
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Balancing Security and Usability
in Web Single Sign-On

Ahmed Bakry Helmy Ahmed

M.Sc. Thesis
June 29, 2020

Supervisors:
Dr. A. Peter (UT)

Dr. A. Sperotto (UT)
Prof. dr. S. J. Mullender (UT & Cisco)

UT Research Chair:
Services and CyberSecurity (SCS)

Company:
Chief Technology and Architecture Office (CTAO)

Cisco Systems Netherlands,
Haarlerbergweg 13-19, 1101 CH

Amsterdam-Zuidoost

Acknowledgement

Foremost, I would like to start by expressing my sincere gratitude to my supervisor
Prof. Sape Mullender for his continuous support during my thesis. He has always
been a great professor, supervisor, manager and college. I would like to thank
him for all the valuable arguments we had throughout my thesis. During the first
two months of my thesis, I was extremely stressed and worried as I didn’t have a
clear path to follow. He used to say, while smiling, “Ahmed, don’t worry I have my
complete confidence in you. You will be more than fine. I am also sure you will finish
your thesis in a very short time.”. He was right, I shouldn’t have been very worried.
However, being worried turned out to be very positive when I received the green light
after just 4 months from starting my thesis. However, this wouldn’t have happened
without his guidance.

I would also like to thank my supervisor Dr. Andreas Peter for his continuous
feedback which was extremely helpful. I also thank him for his guidance and all the
questions he was asking which helped me in making a good plan for my thesis. I
would also like to thank Dr. Anna Sperotto for participating in my thesis committee.

Besides my supervisors, I thank my colleges: Peter Bosch, Jeffrey Napper,
Alessandro Duminuco and Julien Barbot for all the good times I spent at Cisco.
They have always been supportive on both the personal side and the professional
side.

Last but not least, I would like to thank my family and my friends who have always
kept me motivated during my quarantine time at home.

ii

Abstract

Web Single Sign-On (SSO) systems enable users to access multiple enterprise ser-
vices by authenticating once to the enterprise Identity Provider (IdP). Although SSO
improves usability, the current SSO implementations work on a per-user-application
basis. This means that users still need to authenticate for every application they use
on the same device. Moreover, Web SSO systems rely on Multi-Factor Authenti-
cation (MFA) to achieve a high-level of security, while requiring MFA for each used
application leads to frequent user annoyance. The thesis addresses this problem by
proposing a novel method for synchronizing authentication information across local
applications. This is achieved by using a local agent that acts as a local IdP for local
applications and as a local application to the main IdP. We propose three design
choices and evaluate each of them in terms of security, usability and deployability.
Moreover, a prototype for the first two designs has been implemented. The results
show that our solution improves the usability of Web SSO without compromising
security.

Furthermore, current SSO implementations do not provide a mechanism for the
IdP to synchronously push security updates (e.g., a change of authorization) to
Service Providers (SPs) without terminating the session. We address this prob-
lem by proposing a novel SSO authentication mechanism that allows the IdP to
synchronously update the current user authorization with no need for session ter-
mination (if not necessary). The proposed solution works such that the SP signals
a Call-Back URL (CBU) to the IdP when exchanging the first SSO authentication
messages. This CBU is used by the IdP to synchronously push updates towards the
SP. Examples are revoking an old authorization, renewing an about-to-expire one,
triggering MFA, limiting or extending user’s access rights. Finally, we evaluate our
solution and show that the integrity of the CBU is ensured.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Thesis Goal . 2
1.3 Research Questions . 2
1.4 Thesis Contribution . 3
1.5 Research Method . 3
1.6 Thesis Outline . 4

2 Background 5
2.1 Authentication and Authorization . 5

2.1.1 User Authentication . 5
2.1.2 User Authorization . 8

2.2 Single Sign-On . 8
2.2.1 SSO Terminology . 8
2.2.2 Cookies vs Tokens . 9
2.2.3 SSO Authentication Flow . 10
2.2.4 Web SSO Frameworks . 11

