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I don’t know what I may seem to the world, but, as to myself, I seem to have
been only like a boy playing on the seashore, and diverting myself in now and
then finding a smoother pebble or a prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before me.

Sir Isaac Newton
(1642-1727)

To my beloved parents



ABSTRACT

Using the theory of functions of a complex variable, where in particular the
method of conformal mapping, the two-dimensional irrotational solenoidal flow
through both pump and turbine centrifugal impellers is analyzed on the basis
of two representative models; viz. the impeller fitted with straight radial
blades, and the impeller fitted with so—called logarithmic spiral blades. The
fluid velocity — and consequently the pressure distribution — along a straight
radial blade is solved analytically and expressed as a Fourier sine series,
with the Fourier coefficients given by the hypergeomeric series. The solutions
for logarithmic spiral blades are formulated analytically and then treated
both numerically and asymptotically; comparison with finite element solutions
showed an excellent agreement. Based on the obtained results a general
discussion on the two-dimensional flow through centrifugal impellers is given.
Interesting features of both pump and turbine impellers are discussed, as for
instance: slip factor(s), shockless entry, and head or work reduction, which
are all related to the limited number of blades. Practical solutions
(improving the one-dimensional theory) are given, based on the assumption of a
respectable number of blades and/or a low inlet-to—outlet radius ratio for the
impeller. All results show excellent agreement with the works of various
authors that have explored this field of fluid dynamics, and, moreover, they
add substantially to these works.



PREFACE

Computing the two-dimensional potential flow through centrifugal impellers, by
using the theory of functions of a complex variable is not a recent
development but has been practiced by a number of notable authors since the
early years of this century. It was Kucharski (1918) who pioneered this field
of fluid dynamics, by examining the flow field of an impeller fitted with
straight radial blades with the inner tips placed at the center of the
impeller. Spannhake (1925) then improved on this matter by taking a more
realistic inlet-to—outlet ratio for the impeller, and introduced the method of
conformal presentation to solve the flow problem. Next Sorensen (1927),
Busemann (1928), and Schulz (1928) treated the impeller fitted with so—called
logarithmic spiral blades, where the latter developed, and subsequently used,
a rather dubious alternative mapping whereas the former two (correctly) based
their study on the work of Konig (1922). Uchimaru and Kito (1931) next applied
the (questionable) results obtained by Schulz to compute slip coefficients.
Then after a few years Acosta (1954) rephrased the work of Busemann, extended
this by computing the pressure distribution along the blades, and compared the
results with experiment. Thereupon Ayyubi and Rao (1971), and Mohann Kumar and
Rao (1977) took Acosta’s work as a reference and treated the same by using a
distribution of singularities on the blade surface(s).

The above-mentioned authors all contributed significantly to (the solution of)
the problem of two-dimensional flow through a centrifugal impeller, but none
of them obtained arithmetical solutions; eventually they all used a numerical
treatment to compute their respective results. This hiatus has recently been
taken up by Badie (1989) and Van Essen (1989), who developed solutions —
expressed by a Fourier series — for the impeller fitted with straight radial
blades, with the inner tip placed at the center of the impeller (like
Kucharski first started). Adopting their ideas, the solutions for a more
realistic inlet-to—outlet ratio are now also obtained. Following the works of
Busemann and Acosta it was intended to do the same for the impeller fitted
with logarithmic spiral blades. This, however, has not been fully completed
yet; though interesting results have been obtained already, as for instance
arithmetical expressions for so—called slip factors that fully comply with the
numerically obtained results of Busemann.
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In the first instance the work(s) of Schulz (and Uchimaru and Kito) were
followed. Comparing the thus obtained results with finite element solutions,
however, indicated severe deficiencies. These were probably due to the fact
that the nature of singularities is affected by Schulz’ mapping (sources
transferring to vortex-sources), so the necessary imposition of boundary
conditions is incorrectly done in the image plane. The next employed, and in
this work described, Konig transformation (also used by Sorensen, Busemann,
and Acosta) does not embody such deficiencies.

The discussions given in this work are rather extensive. This is done
intentionally, so that the well-grounded reader should experience no (severe)
difficulties to comprehend and check the writings; though there may always be
some imperfections that were not foreseen. To obtain a thorough understanding
it is convenient to have some knowledge of complex analysis and the
applications to fluid dynamics, as well as being acquainted with integral
calculus, Fourier analysis, and special functions.
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NOMENCLATURE

The below-listed notations and conventions, symbols, subscripts, and
superscripts, have been adopted from what is generally accepted in the fields
of fluid dynamics, turbomachinery, and mathematics. Dimensions are given in
terms of mass (M), length (L), and time (t). Symbols, signs, and operators
that appear infrequently or in one section only are not listed.

Notations and Conventions

s = scalar or complex (lightface italic or greek)
v = vector (boldface italic or greek)
|v], |s] = modulus or absolute value
o = dot product
X = cross product
v = nabla operator
v? = Laplace operator
a d
—,— = (partial) derivative
ds | ds
Z=x-1y = complex conjugate of z = x + iy
arg(z) = argument of z
k! =123...k 0 =1
m
Euk =un+un+l+un+2+°"+um
k=n

53
3
|

= Uplipiytingg . . . Uy

-

P 0 — g:ﬂa
[

line integral; path of integration from a to b

= line integral; Cauchy’s principal value

Vz, vz = Square root of z (principal value)
e’ = exponential of z (principal value)
Inz = natural logarithm of z (principal value)

sin 2, cos z, tan z = trigonometric functions
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N
y 4
[M]
(L]
(t]
(-]

Symbols

Ag, ay
a
B(z,w)
c,c
F(a,b;c;z2)
1y f(2), f(T)
f17 f2

3

Po(€), P,(£)
Py(£)

o 3 IS O

w,w
WRF

ix

set of natural numbers
set of whole numbers

= unit of mass, e.g. (kg)

= modulus of {,

unit of length, e.g. (m)
unit of time, e.g. (s)
dimensionless

Fourier coefficients

beta function

—— —

-1
-1
-1

AL, (L%

absolute fluid velocity

hypergeometric function or hypergeometric series [-]
complex potential [th'l]
degenerated work reduction factors [-]
acceleration due to gravity [Lt?)
Eulerian head [L]
theoretical head (L]
= head reduction factor [-]
= integrals related to straight radial blades [-]
integral function (straight radial blades) [-]
imaginary unit (2 = -1) [-]
= integrals related to logarithmic spiral blades [th'l]
blade index [-]
= (scale) constant (L% ]
index number € Z [-]
(outward directed) unit normal [-]
= number of blades [-]
= Legendre functions of the first kind (-]
= associated Legendre functions of the first kind [-]
= thermodynamic pressure ML ]
fluid flux or source strength [th'l]
position vector [L]
radial variable in physical plane [L]
blade coordinate [L]
relative fluid velocity (in physical plane) [Lt’l]
work reduction factor [-]

a In physical plane [Lt-l], in mapped plane [th-l].



Subscripts

-

O w »

= cartesian x—coordinate

= cartesian y-coordinate

= complex variable (z = x + ty)

= volute angle

= blade angle

= circulation or vortex strength

= (complete) gamma function

= argument of {,

= mapping constant (< 1)

= conformal transformation Z : z—(
= complex variable (mapped plane)
= map of origin of physical plane
= argument of {

relative stream function

= (dummy) argument of (, integration variable

geometry parameter (r,/r,)"

= the number 7 (= 3.14159...)

= fluid density

= slip factor pump situation

= slip factor turbine situation

= prerotation factor pump situation
= prerotation factor turbine situation
= vortex coefficients

= flow coefficient

I

angular variable in physical plane
= velocity potential

= head coefficient

= absolute stream function

= angular speed

= origin or zero prerotation
= inner (tip)

= outer (tip)

blade (points)

= displacement flow

= Eulerian
= Kutta condition

(L]
(L]
(L]

[-]
A

—
~
N
| | L | | | | | |

(ML
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—

1

L)

[L?
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th

Superscripts

* N O R U

+

(outward) normal
offset

source flow
radial

tangent

shockless

= tangential (counter clock wise)

= theoretical

coordinate direction
coordinate direction

= physical plane

= vortex flow

mapped plane

displacement flow

Kutta condition

source flow

vortex flow

adjusted/modified to fulfill boundary condition

= pressure side

suction side
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INTRODUCTION

The one dimensional (Eulerian) flow theory of turbomachinery is momentarily
still indispensable for the general engineering practice, regarding the
determination of main dimensions, blade angle(s), and operating conditions,
such as: prerotation, angular speed, optimum through flow, developed head
(pump), and delivered work (turbine). To improve this one-dimensional approach
numerous experimental investigations and theoretical analyses have been
performed in the past. The latter will also be dome in the present work, so
that we may obtain a clear understanding of the flow process, which is
necessary to establish a proper rationale for design. To that end we will
confine ourselves to single stage centrifugal machines, though multistage
machines are a common practice nowadays.

Roughly a single stage centrifugal machine may be considered to be composed of
three main parts: a stationary inlet or guidance system, the runner or
impeller, and an outlet or collecting device. Since the impeller is
responsible for the energy transfer, and thus highly determines the
performance of the machine, it seems clear that this component should be the
item of our first interest. Thus confining ourselves to the flow as that it
manifests itself in the (isolated) impeller, it would be highly desirable to
be able to predict the developed head (pump) or delivered work (turbine), and
to determine both the velocity and pressure distribution along the blades of
the impeller (friction losses, blade loading). This is however, in general,
unfeasible due to the behaviour of real fluids, and the complex geometries of
impellers found in practice. Therefore the flow problem has to be simplified,
as far as strictly necessary, leaving the essentials intact, so that practical
and useful solutions can be obtained.

The first assumption reasonably to be made, simplifying the (flow) problem
considerably, is that the fluid is inviscous and incompressible. The second
assumption, usually implicitly made, is that the flow enters the impeller free
from vorticity, so the flow field may mathematically be characterized as
irrotational and solenoidal, counting the first assumption. The third and



conclusive  assumption is that the flow field may be considered
two—dimensional, that is, the flow is restricted to depend on radial and
angular coordinates only. The above-mentioned assumptions make it possible to
use two-dimensional methods of potential flow theory, in particular the theory
of functions of a complex variable, to compute the flow through the impeller.
For the sake of analysis we additionally adopt so-called logarithmic spiral
blades, that is, blades having a constant angle between radius and tangent;
this obviously also includes the radially bladed impeller. These logarithmic
spiral or equiangular blades are not only mathematically convenient but also
highly representative, since most blade designs in practice are closely
represented by such spirals.

The line of thought followed in this work is not new, but basically follows
the ideas earlier outlined by Spannhake (1925), Busemann (1928), Acosta
(1954), Badi (1989), and Van Essen (1989). Their results are, more or less,
again obtained and partially improved, that is, where they used a numerical
treatment and/or employed asymptotic solutions, (better) arithmetical
solutions have now been obtained. Our discussion starts with a short
mathematical description of the used two—dimensional models for the radially
bladed and logarithmically spiraled centrifugal impeller (chapter 2), followed
by a brief discussion of the essentials of using the complex potential for
irrotational solenoidal flows in two dimensions, and employing the principle
of superposition to solve the flow problem (chapter 3). Next the fundamentals
of this work, viz. the method of analytical solution, that is, the conformal
mapping of the impeller blades (chapter 4), and solving the flow problem in
general (chapter 5), are discussed. Thereupon the solutions for both straight
radial blades and logarithmic spiral blades are treated (chapter 6 and chapter
7 respectively); this mainly concerns computing velocity and pressure
distributions along the blades, with some circumstantialities like shockless
entry, blade circulation, and slip factor(s), being treated as well. Then we
briefly discuss the finite element solution of the flow through the impeller
fitted with logarithmic spiral blades, and compare the results with the
analytical solution (chapter 8). Finally we discuss the analytically obtained
two-dimensional results, by applying them in comparison with one-dimensional
flow theory (chapter 9), and draw some conclusions and give a few
recommendations for future work (chapter 10).



2

MODELLING THE IMPELLER

In order to be able to examine the flow through the impeller analytically we
first of all need to have a mathematically convenient and also representative
model of the impeller. Confining ourselves strictly to two-dimensional motion
we have two such mathematically convenient models, which will be outlined in
this chapter. Distinctively we will discuss the impeller fitted with straight
radial blades and the impeller fitted with logarithmic spiral blades; the
former being deductible from the latter, though.

2.1 Straight Radial Blades

The simplest two-dimensional model for a centrifugal impeller, say with inner
radius r; and outer radius r,, consists of a finite number of equally spaced
straight radial blades (see figure 2.1). The blades of this type of impeller
are simply characterized by a constant pole angle or zero blade angle. A
mathematically consistent description of this type of impeller will be given
in the next paragraph; there we will regard straight radial blades as a
special case of logarithmic spiral blades.

=

7

figure 2.1 impeller with (8) straight radial blades



2.2 Logarithmic Spiral Blades

A more sophisticated model for a centrifugal impeller, than the previous one
described, consists of a finite number equally spaced logarithmic spiral

blades (see figure 2.2). The blades of this type of impeller are characterized
by a constant blade angle, i.e.

r

dg
-

= tan B (= constant) (2.1)

where

r = radial variable
¢ = angular variable
B = blade angle

figure 2.2 impeller with (8) logarithmic spiral blades

By integration of equation (2.1) it follows that each individual blade of the
impeller is described by

. 2m(j-1) .
r) = ¢, + —n—— + tan g In[—;lJ (2.2)

or



=09 _2m(j-1)
rj(¢) —— B o mitang (2.3)
where
n<r<nr,
and

n = number of blades
J = blade index, {jeN|1<j<n}

o= offset angle, {$,= ¢'(ry)}
r, = inner tip radius

r, = outer tip radius

Putting 8 = 0 we readily obtain from equation (2.2) that the impeller fitted
with straight radial blades (figure 2.1) is characterized mathematically by

j om(j-1)
¢ =g 4 —— (2.4)
n
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MATHEMATICAL APPROACH OF THE FLOW FIELD

In this chapter we briefly consider two mathematically important properties of
the flow field. These form the bases in solving the potential flow through the
impeller. First the use of the complex potential for two-dimensional
irrotational solenoidal flow is discussed, and secondly the superposition of
(sub) flows will be outlined. For references on these subjects (and related
aspects) any (decent) textbook will suffice, as for instance Bachelor, Lamb,
or Milne-Thomson.

3.1 Using the Complex Potential for Irrotational Solenoidal Flow in Two
Dimensions

From basic fluid dynamics we know that, in general, an irrotational solenoidal
flow is characterized (mathematically) by

Vxec = 0 (3.1)
Veec = 0 (3.2)
where ¢ is the absolute velocity vector.

For two dimensional flows, equations (3.1) and (3.2) become when referring to
Cartesian (x,y)-coordinates

dc dc
7 _X_o0 (3.3)
ox dy
dc dc
S+ 2 -0 (3.4)
Ox ady

where ¢, and c, are the velocity components in x and y direction respectively.

Equations (3.3) and (3.4) guarantee the existence of a velocity potential ¢



and a stream function v, both satisfying the Laplace equation, i.e.
Vi = 0 (3.5)
Vi =0 (3.6)

and determining the fluid velocity by

9p oy

Cx = — = — (3.7)
Ox dy
op Y

Cy = — = —— (3.8)
dy dx

Equations (3.7) and (3.8) state the so—called Cauchy-Riemann conditions for an
analytical function f(z) with real part ¢(x,y) and imaginary part P(x,y), i.e.

f(2) = o(x,y) + ip(x,y) (3.9)

where
z =1+ iy (3.10)
The function f = ¢ + 1 is called the complex potential; the real functions ¢

and y being conjugate functions. From this complex potential we obtain the
fluid velocity by taking the derivative with respect to z, i.e.

— = ¢ - icy (3.11)

The great advantage of using a complex potential to determine the flow through
the impeller lies in the direct use of the theory of functions of a complex
variable, as will be discussed throughout chapters 4, 5, and 6.

3.2 Superposition of Flows
To solve the potential flow through the impeller we will employ the principle

of superposition, which is permissible by the linearity of the Laplace
operator. We distinguish the following 4 (sub) potentials:



1 - A potential due to the rotation of the impeller. This flow will be
referred to as the displacement flow.

2 - A potential connected with a source flow originating from the origin of
the physical plane, in case of a turbine this source will be negative (a
sink).

3 — A potential due to a vortex placed in the origin of the physical plane.
This vortex either represents a prerotation, by which we can impose a
shockless entry when acting as a pump, or merely the circulation of the
flow leaving the impeller in case of a turbine situation.

4 — A potential due to the imposition of the Kutta condition or Joukowski’s
hypothesis. This condition expresses the physical fact that there is a
smooth flow off both surfaces of the impeller blades at the trailing edge.

The above-mentioned subdivision of potentials, which are to be discussed
(mathematically) in chapter 5, may be summarized by

f="1o+fo+fr+ ik (3.12)

where the potentials denote

fp = displacement flow

fs = source flow

*
fr = vortex flow

fx = Kutta condition

and where the asterisk (*) indicates that these potentials are adjusted so
that the boundary condition is satisfied, as will be discussed in chapter 5.
The potentials representing the displacement flow and Kutta condition are
given without an asterisk because these potentials already satisfy the
boundary condition (chapter 5).
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METHOD OF ANALYTICAL SOLUTION

To solve the flow through the impeller analytically we employ a conformal
transformation which maps the impeller on the unit circle. In this circle
plane we can easily determine the previously mentioned (sub) flows by using
the theory of functions of a complex variable.

In this chapter we will discuss the mapping of the impeller on the unit
circle in general, and we will specify the mapping function for both straight
radial blades and logarithmic spiral blades. The actual solving of the flow(s)
will be treated in the following chapters.

