points, triangulated by ORB SLAM to improve the depth predictions. Not only this, but during
the scale initialization stage, these map points are compared directly to the matching depth
pixels, making the map point accuracy crucial for obtaining a high-quality scale estimate.
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Table 3: Training results and ORB SLAM integration results of UAR and ORB based sampling.

Sampling Strategy
UAR 400 ORB 400

Dataset MAE[m] absrel RMSE[m] δ10 MAE[m] absrel RMSE[m] δ10

Training results 0.129 0.046 0.218 0.897 0.210 0.079 0.320 0.758
TUM1 0.517 0.242 0.975 0.402 0.372 0.176 0.766 0.599
TUM2 0.401 0.166 0.672 0.512 0.344 0.138 0.606 0.605
TUM3 0.297 0.099 0.752 0.721 0.188 0.081 0.392 0.777
TUM4 0.312 0.283 0.378 0.251 0.153 0.124 0.180 0.518

Therefore it is important to have an understanding of not only the quality of these map points
but also on the number of points that are available in each frame and how much the number
of depth samples varies. To gain insight into these metrics, several tests are conducted.

To determine the map point accuracy, ORB SLAM is tracked in monocular mode, and the
depth of each map point in every keyframe is stored in combination with the matching depth
measurement of the Kinect. The map point depths are then scaled using the ground truth to
gain insight on the best possible performance.

The results of the map point evaluation can be seen in table 4. Where the avg. points
is the average number of map points available over all the recorded keyframes and the std.
points is the standard deviation of the number of available map points.

4.4.1 Results

Comparing the results of table 4 with the depth estimation accuracy from table 3, it shows
that the results are comparable. The map points are more accurate than the neural network,
however, not always by a large margin.

The average number of points does not give a lot of information about the quality of the
map points. However, when training the network, it can provide a good estimate of the sam-
ple size that can be used during training, as well as the amount of depth noise that can be
added during training.

Table 4: ORB Map point accuracy statistics.

MAE[m] absrel RMSE[m] keyframes avg. points std. points
TUM1 0.183 0.105 0.405 87 219 63
TUM2 0.218 0.082 0.604 99 251 54
TUM3 0.173 0.079 0.269 64 354 72
TUM4 0.091 0.067 0.117 63 320 32
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4.5 Scale estimation

In order to correct for the arbitrary scale that monocular ORB SLAM is working in, the scale
difference between the CNN depth estimates and the ORB map points must be determined
over a sequence of frames. For these experiments, the map points of each keyframe, as well as
the depth measurements from the Kinect, and the neural network are stored on disk. This is
done for every scenario in section 4.1.1. The data is then used to determine the scale, evaluate
the accuracy of the determined scale with respect to ground truth, and also to gain insight
into the reliability and consistency of the scale estimation algorithm. During the initialization
procedure, the triangulated map points are not yet used to improve the depth estimation, so
no sparse depth samples are provided as input to the CNN.

The results of the scale estimates are shown in table 5, it shows the scale estimate on a
per-keyframe basis. Where 3% Key Frames (KF) is the number of keyframes needed to reach
3% accuracy with respect to the ground truth scale, with a minimum of 5 frames. The ground
truth scale is determined using the methodology described in [66].

4.5.1 Results

The scale estimation results for TUM2 are shown in figure 17a. This scenario was chosen as it
clearly shows the limitations of the CNN depth estimation, deprived of sparse depth samples.
In figure 17a it can be seen that the raw scale estimates of the CNN, shown in blue, are quite
erratic. With the scale of each frame, represented as the dotted line, showing large outliers
influencing the mean.

In figure 17b it can be seen why there are such large outliers. The CNN only provides
depth estimates of up to roughly 3 meters, whereas the map points cover a much larger dis-
tance. To circumvent this problem, the median filtering algorithm described in section 3.4.6
is used. The result of this filtering can also be observed in figure 17b. In figure 17a the scale
estimation result of the median filter is also shown, showing a more accurate result and faster
convergence, with results comparable to those obtained using the Kinect.

In table 5 it shows that the results of median filtering give accurate results, even outper-
forming the scale estimates obtained using the Kinect.