3 Overview of Less-Effort MFA Systems 14
3.1 Motivation . 14
3.2 Proximity-based Authentication . 14

3.2.1 Bluetooth . 15
3.2.2 Virtual WiFi . 15
3.2.3 Ambient Sound . 15

3.3 Context-aware Authentication . 16
3.3.1 Contextual Features . 16
3.3.2 Attacker Model . 17
3.3.3 Risk-based Authentication Systems 18

3.4 Discussion . 21

iv

4 True Per-device SSO 23
4.1 Motivation . 23
4.2 Related Work . 23
4.3 Proposed Solution . 24

4.3.1 Standard SSO Authentication 25
4.3.2 Solution Design I . 27
4.3.3 Solution Design II . 28
4.3.4 Solution Design III . 32

4.4 Evaluation . 35
4.4.1 Security . 35
4.4.2 Usability . 37
4.4.3 Deployability . 37

4.5 Discussion . 37

5 Dynamic Access Authorization 39
5.1 Motivation . 39
5.2 Related Work . 40
5.3 Proposed Solution . 40

5.3.1 SAML CoA . 41
5.3.2 OAuth CoA . 42

5.4 Evaluation . 44
5.5 Discussion . 46

6 Conclusion and Future Work 47

Bibliography 49

Appendices

A Prototype 53

Publications 54
Patent 1 . 54
Patent 2 . 56

List of Figures

2.1 User-to-device, device-to-web and user-to-web authentications 6
2.2 Types of authentication factors . 7
2.3 Single Sign-On Authentication . 10

4.1 The standard SSO user authentication mechanism 25
4.2 LIPA registration with the IdP (IdPCookie not available) 26
4.3 The LIPA provides authentication for a local application (Solution I) . . 29
4.4 Solution Design II (IdPCookie is not available) 30
4.5 Solution Design II (The IdPCookie is available at the LIPA) 31
4.6 Solution Design III (The IdPCookie is not available) 33
4.7 Solution Design III (The IdPCookie is available at the LIPA) 34

5.1 Change of user authorization (SAML SSO) 41
5.2 Change of user authorization (OAuth SSO) 43

vi

List of Tables

1.1 Research method used to answer the defined sub-questions 4

3.1 Overview of the reviewed proximity-based user-to-web authentication
schemes . 16

3.2 Overview of the reviewed risk-based authentication systems 19

4.1 Overview of the proposed LIPA design alternatives 38

vii

Chapter 1

Introduction

1.1 Problem Statement

Despite the enormous efforts being made to address security issues, the number of
companies suffering from security breaches is still increasing [1]. Developing up-to-
date security solutions does not automatically result in increased security. Reach-
ing the desired security goals depends on whether the solutions developed are ac-
cepted and thus used by users. This problem is commonly known as the security-
usability tradeoff [2]. For example, strong passwords need to be long, random and
updated regularly, making them hard to remember. Moreover, people often need to
remember multiple passwords for different services, devices or applications. As a
result, people tend to choose easy passwords or write their passwords on a note,
which puts security at risk. A recent study of 5 million exposed passwords showed
that the top two used passwords were “123456” and “123456789” [3]. Furthermore,
strong passwords can still be stolen through Shoulder Surfing attacks (i.e., observing
someone typing their password), Trojan Horse attacks, or Phishing attacks, which
are number one in data breaches [4]. Attackers may use fake emails and web-
sites that are close to being legitimate to deceive people and steal their passwords.
Therefore, additional authentication factors, such as the use of hardware tokens or
phones, are necessarily required to overcome these shortcomings. While security
can be improved, MFA has a notable effect on usability. It involves explicit additional
user interaction, which may cause occasional user annoyance, especially when it is
needed for each service.