4.1 Mapping the Impeller on a Circle

The mapping function that we employ is originally credited to Konig, and
originates from the transformation of a plane source-vortex flow to a
source-vortex flow in a circle plane (see appendix A). Denoting the physical
plane by z and the mapped plane by { the transformation Z : z2—> {, which
maps the impeller conformally on the unit circle, is given by

- 2B
=
- = (4.1)
2y C2 - Qo % _ Zo
2
where
Co = Z(z=0) (4.2)
G = Z(z,) (4.3)

with 2z, being the complex representation of the outer blade tip in the
physical plane and the over bar denoting a complex conjugate.

Because of the periodicity of the flow(s) through the impeller we only have to
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consider a periodical section containing just one blade. The mapping (4.1)
therefore embodies a so-called Schwartz—Christoffel transformation which maps
n blades on just one blade. Properly speaking the impeller is mapped on n
Riemann surfaces from which we take only the first one, which is permissible
by the just mentioned periodicity of the flow(s). For a discussion on
Schwartz—Christoffel transformations (and related aspects) see for instance
Henrici or Dettman.

Mapping the impeller according to transformation (4.1) we still have a degree
of freedom left, namely the exact location of the image (, of the origin (z=0)
of the physical plane. This image {, may either be chosen freely or derived
from a chosen image {,. The latter will be done for both straight radial
blades and logarithmic spiral blades (paragraphs 4.2 and 4.3 respectively).

To illustrate the mapping of an impeller according to transformation (4.1) we
have mapped in figure 4.1 an impeller with 8 blades and a 60 degree blade
angle. A detailed description of this mapping will be given in section 4.3.

$o

AR
& C

z— plane (- plane

figure 4.1 illustrative example of an impeller being mapped on the unit circle

4.2 Mapping Function for Straight Radial Blades

In case of straight radial blades (8 = 0) the transformation (4.1) simply
becomes
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L =
[Z]n— [C_c"] E-CO (4.4)
:2 C2 = Co 1.7 .

In order to embed this mapping of the impeller we will examine the
transformation (4.4) somewhat closer.

First of all we recall that the blade tips are so-called branch points of the
transformation, in which the derivative vanishes or tends to infinity, i.e.!

dz

— =0 (4.5)

€ lee,

dg

— —> 00 (4.6)
21522

where the subscripts 1 and 2 refer to the inner and outer blade tips
respectively. Based on equations (4.5) and (4.6) we may now exactly specify
the mapping function.
Putting

(B = ¢ (4.7)

(o = ae (4.8)

where {p denotes an image (of a blade point) on the unit circle, we obtain by
taking the derivative of equation (4.4)

[dz] izg 2asin (6-6)
= (4.9)
B

E ne'® 14+ 4 - 2acos(60-6)

where the subscript B is used to indicate that we are looking at points on a
blade.

According to equation (4.5) it then follows from equation (4.9) that

! The fat vertical bars I l denote the absolute value (or modulus) of a
vector or (complex) number.
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6 - 01,2 = kl,zﬂ' (4.10)
where k; , € Z, and the subscripts 1 and 2 again referring to the blade tips.

Next choosing the image of the outer blade tip in {, =1 (8, = 0) it follows
from equation (4.10) that

§ = (4.11)
6, =m (4.12)

where we have taken into account that the inner tip is mapped near {,, and
that the arguments (6,6;) have to be in the interval <-m,7].

The inner tip is thus mapped in {; = -1 and the image of the origin lies
somewhere on the negative real axis, i.e. {j = —a. Substituting this result in
equation (4.4) we obtain

z, B 1-a)?
—| = (4.13)
2 l1+a
Then defining
r 1"
T2

while knowing that arg(z,) = arg(z,) for straight radial blades, and that the
origin is mapped outside the unit circle, so @ > 1 (see appendix A), we obtain
from equation (4.13)

1+ Vu
1-Vu

a =

(4.15)

Conclusively the mapping function for straight radial blades can be written as

-
- | = & (4.16)
2, l1+a 1+a

with @ according to equation (4.15).
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Restricting ourselves further to points on a blade, i.e. { = (g and z = zp

where  arg(zg) = arg(z;) for straight radial blades, the mapping
function (4.16) becomes, using equation (4.7)

[rB]n [ei0+ a e_i0+ a
—| = ] [ J (4.17)
Ty 1 +a 1 + a

rg = IZBI (4.18)

where

ry = | 2| (4.19)

Substituting equation (4.15) and using Euler’s well-known exponential theorem,
cosf + isinf = ew, we obtain for the transformation (4.17) of blade

rg n 1+p 1-p
—| = 1+ cos 6 (4.20)
ry 2 1+pu

The above-discussed mapping of an impeller with straight radial blades is
illustrated graphically in figure 4.2.

located points

(1,0)
/,\

z- plane - plane

figure 4.2 mapping of an impeller with (8) straight radial blades
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4.3 Mapping Function for Logarithmic Spiral Blades

The specification of the mapping function for logarithmic spiral blades
(section 4.3.1) will be done in a way similar to the ome for straight radial
blades, as was described in the previous paragraph. Having specified the
mapping function we will also discuss a first order approximation of the
mapping constants (section 4.3.2), which will be shown to be extremely useful.

4.3.1 Specifying the mapping

Recalling transformation (4.1) we obtain by taking the derivative, using
equations (4.7) and (4.8)

dz 2:'236“9 asin(é+pB-6) - sin B
—| == i (4.21)
dC |p ne 1+ a° - 2acos(6-0)
From equations (4.5) and (4.21) it then follows that
a sin(6+8-0,,) = sinp (4.22)

Again choosing the image of the outer tip in {, =1 (6, = 0) we derive from
equation (4.22)

sin S8
a = — (4.23)
sin(6+p)

Equation (4.23) states a simple relation between the modulus (a) and the
argument (6) of the image (,) of the origin.

Before dealing with the second requisite relation that fully determines the
mapping, we first take a closer look at equations (4.22) and (4.23).

From equations (4.22) and (4.23) it follows that, since 6, =0
sin(6+B-6,) = sin(6+p) (4.24)
So the inner tip is located at

6, =26 +28 -« (4.25)
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where we have used the fact that 0 < 6+8 <7, as can be seen from
equation (4.23) since this equation may be regarded as an expression of the
sine rule. Consequently we may next put

Yy=mm-6§-p (4.26)

where 0 < v < 7.

Substituting equation (4.26) in equation (4.25) we obtain for the argument of
the inner tip

6, = - 2y (4.27)

The (effects of the) above-discussed relations are illustrated in figure 4.3.
This figure will show to be very useful in specifying the second relation that
determines the mapping.

$o

/—\\ z, ¢ a .
21\/3 8 (1,0)

z- plane (- plane

figure 4.3 graphical illustration of the transformation for logarithmic spiral
blades

The second relation, now required, to embed the transformation follows from
the mapping of the inner tip. Substituting equation (4.6) in equation (4.1) we
obtain
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: . . 2P
2" &0 _ ae'd e~ 10 _ ae 10
—| = - - (4.28)
Z2 1 - ae't 1 - ae 9
which may also be written as
012
. -8
-8 . Y-
2, 1" &0 _ ae'®
— = _ (4.29)
z, 1 - a euS
Next - referring to equation (2.2) - we have as a possible complex

representation to describe the blades of the impeller (fitted with logarithmic
spiral blades)

i{d)o + Lljl'l)- + tan B In(rB/rz)}
TB €

z = (4.30)
where the subscript B is added for clarity of the remainder.
From equation (4.30) we readily obtain
z_l = C_l_ ei tan @ In(ry/ry) (4.31)
Z2 T2
or
. eiﬂ
2 r 1+ tanﬂ r cos f
— == = | — (4.32)
Z T2 T2
where the blade index (j) has been omitted for convenience.
Then substituting equation (4.32) in equation (4.29) we get
n e"iﬂ 2
r. o8 B8 6101 a euS
[_] = _ (4.33)
ra 1 - 06,6

Putting further
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i | (4.34)
12=|c2-c0|=|1—ae'5| (4.35)
and using
_ 10, i6
arg|{; — (g| = arg| e - ae = —(B+2y) (4.36)
arg[c2 - co] - arg[l - aei‘s] = -8 (4.35)
the latter following from figure 4.3, equation (4.33) becomes
.0 12
n -8
r cos 8 ll . €
— - ~|e 2 (4.38)
T2 I,
or
n
cos B 1. €08 B
1 1 — Dsi
o . ¢~ 275inp (4.39)
T2 I,
From figure 4.3 we next obtain by applying the sine rule
1y 1
= (4.40)
sin(mr—-6-2v) sin ¥y
l, 1
= (4.41)
sin 6 sin vy

Substituting equations (4.40) and (4.41) in equation (4.39), and using
equations (4.14) and (4.26), we finally obtain

(4.42)

2
. [sin(2ﬂ+6)]2cosﬂe_z(,r_ﬂ_a)sinzﬂ

sin 6

Equations (4.23) and (4.42) together determine the mapping function (4.1) for
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logarithmic spiral blades, with the outer tip being mapped in {, = 1.

Finally for points located on a blade we state the transformation (4.1)
alternatively as, using equation (4.30)2

n

cos 8
[T—B] =ww = |w|? (4.43)
T2
where
[CB - zo]e—iﬂ ei0 - aet e
w=wb) = | —— = | — (4.44)
1 - CO 1 - aei&

4.3.2 First order approximation of mapping constants
In case 4 « 1 we may employ a simple first order approximation for the mapping
constants ¢ and 6. This approximation will be shown to be very useful to

obtain the mapping constants numerically.

For p<«1 it follows from equation (4.42) that 6 will be in the vicinity of
™ — 283; we therefore put

b=m-28+¢ (4.45)
where we will assume
le] <1 (4.46)

Substitution of equation (4.45) in equation (4.23) then gives

sin S 1

a = (4.47)

sin(f-¢) cos € — sin € cotan 8

ig
2 zp [rB]l+itanﬂ [rB]cosﬁ

Analogous to equation (4.32) we have — - | — -—
Zg rg T
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or by equation (4.46)

1
¢ N — (4.48)
1 - € cotan B

which may even be further approximated by
e =1+ € cotan 8 (4.49)
with the latter being valid if
| e cotang | « 1 (4.50)

The final step in our approximation of the mapping constants is now to obtain
a suitable expression for e. Substituting equation (4.45) in equation (4.42)

we get
r n sin e 2coszﬂ )
[—] - [ J e—2(ﬂ—e)sln 2ﬂ (4-51)
Ty sin(28-¢)

Imposing further

lel < |8] (4.52)

which will be valid for most practical cases, we finally obtain from equation
(4.51), using equation (4.46)

n

" 2coszﬂ
€ ~ [—l] e2ﬂtan,3 sin 20 (4.53)
T2

Employing equation (4.53), the mapping constants as given by equations (4.45)
and (4.48) are easy to determine; though one should reckon with the
restrictions of the approximation. From equations (4.45) and (4.25) we
conclusively notice that the inner tip is located at

6, =7 - 28 + 2 (4.54)

or

6, =6+ ¢ (4.55)
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SOLVING THE FLOW FIELD

As was pointed out in paragraph 3.2 we employ the superposition of sub flows
to solve the potential flow through the impeller. In this chapter we will
further discuss these sub flows, and derive the necessary equations that
describe the flow field mathematically.

5.1 Displacement Flow

The first sub flow that we will treat is the displacement flow due to the
rotation of the impeller. The potential of this flow (and subsequently the
fluid velocity) is easily derived from the flow in the circle-plane or

(-plane, using the theory of functions of a complex variable.

From complex analysis we have by Cauchy’s theorem®

1| df 1
f@) = —+—1In dag (5.1)
m | dl (- g
C
and
1 df 1
fip) = —¢—In dg (5.2)

2ri | dT T - Qp
C

where f({) is an analytic function, in our case the complex potential, in a
simply connected domain bounded by a simple closed contour C, with {g e C and
{p € INT{C}.

Since we are primarily interested in the fluid velocity in the vicinity of the

3 The integral symbol f-denotes Cauchy’s principal value.

20
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blades (that is, mathematically speaking at the blades) we will base our
analysis on equation (5.1). The domain of our concern being the {-plane
outside the unit circle. The contour C to be chosen to comsist of the unit
circle, a circle at infinity, and an arbitrary path (traversed twice)
connecting the unit circle with the circle at infinity.

Then with the imposed restriction that the fluid is at rest at infinity, i.e.

2]
—_ =0 (5.3)
dC I1C1>00

and putting
{=c¢e (5.4)

for points on the unit circle, so that the derivative of the potential f({) on
the unit circle may be written as (see chapter 3)

df . —iA .
[—] = exg(A) = dcyg(A) = e (enc(A) - dege(A)) (5.5)
d¢ ICl=1

with the (absolute) fluid velocities as shown in figure 5.1, we obtain from
equation (5.1) by taking the contour of integration as mentioned

T
f(Ts) = %]( (cacA) = iew(A) In(e™~Tg) dA (5.6)

-

where the subscripts n and t denote the normal and tangential parts, and the
subscript ¢ refers to the {-plane.

Next taking the derivative of equation (5.6) with respect to {5 we obtain for
the fluid velocity on the unit circle

m
f(Cs) = -,1;{- (enc(A) = dcge(A)) 1 o A (5.7)
(p-e
-T



22

y¢ Cne

t¢e

x¢

figure 5.1 fluid velocities along the unit circle in the {- plane

From equation (5.5) it further readily follows that the fluid velocity on the
unit circle also obeys

F(T) = €™ (ca(8) - icy(8)) (5.8)

Then combining equations (5.7) and (5.8) we obtain

s
. 1 . e 1o
ch(B) - zctc(e) = ﬁ (ch(A) -_ lctc(/\)) ITdA (5.9)
-
Finally using the identity
2¢'0 : P
m =1 + lCOtan[T] (5.10)

we obtain from equation (5.9), separating real and imaginary parts

1 L1
1 1

eng(0) = — T cc(A) cotan[i\;—e] dX + — | ene(A) dA (5.11)
27 2r

- -
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N
3

1

1
c(0) = — — 1+ cng(A) cotan['\%] dA + — | c(A) dA (5.12)
2n 2m

- -

Equations (5.11) and (5.12) are generally know as Poisson’s integrals. These
integrals relate, in the present case, the normal and the tangential component
of an analytic function on the unit circle. The integral equation (5.12) will
serve as a basis to determine the fluid motion due to the rotation of the
impeller; but to do so we will first alter it to some extent.

From general potential flow theory we know that the circulation around a body
that is placed in a two-dimensional potential flow field equals zero, that is,
the flow is free from circulation. Thus, since the second integral in
equation (5.12) represents the circulation (I") around the unit circle", i.e.

T
r = J-ctc(/\) dA (5.13)
™

we may put

s

1
c?c(o) = 5; cEC(,\) cotan[e—;—’\] dA (5.14)

-

where the superscript D is added to denote the displacement flow.

Equation (5.14), however, gives us a relation for the fluid velocity in the
{-plane while we are interested in the fluid velocity in the physical or
z-plane. Applying a simple transformation this inconvenience may be eliminated
as follows.

From complex analysis we know, when mapping an analytical function conformally
(say Z:z—(), that the normal and tangential parts in the respective
planes are related by

ci(0,A) [dT] = ci(ry9) |dz| (5.15)

In a similar way the second integral in equation (5.11) represents the
fluid flux (Q).
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and
eng(@A) |dT] = cpp(ry9) |dz| (5.16)
where
[ = o (5.17)
z = r® (5.18)

and the normal and tangential parts (being real functions) are as indicated in
figure 5.2.

tz<_d'iz C,f <——ll df
Cee

z—plane (- plane

figure 5.2 conformal transformation of an analytical function

Equations (5.15) and (5.16) basically state the conservation of fluid flux and
fluid circulation when transforming a flow field from the z-plane to the
(-plane, and vice versa. From these equations it readily follows that the
fluid velocities at the blades in the respective planes are related by

dz

e = € | — (5.19)
dal |
dz

Cng = Cnz | — (5.20)
at |s

with the corresponding blade points (25« {g) being determined by the
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mapping employed.

So to obtain the fluid velocity (tangentially directed) along a blade due to
the rotation of the impeller, we need to know the normal velocity (cf,’,) on the
blade. This velocity may simply be derived from the physical condition that,
at the blades, the relative fluid velocity normal to the blades equals zero.
By this boundary condition we have

D, = (fxrg)en (5.21)

where
2 = angular speed of the impeller
rg= position vector for a blade point

n = outward directed unit normal on the blade

In two dimensions and for logarithmic spiral blades, or taking B = 0 for
straight radial blades, equation (5.21) simply becomes

L, = [‘_‘J Qrgcos B (5.22)

where
2 = |0 (5.23)
rg = |rg| (5.24)

and the sign Lt depending on the side of the blade, that is (+) for pressure

side and (-) for suction side, due to the changing of n.

Furthermore we may write the derivative of the mapping, for points that are
located on either straight radial blades (8 = 0) or logarithmic spiral blades,
as

dz
dc

IdZIB 1 drB
- - [—] i (5.25)
B IdCIB + CcoSs IB do

Again the sign [;] depending on the side of the blade.

Substitution of equations (5.22) and (5.25) in equation (5.20) next gives for
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the normal velocity in the {-plane, due to the rotation of the impeller

d
che(A) = —0rp()) E,;B (5.26)

where we have used the argument A to avoid confusion when using equations
(5.26) with equation (5.14); the relation rg(A) in equation (5.26) being
further determined by the mapping.

The above allows us to determine the fluid motion (in the vicinity of a blade)
due to the rotation of the impeller, as will be demonstrated in the chapters 6
and 7 for straight radial blades and logarithmic spiral blades respectively.

5.2 Source Flow

The potential and accompanying velocity distribution due to the source flow
originate from a fluid source at the origin of the z-plane, and are simply
obtained from the flow in the {—plane.