Table 5: scale estimates

Scale estimate
Ground Truth Kinect CNN Median filter 3% KF

TUM1 2.43 2.17 2.31 2.47 29
TUM2 2.16 2.01 1.53 2.09 11
TUM3 1.89 1.75 1.48 1.57 6
TUM4 1.29 1.21 1.35 1.31 8
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(a) Different methods for scale estima-
tion, the dashed lines represent the scale
for each frame, the solid lines of the
same color represent the mean of these
scales. The axis line represents the
ground truth scale.

(b) Scaled map point depths with depth
estimates and the remaining map point
depths after median filtering.

Figure 17: Scale estimation for TUM2
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4.6 Tracking performance

The accuracy of the localization is not only of value for positioning of the UAV, but also for
fusing the depth images. After the initialization procedure, the real-world scale is determined
and used to improve the tracking. To gain insight into the trajectory tracking performance
improvement that was gained by integrating the scale estimation, the trajectory errors are
evaluated.

This is done using the scale obtained in table 5 and compared to the trajectory obtained
using the tracking cameras provided by the datasets. The results of these tests are shown in
table 6. The results are also compared to state of the art research shown in table 7.

4.6.1 Results

The results show significant improvement with respect to the unscaled trajectories, which
was to be expected. As the neural network does not interact with the SLAM performance
directly, the ATE and RPE are directly correlated with the scale estimation error. In figure
18, the tracked trajectory of TUM2 is shown in color, and the ground truth is shown in dark
dotted lines. Here it can clearly be seen that the largest component of error is still the scale
estimate. As most of the trajectory, the error is constant.

In table 7, the ATE of the system is compared to the results given in [2], the research to
which their results are compared is also included. This is done for all the scenes from the
TUM benchmark dataset that have been evaluated in [2], where LSD (BS) is LSD SLAM boot-
strapped with the ground truth scale. It shows that the system is able to outperform or gives
comparable solutions to most of the state of the art solutions. This can mainly be attributed
to the accurate scale estimation procedure and the highly accurate tracking of ORB SLAM.

Table 6: Trajectory performance evaluation metrics for benchmark rooms.

ATE scaled ATE unscaled RPE scaled RPE unscaled
TUM1 0.039 1.207 0.008 0.105
TUM2 0.053 0.907 0.011 0.123
TUM3 0.303 0.829 0.074 0.196
TUM4 0.034 0.453 0.014 0.065

Table 7: Comparison in terms of ATE (Absolute Trajectory Error)[m] with state of the art.

Sequence Ours CNN-SLAM[2] LSD (BS)[67] LSD ORB[22] Laina[6]

TUM1 0.0386 0.542 1.717 1.826 1.206 0.809
TUM3 0.3033 0.214 0.037 0.937 0.733 0.724
TUM4 0.0335 0.243 0.106 0.436 0.495 1.337
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Figure 18: Estimated scaled trajectory vs ground truth, absolute trajectory error for scene
TUM2.

4.7 Depth estimation and Filtering

In order to obtain high-quality OctoMaps, suitable for navigation, the input depth images
are filtered as described in section 3.5. To summarise, the filters applied to the depth maps
produced by the neural network:

KDtree filter This filter removes points that are too far away from their neighbors, in order
to remove the low-density points that occur when large distances are bridged.

Maximum distance A maximum distance of 5 meters is used, ignoring far away map points
which are more unreliable.

Convex hull A convex hull is placed around the sparse map points in order to filter out areas
that don’t contain sparse depth information.

These filtering tests are done in monocular mode, using the first 15 frames to obtain a
scale estimate.

During the tests, the same scenario was evaluated with filtering turned off and then again
with filtering turned on. The results of this are shown in table 8. In this table, the filtered
column shows the percentage of pixels that have been removed. The filtering percentages
also include pixels that were unable to be observed by the Kinect camera, as the IR and RGB
sensors do not completely overlap. The missing Kinect measurements account for roughly
8-10% of the filtered pixels.

Additionally the depth estimation results are compared to the current state of the art, as
obtained in [68].