Enterprises address this problem by providing their users with a Web SSO expe-
rience. Web SSO is an SSO system that involves a web browser or an application
that exchanges HTTP-based identity-related information between the system’s par-
ticipating entities. Web SSO allows the user to remember only one set of credentials
to access different unrelated services managed by the same authentication author-
ity (i.e., the SSO server). MFA can therefore be deployed with less friction. However,

1

the current SSO mechanism works on a per-user-application basis. This means that
each time a different application is used, the user needs to authenticate to the SSO
server. Enterprise users use multiple user agents to access the enterprise services
such as mailer apps, VPN clients, video conferencing apps, company phones, or
web browsers. Thereby, SSO still involves unnecessary extra manual user efforts.
We address this issue by proposing an improved SSO experience that reduces the
number of explicit authentications when accessing enterprise services. Our solution
improves the usability of Web SSO without compromising security. Furthermore,
SSO sessions may last for hours or even several days, especially on mobile de-
vices. Authorizing users is based on dynamic data such as device location, device
health, IP address, and user posture. Today’s SSO systems determine access au-
thorization only at the start of the session (i.e., at the time of authentication) and
therefore do not enable dynamic access authorization. In addition, when a security
incident of some sort is detected (e.g., an app vulnerability has been discovered), it
is signaled asynchronously towards the service. Administrators must then manually
examine the situation, which delays the mitigation process. In this thesis, we ad-
dress this shortcoming by proposing a novel SSO mechanism for dynamic access
authorization.

1.2 Thesis Goal

The aim of this thesis is to solve the two problems mentioned in Section 1.1; to
improve the usability of SSO without compromising security; and to enable SSO
frameworks to cope with changes in authorization and thus to improve the security
of SSO systems.

1.3 Research Questions

Based on the problem statement and the aim of this thesis, the following main re-
search question is derived:

How can we establish a balance between security and usability in Web SSO sys-
tems?

In order to answer this question, we divide it into the following sub-questions:

Q1 How well do the state-of-the-art web authentication systems maintain a
balance between security and usability? And which of the proposed solu-
tions can be deployed for Web SSO without compatibility issues?

Q2 How can the number of explicit user authentications in Web SSO be re-
duced without compromising security?

Q3 How can the change of authorization be adapted during an active session
in Web SSO?

1.4 Thesis Contribution

This thesis contributes to the state-of-the-art by:

(i) Reviewing the state-of-the-art user-to-web authentication systems in terms of
security, usability and deployability.

(ii) Proposing a novel SSO authentication mechanism that reduces the number
of explicit user authentications when using multiple applications on the same
device. We call this novel mechanism a true per-device SSO. Moreover, We
introduce three design alternatives and evaluate each of them in terms of se-
curity, usability and deployability.

(iii) Proposing a novel SSO authentication mechanism that allows SSO systems
to react dynamically to changes in user authorization without the need for ter-
minating the session. Our solution also enables MFA to be triggered during
an active session, which paves the way for continuous authentication in SSO
systems.

Two US patents have been submitted by Cisco Systems, Inc., for the two solu-
tions described in chapters 4 and 5. Note that at the time of writing this thesis, the
first submitted patent, which implements the change of authorisation procedures in
SSO, was accepted for filing. While the second patent, which provides a true per-
device SSO experience, is currently under review by the Patent Committee at Cisco.
The abstracts of the two patents are attached at the end of this thesis.

1.5 Research Method

The research methods used in this thesis to answer each of our research questions
are summarized in Table 1.1. The first sub-question is answered through a litera-
ture analysis and an evaluation of the different authentication techniques used in
the reviewed papers. While, the second sub-question comprises a design of three
possible solution alternatives with an evaluation in terms of security, usability and
deployability with a prototype of the first two designs. Finally, the third sub-question
is answered by designing a new SSO authentication mechanism and an evaluation
of the proposed design.

Table 1.1: Research method used to answer the defined sub-questions

Research Question Research Method Chapter

Q1
Literature analysis and

evaluation
Chapter 3

Q2
Design, evaluation and

prototype
Chapter 4

Q3 Design and evaluation Chapter 5

1.6 Thesis Outline

The remainder of this thesis is structured as follows: in Chapter 2, we start with a
background information explaining the terms used in the thesis. In Chapter 3, a com-
prehensive literature review on related web authentication systems is conducted to
discuss how well each system maintains a balance between security and usability.
Chapter 4 describes our novel authentication mechanism to improve the usability of
Web SSO without compromising on security. This chapter also includes a compari-
son of our three different solution designs. Chapter 5 describes how the change of
user’s authorization can dynamically be adjusted in Web SSO frameworks without
the need for terminating the session. Finally, Chapter 6 presents the conclusion,
thesis limitations and future work.