Placing a fluid source with strength Q in the origin of the z-plane, the
potential would be

[0,
folz) = —Inz (5.27)
2r

Substitution of transformation (4.1) in equation (5.27) would then give for
the potential in the {-plane

¢ - COJ Q€2iﬂ é = G 1

+ In + —linz (5.28)
G- o 2mn 1 _¢ o
o °°

0
falQ) = 1"[
27n

However, since we are only interested in the fluid velocity, i.e. the
derivative of the potential, we may skip those terms in equation (5.28) that
occur as constants. Furthermore, with respect to imposing the boundary
condition, we only have to consider the contribution of image points outside
the unit circle. For the inside of the unit circle has no counterpart in the
physical plane.

Equation (5.28) may thus be simplified to
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0
folQ) = p— In(T - Qo) (5.29)

nn

Then applying the circle theorem (Milne-Thomson, 1958, pp. 84-85) on
equation (5.29), we impose the boundary condition (in the {-plane) and obtain

[0}
*
fol€) = — (1@ - Co) + int - To) (5.30)

27n
where the asterisk (*) indicates that the potential (5.30) satisfies the

boundary condition, that is, the fluid velocity normal to the blades equals
zero.

Next taking the derivative of equation (5.30) with respect to {, we obtain for
the fluid velocity on the unit circle

[dfa] Q[ 1 (5
— = (5.31)

@ Ju 2mnlls-C0 1 _ g
(B

Substitution of equations (4.7) and (4.8) in equation (5.31) then gives

[dfa] 0 as i n(0-6) 532
B

dg

me'® 1 + o*- 2a c os(0-6)

By equation (5.8) we then obtain from equation (5.32) for the fluid velocity
on the unit circle in the {—plane

c(8) =0 (5.33)

Q (0] asin(0-46)
cic(0) = — 3 (5.34)
™ 1 + a“— 2acos(6-96)

where the superscript Q denotes the source flow. Equation (5.33) clearly shows
that the boundary condition is properly imposed, with respect to the source
flow.

Finally substituting equation (5.34) in equation (5.19), and wusing the
derivative of the mapping as given by equation (4.21), i.e.
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dz
dc

2r asin(é6+p-6) - sin B

B n

(5.35)

1+ a® - 2acos(6-6)

we obtain for the fluid velocity along a blade (in the z-plane) due to the
source flow
(0] asin(60-6)

%

= (5.36)
2nr |asin(6+5-0) - sin B

When applying equation (5.36) one should bear in mind that this velocity is
directed tangentially in a mathematically positive sense, that is, counter
clock wise.

For straight radial blades (8 = 0) equation (5.36) reduces to the well known
expression

g, = [+] 2 (5.37)

~J 2nr

with the sign [i’] depending on the side of the blades as mentioned previously.

5.3 Vortex Flow

Since vortices and sources are singularities that only differ by their nature
we may treat the vortex flow analogously to the source flow, as just
described; likewise we now have a fluid flow that originates from a (point
rectilinear) vortex with strength I'; located at the origin of the z-plane,
whose potential would be

r,
fr(z) = — Inz (5.38)

2

Again only the relevant contribution to the potential in the {-plane has to be
considered, which leads to

r,

fr@@) = In(T - o) (5.39)

2nni

Then applying the circle theorem to equation (5.39) we obtain
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* Pl

(@ - o) - 1ng2 - ) (5.40)

Next taking the derivative of equation (5.40) with respect to {, we obtain for
the fluid velocity on the unit circle in the {—plane

[df}iJ r, [ 1 (5’ J
Il + (5.41)
¢ Jg  2mni ({g - (, 1_7

g 0

Substitution of equations (4.7) and (4.8) in equation (5.41) and using
equation (5.8) then gives for the fluid velocity (in the (-plane) due to the
vortex

Che = 0 (5.42)

r r, 1 - acos(8-6)
cic(0) = — 5 (5.43)
™ 1+ a° - 2acos(6-6)

where the superscript r is used to denote the vortex flow. Equation (5.42)
again shows that the boundary condition has been properly imposed.

Finally substituting equations (5.43) and (5.35) in (5.19) we obtain for the
fluid velocity along a blade (in the 2-plane) due to the vortex flow

r r, 1 - acos(6-6)
L, = — (5.44)
2rr  |asin(6+B-8) - sin 8|

5.4 Kutta’s Condition or Joukowski’s Hypothesis

The last sub flow or potential to be discussed is due to the Kutta condition
or Joukowski’s hypothesisf which impose a smooth flow off both surfaces of the
impeller blades at the trailing edge. This smooth flow off implies elimination
of the singularity at the trailing edge of a blade.

The smoothing of the flow (in the z—plane) near the trailing edge is done by
superposing a vortex flow (in the (-plane) originating from the origin of the

5 Joukowski’s  hypothesis  states that the circulation around an  aerofoil
always adjusts itself so that th ere is a stagnation point at the trailing
edge, and the velocity being finite at that point  (Milne-Thomson, 1958,

pPp. 112-113).
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(-plane. This additional flow both satisfies the potential equation and the
boundary conditions; its potential is given by

Iy

fk(@ = —Ing (5.45)
2

where I'y is the strength of the superposed vortex — the so—called blade
circulation — which is (to be) determined by the Kutta condition.

From equation (5.45) we obtain for the fluid velocity on the unit circle,
using equation (5.8)

dfg | . I's

Ko=|—| =2 (5.46)
dc B 27
Che = 0 (5.47)

where the superscript kK denotes that the velocities are related to the Kutta
condition, and where we have omitted the argument (6) since the the velocities
are constant along the unit circle.

Now by simply requiring a zero (overall) fluid velocity at the trailing edge
in the {-plane we impose the Kutta condition; this method will be valid as
long as the decrease of the fluid velocity exceeds the increase of the
derivative (:—5) of the mapping near the trailing edge. Imposing the Kutta
condition accordingly we have to distinguish the pump and the turbine since
the trailing edge of the blade of a pump impeller lies at the outer tip, while
in case of a turbine the trailing edge lies at the inner tip. In the following
we will first consider the impeller acting as a pump rotor, and secondly we
will outline the case of a turbine.

5.4.1 Impeller acting as pump rotor

Imposing the Kutta condition for the pump impeller, ie. outer tip (6 =0) as
trailing edge, gives the relation

c(0) + c%(0) + ¢f(0) + & = 0 (5.48)

Substitution of equation (5.46) in equation (5.48) next gives for the
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circulation around each blade of a pump impeller

g = -21r[c‘3¢(0) + c3(0) + cfc(O)] (5.49)

5.4.2 Impeller acting as turbine rotor

Imposing the Kutta condition for the turbine impeller, i.e. inner tip (0 = 6,)
as trailing edge, gives the relation

coc(By) + c2c(8y) + che(8y) + Ko =0 (5.50)

Substitution of equation (5.46) in equation (5.50) next gives for the blade
circulation in case of a turbine

Ty = -2n[Rc(6) + (b)) + fc(6) (5.51)

Although equation (5.51) strongly resembles equation (5.49), one should bear
in mind that in case of a turbine the circulation I'; is not predetermined, as
by a pump, but instead the circulation I, around the impeller is
predetermined; both circulations are simply related by

r,=ro,+ )Ty (5.52)
j=1

or since all blade circulations are equal by the periodicity of the flow

P2=Pl+nPB (5.53)

5.5 Condition of Shockless Entry

After imposing the Kutta condition still an other singularity remains, viz.
the one at the leading edge of the blades. In the remaining paragraph of this
chapter we will discuss how this singularity may be eliminated, which is
generally known as (imposing) the condition of shockless entry. This condition
of shockless entry determines the requisite prerotation of the flow entering
the impeller, which will give a so-called shockless operation. Perhaps
needless to say that the condition of shockless entry is an operating
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condition while the Kutta condition embodies a physical fact, that is, the
Kutta condition determines the circulation around the blades whereas the
condition of shockless entry gives the prerotation to impose a shockless
operation. From a mathematical point of view, however, both conditions are
alike. Discussing the condition of shockless entry a distinction will be made
between the pump and turbine, as has been done for the Kutta condition.

5.5.1 Pump impeller

Imposing the condition of shockless entry for the pump impeller, i.e. the
inner tip (6§ = 8,) as leading edge, gives the relation

coc(8y) + cX(68y) + ctc(6) + cic = 0 (5.54)

Substitution of equation (5.46) in equation (5.54) and taking the blade
circulation according to equation (5.49) next gives

Re(8y) — €c(0) + ¢X(6) - cX(0) + ¢he(6y) - cte(0) = 0  (5.55)

Equation (5.55) fully determines the prerotation (I'ys;,) of the flow entering
the pump impeller, such that a shockless operation is obtained.

5.5.2 Turbine impeller

Imposing the condition of shockless entry for the turbine impeller, i.e. the
outer tip (6 = 0) as leading edge, gives the relation

coe(0) + ¢2c(0) + cLe(0) + ¢ = 0 (5.56)

Substitution of equation (5.46) in equation (5.56) and taking the blade
circulation as given by equation (5.51) next gives

chc(0) — €2c(8y) + c3(0) - cX(B) + cic(0) - ci(8y) =0 (557)

From equation (5.57) we indirectly derive the prerotation of the flow entering
the turbine impeller, such that a shockless operation is obtained. Having
solved I'; from equation (5.57) the prerotation (I';) is next readily given by
equation (5.53).



SOLUTIONS FOR STRAIGHT RADIAL BLADES

In this chapter we will derive the (analytical) solution of the flow field for
the impeller fitted with straight radial blades, as we have generally
described in the previous chapter. Both the pump and turbine will be
considered, where we will discuss the pump rather extensively (paragraph 6.1)
while the turbine will merely be considered with regard to the blade
circulation and the condition of shockless entry (paragraph 6.2).

6.1 Pump Impeller
Discussing the case of a pump we will first determine the blade circulation,
as imposed by the Kutta condition, and the prerotation required for a
shockless operation. Using these results we will then derive the velocity
distribution in the (-plane due to the displacement flow, as well as the
velocity distributions (also in the {-plane) due to the source and vortex
flow. Then we will give the resulting velocity distribution in the z-plane,
and as a simple application we will finally discuss the pressure distribution
along a blade.
6.1.1 Blade circulation
For simplicity we employ the following subdivision of the blade circulation

I's = T3 + I3 + g (6.1)
where each superscript denotes the origin of the respective sub circulations.

By equation (5.49) it next follows that

g = -2mcy(0) (6.2)

33
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rg = -2mcl(0) (6.3)
rg = -2nci(0) (6.4)

The latter contributions, due to the source (Q) and the vortex (I'), are
readily to be obtained from the foregoing. From equations (5.34) and (5.43) it
follows that, putting § = m, & = 0 and using equation (4.15)

c%(0) =0 (6.5)

r
cFe(0) = (1 - V) 5;—‘ (6.6)
n

So the contributions given by equations (6.3) and (6.4) simply become

R =o (6.7)

r, (6.8)

The result of equation (6.7) being trivial since the source flow already
satisfies the Kutta condition in case of straight radial blades.

Having determined the contributions due to the source and the vortex we now
focus our attention on the still remaining contribution due to the

displacement flow.

From equation (5.26) we first derive, substituting equation (4.20)

2
D Qr21-p (1+p)n 1-p a!
= 1 4 —— cosA| sinA (6.9)

2 1+pu

Substituting equation (6.9) in equation (5.14), and taking 6 = 0, then gives

s
2 2,
2r3 1-p (14p)a 1-p n 5\
1 + — cosA| sinA cotan[;] d\ (6.10)
2 1+p

C?C(O) - 2mn 1+ 4

-

by which equation (6.2) becomes
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2 2 2,
- Qr3 1-p (1+p)n 1-p n
I's = 1 + — cos [1 + cosA] d\
n 1+p 2 1+p
-
where we have used the identity
sin A
cotan[é] = —
2 1 - cos A

to eliminate the singularity of the integral at A = 0.

For simplicity we next write equation (6.11) alternatively as

nl's = KI,
where
2
o, 1= [1+p]n
K= Q3 — | —
1+p 2
and
s
1-p 2t
I, = 14+ —cosA [1 + cosA] dA
1+p
-
Next putting
_1
o= 5/\
we can write integral (6.15) as
s
2
21
2u 1-p 2 |® 2
I, = 8 — + 2——cos"x cos’o do
1+u 1+p
0

35

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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Formulated by equation (6.17) the integral I, appears to have an equivalent,
stated by special functions. Presented in a slightly different way we have
according to Gradshteyn and Ryzhik (eq. 3.682, p. 389)

T
2
sin o cos¥o 1 x+1y+1 y+1 x+y q
doe = — B S F 2/ +1; —— (6.18)
2_\" n
(p + q cos”a) 2p 2 2 2 2 4
0
(x>-1, y> -1, p>0, ¢g>0)
where B(..,..) stands for the well-known beta function, and F(..,..;..;..)

represents the hypergeometric function or hypergeometric series.

Then putting

x =0 (6.19)

y = 2 (6.20)
24

p = — (6.21)
1+u
1-p

g =2 (6.22)
144

n=1-2 (6.23)

we obtain from equations (6.17) and (6.18)

2u 2t 7
= 13 F|31-2.0, 12
Iy = 4 [m] B(5,3) F[;al 2125 ”] (6.24)

Furthermore, since

BZY) = w=

) 6.25
22 re2) ( )

]
)

and
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2
1-=
P(31-2i25 -5 = u ™ F(h1-2251-4) (6.26)

the latter being an elementary transformation of a hypergeometric function®
and I'(..) being the well-known gamma function, we may write equation (6.24)
also as

1+p)'
I, = 2 [T] F[§,1—§;2;1—u] (6.27)

Substitution of equations (6.24) and (6.27) in equation (6.13) then gives for
the blade circulation due to the displacement flow

1-p
nly = 2mQr: — F[§,1-§;2;1-p] (6.28)
2

which may also be written as
nl“g = OpD 27r!2r§ (6.29)

where

l-p
UP:D = —2—— F[E,l—;;z;l—ﬂ} (6.30)

The factor o, p is generally known as the slip factor although it is merely
due to the displacement flow. Similar slip factors may be defined with respect
to the source and vortex flow, as will be shown below. To distinguish the
various slip factors that are to be discussed throughout this work, we employ
a subscript notation where the first subscript refers to the pump or turbine
and the second subscript indicates the nature of the slip factor, i.e.
displacement (D), source (Q) or vortex (I') flow. The meaning of slip factors,
always being less than 1 and expressing the fact that the flow receives
imperfect guidance due to the limited number of blades, will be further
discussed in chapter 9.

Finally substituting equations (6.7), (6.8), and (6.29) in equation (6.1) we
6 As can be found in, for instance, Abramowitz and Stegun, Bateman (1953),
or Gradshteyn and Ryzhik we have that

F(a,b;c;z) = F(b,a;c;z) = (1-—z)_b F(c-a,b;c;z—fi-)
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obtain for the blade circulation of a pump impeller fitted with (n) straight
radial blades

nl'g = opp onr: - o, T (6.31)
where
n
ry )2
opr =1-Vp=1-|— (6.32)
T2

and o, p according to equation (6.30).

Perhaps needless to say that the slip factors are all dimensionless and in the
interval [0,1], with the limiting value (n — 00) being 1.

6.1.2 Condition of shockless entry

From equation (5.55) we have as the condition of shockless entry for the pump
impeller fitted with straight radial blades, putting 8, = =

coe(m) = €c(0) + cF(m) - cX(0) + cie(m) - cte(0) = 0 (6.33)

Individual terms in equation (6.33) to be discussed separately, as far as they
have not been obtained previously.

First substituting equation (6.9) we obtain from equation (5.14)

™
2 2 2,
D 2r3 1-p (14p 0 1-p n e A
cog(m) = 1 + —— cosA| sinA cotan[—T] d\
2mn 1+pu 2 14+p
-T
' (6.34)
Then using the identity
sin A
cotan [ﬂ_'\] = (6.35)
1 4 cos A

to eliminate the singularity at A = m, equation (6.34) becomes
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s
2 2 24
b 2r3 1-p (14+p)n 1-p n
cog(m) = 1 + — cos A [1 - cosA] d\ (6.36)
2mn 1+p 2 1+p
-
which we write alternatively as
omncoc(m) = KI, (6.37)
where
v.d
24
1-p n
I, = 1 + — cosA [1 - cosA] dA (6.38)
1+p
-T

and K according to equation (6.14).

Next we derive from equation (5.34) and (5.43), putting 6 = 7 and using
equation (4.15)

cX(m) =0 (6.39)
5 1-Vu I, '
cg(m) = - 7#— o (6.40)

Then substituting equations (6.5), (6.6), (6.13), (6.37), (6.39), and (6.40)
in equation (6.33) we obtain for the shockless prerotation

l1-p
K(I, + I;) - — T'yg, = 0 (6.41)
Vu
or
Vu
PI,SL = —-— K(Io + Il) (6.42)
1-p

Thus, to obtain the shockless prerotation as given by equation (6.42) we have
to compute the integral Iy + I;. From equations (6.15) and (6.38) we readily
obtain that this integral reads
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us

I-p

4
Iy + I, = 4 [1 + — cos,\] dA (6.43)

14p

0

To evaluate this equation we recall that the integral in equation (6.43)

resembles Laplace’s integral for Legendre functions, i.e.

T
Pe) = 1 [g + Ve -1 cos,\]" dA (6.44)

0

where P,(§) represents the Legendre function of the first kind.

Then putting

144
= — (6.45)
2Vyu
_ 2
v=2-1 (6.46)

we obtain from equations (6.43) and (6.44)

Iy + I, = 47¢"P, (&) (6.47)
which may be written alternatively as
I + I, = 4w€™VP,(§) (6.48)
where
a = -v-1 (6.49)
or, by equation (6.46),
o = _% (6.50)

Since the Legendre function (P,(£)) can be expressed by a hypergeometric

function, we evaluate equation (6.48) somewhat further. Substituting the

elementary transformation
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1+€)¢
I PV )
Py(§) = [ . ] F[ o, -0 ""m] (6.51)

which is valid for Re{¢} > 0, we obtain from equation (6.48)

L [1+6)° _
Io+ I, = 4n¢ [T} F[—a,—a;l;%] (6.52)

Then substituting equations (6.45), (6.46), and (6.50) in equation (6.52) we
get

g = B it p(2 2.0 (o)
fot =2 w4 0V ® v P2 Zn (R0 e

Finally substituting equations (6.14) and (6.53) in equation (6.42), and using
equation (4.14), we obtain for the shockless prerotation of a pump impeller
fitted with straight radial blades

Iysp, = Tpp 2701 (6.54)

where

4
2 n 2
- 22, [1-vp
TP’D = [1+Vu] F[ﬁ’ﬁ’l’ [1+VI‘] } (6.55)

Just as we have done for the slip factor we here have introduced a so—called
prerotation factor (7,p), which is also dimensionless but greater than 1.
This prerotation factor will be further discussed in chapter 9.