4.7.1 Results

In table 8, it can be seen that the errors are drastically reduced. However, the amount of
filtered pixels is also quite high. Filtering of the first 3 scenes is roughly between 35 to 50%
(roughly 27-42% when ignoring the invalid Kinect pixels).
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An outlier in this test is TUM4, where almost 60% is filtered, and the δ10 also decreases
instead of increases. This intensive filtering can be explained by the way the KDtree filter
works in for this particular scene. The KDtree filter removes points that are considered too
far away from its neighbors with respect to the rest of the image. As TUM4 consists of only
nearby observations of a flat surface, the mean distance between the depth pixels is very
small and consistent, causing the filter to adhere to a very strict baseline. This could easily be
solved by increasing the standard deviation multiplier of the filter. The reduced δ10 further
confirms this, as it shows that a lot of correctly estimated depth pixels are filtered out due to
the very strict filtering baseline.

When looking at table 9 it shows that this system, without filtering, is able to produce
better then state of the art depth predictions. This can mainly be attributed to the fusion of
sparse depth measurements obtained by ORB SLAM.

Unfiltered Filtered
MAE[m] absrel RMSE[m] δ10 MAE[m] absrel RMSE[m] δ10 filtered

TUM1 0.428 0.224 0.749 0.34 0.160 0.107 0.255 0.61 49.6%
TUM2 0.286 0.128 0.492 0.58 0.181 0.100 0.288 0.65 41.8%
TUM3 0.301 0.124 0.496 0.38 0.218 0.104 0.257 0.39 37.6%
TUM4 0.142 0.133 0.171 0.49 0.186 0.161 0.200 0.24 59.7%

Table 8: Comparison of performance before and after filtering

Table 9: Perc. correct depth comparison with state of the art.

sequence Ours DeepFusion[68] CNN-SLAM[2] LSD(BS)[67] ORB[22] Laina[6] REMODE[48]

TUM1 34.22 8.069 12.477 3.797 0.031 12.982 9.548
TUM3 37.68 27.2 27.396 6.449 0.027 9.45 6.739
TUM4 49.28 14.774 24.077 3.966 0.059 15.412 12.651
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4.8 Reconstruction and integration

The goal of the system is to be implemented on a low cost UAV, therefore additional tests are
conducted using a Tello UAV. As there are no matching depth images collected during this
test, the performance is evaluated using the map reconstruction.

As the datasets used for training the network were obtained using a Kinect, these tests
also reflect how the CNN handles different input focal lengths. The first 10 keyframes are
used to obtain a scale estimate. These frames are collected by observing nearby frames up to 4
meters, and avoiding far away frames, in order to obtain as many useful depth measurements.

For these tests, two rooms were selected with simple geometries, sufficient lighting and
recorded using a handheld Tello. The reconstruction is done offline, separate from the ob-
stacle map and the map is constructed using TSDF fusion [59]. Then a top down 2D map is
generated from the constructed map and compared to the floor plan of the respective room.

4.8.1 Results

In figure 19 the 3D RGB reconstruction of the first room is shown, this is a simple office envi-
ronment with a desk, window and a large collection of pictures on the wall. The blank areas
in the center of the room are caused by gaps in observations, as this is where the Tello was
located during most of the recording. In figure 20 an overlay of a cross section of the point-
cloud and the floorplan of the room is shown. Giving an indication of the reconstruction
quality and scale.

The Tello has quite a large focal length compared to the Kinect. This is common on a lot
of consumer UAVs, as the large focal length stimulates more cautious flight behaviour due to
objects seeming closer on the video feed. However, when mapping a small room this is less
ideal, as the large focal length limits translational movements and forces a lot of rotational
movements, which is less ideal for monocular SLAM tracking. The scale of the room shows to
be relatively accurate, however, is on the larger side. From the 3D reconstruction it shows that
the walls are relatively structured and flat. However, the corners are more rounded, this can
be attributed to the network outputting overly smooth surfaces, and avoiding sharp edges.
The window at the end of the room also shows an outward deformation, this could be due to
the network looking further into the distance trough the glass.