Chapter 2

Background

In this chapter, we provide a general background on the different terms used through-
out the remainder of this thesis. Moreover, we give an overview of today’s commonly
used Web SSO protocols. More specific background information and related work
are presented throughout the thesis.

2.1 Authentication and Authorization

2.1.1 User Authentication

Authentication is the first line of defense against unauthorized access attempts. It
was early defined by Lamport et al. [5] as the process where ”a user identifies him-
self by sending x to the system; the system verifies his identity by computing F (x)

and checking that it equals the stored value y”. This early definition is still valid today,
although different authentication factors can be used. In this section, an overview of
the methods used for user authentication is provided and the terms included in this
study are further explained.

Modes of Authentication

There are different authentication modes for web authentication, depending on the
authenticating entity and the location of the verifier. These modes are shown in
Figure 2.1 and explained as follows:

(i) User-to-device: In this mode, the user authenticates to a local device (e.g.,
smartphone) by typing a password or via physical biometrics (e.g., finger-
prints). The device then verifies the received credentials and grants the user
access accordingly.

(ii) Device-to-web: In this mode, the device authenticates itself to the remote
server by submitting a signed assertion using a locally stored cryptographic

5

user-to-web

device-to-webuser-to-device

Figure 2.1: User-to-device, device-to-web and user-to-web authentications

key (e.g., a device certificate). This operation is usually invisible to the user
and involves no explicit user interaction.

(iii) User-to-web: The standard method for authenticating users on the web is done
by typing a password in a web form, which is submitted to the web server
over the internet for verification. Although the password is entered on a local
device, this device is a passive object that does not perform any verification on
behalf of the server. Some user-to-web authentication schemes consist of two
stages; user-to-device then device-to-web. For example, a banking app may
authenticate the user via biometrics, which unlocks a locally stored key used
by the application to authenticate itself to the server.

Types of Authentication Factors

There are different types of authentication factors that people can use to prove their
identity. These factors are shown in Figure 2.2, and explained as follows:

(i) Knowledge-based factor (something the user knows): This factor relies on the
knowledge of a secret such as a PIN, a password or security questions.

(ii) Ownership-based factor (something the user owns): The possession of physi-
cal objects such as smartphones, smart cards, or physical tokens.

(iii) Physical biometrics (something the user is): Examples are fingerprints, facial
recognition and Iris.

(iv) Behavioural biometrics (something the user does): Examples include mouse
and keystroke dynamics, gait analysis, applications usage and mobility pat-
terns.

Single-Factor vs Multi-Factor Authentication

Knowledge-based factor was the first to be used due to its simplicity and ease of
use. However, it has been shown to be vulnerable to multiple attack vectors and

Knowledge Factors

Passwords, PIN, Security
Questions

Ownership Factors

Smartphone, SmartCard,
OTP

Physical Biometrics

Fingerprints, Iris, Face
Recognition

Behavioural Biometrics

Mouse and Keystroke
dynamics, Gait

Figure 2.2: Types of authentication factors

insufficient in proving the user’s identity [6]. Other authentication factors are usually
used for stronger authentication to overcome this shortcoming. Depending on the
number of (different) factors, authentication can be categorized as:

(i) Single-Factor Authentication (SFA): The use of one factor such as a user-
name/password pair.

(ii) Two-Factor Authentication (2FA): The use of two different factors such as pass-
words and biometrics.

(iii) Multi-Factor Authentication (MFA): The use of two or more different authenti-
cation factors.

Implicit vs Explicit Authentication

User authentication can further be categorized in terms of the amount of effort made
by users to prove their identity as:

(i) Implicit authentication: The authentication process is transparent to the end
user. For example, the system may authenticate users when they approach
their devices (i.e., proximity) or by evaluating their typing behaviour.