6.1.3 Velocity distributions in the {-plane

Having dealt with the singular behaviour at the blade tips (Kutta condition
and shockless operation), we are now to complete our discussion and derive the
velocity distributions (in the {-plane) along the blades, that is, along the
unit circle. Successively we will treat the velocity distributions due to the
source flow, the vortex flow, and the displacement flow.
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Source Flow

Putting § = m and substituting equation (4.15), we obtain from equation (5.34)

(0] sin 6

(0 = - (6.56)

2rn cos 6 + £
1-p

Vortex Flow

From equation (5.43) we obtain, again putting 6§ = 7™ and  substituting
equation (4.15)

I'y cos 6 +

1+Vu (6.57)

r
cic(8) =
2rn cos 0 + N

Displacement Flow

Substitution of equation (6.9) in equation (5.14) gives for the velocity
distribution along a blade, in the {-plane

s

K 1-p !
c?c(a) = — {1 + 1—— cos A] sin A cotan[gg-'l] d\ (6.58)
@

-

with K according to equation (6.14).

Next substituting the identity

6— sin A + sin 6
cotan[ 3 ] = (6.59)
cos A - cos 6
and taking into account that the trigonometric function
24
1-p n sin A sin 6
G(A) = |1 + — cos A (6.60)
1+p cos A — cos 8
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is an odd function, we may write equation (6.58) as

T
2

K 1-p 2l sin?a

D

cic(0) = — 1 + — cos A dA (6.61)
27n 1+p cos A - cos 8

-T
or, employing some elementary trigonometric manipulations,

s

K 1-p 2t dA
c?C(O) = — sin’ [1 + —— cos A] _—

27n 1+p cos A — cos 0
-
.1
2,
K 1-p n
+—[1—cosB] 1+ — cosA dA
2mn 1+p
-
T
2
K 1-p at
- — 14+ — cosA [1 + cosA] dA (6.62)
27n 1+p
-

Using equations (6.15) and (6.43) we may rephrase equation (6.62) as

D - 2 Iy + 1,
cec(@) = — [sz’n@ I1(6) + [1 - cosB] —_— Io] (6.63)
2mn 2
where
.9
1-p 2t dA
I6) = + |1 + — cosA| —— (6.64)
1+u cos A — cos 6
-

In equation (6.63) only the integral I(f) remains to be discussed, for the
integrals I, and I, + I; have already been treated in the previous sections.
To evaluate the integral I(f), as given by equation(6.64), we employ the
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following  from  aerodynamics  well-known  principle  value  integral
(Milne-Thompson, 1958, p. 80)

w

cos kA sin k@
d\ = 2«
cos A — cos 0 sin 6

(6.65)
-

Developing the leading part of integral (6.64) in a Fourier cosine series we
may next rephrase integral (6.64) using equation (6.65).

The Fourier expansion that we employ reads

1-p n-l 1 0
1 + — cos A = 340 + ) Ax coskA (6.66)
1+p k=1

where the Fourier coefficients of the cosine series are defined by

s
2

--1

9 1-p n

Ay = T [1 + —— cos A] cos kA d\ (6.67)
1+u

0

Then substituting equation (6.66) in equation (6.64) we obtain, employing
equation (6.65)

2 x .
16) = T kgAk sin k0 (6.68)

The Fourier coefficients (Ay) can next be expressed by a special function,
since equation (6.67) resembles an integral representation of the associated

Legendre functions, i.e.
™

PE¢) = [ ﬁ (1/+m)] % [{ + VE>-1 cos /\}v cos kA d) (6.69)
m=1

0

where P',‘,({ ) stands for the associated Legendre function of the first kind.
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Putting
'3 e (6.45)
2V '
v=2_1 (6.46)

we obtain from equations (6.67) and (6.69) that the Fourier coefficients are
-1
k -v
A = 2 []‘[ (V+m)] £ P5(¢) (6.70)
m=1

Next expressing the associated Legendre function by a hypergeometric function,
i.e.

k
1 T(v+k+1) (€-1)z [ 2
Py(€) = [ ] [

v+l
-z F[1+u,k+u+1;k+1;§i] (6.71)
k! PTv-k+1) | €+1) |1+¢ &1

which is valid for Re{¢} > 0, we may write the Fourier coefficients (6.70)
also as

k
LotV rw+k+1) (6-1)z( 2 M
A = ﬁ(V+m) lilhaiell bl b F[1+u,k+u+1;k+1;€‘—‘]

m=1 k! '(v-k+1) [ £€+1 1+¢ §+1

(6.72)

Then substituting equations (6.45) and (6.46) in equation (6.72), and using
the identity

I'(x+k) = I'(x) ﬁ(m-l-x—l) (6.73)
m=1

we get

4

12 SR £ 5722 Y A €3 T PO 1-vy) 2
n n n n = et 3 “VK
!(1+lt) (1+Vu) ™ (Vu) [1+Vﬂ] r(g_k)F[n’k+n’k+l’[l+V#] ]

-RN-]

2
k

A =

(6.74)

or, using the identity
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k
ry) = I'y-k) [[ (y-m) (6.75)
m=1

we may write equation (6.74) as

s -2 A i
Ac = 2% (L+p) ™ (14V) ™ (Vi) @ (6.76)
where
1 (1-Vu - 2 2 -ve)?l & 2
ay = ;! [—1+Vﬂ] F[H‘)k"'ﬁ;k‘l'l; [l+vﬂJ ] ml;Il(a_m) (6'77)

Finally substituting equations (6.14), (6.27), (6.53), and (6.68) in equation
(6.63) we obtain for the velocity distribution along a blade (in the {-plane)
due to the displacement flow

4
1-p( 2 n 00 2
P.(6) = or [—] {sina Y ay sin k6 + sz'nz[g] F[%,%u;[:;‘;ﬁ] ]}

nVu | 1+Vu k=1
1-p
- 0 — F[%,l—l-zlﬂ;l—p] (6.78)
n

where we have also used equations (4.14)7 and (6.76); the convergence of the
Fourier series and thereby the validity of the solution (6.78) still to be
proven, as will next be done.

From Fourier analysis we know that the trigonometrical series

00
R(\) = ) [Ak cos kA + By sin kA] (6.79)

k=0
will converge uniformly if the series of coefficients, i.e.

00

L (14l + 15 (6:80)

converges.

From equation (4.14) it follows that (I'I/rz)2 = ”2/11
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Employing d’Alembert’s criterion we next easily prove the convergence of the
Fourier series. From equations (6.76) and (6.77) it follows that

1-Vpu
= (6.81)
1+Vpu

Ax 41 Ok +1

Ay

= lim
k+o

lim
k-+®

ay

which is always less than 1 (g4 > 0), so the Fourier series will converge
uniformly.

Q.E.D.

From equation (6.81) we also notice that the rate of convergence of the series
will decrease if u becomes small, that is, when p < 1.

6.1.4 Velocity distribution in the z-plane

The velocity distribution along a blade results from the superposition of all
the sub velocities, as mentioned previously. With respect to the velocity in
the {-plane we thus have

ce(0) = %c(8) + cX(0) + c1e(6) + & (6.82)

Then substituting equations (5.46), (6.56), (6.57), and (6.78) in equation
(6.82), and employing equations (6.30), (6.31), and (6.32) for the blade
circulation (nl'g) we obtain

l-pf 2 f o . 2(6) |2 2. [1-va)?
cc(8) = 2k m [m] {sm szlak sinkf + smz[;] F[ﬁ, 730 [%]

sin @ 0 1 - cos§ T,

_ - Vu (6.83)
1+p + cos 8 2mn l+n + cos 0 27n
1-p 1-p

The velocity in the z—plane next following from the transformation (5.19); for
that we first obtain from equation (5.35), putting # =0, § ==, and
substituting equation (4.15)

d
dz

1+p 1
—— + cos @ (6.84)

B | sin 6]

Then substituting equations (6.83) and (6.84) in equation (5.19) we finally
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get
Q0 6 r .
1 - cos 1-p [ 2 n (1+p
G = — + Vu l—ﬂrf +co.s'0><
2rr sin § 2xr rVu | 1+Vpu 1-p
00 1 - cos 6 2
. 22.,.[1-vu
{kglak sin k6 + m F[ﬁ’ﬁ’li [m] ] } (6.85)

in which we have also used the auxiliary relations
Cty = —C (6.86)
iz = +6; (6.87)

where the superscripts + and - again denote the pressure and suction side, and
¢; being the radial fluid velocity; in the case of straight radial blades this
absolute velocity (c¢;) also being the relative fluid velocity (w), direct
tangentially to the blades.

To compute the velocity distribution according to equation (6.85) we need to
have an indication of the (truncation) error of the partial sum of the Fourier
series, so that the requisite number of Fourier coefficients can be determined
to obtain a satisfactory significance; this is done by comparing the
truncation error with a geometric series, as follows.

First we isolate the Fourier series and write
00
5(0) = ) axsinkd = Sp(8) + Ty(6) (6.88)
k=l

where Sp(f) is the partial sum and T,(f) the truncation error, both after
summing the first p terms of the series, i.e.

P
Sp(8) = ¥ ay sin k8 (6.89)
k=l
00
Tp(0) = ) aysinkl (6.90)
k=p+1

Then to estimate the truncation error we notice from the latter that



00 [0.9]
_k E Iakl < TP(O) < E |ak|

=p+1 k=p+1

Next referring to equations (6.76), (6.77), and (6.81) it follows that

a 1-V, a
L = lim mad [ #> Kl k < o0
k-+o ay 1+V/I ay
and
laki]| < fox]
so
00
o) Gy 41 00 lap |
L ol < lapul ). < lap| YIm =
k=p +1 kepal % m=0 1-L

Thus we obtain for the sum of the Fourier series

ap
5(0) = Sp(0) £+ —
1-L

with L as given in equation (6.92).
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(6.91)

(6.92)

(6.93)

(6.94)

(6.95)

Employing the above-given expression we have computed the Fourier series in
equation (6.85); the error term being judged by the overall result (c,). The

solution according to equation (6.85) is illustrated in figure 6.1, where we

have plotted solutions for zero through flow and minimum through flow, with

both zero prerotation and shockless entry. The minimum through flow, so that
no back flow occurs along the blades, thereby being based on a shockless

entry.

From the plots in figure 6.1 we notice that both the displacement flow and the

vortex flow seem to be symmetrical. Indeed these flows are symmetrical as can

easily proven by equations (6.57) and (6.78). From these equations it follows

that
Re(8) = ce(-0)

ctc(8) =cto(-8)

(6.96)

(6.97)



Furthermore we have by equation (4.20)

ra(6) = rg(-0)

so the displacement flow and vortex flow are symmetrical.

50

(6.98)

Q.E.D.
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figure 6.1 velocity distributions along straight radial blades
(1)  zero through flow and zero prerotation
(1)  zero through flow and shockless entry

(ifi)

minimum through flow and zero prerotation

(tv) minimum through flow and shockless entry
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6.1.5 Pressure distribution along a blade
Based on the velocity distribution (6.85) we may now also compute the pressure
distribution along a blade, by wusing Bernoulli’s theorem for steady
two—dimensional fluid motions with respect to rotating axes, i.e.

Py ol it =

L+ zw 2!221' H (6.99)

where
p = thermodynamic pressure
p = fluid density

w = relative fluid velocity

and H a (more or less) arbitrary constant, often referred to as Bernoulli’s
constant; the relative fluid velocity w being given by

w = |w| = |¢ - 2xr| (6.100)
where
r = |r| (6.101)
with = the radius vector and w the relative fluid velocity vector.
For points on straight radial blades (r = rg) we further readily have that
v = ¢ (6.102)
Then choosing the constant H equal to zero, we obtain from equation (6.99)
p = ;p0rf - 1pd (6.103)
The pressure distribution according to equation (6.103) is graphically

illustrated in figure 6.2; these plots are derived from figure 6.1 (iii) and
figure 6.1 (iv), where we have taken p = 1000 I<:g/m3 for convenience.
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figure 6.2 pressure distributions along straight radial blades with
(1) zero prerotation and (ii) shockless entry

From the pressure distribution along the blades we may finally obtain the
torque (7o), about the origin, exerted on the impeller. Since we confine
ourselves to strict two-dimensional motions, so the torque has a fixed
direction, viz. perpendicular to flow field, we merely have to compute the
strength (7y = |7g|) of the torque. This strength is simply obtained by the
pressure difference over the blades, i.e.

P

To = nJ [p" - p'] r dr (6.104)

ry

which will evidently give the same result as to be obtained from the moment of
momentum since we consider an isolated impeller.
6.2 Turbine Impeller

As already mentioned in the beginning of this chapter we will, with regard to
the turbine, merely discuss the blade circulation and the condition of
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shockless entry. The velocity distribution along the blades of the turbine
impeller will not be treated. This, however, may be derived analogously to
what has been described in the previous paragraph. Incidentally, in case of a
shockless operation both pump and turbine will show an identical behaviour, so

the results that have been obtained for the pump impeller may then directly be
applied to the turbine impeller.

6.2.1 Blade circulation

By the subdivision of equation (6.1) we obtain from equation (5.51), putting
01 =77

g = -2mc(m) (6.105)

rg = -2mcdy() (6.106)

rg = -2rci (m) (6.107)

with

o KI,

ceg(m) = 5; (6.37)

cx(m) =0 (6.39)
1-Vup T

efim) = - —— — (6.40)
Vu 2nn

Substituting the above, equation (5.51) gives

1-Vu
Vu

nlg = - ry - KI, (6.108)

Since in case of a turbine I', is prescribed rather than I'; (as by a pump), we
substitute equation (5.53) in equation (6.108) and obtain

nlg = (1-Vu)l, - VuKI, (6.109)

Then writing equation (6.109) alternatively as
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nlg = (- Vu)Ty - VuK(I, - Ip) + VuK]I, (6.110)

and substituting equations (6.14), (6.27), and (6.53) we obtain for the blade
circulation of a turbine impeller fitted with straight radial blades

nl'g = o,r I'; - o, p 210r] (6.111)

where the introduced slip factors are

our =1-Vp (6.112)
and
4
2 n 2 12
_ 2 2 ..(1-vu 1 2n 1 2.,.
oup = (1-k) [ﬁ'v—u] F[ﬁ,ﬁ,l,[mﬂ]] + 307 (- F(51-Zizi-4)
(6.113)

The above-given slip factor (6.113), related to the displacement flow through
the turbine impeller, will be further discussed in chapter 9. The slip factor
(6.112) related to the prerotation of the turbine impeller is identical to the
corresponding slip factor (6.32) for the pump impeller.

6.2.2 Condition of shockless entry

Putting 6, = m, we obtain from equation (5.59) as the condition of shockless
entry for a turbine impeller fitted with straight radial blades

coc(0) = Re(m) + c3(0) - cF(m) + ch(0) - cte(m) = 0 (6.114)

with
coe(0) = - :—i% (6.13)
coc(m) = % (6.37)
c3(0) = 0 (6.5)
() =0 (6.39)
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r ry
che(0) = (1-Vp) — (6.6)
2mn
r l_vﬂ rl
ce(m) = = —— (6.40)
Yy 27n
we thus obtain
1-p
Vu

Next substituting equation (5.53) in equation (6.115), and taking the blade
circulation according to equation (6.109), gives

K
Fos. = — (Io + ply) (6.116)
1-p
Then writing equation (6.116) alternatively as
m
rz’SL = KIO + 'I_K(Io + Il) (6.117)
—H

and substituting equations (6.14), (6.27), and (6.53) we obtain for the
shockless prerotation of a turbine impeller fitted with straight radial blades

Tys, = Typ 210r; (6.118)

where the prerotation factor is given by

4

_ §+; 2 n
Te,D = MK —| F

1+Vyu

Further expatiation on this prerotation factor for the turbine impeller fitted

3N

9 v.2
215 v ] + 3 0o Flh1-Zi2i1-p) (e119)

with straight radial blades will be given in chapter 9.
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SOLUTIONS FOR LOGARITHMIC SPIRAL BLADES

Having completely determined the flow field for the impeller fitted with
straight radial blades (previous chapter), we now focus our attention on the
analytical solution of the flow field for the impeller fitted with logarithmic
spiral blades. Similar to the previous chapter we will discuss the case of a
pump rather extensively (paragraph 7.1), while the turbine will merely be
considered with respect to the blade circulation and the shockless entry
(paragraph 7.2). Furthermore — with respect to the displacement flow — we will
restrict ourselves to a brief discussion since arithmetical expressions have
not been obtained yet; only an asymptotic solution for the blade circulation
due to the displacement flow in case of the pump impeller could be derived and
will thus be outlined.

7.1 Pump Impeller

Discussing the pump impeller fitted with logarithmic spiral blades we will
generally follow the same procedure as given in paragraph 6.1 for the radially
bladed impeller. In the first sections we will successively discuss the blade
circulation, the shockless entry, the velocity distributions in the {-plane
and the z-plane, and the pressure distribution along a blade. In the remaining
section of this paragraph we will additionally discuss the asymptotic solution
for the blade circulation that we have obtained.

7.1.1 Blade circulation

To obtain the blade circulation for the pump impeller fitted with logarithmic
spiral blades we employ the subdivision as given by equation (6.1). The
individual contributions to the blade circulation again being given by

equations (6.2), (6.3), and (6.4).