In figure 21 the top-down floor plan comparison of the second room is shown. This
recording was done in a laboratory environment. The scale of the room, again, seems rel-
atively accurate. However, the boundaries of the room are not as straight as with the first
room. This can be partially accounted to the walls containing a lot of lab equipment. On the
right it shows a large outward deformation at the position of the door, as this door was not
closed during the recording.

In both recordings the scale of the room is relatively accurate, though still on the larger
side. This could be caused due to the difference in focal length with the training set. Dur-
ing the initialization procedure, due to the focal length of the Tello being larger then that of
the Kinect, objects seem closer-by. This would result in a larger scale. This, however, would
require more in depth research to confirm.
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Figure 19: 3D RGB reconstruction.
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Figure 20: Floor plan overlay, office room.
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Figure 21: Floor plan overlay, laboratory room.
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4.9 Discussion

The tests and experiments show good results, comparable or better then state of the art in
monocular tracking and depth estimation. This is mainly due to the fusion of sparse depth
estimates with the CNN based depth estimations, which other research has not yet combined
in this way. However, this is not to say that this approach does not come with its own limi-
tations. The network is very reliant on the sparse depth measurements. As seen during the
initialization procedure for scale estimation, where without the sparse measurements the
CNN only estimates depths up to roughly 4 meters. Showing that for further distances, the
network completely relies on sparse measurements for depth prediction. Additionally noise
and errors in the triangulated feature points negatively impact the depth estimations. Be-
cause of this the CNN also inherits the weaknesses of feature matching, like triangulating far
away points with only translational movements. An issue that is very apparent when travers-
ing, for example, long hallways. This is actually a case where ORB SLAM 2 improved upon
its previous version, using depth cameras to make a distinction between close and far away
feature points to make feature matching more reliable. Additionally, the Kinect itself can be
a limiting factor during training. As the accuracy of the sensor is greatly reduced after about
5 meters.

The scale estimation of the system also shows relatively accurate results. This is mainly
due to the filtering that is applied. This filtering not only helps removing outliers, but is also
necessary due to the range limitations of the CNN without sparse samples. Therefore, in
order to obtain a initialization scale, it helps to avoid far away scenes during the initialization.
The scale estimates, using filtering from the CNN even outperform the scale estimated using
the Kinect (without filtering). This however, does not indicate that the CNN scale estimate
is more accurate then RGB-D SLAM, where bundle adjustment and RANSAC are also used to
reduce errors and noise. Additionally, the current method still suffers from scale drift over
time, as it is not being updated after the initialization procedure. This could however easily
be improved upon by, for example, using intermediate frames to measure for any possible
scale drift and correct for it.

The tests done with the Tello show that the system is also able to handle different camera
focal lengths. In the work of CNN SLAM [2] it was suggested to correct the output of the CNN
by multiplying the depth with the ratio between the focal length used for training and used
for testing. This was tested in early phases, however it showed that this negatively impacts
the performance. This is because the system is being corrected for the focal length difference
by the sparse depth points from SLAM that are not effected by the focal length used for train-
ing. One possible way to gain additional improvements is to make sure the input images are
augmented to have a similar ground sample distance (GSD) to the training set, or to train the
network using different focal lengths.
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5 Conclusion and recommendations

5.1 Conclusion

The goal of this research was to design a system that could be used by a UAV to generate a
navigable 3D map of an indoor environment using only a monocular camera. Using only this
monocular camera would keep the sensor-load, and thus the weight and size of the UAV to a
minimum.

The use of conventional monocular SLAM came with several limitations. The generated
maps were unsuitable for navigation and obstacle avoidance, due to them being to sparse.
Additionally, monocular SLAM uses an arbitrary scale. In order to overcome these limitations,
a novel system was designed that utilizes a depth estimating CNN, fused with a feature based
monocular SLAM algorithm. The system is able to construct navigable maps that can be used
for navigation and obstacle avoidance.

In order to obtain the scale of the scene, an initialization procedure was introduced, using
the scale difference between the CNN and the sparse feature map to determine the real-world
scale. The scale estimates are accurate, with estimates being correct of up to 1.48% with
respect to the ground truth in some benchmark scenarios.