(ii) Explicit authentication: The authentication process involves an explicit user
interaction such as typing a password or answering a security question.

Start-of-session vs Continuous Authentication

User authentication can be categorized based on the time when the system verifies
the identity of the user as:

(i) Start-of-session authentication: The user is authenticated once at the begin-
ning of each session. After a successful authentication, the system provides
the user with an identifier in the form of a session cookie. As long as the cookie
is valid, the user is not asked for authentication.

(ii) Continuous authentication: An authentication mechanism that periodically ver-
ifies the user’s authenticity throughout the session. Continuous authentication
systems use behavioural dynamics for implicit authentication and trigger MFA
when there is sufficient doubt about the identity of the user.

2.1.2 User Authorization

Authorization is the process of granting the user access to the requested resource
based on the system’s predefined policies and the user’s role. It happens as a result
of valid authentication by consulting a database containing user access rights. It
specifies which resources and services users may have access to after proving that
they are, in fact, who they claim to be. For example, bank customers can set up
an online account to access the online service of the bank; however, the system
must ensure that each customer can only access his or her account and not other
customers’ accounts.

2.2 Single Sign-On

Single Sign-On (SSO) [7] is an umbrella term for managing the identity and access
rights of users by a single trusted entity (i.e., the SSO server). It allows users to
access multiple services or applications by authenticating to this trusted entity only
once. It was first introduced as in an enterprise solution that gives users access to
multiple enterprise applications with one time login. However, over time, its aim has
changed from enterprise to the web. With SSO, users do not need to remember
more than one set of credential (i.e. username and password) stored in a unified
identity management database. Without SSO, each website needs to maintain its
own database of user credentials, and users need to log in whenever they need
access to another service. SSO therefore improves usability by reducing the number
of authentications. While it improves security as users need to remember only one
password to access multiple services that they can choose to be strong.

2.2.1 SSO Terminology

This section explains the common terms and definitions used in SSO authentication
protocols. The following are the entities participating in the SSO authentication flow:

(i) Identity Provider (IdP): An entity that is trusted by service providers and is
responsible for authenticating users and storing their identity information. After
successful authentication, the IdP issues an assertion that contains the identity

attributes of the user, which are used by the service provider to identify the
user.

(ii) Authorization Server (AS): An entity responsible for managing user access
rights (i.e., authorization) and creating access tokens. Note that the IdP can
also function as an authorization server when it issues the access tokens.

(iii) Service Provider (SP): An entity that provides a certain service to users, which
is protected by a security guard. When the user sends an access request to
the SP, the security guard requests an authorization from the user.

(iv) User Agent (UA): Software running on the user’s device. It can be a browser
(external or embedded in a local app) or a local native application. It is used
by the user to communicate with the web servers.

Note that other terms for the same entities may also be used by different SSO
protocols such as OAuth2.0. However, all Web SSO authentication protocols share
the same general terminology as defined in this section.

2.2.2 Cookies vs Tokens

Cookies

The Hypertext Transfer Protocol (HTTP) [8] is a stateless protocol, in which every
request is served independently by the web server. In other words, there is no link
between requests sent over the same connection. Although HTTP is stateless, it is
not sessionless. Netscape [9] extended HTTP with a mechanism that allows web
servers to keep track of the status of the user’s connection. This mechanism works
by communicating session identifiers with each request sent to the server. When
the user authenticates to the server, it creates a unique identifier (i.e., a cookie)
and sends it to the browser in the HTTP set-cookie parameter. The browser then
saves this cookie and includes it in every request it sends to the same web server.
The server uses this identifier, which is stored in the cookie, to check the identity
information and authorization associated with the user. Moreover, an HTTP cookie
may be sent to only the web server that created it (i.e., a host-only cookie) or to a
number of sub-domains by specifying the domain attribute of the cookie. It is also
important to set the secure attribute to force the browser to send the cookie securely
over HTTPS. HTTP Cookies are used in SSO systems to continuously check the
authenticity of the user and thus avoid the need for re-authentication when the user
moves from one service provider to another.