From equations (5.34) and (5.43) we readily obtain for the velocity

57
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contributions due to the source flow and the vortex flow (putting 6 = 0)

Q (0] asin é
R(0) = - — —— (7.1)
m™m 1 + a°- 2acos &

r r, 1 - acos 6
cic(0) = — (7.2)
¢ ™m 1+ a? — 2acos 6

where a and 6 are as given by equations (4.23) and (4.42).

Then substituting equation (7.1) and (7.2) in equations (6.3) and (6.4) we
obtain for the individual contributions to the blade circulation due to the
source and the vortex

Q 2asin &
nlg = Q 3 (7.3)
1 + a”°- 2acos 6

2(1 - acos &)

nlg = -TI, (7.4)

1 +a? - 2acos 6

The remaining contribution due to the displacement flow follows next from
equation (5.14). Putting § = 0 and substituting equations (6.12) and (5.26) we
get

2mncc(0) = J, (7.5)

where we have put for simplicity

T
drg  sin A
Jo = n2 +rgA) — ——_dx (7.6)
d\ 1 - cos A
-

Then by equations (6.2), (7.5), and (7.6) it follows that

4
D drg sin A
nl'g = -Jy = n2 $rg(A) — —— 4 (7.7)
d\ cos A -1
-T

with the function rg(A) being further determined by the mapping Z : z«— (.
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Since we have not yet obtained arithmetical expressions with respect to the
displacement flow, as has been done for the impeller fitted with straight
radial blades, we will settle on the solution as given by equation (7.7); this
equation will serve as a bases for the asymptotic solution to be discussed in
the last section of this paragraph.

Finally substituting equations (7.3), (74), and (7.7) in equation (6.1) we
obtain for the blade circulation of a pump impeller fitted with logarithmic
spiral blades

nl'g = opp 2n02rs + Opq Qanf - o, r I' (7.8)

where the slip factors are

s
n drg sin A
Opp = 7 T™BA) — ———d (7.9)
2nry d\ cos A\ -1
-T

2asin 6 cotan
o = (7.10)
pQ 1 - 2acos § + a

2(1 - acos &)
opr = 3 (7.11)
1 - 2acos 6§ + a

For most (practical) situations one will find that the slip factors (7.10) and
(7.11) are practically equal to 1. In case of an infinite number of blades
these slip factors become (logically) equal to 1, for we then have that a —1
and 6 —m - 28. The above-given slip factors and some related aspects will be
further discussed in chapter 9.
7.1.2 Condition of shockless entry
By equation (5.55) we have as the condition of shockless entry

e(61) = c(0) + cF(8y) - ¢%(0) + Le(8) - cTe(0) = 0 (5.55)

with the contributions c?c(Ol), c?c(el), and c{((ﬂl) next to be obtained.

Substituting equation (4.55) we obtain from equations (5.34) and (5.43)
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Q Q asin ¢
%(6) = — —— (7.12)
7 1 + a" - 2acos €
r 1 - acos ¢
r 1
Cig(f) = — 3 (7.13)
™1+ a® - 2acos €

From equation (5.14) we obtain, after substitution of equations (5.26) and
(6.59)

s
D 2 drg sin A + sin 6,
cic(by) = - — $+rp(A) — d\ (7.14)
< B
2T d\ cos A - cos 0,
-T
which we write alternatively as
D
2mncyc(6y) = J; (7.15)
where
1
drg sin 0; + sin A
J; = n2 +rp(A) — dA (7.16)

d)X cos 8, - cos A
-

Then substituting equations (6.2), (7.1), (7.2), (7.12), (7.13), and (7.15) in
equation (5.55) we obtain (condition of shockless entry)

. asin € asin §
5(Jl--Jo)+Q 2 + 2
1 + a”°- 2acos ¢ 1 + a”°- 2acos &6

1+ a? - 2acos ¢ 1+az—2acos6

1 - acos ¢ 1 - acos &
+ Iysp, =0 (717)

or employing some elementary trigonometrical manipulations, and using
equations (4.23) and (4.45), we can write equation (7.17) as



61

(4 - a)(cos - cos 6)

31— Jo) + (M5, - Qtan B) =0
[-‘1; + a - 2cos e][-}; +a —20085]

(7.18)
Next we put
ry=r?+r? (7.19)

Then from equations (7.18) and (7.19) we obtain

r[l),SL _ [% + a - 2cos s][;li + a - 2cos 6](J1—J0) 720
2[%—a][cos&—cose]
I'Ys, = Otanp (7.21)

Equation (7.21) exactly gives (as was to be expected) the circulation that
accompanies a vortex source flow, by which the blades of the pump impeller
will be (directed along) streamlines.

Since for most practical situations the mapping constants (¢ and &) may be
derived from their first order approximations (section 4.3.2), we may simplify
equation (7.20) accordingly. Substituting equations (4.45) and (4.48) in
equation (7.20) we obtain by equation (4.46) as a first order approximation
(in €) for the shockless prerotation due to the displacement flow

e (Jy = Jo)
Mg =~ s (7.22)
sin

Without further stipulation we give that
176] < |41 (7.23)
by which equation (7.22) may be reduced to

e Jy
sin 23

e = (7.24)
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In conclusion of this section we summarize the above, and write the shockless
prerotation for an impeller fitted with logarithmic spiral blades as

Iys, = Tpp 21rf2rf + QOtan B (7.25)

where the prerotation factor is

[% + a - 2cos€][%+ a —2cos¢$] Jy - Jg)
Tp,D = = . (7.26)

2
2[%—0][cos6—cose] 2mQry

exactly, or using equations (7.16), (7.22) and (7.23)

s

En drg sin 6, + sin A
TP,D ~ —2—— T‘B(A) —_— d\ (7.27)
2nrisin 23 d\ cos 6, — cos A

-

approximately.

7.1.3 Velocity distributions in the {-plane

In this section we briefly recollect the velocity distributions in the (-plane
as they have been discussed previously.

Displacement flow

Substitution of equations (5.26) and (6.59) in equation (5.14) gives for the
velocity due to the displacement flow

s

[} drg sin 0 + sin A
() = — $rp(A) — ————— dA (7.28)
2T d\ cos 6 - cos A

-

The source flow, vortex flow, and Kutta condition are next readily obtained
from the preceding.
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Source flow

asin(0-6)

o
cx(6) = — (5.32)

™ 1+ a®- 2a cos(0-6)

Vortex flow

c{c(ﬂ) _ Il 1 -2- acos(6-9) (54
™m 1+ a° - 2acos(0-6)

Kutta condition

K s
Cig = — (5.47)
27

with I'g according to equation (7.8).

7.1.4 Velocity distribution in the z-plane

Referring to figure 7.1 we have that the absolute velocity (c,,c,) along the
blades in the z-plane is given by

-ct

2z

g = _ (7.29)
¢z

¢y, = f2rgcos (7.30)

with the latter being a boundary condition (paragraph 5.1), and where the
subscripts s and n denote that the velocity components are tangential or
normal to the blades; the superscripts + and - again denote the pressure side
and the suction side of the blades.
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figure 7.1 absolute velocities along a logarithmic spiral blade

From the foregoing we have that the absolute velocity along a blade is given
by

dg
Ctz = G | — (5.17)
dz B
dg n |1+ a® - 2acos(6-6)
= = — (5.35)
dz |g 2rg |asin(6+pB-60) — sin B
() = coc(8) + cX(8) + che(6) + ¢ (6.82)

with the (sub) velocities in equation (6.82) as given in the previous section.
From the absolute velocity we next obtain the relative velocity by

w = c¢ - xr (6.92)
which gives for the velocity components along a logarithmic spiral blade

wg = ¢g — f2rsin (7.31)

wy = 0 (7.32)

with the latter being a trivial result.
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Since no simple arithmetical function (rg(A)) for the mapping of logarithmic
spiral blades, as generally given by equations (4.43) and (4.44), could be
derived like it has been done for the impeller fitted with straight radial
blades, we have computed the velocity distribution, the Kutta condition, and
the condition of shockless entry — all with respect to the displacement flow —
by a direct numerical evaluation of the integrals (trapezium rule), taking an
illustrative impeller as a test case (see paragraph 8.2 for a detailed
specification).

The computed velocity distribution (wg) relative to the blades is illustrated
graphically in figure 7.2. In this figure we have plotted the relative
velocities for zero through flow and minimum through flow with both zero
prerotation and shockless entry, as was also done for the impeller fitted with
straight radial blades (figure 6.1). The velocities in figure 7.2 are plotted
as a function of the blade coordinate (s), which is defined by

§ = ——— (7.33)
cos S

This coordinate simply represents the traversed length along a blade starting
from the inner tip.

Comparing the velocity distributions for logarithmic  spiral  blades
(figure 7.2) with the velocity distributions for straight radial blades
(figure 6.1) — both impellers having the same inner/outer-tip ratio — we
notice that due to the curvature of the blades the minimum source strength (so
that no back flow occurs) has decreased significantly. Defining a source ratio

(gg) by

Qgin,LSB
9g = —— (7.34)

Qmin,SRB

where
Qgin,LSB = minimum source strength for logarithmic spiral blades
Omin,skB = minimum source strength for straight radial blades

we obtain from our computed examples (figure 6.1 and figure 7.2)
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0.215
q60 = —_-—= 0.34

This result is in fairly good accordance with the asymptotic approach® of the
flow through the impeller(s). By this asymptotic approach (see appendix B) it
follows that the minimum source flow, so that no back flow will occur along
the blades, is inversely proportional to the square of the cosine of the blade
angle; thus we have as the limiting value for the source ratio

G60,1im = €05 260 = 0.25

The asymptotic approach referred to is based on a large number of
extremely long logarithmic spiral blades (see appendix B).
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Nn=28r1=37mmr2 =100 mm B = 60 n=28r1=37mmr2 = 100 mm B = 60
= =0

' Q= —-10m Hz, Q 0, r1 Q=-10rHz Q =0, N = -0350 m2/s
15 15
10 \ 10
0.5 E 0.5
2
g
0.0 > 0.0
-05 r § -05 y
/\\ =
-10 [~ -10 T~
-15 -15
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figure 7.2 velocity distributions along logarithmic spiral blades
(¢)  zero through flow and zero prerotation
(%)  zero through flow and shockless entry
(#7) minimum through flow and zero prerotation
(fv) minimum through flow and shockless entry



Pressure (kPa)

68

7.1.5 Pressure distribution along a blade

Referring to section 6.1.5 it follows that the pressure distribution along a
logarithmic spiral blade can be obtained from the velocities given in the
previous section by

p = g - pu} (7.35)

Based on equation (7.35) we have plotted in figure 7.3 the pressure
distribution along a logarithmic spiral blade as a function of the blade
coordinate (s). These figures are obtained from figure 7.2, where we again
have taken p = 1000 kg/m® for convenience.

n=28r1=37mmr2 =100 nm B8 = 60 n=8 r1 =37 mm r2 =100 mm B = 60
N =-10w Hz, Q = 0215 m2/s, 1 = O Q = -107w Hz, Q=0215 m2/s, 1=0.022 m2/s

5.0 5.0

4.0 40

2 // 2 //
% Y%
A A

N A
A ot

-1.0 -10
0.0 315 63.0 2945 126.0 0.0 315 63.0 945 126.0

N
N
Pressure Pa)

Blade Coordinate (mm) Blade Coordinate (mm)

(1) ()

figure 7.3 pressure distributions along logarithmic spiral blades with
(¢) zero prerotation and (ii) shockless entry

Comparing the above-given pressure plots for the logarithmic spiral blades
with the corresponding pressure plots for the straight radial blades
(figure 6.2) we notice that, due to the curvature, the pressure distribution
has flattened out. This means that an impeller fitted with curved blades will
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have a favourable blade loading, which will improve when the curvature
increases.

7.1.6 Asymptotic solution for the blade circulation

In the last section of this paragraph we will discuss the asymptotic solution
of the blade circulation due to the displacement flow, for the impeller fitted
with logarithmic spiral blades. To that end we will consider the special case
of p = (ry/ry)" — 0, which will obvious be the case if r, — 0 and/or n— 0.
This presumption (u—0) implies that the origin and the inner tip will
(approximately) be mapped in the same point on the unit circle, i.e.

Go— G (7.36)

So
a—1 (7.37)
§—>m - 28 (7.38)

which readily follows from equations (4.23) and (4.42) when g — 0.

Considering the above, our asymptotic solution will be based on the
assumptions

a =1 (7.39)
§=m - 28 (7.40)

These assumptions result in the map that is given in figure 7.4. From this
figure we obtain by some elementary trigonometric manipulations

[1 - Tl = |8 - Q] = 2¢cosB (7.41)
1% - Sl = T - G| = 2cos(B+3)) (7.42)
arg(1 - Go) = -8 (7.43)

arg(lp - Go) = -8 + 3} (7.44)
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s0
1-Co = {p—Cp =2cos B e~ P (7.45)
Ga-lo = {a=-01 = 2cos(B+1)) e~ (B-3Ni (7.46)

where the argument (A) must be
(6-27 < A < 6) (7.47)

or

(-m-28 < A < w-28) (7.48)

S
P

e

figure 7.4 mapping of an impeller with the inner tip near the origin

Next substituting equations (7.45) and (7.46) in equation (4.44) we obtain
from equation (4.43)

cos B -isin g 2

[rB]cos B _ [cos(ﬂ+%z\)] e;z\i (7.49)

Ty cos B

or

[B] 7 [008(ﬂ+§")]ZCOSﬂ  Asin 8 (7.50)

cos B
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So the mapping function for points on a logarithmic spiral blade, with u = 0,
reads
2
2cos B
cos(ﬂ+§/\) ]n_ Asin 28
_ e

rg(A) = ry [ 2n (7-51)

cos f

which is valid under the restriction of equation (7.47) or (7.48). To
illustrate the usefulness of equation (7.51) we have plotted in figure 7.5 the
function rg(A) according to equation (7.51) vs. the exact value as generally
given by equations (4.43) and (4.44). Putting A = 6§ = 7-28 it is easily
verified by equation (7.51) that p = (r,/r;)" = 0, as we have assumed.

008 P 008
006 006
z
004 004
002 002
0.00 000
-300 -240 -180 -120 -60 O 60 -300 -240 -180 -120 -60 O 60
A (deg) A (deg)

(1) (1)

figure 7.5 mapping function rg(A) for an impeller fitted with logarithmic
spiral blades with: r{ = 0.37, r, = 0.1, n = 8, f = -735;
(7) exact, (it) approximation (u = 0)

Having a relatively simple relation rg(A) between corresponding blade points
in the z-plane and the (-plane we may now determine the blade circulation
(approximately). First we derive from equation (7.51)
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. [A
drg B sin [;—] cos [
d— = - —_ (7.52)
A T cos [ﬂ+%/\]

Then substituting equations (7.51) and (7.52) in equation (7.7), and altering
the interval of integration as given by equation (7.48), we obtain for the
blade circulation due to the displacement flow

n-208 2
4cos B8 .
5 o | [eos(B+in))Tm ot 2einz8
nl'g = 02r; _ e " cos [3] d) (7.53)
cos B
-T-28
where we have also used the identity
sin A
———— 5in [é] = -cos [é] (7.54)
cos A - 1 2 2
Next using a transformation
o =p + g,\ (7.55)
equation (7.53) becomes
D %*
nl'g = MJ, (7.56)

where we have introduced for simplicity

1- 4cos2ﬂ _ 28sin 28
M = 202r2 (cos p) e B (7.57)

s
2

4coszﬂ _ 2aisin 28
Jy = J:(cos o) " e " cos(a-p) do (7.58)
m

2

To evaluate the integral J; we will alter it by some simple trigonometry. From
equation (7.58) it follows that
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T
2 2

d4cos' B 2asin 28

(cosa) ™ e " da

T

2

4coszﬂ -1 2asin 28
sina (cosa) ™ e " da (7.59)

+ sinf

Nl:l‘—f—,nu:i

Then using the identity

4coszﬂ 2asin 28
n n
(cos o) e do

cos B

n
2
4coszﬂ 2asin 28 .
-1 sin B
sina (cosa) " e " do =
s
2

NN ——

(7.60)
which can easily be verified by partial integration, we may write equation

(7.59) as

4cos2ﬁ 2asin 28
(cosa) ™ e " da (7.61)

1

Jp =
cos B

N|§;—n|a

Formulated by equation (7.61) the integral J; appears to have an equivalent,
stated by the beta function. According to Gradshteyn and Ryzhik (eq. 3.892.2,
p- 476) we have

ino v

cos” o do = (7.62)

n X v+n+lv-n+1
e B
v

2v- 2 9

VI e 01N
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where B'l(..,..) denotes the reciprocal of B(..,..), NOT the inversion.

Then putting

4coszﬂ
v=1+ (7.63)
n
2sin 248
n = - i (7.64)
n
we obtain from equations (7.61) and (7.62)
2 -1
. T “:*sﬂ 4cos’B _
Jy = 2 1+ B(x,x) (7.65)
cos B n
where
20032,3 sin 23
x =1+ + i (7.66)

n n

Substitution of equations (7.57) and (7.65) in equation (7.56) finally gives
for the asymptotic solution of the blade circulation due to the displacement
flow (1 = 0)

nl'g = o,p 2xr? (7.67)

where the slip factor is

-1

B(x,x) (7.68)

4cos2ﬁ 46032ﬂ 28sin 28
0pp = | (2c0s8) 1+ e

n

and the complex number y according to equation (7.66).

The slip factor 0p,p according to equation (7.68) will further be discussed in
chapter 9; there we will illustrate (among other things) the influence of both
the blade angle and the number of blades.
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7.2 Turbine Impeller

With regard to the turbine impeller fitted with logarithmic spiral blades we
will briefly consider the blade circulation and the condition of shockless
entry. Again, since no arithmetical expressions have been derived yet, we will
merely discuss the solutions.