After the initialization procedure, a depth estimate is obtained for each keyframe. In or-
der to obtain the best performance, the input images are paired with the sparse feature based
depth estimates obtained by the SLAM algorithm. This results significantly more accurate
depth estimates. By training the network to specifically use ORB feature points as input, im-
proved performance of the CNN even more, showing that the network is able to make use of
the additional information that edge detection provides about the scenes. The system still
benefits from the robustness of feature based SLAM, being more robust to lighting changes
and achieving better performance on low quality cameras, which is ideal for low cost UAVs.
However, it does still suffer from some of the limitations of feature based SLAM. When con-
fronted with scenes that contain little to no texture, tracking performance is reduced. This
could be solved by further integrating IMUs.

In order to construct a navigable map, the individual depth estimates for each keyframe
are fused into a global map using OctoMap. This has been a very effective, and efficient
method for storing the maps. It does have several limitations though. The resulting maps
are static, making it difficult to take loop closures into account, for example. Additionally,
the maps are very susceptible to noise and outliers in the depth map inputs. Because of this,
a large amount of filtering is required to obtain usable maps. By improving the way these
individual depth maps are fused into a global map, a lot of benefit could still be gained.

The designed system has also been tested on a small, off the shelve, commercial UAV.
Showing its ability to generate a map of a previously unknown area. This did expose the
difficulty of the system to account for different focal lengths. Where the focal length of the
camera used to obtain the training data is embedded into the weights of the network.
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5.2 Future work

The system in its current state is able to construct obstacle maps in real-world scale. With this
functionality, a basis is constructed for further work. In the following section several possible
improvements are suggested that would be worth additional research when developing the
system further.

Navigation and exploration
The system is able to generate navigable maps, so the next logical step would be implement-
ing navigation and exploration components. Test have already been conducted in a simu-
lation environment. Several solutions are available for 3D navigation and path planning, all
supporting OctoMaps, however, these could still be improved to be made more reliable and
suitable for use with visual SLAM. The navigation algorithm of the UAV could take into ac-
count how to best observe scenes. Currently, the path planning algorithms only consider the
most efficient trajectory. However, as ORB SLAM requires texture to localize and is negatively
impacted by high jerk movement, which causes camera blur, the path planning should take
these requirements into account as to not result in localization losses. Another possible solu-
tion to this would be to utilize the IMU of the UAV to bridge the gap between losses of visual
tracks due to illumination loss, motion blur or texture-less area traversal.

The problem of exploration however, is more complex and would require more research
and development. Currently the most common way exploration is performed, is using fron-
tiers. Where frontiers are the boundary regions between cells (or voxels in 3D maps) that are
known to be free and the cells that are still unexplored. By moving from frontier to frontier,
and observing these areas, an area can be incrementally explored until no frontiers are left
within a set boundary. Several implementations are already available for 2D frontier explo-
ration, however this same task in 3D becomes a lot more complex. In the work of [69], a lot
of work on frontier based 3D exploration and path planning has been done, and their code
is also available, however, the codebase is very much research oriented, and not ready to be
directly implemented in other projects.

Visual-Inertial SLAM
As mentioned, the integration of IMU measurements would also make the system a lot more
robust. In [31], an implementation of IMU measurements into ORB SLAM is described, how-
ever there are also other feature based SLAM systems like VINS-Mono [30] that provide this
functionality out of the box. They also implement fusion of GPS data, for seamless transition
between indoors and outdoors.

Depth map fusion
Furthermore, additional research could be done into the merging of individual depth maps.
With more advanced depth fusion algorithms, the accuracy and usability of the resulting
maps could be greatly improved. For example, with OctoMap, the same point observed from
two different poses, with a slight error in measurement, would be considered as two different
points. Further degrading the quality of the obstacle map. More recent depth fusion algo-
rithms like Kinect fusion [59] and TSDF fusion [32] are able to fuse together multiple depth
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images, compensating for depth noise and trajectory errors. These mainly focus on fusing
relatively high-quality RGB-D images, and less research has been done on how to handle
less geometrically consistent depth estimations provided by CNNs. An example integration
of these TSDF structures is presented in VoxBlox[70], which could serve as an alternative to
OctoMap.