SP1 SP2 SP3

IdPAS

22 2

4

6

3
8 7

10

1&9
10

1&9

10

1&9

5 Identity Token

Access Token

Figure 2.3: Single Sign-On Authentication

Tokens

SSO tokens are objects communicated between the IdP and the SP (via the UA) and
contain the user’s identity and authorization attributes. The information contained in
the token is either stored in the server’s local storage and accessed by a reference
stored in a cookie, or in the cookie itself. Moreover, tokens differ in the way they are
secured, and in their notations (e.g., JSON, XML, etc.) according to the used SSO
solution. The access token may directly carry the attributes, and must therefore be
signed by the IdP (e.g., SAML tokens) or may contain a reference to an internal
database containing the attributes (e.g., OAuth 2.0).

2.2.3 SSO Authentication Flow

The general SSO authentication flow, as shown in Figure 2.3, works as follows:

1. The user (via the UA) tries to access a resource at the SP. If a valid access

token exists, go to step 9.

2. The SP redirects the UA to the IdP for authentication.

3. The IdP asks the UA for login credentials.

4. The UA presents the login page to the user.

5. The user enters the login credentials.

6. The UA sends the login credentials to the IdP.

7. If the IdP is satisfied about the user’s identity, it sends an identity token to the
AS. Otherwise, repeat step 3.

8. The AS checks the user’s access rights, creates an access token, and sends
it to the UA.

9. The UA tries to access the resource using the access token.

10. the SP grants access to the requested resource.

2.2.4 Web SSO Frameworks

This thesis is targeted for user-to-web authentication; therefore, we focus on the
SSO solutions used for the web. Moreover, we focus on the most commonly used
Web SSO frameworks such as SAML, OpenID Connect and OAuth2.0 [10]. There
are still other SSO solutions, such as Kerberos [11]. However, Kerberos is mostly
used in network authentication systems and is barely used for Web SSO. Therefore,
it is discarded from the thesis.

Security Assertion Markup Language (SAML)

SAML [12] is an XML-based SSO framework developed by the OASIS Security Ser-
vices Technical Committee (SSTC). It provides authentication and authorization by
exchanging security information across multiple business partners in the form of
SAML assertions. These assertions are signed, and if the signing entity is trusted,
the SAML assertions can be trusted too, also across security-domain boundaries.
SAML is supported by a number of service providers such as Amazon, Google,
Salesforce, Box, and many others. The SAML standard defines exact rules and
syntax for handling these assertions. The roles (i.e., entities) involved in the SAML
authentication process are defined in Section 2.2.1. SAML supports two types of
binding for the communication of assertions between the IdP and the SP; the HTTP

redirect binding and the HTTP POST binding. The redirect binding is used for com-
municating short SAML messages (i.e., SAML requests), while long SAML mes-
sages (i.e., SAML responses) are communicated using the HTTP POST binding.
Security in SAML depends on the underlying trust model, which depends on the key
management infrastructure. SAML messages are secured by means of an XML sig-
nature, and this is considered true only if the keys used in the exchange are trusted.
The signature is intended to provide message integrity, while confidentiality can be
achieved through end-to-end encryption (e.g., SSL and/or TLS).

Open Authorization 2.0 (OAuth2.0)

OAuth2.0 is an SSO protocol used for authorization purposes and not for authentica-
tion. However, a valid authorization implies that the user is indeed authentic. Autho-
rization in OAuth 2.0 is represented by an access token that contains access rights
and not identity information. On the other hand, authentication is handled using the
OpenID Connect framework [13], which is an identity layer on top of OAuth 2.0. It
introduces another token called an identity token, which contains the user’s identity
attributes. Similar to the SSO terminology defined in Section 2.2.1, the OAuth 2.0
authorization flows involve the following entities:

(i) Resource Owner: An entity that can grant access to the owned resource. This
is typically the end user who owns the requested resource.