7.2.1 Blade circulation

From equations (5.51) and (6.1) it follows that

Iy = -2nd).(6,) (7.69)
rg = -2rncd(6,) (7.70)
rg = -2nchy(6,) (7.11)
with
Q (0] asin €
cec(6y) = — 5 (7.12)
™ 1 4+ a” - 2acos €
r 1 - acos ¢
Fely) = — (7.13)
2
m™m 1+ a® - 2acos €
Jy
coc(fy) = — (7.15)
nn

where equation (7.13) may be stated alternatively as, using equation (4.47)9

r ' asin e cotan B
cic(f) = - — 2 (7.72)
m™m 1 + a° - 2acos ¢

Then substituting the above-given equations in equation (6.1) we obtain

2asin € cotan B

-nl'g = J; + [Qtanﬂ - l’l] (7.73)

1 + a’- 2acos €

From equation (4.47) it readily follows that l-acos ¢ = -asin € cotan B.
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Again, since I', is predetermined rather than I';, we employ equation (5.53) to
eliminate I'; in equation (7.73), and obtain for the blade circulation of the
turbine impeller

nlg = o,p Iy — 0,q Qtan B - o,p 210r; (7.74)
where the slip factors are

2(1 — acos €) 2asin € cotan B

Ut,p = L (7-75)
1 - d? a® -1

2asin € cotan
OiQ = (7.76)
a® -1

1 - a®*+ 2acos € J,
Oyp = (7.77)
1-a® 21r.()rf

Substituting equation (7.16) the latter becomes

s

1 - a®+ 2acos € n drp sin 8; + sin A
B 1
Oyp = 5 A r(A) — d\ (7.78)
l-a 2rr, d\ cos 6; — cos A

-T

The (turbine) slip factors (7.75) and (7.76), related to the source flow and
the vortex flow, appear to be identical. Using equation (4.47) it is easily
verified that the limiting value (n—o0) of these slip factors equals the
Eulerian value (1), since then € —0. Finally we may remind the reader, to
avoid misinterpretation of equation (7.74), that Q < 0 in case of a turbine.

7.2.2 Condition of shockless entry
From equation (5.58) we have as the condition of shockless entry

Rc(0) = De(8y) + cX(0) = cF(8y) + cLc(0) - cte(6) =0 (558)

where the velocities are

Q 0 asin é
cig(0) = - — 2 (7.1)
n 1 4+ a“ - 2acos &
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r, 1 - acos é

cte(0) = — ——; (7:2)
m™m1l+ a® - 2acos §
J
D 0
oe(0) = — (7.5)
2nn
Q [0) asin €
cie(6) = — 5 (7.12)
m™m 1 + a“ - 2acos €
r r, 1 - acos €
cig(6y) = — 2 (7.13)
™1+ a® - 2acos €
Jy
coc(6y) = — (7.15)
2mn
Substituting these velocities, equation (5.58) gives
i asin é asin €
5(Jo-J1) + 0 2 + 2
1 + a®- 2acos 6 1 + a”“- 2acos €
1 - acos § 1 - acos ¢
+ st 3 - = =0 (7.79)
1+ a” - 2acos 6 1+ a®° - 2acos €

Since equation (7.79) is identical to equation (7.17) we may simply use the
results obtained previously for the pump impeller, viz. equations (7.19),
(7.20), and (7.21).

First we substitute equation (7.73) in equation (5.53) and obtain, using
equation (4.47)

2

a’-1 2asin €
Pz = zrl— zQ—Jl (7.80)
1 - 2acos e + a 1 - 2acos € + a
Next putting
r, =r2 +rg (7.81)

by which equation (7.80) gives

a’ -1
re = ~r? - J, (7.82)
1 - 2acos € + a
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and

Q a‘-1 Q 2asin €
r3 = 5 ry - 2 Q (7.83)
1 - 2acos e + a 1 - 2acos € + a

we obtain for the shockless prerotation of the turbine impeller fitted with
logarithmic spiral blades, after substituting equations (7.20) and (7.21) in
equations (7.82) and (7.83), using equation (4.47)'° and summing the results

Fys1 = Typ 20927 + Qtan B (7.84)
where
l+a—2cos&(J1—Jo) J,
Tep = & - (7.85)
i 2 2
cos 6 — cos € 4m2r, 2nQ2r,

The prerotation factor (7.85) is not treated in further detail since no
arithmetical expressions for the integrals J, and J, have been obtained yet.

10 See footnote 9.
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ANALYTICAL SOLUTION VS FINITE ELEMENT SOLUTION

Besides the analytical solution, discussed in the previous chapters, we have
also computed finite element solutions of (sub) flows, taking a pump impeller
- fitted with logarithmic spiral blades — as a test case. The obtained finite
element solutions primarily serve to illustrate the flow through the impeller;
they are not to verify the analytical solution, though it has to be said that
numerous deficiencies in the analytical solution have been traced by the
finite element solution. After having first generally outlined the finite
element procedure (paragraph 8.1) we will briefly discuss the flows that we
have computed (paragraph 8.2), where we will compare the finite element
solution with the analytical result(s).

8.1 Finite Element Procedure

The finite element solutions of the (sub) flows through the pump impeller have
all been obtained using the finite element package SEPRAN. This package may be
regarded as a toolbox of subroutines that are to be implemented in a suitable
solver — a FORTRAN computer program - so that a particular problem, i.e. a
differential equation with boundary condition(s), may be solved numerically.
This toolbox idea gives great flexibility in solving problems, and moreover
allows the user to implement his own subroutines. Furthermore the definition
of (boundary) contours and mesh generation is rather sophisticated within
SEPRAN, which makes a numerical treatment relatively easy. The general
treatment, not specifically confined to SEPRAN, to obtain finite element
solutions of the flow through the impeller is briefly outlined below.

First of all to determine the flow through the impeller numerically we may
either solve the velocity potential (p) or the stream function (), both
satisfying the Laplace equation as was mentioned in paragraph 3.1. From an
illustrative point of view (streamlines) we choose to solve the stream

function, i.e.
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Vi = 0 (3.6)

The ellipticity of the Laplace equation (3.6) next requires the choice of a
representative region with appropriate boundary conditions so that the finite
element solution may be compared with the analytical solution. Basically this
means that an inner and outer boundary enclosing the impeller have to be
chosen, such that the behaviour at the origin and the behaviour at infinity
may be imposed on those boundaries. This region may simply be chosen as given
in figure8.1(i). Then, by the periodicity of the flow through the impeller,
we may further restrict ourselves to a periodical sub region as given in
figure 8.1 (ii).

Having specified the region to treat the flow numerically we next need to
impose the boundary conditions. First both the shockless entry (I',s) and the
blade circulation (I'g), the latter being given by the Kutta condition, are
directly obtained from the analytical results. These circulations are
subsequently imposed on the circular shaped inner and outer boundaries, say
with radii R, and R;, according to (so—called natural boundary conditions or
Neumann conditions)

b 1) r,
inner boundary (R,): — = - (8.1)
on R 27R,
1
oy r,
outer boundary (R,): — = (8.2)
on |R, 27R,

with the circulations Iy and I', being related by equation (5.53).

Next the periodic boundaries of the sub region, say B; and B,, are (mesh)
connected by

0
n

¥lp=vlp, + (8.3)

By this condition we thus impose the fluid flux through the sub region.

The boundary condition on the blade finally is given by the fact that the
relative stream function (k) is constant along a blade, say £ = 0, so the

1 Like the absolute flow, the relative flow is also solenoidal so we may
likewise define a relative stream function (x); for two-dimensional flows
the two type of stream functions are related by ¢ =&x- %ﬂrz (see

appendix B).
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absolute stream function equals
p = -0 (8.4)
on the blade.

In conclusion of this paragraph we give the two meshes (figure 8.2) that we
have used for the finite element solution(s). Both meshes are generated with
simple triangular shaped elements, where especially the mesh of the sub region
is refined rather severely near the blade tips to minimize the singular
behaviour of the solution (intersecting streamlines). The mesh of the whole
region (figure 8.2 (i)) has only been used to obtain an illustrative picture
of the flow, whereas the mesh of the sub region (figure 8.2 (ii)) served for
the finite element solution(s). To indicate the mesh size we finally give that
the mesh of the whole region consisted of nearly 5800 elements with about 3300
nodal points, and that the mesh of the sub region consisted of nearly 3150
elements with about 1750 corresponding nodal points.



figure 8.1 (i) finite element region and (ii) periodical sub region

(i)
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8.2 Computed Flows

By manipulating the boundary conditions, as given in the previous paragraph,
we have derived finite element solutions of velocity distributions along a
blade of the pump impeller (earlier mentioned in section 7.1.4). All sub flows
have been computed, both numerically and analytically.

The impeller that we have used was characterized by

number of blades n=3_8

inner tip r, = 37T mm
outer tip ro, = 100 mm
blade angle B = 60° = g

and where we further had

inner boundary Rib, = 8 mm
outer boundary R, = 180 mm
angular speed 2 = -107 s
minimum source strength O, = 0.215 mz/s
blade circulations 1’3 = —-0.200 m®/s
ry3 = 0.046 m¥s
r,
't =~ -—— = -0.1251,
n
shockless prerotations I’?,SL = -0.350 mz/s
e = 0.3712 m¥s

As a preliminary and illustrative example we have first solved the (shockless)
displacement flow numerically in both the entire finite element region and the
periodical sub region. The result of this exercise is presented in figure 8.3
by relative streamlines. Figure 8.3 (i) clearly shows the recirculation areas
or relative eddies that are due to the irrotationality of the absolute flow
(see also appendix B). These relative eddies cause a back flow (wg < 0) along
the pressure side of the blades, if the source or through flow is not strong
enough to compensate the eddy velocity. The prevention of back flow is clearly
illustrated by the next given velocity distributions of the examined (sub)
flows.



85

=

(¥) ()
figure 8.3 (i) relative eddies and (ii) relative streamline (k = 0) due to the
displacement flow (shockless)

The velocity distributions along the blades, given on the next pages, are all
relative to the blades and plotted as a function of the blade coordinate (s),
previously defined by equation (7.33).

The (10) flows that we have computed are:

o displacement flow

o displacement flow with Kutta condition

o displacement flow with Kutta condition and shockless entry

¢ source flow

e source flow with Kutta condition

e source flow with Kutta condition and shockless entry

o vortex flow

o vortex flow with kutta condition

o displacement flow with source and Kutta condition

o displacement flow with source, shockless entry and Kutta condition

Besides velocity distributions we have also computed the pressure distribution
for the latter two (displacement flow with source), using equation (7.35).

All finite element solutions show excellent agreement with the analytical
results, as was to be expected. With regard to the Kutta condition and the
shockless entry we further notice that the fluid flows smoothly at the blade
tips, i.e. the singular behaviour at the blade tips is properly eliminated.
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APPLICATION OF RESULTS IN COMPARISON WITH
ONE-DIMENSIONAL FLOW THEORY

The previously derived results, based on our two—dimensional analysis of the
flow through the impeller, will be further discussed in this chapter. The
applications that we are about to give are basically related to the classical
one-dimensional flow theory, and may be regarded as a relative simple and
practical extension.

As a preliminary we first give a short review of some elementary formulas,
that will serve as a basis discussing the applications; though these formulas
have appeared previously we will rephrase them for the completeness of this
chapter. Next the applications will be discussed, where we will make a
distinction between the pump impeller and the turbine impeller. First
applications for the pump will be discussed and secondly some features of the
turbine will be outlined.

9.1 Review of Basic Formulas

The first important relation that we have relates the circulations around the
origin (I'y), the impeller (I',), and the blades (I'); this relation generally
reads

n
r,=ro,+)YTIp (9.1)
j=1

Then by the periodicity of the flow through the impeller, for we base our
analysis on a so-called isolated impeller, equation (9.1) may be simplified as

P2=Pl+an (9.2)

Equation (9.2) simply states that the circulation (I';) around the impeller
equals the circulation (I';) around the origin plus n times the circulation
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(I'g) around an impeller blade, with n being the number of blades.

The second important relation that we recollect is the general equation for
the blade circulation. Based on our two dimensional analysis of the flow
through an impeller fitted with logarithmic spiral blades we have for the pump
impeller

nl'g = o,p 210 + 0, Otan B - or T (9.3)
and for the turbine impeller
nl'g = oy I', - 0 Qtan B - oy p 27r.()rf (9.4)

where {2 is the angular speed of the impeller, Q is the fluid flux, and B the
blade angle; the latter being equal to zero in case of straight radial blades.
To avoid confusion all positive directions are defined counter clock wise (I,
Iy I'y, B, 2) and radially outward (Q). The subscripts of the slip factors
(0..) simply denote their origin, that is, displacement flow (D), source flow
(Q) or vortex flow (r), and indicate whether it concerns the pump or the
turbine.

In case of an infinite number of blades (n—o0) all the slip factors become
1, and the equations (9.3) and (9.4) then reduce to the well known Eulerian
expressions.

9.2 Applications for the Pump Impeller

The applications that we will discuss in this paragraph successively are: the
influence of the prerotation with respect to the circulation, the shockless
entry, the develop head and slip factor(s), and the choice of a volute fitting
the pump impeller.

9.2.1 Influence of the prerotation
The influence of the prerotation, with respect to the circulation around the

impeller, is best demonstrated by substituting equation (9.3) in equation
(9.2). We thus obtain
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Iy = opp 27005 + 0, Otan g + (1 - opr) I (9.5)

Next to examine the influence of the prerotation we recollect the expressions
for the slip factor (0p,r) obtained previously.

For straight radial blades we had

ry )2
opr =1-Vp =1 - [—} (6.32)

and for logarithmic spiral blades

2(1 - acos §)
Opr = (7.11)
P 1 - 2acos 6§ + a?

where
=7 -28 +¢ (4.45)
1
a8 — (4.48)
1 - € cotan 8 ,
with
n
r 2coszﬂ
1
E =~ [ ezﬂ tan g sin 208 (4.53)
T2

The latter two being valid for | ¢ | «1 and | ¢ l<|8]-
From the above-given relations it will be evident that
l1-opr«l1 (9.6)

for impellers with a respectable number of blades, ie. n3»1, and/or a
sufficiently large inner/outer tip ratio. We may thus conclude from equation
(9.5) that the prerotation gives an insignificant contribution to the
circulation around the impeller. One might therefore think that the
prerotation plays an unimportant role on the whole. This, however, is a
misconception since the object of our concern should be the blade circulation
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(n'g) when discussing the efficiency of the impeller. Furthermore, the
importance of the prerotation is primarily the possibility to impose a
shockless entry, so that impact losses are omitted, rather than the
contribution to the circulation.

9.2.2 Shockless entry

From our two-dimensional analysis it follows that the shockless prerotation
for a pump impeller fitted with logarithmic spiral blades reads

I'ysy = Tpp 2007 + Qtan B (7.25)

Since we have not obtained an arithmetical expression for the prerotation
factor (Tp,p) in case of logarithmic spiral blades, we will further (have to)
confine ourselves to the solution that has been obtained for the impeller
fitted with straight radial blades (B = 0), ie.

4
2 n 2
22, (1-v
e = [1+Vﬂ] F[ﬁ’ﬁ’l,[“v":” (02

To judge this prerotation factor we will briefly discuss the given relation.
From equation (6.55) we first of all notice the remarkable fact that
o0 > 1 (9.7)

since the hypergeometric function — F (a,b;c;2) - always exceeds the value 1
for positive arguments (a, b,c). So the shockless prerotation actually required
for the pump impeller will be higher than the one-dimensional (Eulerian)
value.

Secondly we notice from equation (6.55) that a numerical evaluation of the
prerotation factor becomes rather awkward, due to the decreasing rate of
convergence of the hypergeometric series, if the parameter u becomes small. It
would therefore be convenient to have an easily computable approximation of
the prerotation factor (6.55). To obtain this we may reasonably impose
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Ta

ry )2
Vi = [—] <1 (9.8)

by which we may approximate equation (6.55) by

4
Top = 2" F[g,z;l;l] (9.9)

which can be stated alternatively as a quotient of gamma functionsl,2 i.e.

2 ra-3)
Tpp & 2" ———— (9.10)
r*(-2

where it is provided that n > 4.

Equation (9.10) gives us a relative simple approximation of the prerotation
factor for impellers fitted with (n) straight radial blades. The decrease of
this prerotation factor, when increasing the number of blades, is graphically
illustrated in figure 9.1. This figure clearly shows that the prerotation
factor tends to the Eulerian value (1) for a large number of blades, as can
readily be proven by equation (9.10), i.e.

lim 7pp = 1 (9.11)

n-+0

Thus we also obtain the well-known Eulerian expression of the prerotation for
a pump impeller

Iypy = lim I' g = 2702} + Qtan B (9.12)

n+0o

3 As can be found in, for instance, Abramowitz and Stegun, Bateman (1953),

I'(c-b-a)I'(c)

T(cb)I'(c-a) “here

or Gradshteyn and Ryzhik we have that F(a,bicil) =

Re{c-b-a} >0 and c not zero or a negative integer.
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9.2.3 Developed head and slip factor(s)
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From the classical (two-dimensional) approach by the moment of momentum it
follows that the theoretically developed head (H,) of an isolated centrifugal

impeller may be written as

(F,-T,)2  nlp?

Hy =

27ng 2ng

where g is the acceleration due to gravity.

Substitution of equation (9.3) in equation (9.13) next gives

T - P2 20tan B Qor,
gy = Opp T3 + Opq —— = Opr —
2 27

or using dimensionless groups
!Fm = UP,D + UP,Q Qtanﬂ — Up’[' Tl

where we have introduced:

gHxn

2.2

head coefficient, ¥, =
(9] L

(9.13)

(9.14)

(9.15)

(9.16)
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0
flow coefficient, P = 5 (9.17)
2nQ2r,
r,
vortex coefficient, 7, = (9.18)
2nQr3

Next letting the number of blades become infinitely large all the slip factors
(0p,py Op,q> Opr) become 1, and equation (9.15) then reduces to the
well-known expression for the Eulerian head (coefficient)

Vgu =1 + $tanp - 1, (9.19)
where the subscript Eu is used to indicate the Eulerian value.