Alternatively, being able to generate a confidence map of the observed data could aid
in the generation of more reliable obstacle maps. An example of such a confidence map is
presented in [2]. During testing, an implementation of their confidence map generation al-
gorithm, using only keyframes, was evaluated. However, the improvements were minimal,
especially compared to the reconstruction quality when using TSDF.

Cooperative multi camera integration
Another new field of focus for improving the system would be to incorporate the use of mul-
tiple UAVs, working together to explore the same area. Being able to use multiple UAVs si-
multaneously for exploration would greatly reduce the time needed to map an area. There
are already several implementations of ORB SLAM [71] that implement some sort of collabo-
rative localization structure, as feature based SLAM well suited to this. The implementations
for ORB SLAM are both centralized (all the work is done on a single processing machine)
and distributed, where clients are able to work individually but are able to synchronize their
individual maps. This would also require a different type of path planning, where frontier
exploration and trajectory generation takes into account and utilizes the multiple UAVs in an
efficient manner.
Loop closure and scale drift
Further research could also be done into how to handle loop closures (a previous point is
re-observed and drift is corrected) and scale drift. The system currently does not correct the
scale after the initialization procedure, even though the scale that ORB SLAM is using might
drift and be corrected during a loop closure, which the system currently does not support.

Additionally, OctoMap is not deformable. Meaning that when a loop close occurs and the
poses of the keyframes are adjusted, the complete Octomap has to be rebuild, making this
a very computationally intensive and inefficient process. However, in [72], a novel method
is suggested where the octomap is constructed of local sub-octomaps. Each submap being
linked to a keyframe. These sub-octomaps are then fused into a full octomap. When a loop
closure occurs, only a specific sub-octomap need to be restructured, making the system a lot
more efficient.

Testing
Another important aspect for future improvements is to select more suitable benchmark-
ing datasets that better reflect the targeted use cases and would allow for more representa-
tive tests. If, for example, the system would be to be deployed in different indoor datasets,
the training dataset should also reflect these types of rooms. At the moment, the network
is trained on the NYU indoor dataset, which consists of common indoor scenarios, living
rooms, kitchens, bedrooms. However, if the UAV was to be deployed in large office environ-
ments, performance would significantly decrease. For this same reason, the system in its
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current state is not suitable for outdoor use.
Similarly, the datasets that are used at the moment consist mainly of 3D reconstructions

and are less suitable to evaluate the performance of exploration and obstacle avoidance. For
example, one issue why the testing datasets are less ideal for generating the structure of the
obstacle map is that a lot of the movement is sideways. Where in real scenarios, the UAV
would face the direction in which it is flying to make sure there are no obstacles. In the test-
ing scenarios this is almost never the case. Often tracking an object in the center of the room
and moving sideways around it. A great addition to the datasets would be scenarios where
the UAV would be traveling from room to room, traversing doors, and maybe even windows.
Such datasets would give a lot more insight into the versatility of the system and would also
aid in shaping the design direction of the system. The scenarios are also handheld, making it
more difficult to gain insight and tune for implementations using UAVs.

Semantic segmentation
Another topic of research that would greatly improve the applications and use fullness of the
system is the fusion of semantic labels into the generated map. Being able to detect and rec-
ognize different objects in the environment would add a lot of value and possible insight to
these maps. Opening up a whole new set of features and possibilities. For example, being
able to distinguish between wall, floor, and ceiling could aid in automatically determining
the size and shape of rooms, calculating the volume or surface, or even generate high-quality
floor plans. These floor plans could even include objects like desks, beds, stairs, doors, and
windows, for example. The detection of objects like doors, stairs, and windows could also
help with path planning and control. For example, at the moment, clear glass windows are
not detected, but by using semantic segmentation, it would be possible to restrict traversing
through windows. Other useful detection possibilities, depending on the area of applica-
tion, could include the detection of injured humans in disaster areas or detect damage to the
building like cracks in walls or debris on the ground.
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