Based on this Eulerian head we may next define a head reduction factor' (HRF)
by

Ho, @
HRF = 2 _ ‘B
HEu WEu

(9.20)

Substituting equations (9.15) and (9.19) this becomes

HRF — ap,D + Up ,Q ¢tanﬂ - Up,p Tl (9 21)
1 + &tanpg - T,

where it will be evident that the limiting value (n— 00) of the head
reduction factor equals 1 since then all slip factors become 1.

Equations (9.14), (9.15), and (9.21) clearly illustrate the importance of the
slip factors for the pump impeller (0, p, 0p q, Op,r). Separately for both the
straight radial blades and the logarithmic spiral blades we will further
expand on the relations previously obtained for the respective slip factors.

Straight Radial Blades

For the impeller fitted with straight radial blades (# = 0) only o, p and oy,

are of interest. These slip factors are given by

13 In some literature the head reduction factor is (incorrectly) addressed as
the slip factor; this is a rejectable conception since there is a strong
flow dependence of the head reduction factor, whereas the slip factor(s)
(should) only depend on the size and shape of the impeller.
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Oy p = —”F 11-2.2:1
p,D = 2 2T -H (6.30)

9p,r (6.32)

I
[y
|
N
I
p—
|
[ —
MI_J

As we have said in the previous section we again have (and even more strongly)
that the evaluation of the hypergeometric series, given in equation (6.30),
will be rather laborious if the parameter yu becomes small. Likewise we will
therefore derive an approximation - of equation (6.30) — to evaluate the slip
factor (o, p) conveniently; the slip factor (0p,r) should give no problems to
compute.

In reason we now impose

r 1"
po= [—] <1 (9.22)

so equation (6.30) may be approximated by

%D = ; F[§,1-§;2;1] (9.23)

which can be stated alternatively as'*

1 I(i+2)
ap,D f —— 2 n
Vr I(1+2)

(9.24)

Equation (9.24) may be used as a fairly good approximation for computing the
slip factor due to the displacement flow for (two-dimensional) impellers
fitted with straight radial blades. If an exact value is required, or when
condition (9.22) is not fulfilled equation (6.30) should be used.

Logarithmic Spiral Blades

For the impeller fitted with logarithmic spiral blades we have previously
obtained the following expressions for the slip factors

14 See footnote 12
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2asin 6 cotan B
OpQ = (7.10)
P 1 - 2acos § + a?

2(1 - acos §)
Opr = (7.11)
P 1 - 2acos § + a*

4coszé 2Bsin 28 -1
oo = [(2cos B " [ieiesd) B(x»"c)] (7.68)

where

ZCoszﬂ sin 28
x =1+ + i (7.66)
n n ’

and the constants @ and § as given herein before. Equations (7.10) and (7.11)
are exact solutions for the respective slip factors while equation (7.68) is
valid for u = (r;/r;)" = 0. The latter, however, is no major restriction since
most impellers found in practice are characterized by p <« 1. Thus we have a
useful relation to obtain, approximately, the slip factor due to the
displacement flow for impellers fitted with logarithmic spiral blades. The
numerical evaluation of the beta function in equation (7.68) should cause no
severe problems despite the appearance of complex arguments; practical
algorithms to compute this function are given in many handbooks as for
instance Abramowitz and Stegun, and Press et al. Furthermore it will not
always be necessary to compute the slip factor according to equation (7.68);
for we can simplify equation (7.68) if

[%_22]2 < [1 + 2—-50,‘;'92 }2 (9.25)
Thus we obtain by some elementary manipulations®
15 As can be found in, for instance, Abramowitz and Stegun, Bateman (1953),
or Gradshteyn and Ryzhik we have that:
B(x,x),.-B(z,Z)kiEo(l + y2/(x+k)2) where z = x + iy and x =0, -1, -2, ..

Ir(z)r(w)
I'(z+w)

r(2z) = (2«)_%22)‘-%[‘(z)1"(2+£), duplication formula

B(Z,W) =

I'(z+1) = zI'(z), recurrence formula
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-1

2 N
4cos’B 2Bsin 28 F[l + 2o s
opp = |[(cosp) ® e " Vr

7

(9.26)

P[l + 2coszﬂN

2 n
7

Equations (9.26) provides a more convenient relation to compute the slip
factor (opp) numerically, than equation (7.68). One should however bear in
mind the restrictions that lead to this convenient equation. Putting 8 = 0 in
equation (9.26) we further readily obtain the result for straight radial
blades as given by equation (9.24).

To illustrate the effect of curvature we have plotted the slip factor (opp)
in figure 9.2 for several numbers of blades and various blade angles, using
equation (7.68). The plot given in figure 9.2 (i) is identical to the figure
presented by Busemann (fig. 17, p. 384), for the limiting value r,— 0.
Busemann however obtained his results by a direct numerical treatment while we
have obtained an arithmetical expression. The plot of figure 9.2 (ii) is
identical to the figures given by both Csanady and Dixon (fig. 7.10, p. 205),
who based their results on the work of Busemann.

1.0

32 |
16 [ —
8 / 25
4
y § g, 0.9
0.6
2 / / S N
& 15
S
n=1 / 08 \
0.4 10 —
g 0.7 \\
s 3
0.2 0.6 \
0.5
(o]
o 15 30 45 60 75
0.0
O 15 30 4 60 75 90 Blade Angle

Blade Angle
() ()

figure 9.2 slip factors for (two- dimensional) centrifugal impellers with the
inner tip near the origin or large inner/outer tip ratios
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Finally to illustrate the effect of the slip factors with respect to the head
(coefficient) we have illustrated in figure 9.3 the theoretical, the Eulerian,
and the actual head'® (all with zero prerotation). To avoid misinterpretation
we emphasize that this figure merely illustrates the effect of the slip factor
(0p,p) due to the displacement flow since the slip factors related to the
source flow and vortex flow (0p,q and o 1) are practically equal to 1.

From figure 9.3 we clearly see the limiting effect of the number of blades.
The remaining difference between theoretical and actual head is due to
friction losses, impact losses, and off design operation. These off design
losses originate from the fact that the volute does not fit the impeller at
off design operation. Choosing a volute to fit the impeller properly at the
design operation point will be treated in the remaining section of this
paragraph. The impact losses can simply be reduced by giving the flow,
entering the impeller, the requisite prerotation so that a shockless operation
will be obtained.

1.0
\\
08
O \\
i \ Eulerian
2 N
% 06
§ T~ \\
é \‘rLoretical
0.4 \\
Actual
02

0.00 0.05 0.10 0.15 020
Flow Coetficient (=)

figure 9.3 head coefficient vs flow coefficient for a logarithmically bladed
impeller receiving zero prerotation
(n=28, r=3Tmm, r, =100mm, g = -:5)

16 The actual head given is that of a (perspex) test impeller - wused for

flow visualization - at the von Karman institute for fluid dynamics,
which resembles our impeller quite well; for further information on the
test impeller one is referred to Elholm (et al).
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9.2.4 Choice of a volute

Now that we have a thorough understanding of the two—dimensional flow throughA
the pump impeller we are also able to expatiate on the choice of a volute that
fits the impeller. For simplicity we will confine ourselves to a so—called
logarithmically curved volute (see figure 9.4). The curvature of such a volute
is — like the logarithmic spiral blade - simply described by, using polar
coordinates :

oo,
r(@) = roe*® v (9.27)

or
#r) = ¢y + tancy in[% ] (9.28)

with the choice of ¢, and ry, being arbitrary (provided that ry > ry), and
where the volute angle o, is to be obtained from the flow leaving the
impeller. This may simply be done knowing that the volute is a
(logarithmically spiraled) streamline, so we can obtain the volute angle o,
from the circulation/flux ratio of the flow leaving the impeller, i.e.

r, ‘
tano, = — (9.29)
0
or, substituting equation (9.2)
1"1 + an
tanoy, = ———— (9.30)
0

When next imposing a shockless entry (I} = I'yg,) and thus substituting
equation (7.25), as well as equation (9.3), in equation (9.30) we obtain,
using dimensionless groups

9,0 + (1 - 0p.1) (ri/r)* T p
tan OysL = (1 + 0pQ — Up’p) tanﬂ + P (9.31)

where & is the previously defined flow coefficient, and where the slip factors
(0p,py Op,@s Op,r) and the prerotation factor (Tp,p) are as given in the
previous sections.
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With zero prerotation (I'; = 0) we obtain from equation (9.30) and (9.3), again
using dimensionless groups

%,D
anoyg = Opq tanf + — (9.32)
]

To demonstrate the above we will compute the angle o, of a volute fitting the
pump impeller defined in paragraph 8.2.

Supposing zero prerotation we obtain from equations (7.10) and (9.26),
approximately

Opq = 1
opp ~ 0.816
Then taking the design operating point at
0 = 0.20 m%/s
80
$ = -0.10

A negative sign appearing before the flow coefficient since we are dealing
with backward curved blades, i.e.

B>0 < 2<0.

Equation (9.30) next gives

0.816
tanoy g = tan60 - —— = -6.43
0.10

S0
Oy o ~ -81°
Conclusively we have plotted in figure 9.4 the pump impeller and the computed

volute, where we have also added a diffuser at the volute exit (diffuser angle
chosen at approximately 10°).
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figure 9.4 impeller with volute

9.3 Applications for the Turbine Impeller

Regarding the turbine we will confine ourselves to discussing the prerotation
and the shockless entry, and the theoretically delivered work and the work
reduction factor.

9.3.1 Prerotation and shockless entry

In case of a turbine the circulation (I’ 2) around the impeller represents the
prerotation. This prerotation highly determines the work to be delivered by
the impeller, as will be discussed in the next section of this paragraph. The
circulation (I';) around the origin is merely to be seen as a residual or loss
of energy.

The prerotation (I'y), required to obtain a shockless operation of the turbine
impeller fitted with logarithmic spiral blades, may - based on our
two-dimensional analysis — generally be written as

Iys = 7yp 200r5 + Qtan B (9.33)
Since the prerotation factor (Te,p) has yet only been worked out for the

impeller fitted with straight radial blades we will further (have to) confine
ourselves to this type of impeller, as we have likewise done for the pump
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impeller. We obtained previously

2 2
-+ [ 2 n 2
_ ,n2 2 2. [1~-vu 1 1 2.,.
Tw,D = K [I+_V/£] F[,—,,,—,,l,[m] ] + 5 (1-p) F[;,l—;ﬂ,l-l-‘] (6.119)

Since equation (6.112) embodies the same hypergeometric series that have been
discussed in the previous paragraph, we may treat the prerotation factor
(6.112) analogously and simply adopt the results.

Thus putting Vu <1 we obtain

Tep = §F[§,1-§;2;1] (9.34)
or
1 Ir(i+2)
Typ N — —2 3 (9.35)
Vﬂ' I’(1+l-l)

Equation (9.35) provides a simple relation to approximate the prerotation
factor (6.112). From equation (9.35) we further notice that the requisite
prerotation for the turbine impeller to obtain a shockless operation is less
than the Eulerian value (contrary to the case of a pump). When the number of
blades become infinitely large we obtain by equation (9.35) the Eulerian value
for the prerotation factor

lim T,p = 1 (9.36)

n-+0

as well as the Eulerian expression of the prerotation

Typa = lim Iq = 2705 + QOtan B (9.37)

n-+00

9.3.2 Delivered work and work reduction factor

By the classical two—dimensional approach, using the moment of momentum, it
follows from the energy equation that the theoretically delivered work (P,)
is given by
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(Fy=T1)p0R  nlgpQR
2 2

th =

(9.38)

To judge this theoretically delivered work we introduce — analogous to the
head reduction factor that was defined for the case of a pump - a work
reduction factor (WRF), defined by

Py
WRF = 2 (9.39)

PEu

with Pg, being the Eulerian work for an impeller fitted with logarithmic
spiral blades, i.e.

pORN
Pg, = - (I, - Otan g - 270r3) (9.40)
T

Next substituting equations (9.38) and (9.40) in equation (9.39) and using
equation (9.4) for the blade circulation we obtain for the work reduction
factor, again using dimensionless groups

oorY, - o Stan B) - 0y p (r1/rs)?
WRE — (oe,r T, t,Q ) t,D (T1/r2) (9.41)
Y, - &tan g - (1'1/1'2)2

where we have additionally introduced

Iy
rz = 2
2n82r,

(9.42)

In case of a shockless entry we obtain by substituting equation (9.33) in
equation (9.41), using equation (9.42) and employing the fact that by the
Eulerian approach the prerotation factor (7¢,p) Will be equal to 1,

ou,rTe,p + (1 - o, )ditanﬂ)rg—a,orf
WRFg, = ©Ger 7 A - ‘ (9.43)
rz =1

From equation (9.43) we notice that the influence of the source is limited
since 0y ~ 1 as mentioned before. Furthermore it will be evident that the
limiting value (n— o) of the work reduction factor equals 1 since then all
slip factors as well as the prerotation factor become 1.

Finally, confining ourselves to turbine impellers fitted with straight radial
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blades, we shall explore equation (9.43) somewhat further.

Putting 8 = 0 equation (9.43) becomes

2 2
farz - f1r]

r2 -1

where the newly introduced degenerated work reduction factors are
fi = op (9.45)

fa = Ow,r Ty,D (9.46)

Next imposing for simplicity that Vi <1, the slip factors (0y,p and oy r) as
given by equations (6.112) and (6.113) become (approximately)

our =~ 1 (9.47)

4
op ~ 2" F[3,§;1;1] (9.48)

n

where the latter can be written as!’

which is valid for n > 4

Then substituting equations (9.35), (9.47), and (9.49) in equations (9.45) and
(9.46) we get

¢ o)

fl ~ 2 m (9.50)
1 I(3+2) 051

T vr r1+?) (©50)

The behaviour of the degenerated work reduction factors, as given by equations

17 See footnote 12
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(9-50) and (9.51), is illustrated graphically in figure 9.5; the result being
evident.
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figure 9.5 degenerated work reduction factors
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CONCLUSIONS AND RECOMMENDATIONS

In the foregoing the two-dimensional velocity and pressure distribution along
straight radial blades and logarithmic spiral blades of isolated centrifugal
pump impellers have been computed successfully. Additionally some interesting
features like slip factors and shockless entry have been discussed, with
arithmetical solutions being derived.

The solutions for the radially bladed impeller are all fully obtained, that
is, arithmetical expressions for the velocity distributions have been derived
for both the vortex flow and the displacement flow. The solution for the
vortex flow appeared to be a relatively simple expression, whereas the
solution for the displacement flow was somewhat more complicated, viz. a
Fourier sine series, with the Fourier coefficients given by the hypergeometric
series. Circumstantially we also obtained arithmetical expressions for the
slip factors and the prerotation factors (shockless entry), for both the pump
and the turbine impeller fitted with straight radial blades. As was to be
expected the slip factors were all less than their Eulerian value (1), and
properly equalled this value for an infinite number of blades. Furthermore the
prerotation factor for the pump impeller appeared to exceed (!) the Eulerian
value (1), whereas the prerotation factor for the turbine impeller was less
(!) than the Eulerian value; both prerotation factors became properly equal to
1 in the Eulerian approach.

The solutions (velocity distribution, prerotation, and slip factors) for the
impeller fitted with logarithmic spiral blades are all formulated
analytically, with the solutions for the vortex flow and source flow being
expressed arithmetically. An arithmetical solution for the displacement flow
has not been obtained yet; instead the equations concerned are treated both
numerically and asymptotically. By an asymptotic approach arithmetical
expressions for the blade circulation and the slip factor, both related to the
displacement flow, have been obtained.

All results show, as far as a comparison is permitted, an excellent agreement
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with the works of various authors who have studied the same or comparable
problems. Moreover, the results in this work add substantially to the previous
works, that is, (better) arithmetical solutions have been obtained to compute
velocity distributions along straight radial blades, and slip factors for both
radially bladed and logarithmically bladed impellers; though improvements are
still to be made.

The first recommendation is to express the velocity distribution along a
logarithmic spiral blade, due to the displacement flow, like it has been done
for the radially bladed impeller, that is, employing a (similar) series
development. When doing so it is emphatically advised to treat this velocity
distribution in the first instance asymptotically, by taking a low
inlet—to—outlet radius ratio (u — 0).

The second point of interest concerns the shockless prerotation and the blade
circulation. Like it has been done for the radially bladed impeller, it may
very well be possible to obtain similar arithmetical expressions for the
impeller fitted with logarithmic spiral blades. Alternatively one may think of
employing a (direct) numerical treatment and presenting the solutions
graphically.

Another interesting sequel is to examine if there exists an impeller with
blades having a varying blade angle (8, — 8;) that can be treated as in this
work. The difficulty would there probably be to find a suitable mapping. If
such is to succeed and the flow problem can thus be solved, we may improve our
understanding of (the flow in) turbomachinery.

Finally one may think of applying the (potential flow) solutions to perform
boundary layer analyses, both laminar and turbulent, and study the (occurrence
of) boundary layer separation. In this context it may also be interesting to
take a closer look at the flow field in and around the back flow areas that
occur if the source flow is not strong enough to compensate the flow due to
the relative eddy.



APPENDIX A

CONFORMAL MAPPING OF A LOGARITHMIC SPIRAL BLADE
ON A CIRCLE (KONIG TRANSFORMATION)

The transformation that maps a piece of a logarithmic spiral conformally on a
circle is originally credited to Kénig (1922)A. This transformation is based
on the fact that a (two-dimensional) flow field will not be altered or
influenced if we place a barrier of infinitesimal thickness along a
streamline. To derive the transformation we start with the (complex) potential
f(z) of a so—called vortex-source, i.e.

0 r
f(z) = —lnz + — Inz (A.1)
2n 2ni

where the source (Q) and the vortex (I') are placed in the origin of the
z-plane.

Next substituting polar coordinates (z = rei¢) in potential (A.1) we readily
obtain, by the constancy of the stream function (the imaginary part of the
complex potential), that the streamlines of flow field (A.1) are given by

Q¢ - I'lnr = constant (A.2)

Then defining a known point on a particular streamline by (ry,¢,), we obtain
from equation (A.2) that a streamline of a vortex—source is described by

(r) = g0 + g In(r/rg) (A3)

or

Qin (60—
(@) = roer " (0=90) (A.4)

Equations (A.3) and (A.4) each exactly describe a logarithmic spiral, as

A See also Betz (1964, pp. 245-255).
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illustrated in figure A.1, where
r— =tanf = - (A.5)

Since a logarithmic spiral blade, with a blade angle @ equal to arctan(I'/Q),
placed along a streamline of flow field (A.1) will not alter the potential of
the flow field, we may write potential (A.1) also as

. o
f(z) = — (1 - itanp) Inz (A.6)
2r

where the asterisk is added for clarity of the remainder.

i

figure A.1 logarithmic spiral

Next we consider the desired image of the mapping, that is, we are interested
in a transformation (z— () that maps the blade conformally on a circle.
Though it is no restriction we thereby choose the unit circle as image; the
reason for this will become apparent at the end of this appendix.

Placing the image of the origin of the z-plane, and the vortex—source, in a
point (say (o) outside the wunit circle of the {-plane, we get the
configuration as illustrated in figure A.2. Then without the unit circle as a
barrier the potential would be

0
Q) = - (1 - itan B) In(T - Go) (A7)
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(1,0)

~
N

figure A.2 image of the transformation (C - plane)

Next applying the circle theorem (Milne-Thomson, 1958, pp. 84-85) we impose
the boundary condition in the {-plane (unit circle as streamline) and obtain

. 0 i
o = = [(1 ~ itan B) In(C - Co) + (1 + itan B) In(: - co)] (A8)
2n ¢

which can be written alternatively as

* 0 . 2By 1 F
@) = —~ (1~ itanp) [in@ - Co) + in - To) (A9)
3
and where the over bar denotes a complex conjugate.

Since the potentials (A.6) and (A.9) represent (by admission) the same flow,
only in different planes, we obtain from equations (A.6) and (A.9) the
transformation that maps a logarithmic spiral blade conformally on the unit
circle; the transformation reads

_ 28
z = (-0 (-0 (A.10)

Next taking the image (say ,) of an arbitrary point (say z,) as a reference,
we may scale the transformation (A.10), and obtain the mapping function that
is generally known as Ko6nig’s transformation, i.e.
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1 _ Z eziﬂ
z [ ¢ - Co] g 0
Z (A.11)
Z, C* - CO %*_ Z‘o

Conclusively, when confining ourselves to points on a blade (2 = zp,
(=0 = ew) and taking (, on the unit circle (say , = ei'\), the
transformation (A.11) can be written as

-ig 2¢'8
2p e’ - Co €
2, € - CO

Thus, by choosing the unit circle as the image we have the possibility to
simplify the transformation of blade located points (¢g), since the complex
conjugate (¢g) equals the reciprocal (cﬁl) for points on the unit circle.

Though it should be apparent from the above we finally emphasize that the flow
field of the z-plane is mapped outside the unit circle of the {-plane; this is
an essential to apply the circle theorem, that is, the interior of the circle
has to be free from singularities (Milne-Thomson, 1958, pp. 84-85).



APPENDIX B

ASYMPTOTIC SOLUTION OF THE TWO-DIMENSIONAL POTENTIAL
FLOW THROUGH A CENTRIFUGAL IMPELLER

In this appendix we consider the asymptotic solution of the two-dimensional
irrotational solenoidal flow (generally known as potential flow) through a
so—called isolated centrifugal impeller. We will start with a short
description of the model that we use (section B.1), followed by the governing
equations (section B.2), where we will outline the bases of our asymptotic
solution. Next we will solve the flow field asymptotically (section B.3), and
discuss the solution for a large number of blades (section B.4). Finally we
will briefly consider the pressure distribution along a blade (section B.5).

B.1 Model for the Asymptotic Solution

To obtain an asymptotic solution of the two-dimensional flow through a
centrifugal impeller, we use a model that consists of n equally spaced
logarithmic spirals (see figure B.1). The blades of this impeller are simply
described by, using polar coordinates (r,$)4

j

-l
@) = ro et P (B.1)
or
olr) = ¢} + tanp ln[go] (B.2)
where

B = blade angle (tan g = f‘g% )
j = blade index, {jeN|1<j<n}

a Implicitly we have that the polar coordinates (r,¢) are fixed on the
impeller, and thus rotate with the angular speed of the impeller
(relative frame of reference).

116



117

¢, = offset angle, {gb(j,"l =o¢l + 2m/n}
r, = offset radius

B

Vel

=z

=

S~

figure B.1 simple two - dimensional model of a centrifugal impeller, fitted
with logarithmically curved blades

B.2 Governing Equations

We start this section by recalling that we may confine ourselves to the flow
field between two consecutive blades, since the flow through the impeller is
periodical. To compute this flow field (asymptotically) we will briefly
discuss the general equations that describe the flow field, immediately
followed by a simplification so that the flow field can be solved.

First we recall the general equations for the absolute velocity (¢) of an
irrotational solenoidal flow field, i.e.

Vxe

]
(=]

(B.3)

Vec

]
o

(B.4)
Since our problem is best solved when referring to rotating axes, we

substitute the well-known relation between the absolute velocity (c¢) and
relative velocity (w), i.e.

c=w+ Nxr (B.5)
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in equations (B.3) and (B.4), and obtain by elementary vector analysis
Uxw = -202 (B.6)
Vew = 0 (B.7)
provided that we have a constant angular speed (£2).
Equations (B.6) and (B.7) state that the relative flow will possess vorticity
(having a constant value -2f2), and that it will be solenoidal, like the
absolute flow. By equation (B.7) we may next define a relative stream function
(k) according to
w = Vxg (B.8)
Then substituting equation (B.8) in equation (B.6), and using the identity
Vik = V(Vek) - VxVxk (B.9)
and imposing additionally
Vek =0 (B.10)
we obtain the Poisson equation
Vik = 20 (B.11)
For two dimensional flow fields, the vector functions (% and ) reduce to
scalar functions (x and £2), so the relative two-dimensional flow through the
impeller, that is, between two consecutive blades, is described by

Vi = 20 (B.12)

where we have as — incomplete — boundary conditions that the impeller blades
are streamlines of the relative flow, say

k]; = & (B.13)

Kl = & (B.14)
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Recalling the known Laplace equation for the absolute stream function
(two—dimensional), i.e.

Vi = 0 (B.15)

it follows from equation (B.12) that the two types of stream functions are
related by

v =k - 0 (B.16)

Returning to our elliptic problem (B.12), (B.13), (B.14), we notice that this
can not be solved unless additional boundary conditions are imposed on (extra)
curves connecting two consecutive blades, since the region where we want to
solve our flow problem has to be enclosed by a simple connected contour.
Alternatively, however, we will alter the elliptic problem into a parabolic
problem so that the two boundary conditions (B.13) and (B.14) will suffice for
the solution. For that purpose we will employ a coordinate transformation and
judge the elliptic problem, using dimensionless groups.

The transformation that we employ reads
§ = cosB In(rfr,) + ¢sinp (B.17)

n = -—sinfB In(r/r,) + ¢cosp (B.18)

By this transformation the impeller blades (B.2) are represented in the

(&,n)-plane by

er) = cos'B In(r/ry) + ¢} sinp (B.19)

n = ¢l cosp (B.20)

where the latter is constant for a particular blade. So the region between two
consecutive blades is mapped between two parallels of the ¢-axis, as is
illustrated in figure B.2.
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figure B.2 mapped flow region

Next we have to express the Laplace operator (Vz) by the new (&,1)
coordinates. From the transformation (B.17), (B.18) it follows that

a a a
— = sinf — + cosf — (B.21)
¢ a¢ an
a cos B 3 sin 8 9
—_—= — (B.22)
ar r 9 r Jn
r=r, ¢ £¢05 B—-nsin B (B.23)
¢ = &sinB + ncos B (B.24)

Then recalling the expression for the Laplace operator in polar coordinates,

i.e.

. . 19 8 1 a?
ve = Vr’¢ = —-—r—+ 2 T o (B.25)
rdr 9r r° 9¢

we obtain by substituting equations (B.21) and (B.22)
1 (8* @?

Vi = | — 4+ — (B.26)
¢ 2 [352 8172]

or, using equation (B.23)
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, 1 e2nsln B8 32 02
vfﬂi’ = :g ezecos B8 5;2 + 8_1]2 (B.27)
Equation (B.12) then gives
azn azn e2nsin B
Vink = 2r2 (B.28)

gf—; + anz = ezfcos B 2

To judge this newly introduced Laplace operator (VZ,,,), that is, the
contribution of the respective derivatives, we will distillate dimensionless
groups. For that we switch from the (§,7) coordinates to the scale coordinates

(§m4) €[0,1], by

€= ¢+ 608 -¢) (B.29)
n =1+ 0" -9 (B.30)
for a region
g<e<é (B.31)
j j+1
N <N <N (B.32)

located between two consecutive blades, where f{ and {% are two arbitrary
points on the j‘h—bla,de, say 5{ = {j(rl) and {% = §j(r2).

Next substituting equations (B.19) and (B.20), equations (B.29) and (B.30)
become

&a
€ =¢ + In(ry/ry) (B.33)
cos B
2
R i i (B.34)
n

where we have used the fact that the offset angles of two consecutive blades
differ a factor 2m/n, and where the ratio ry/r;, can be seen as a
characteristic, e.g. the outlet-to—inlet ratio of the impeller.

By equations (B.33) and (B.34) we next obtain for the Laplace operator (B.28)
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vi o= —
& 47(2

n? [ 27cos B ]282

n In(ry/ry)

Then imposing

[ 27cos B ]2
—_— k1

n In(ry/ry)

which will be valid for a respectable number of blades, we may put

Thus equation (B.28) may be approximated by

azn lepsin B

2
8772 = ezscos B 20ro

+
agz  an?
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(B.35)

(B.36)

(B.37)

(B.38)

This equation has the desired parabolic shape so that our flow problem can be

solved; the boundary conditions (B.13) and (B.14) become more specifically

&(€,n%)

k(&) = K(£,03 cos B) = &

B.3 Solving the Flow Field

K(€,picos B) = «!

j+1

(B.39)

(B.40)

The parabolic problem (B.38), (B.39), (B.40) is easily solved; the solution

reads
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0 n
K(&n) = &1 + — [ - ¢3]

2w | cos B
05 otcos § (_—2msin ¢lsin 28
¢ st [ omsing  -dlinag)
2sin”B
"o otcos B [ —lsin2 gin 9 n
+——2-C [e o ﬂ—e_°s ‘B] _—¢g
4Amsin®ps cos f8
(B.41)
where
Q0 = (! - &) (B.42)

which represents the fluid flux.

The stream function (B.41) describes (approximately) the flow field between
two logarithmic spiral blades, which rotate with a constant angular speed f2.
Based on solution (B.41) we may next compute the velocity field between/along
the blades. To do so we will express the velocities as derivatives of the
stream function (B.41) with respect to ¢ and 7.

figure B.3 relative fluid velocities

Referring to figure B.3 it follows that the relative fluid velocities (wy,wy),
tangential and normal to a blade, are related to the the common polar
velocities (w;,wy) by
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Wy, = wrcos B + wysinp (B.43)
Wy = —wysinf + wycos B (B.44)
Then substituting
1 ok
W = — — (B.45)
r 8¢
oK
Wy = — — (B.46)
or

and using equations (B.21) and (B.22), we obtain from equations (B.43) and
(B.44)

1 ok
W = — — (B.47)
r 9n
1 ok
w, = —— — B.48)
n ;% , (

From equation (B.41) we next obtain for the derivatives

2 .
O _ 9o aecosp [_" {e—cpgsin 28 _ - ¢d*sin 2[3] _ - 2nsin B
an sin 8 2nsin 20
0
+ (B.49)
2mcos B
) 2
_’c = fro cos 3 62&03‘3 ><
a,  sin’p

[e—znsinﬂ _ e—qb(j,sin 2ﬂ] + _" [e—¢(j,sin 26 _ e—¢gﬂsin 2,8] [L _ ¢g]

2r cos 8

(B.50)

By equations (B.19) and (B.20) we may further represent a point on an

arbitrary, say the mth, logarithmic spiral between the blades (with offset

angle ¢5) by
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£ =¢€" =€ = cos'B In(r/r,) + ¢TsinpB (B.51)
n=1n" = 10(¢s) = ¢%cosp (B.52)

where
¢ < 65 < o™ (B.53)

Then substituting the derivatives (B.49) and (B.50) in equations (B.44) and
(B.45), and using equations (B.52) and (B.53), we obtain for the fluid
velocities

Qr fie dosin 28
wy(r,do) = [

[ e~ $dsin28 _ _—¢d*sin 2;9} 1
sin B
0

+ — (B.54)
2nrcos B

2nsin 20

2r

wa(r,45) = - bl >

{[1 - O3 2a) | L gn_ gl o$Rein2p (o—olin2s _ oo 2;;]}
2r

(B.55)

B.4 Solutions for a Large Number of Blades

Since we have, by admission, an impeller with a large number of blades, so

1 ¢ = 2r/n <« 1 and o7 - ol <1, we may simplify solutions (B.54) and

(B.55) by using some simple Taylor expansions. These expansions read

e—¢‘j,6‘in2ﬁ _ e—¢g+lsin2ﬂ _ -2181'ﬂ2ﬂ e_¢gsin2ﬂ [1 _ wSin 2,3} (B.56)
n n

e $osin2p _ , osin 28 [1 + ($7-0)) sin 2p] (B.57)
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sin 28

¢ Posin28 _  ¢lsin28 |, + (¢7-9¢l) sin 28 [1 + ($5-93) (B.58)

Equations (B.57) and (B.58) are expansions of the same function, with the
expansion (B.58) being of a higher order. The reason to employ these two
expansions will become apparent in the following.

Substituting expansions (B.56) and (B.57) in equation (B.54) we obtain for the
tangential velocity

0
wy(r,$s) = ———— + 20rcos B (¢ - ¢3 - I) (B.59)
2nrcos B

and substituting the expansions (B.56) and (B.58) in equation (B.55) we obtain
for the normal velocity

wn(r,85) = —20rcos’B (¢2 — ¢l) (67 - pi* (B.60)

If we had used expansion (B.57) instead of expansion (B.58) to simplify the
normal velocity (B.56) we would have obtained the erroneous result

o 2.Qrcoszﬂ nsin 20
wn(r#3) = - ——— (8% - o1 + (4% - Blysin 24] [1 - ] (B.61)
sin B n
or, approximately
2.Qrcoszﬂ
wa(r,¢5) = - ———— (¢85 - ¢)) (B.62)
sin 8

By this result the boundary conditions (zero velocity normal to the blades)
are not entirely fulfilled, whereas solution (B.60) properly satisfies these
boundary conditions.

From equation (B.59) we next obtain for the tangential velocity along the
pressure side of a blade (£2 > 0)

0 2n2rcos B
wi(r) = wyr,¢l) = - (B.63)
2nrcos B n
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and for the suction side

_ j41 0 2nf2rcos B
wy(r) = wy(r,dy ) = + (B.64)
2nrcos B n

where we have used that ¢g+l - ¢g = 2m/n.

Equations (B.63) and (B.64) can be interpreted as if a relative eddy (see
figure B.4) is generated between the impeller blades; this relative eddy
basically originates from the irrotationality of the absolute flow field.

N

figure B.4 relative eddy

From the above, in particular from equation (B.63), it will be evident that
back flow (w, < 0) may occur along the pressure side of the blade, due to the
existence of the relative eddy. To prevent this back flow we have by equation
(B.63) as a sufficient condition

0 2nf2rcos B
2 (B.65)
2nrcos B n

This condition clearly shows the positive effect of curving the blades. Taking
for instance a 60 degree blade angle, we may settle for % (=co.s'260) of the
number of blades when comparing with straight radial blades (8 = 0); or we may
reduce the through flow by a factor 4 without running the risk of a back flow.
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B.5 Pressure Distribution Along a Blade
In conclusion of this appendix we will briefly discuss the pressure
distribution along a blade, following from the former solutions of the

velocity distribution.

Recalling Bernoulli’s theorem for steady two—dimensional flows relative to
rotating axes, i.e.

-2 = H (B.66)

we obtain after substituting equations (B.63) and (B.64)

+ 2 r 2 2 5
p [0) on 4n“cos”B
2n°r “cos“p n L n )
- 2 r 2 2 29
p Q on 4n”cos”p
- = H - 2 2 2. - + %92 7‘2 1 - - (868)
p 2n°r“cos“p n L n )
where the superscripts + and - denote the pressure and suction side
respectively.

From equations (B.67) and (B.68) we readily obtain that the pressure
difference over a blade simply equals (by the asymptotic solution!)

. _ 2p0102
p-p = (B.69)
n
By this pressure difference the torque (7,) acting on the impeller would be
T
To = N J (p* - p7) rdr = pORri - 13) (B.70)

T2

which is exactly the well-known Eulerian value for centrifugal impellers
fitted with logarithmic spiral blades.

Finally we obtain from equations (B.67) and (B.68) that the mean ( p*) of the
pressure distribution along a logarithmic spiral blade approximately reads
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* Qz
p
- =H - —— ¢+ 1o%? (B.71)
P 21r2rzcoszﬂ 2

Equation (B.71) tells us that for small radii the pressure distribution along
a blade will show a 1/r® behaviour, whereas large radii will give a r°
behaviour. This effect is illustrated graphically in figure B.5 for the simple

case of straight radial blades.

radius

pressure

figure B.5 illustrative example of the asymptotic solution for the pressure
distribution along a straight radial blade ( p‘(r) =r - r2)
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