(ii) Client: The application code requesting access to a certain resource on behalf
of the end user. The client may exist on the server (i.e., a web application), on
the device (i.e., desktop/mobile application), or on the browser itself.

(iii) Resource Server: The service provider (i.e., similar to SAML SP) which hosts
the protected resources.

(iv) Authorization Server: The identity provider which authenticates the end user
and issues authorization tokens.

(v) User Agent: A browser or a native application used by the end user to interact
with the client.

The OAuth 2.0 standard defines various authorization flows according to the lo-
cation of the client. In this thesis, we consider the code authorization flow in which
the client is a web or a desktop application interacting with the website. The Implicit
Flow, Resource Owner Flow and Client Credential Flow are of less interest to this
research and are therefore discarded. In the Code Authorization Flow, the AS sends
an authorization code to the UA. The UA then forwards this code to the client that

uses it to request the access token from the AS. This is different from the autho-
rization steps described in Section 2.2.3 as the access token is not issued directly.
In OAuth 2.0, bearer tokens (e.g., the authorization code), which are used to ob-
tain access tokens, are sent as unsigned URL parameters. In order to ensure that
the access token can only be obtained by a legitimate client, the identity token is
also sent to the AS with the authorization code (via HTTP POST). Security in OAuth
2.0 therefore depends on the protocol implementation (e.g., the used authentication
protocol) and relies on the security of TLS.

Chapter 3

Overview of Less-Effort MFA
Systems

3.1 Motivation

The main thesis goal is to explore ways to establish a good balance between se-
curity and usability in Web SSO systems. These systems rely on MFA for a higher
level of security, usually requiring manual user interaction (e.g., using an OTP gener-
ator). Multiple authentication solutions have been proposed to achieve this balance
by requiring explicit user interaction only when there are sufficient doubts about the
identity of the user. Examples of such solutions are proximity-based or risk-based
authentication. In this chapter, we discuss how this balance is addressed in the
state-of-the-art user-to-web authentication systems, and hence answer the first re-
search sub-question. Moreover, based on the literature review, we conclude by
making recommendations on how this balance can be established in Section 3.4.

3.2 Proximity-based Authentication

Proximity-based web authentication systems use the proximity of two different de-
vices (e.g., a smartphone and a laptop) as a second transparent authentication fac-
tor. The system determines proximity by cross-checking the information it receives
from both devices. In this section, we evaluate the security and deployability of ex-
isting proximity-based authentication schemes (i.e., Bluetooth, WiFi, and ambient
sound). Other techniques, such as comparing the GPS coordinates of the two de-
vices [14], require the use of special hardware (i.e., GPS sensors) and are therefore
not considered.

14

3.2.1 Bluetooth

PhoneAuth [15] is a proximity-based transparent 2FA solution that leverages Blue-
tooth for short range communication between the user’s computer and their phone.
The system implements a challenge-response protocol between the remote server
and the application running on the user’s phone. First, the user logs in to the web
server using a username and password pair. The server then issues a login ticket
and sends it to the application via an API exposed by the computer’s browser. When
the ticket is received, the application signs it using the stored private key and sends
the signed ticket back to the browser over an authenticated Bluetooth channel. Fi-
nally, the browser uses the ticket to complete the login process. PhoneAuth improves
the usability of web authentication by introducing a transparent second authentica-
tion factor. However, it requires exposing a Bluetooth API by the browser, which is
not yet supported. Furthermore, the security of the proposed solution relies on the
authenticity of the Bluetooth channel. In the case of an unauthenticated channel, a
co-located attacker (e.g., using a powerful antenna) will manage to log in using only
the username and password despite the proximity check. However, the system is
resilient to remote attacks, regardless of the authenticity of the channel.

3.2.2 Virtual WiFi

Shrivanian et al. [16] propose an alternative approach that uses WiFi for proximity-
based authentication. Similar to PhoneAuth, a challenge-response protocol is im-
plemented between the remote server and the phone (via., the computer’s browser).
Their solution requires both devices to be connected to the same wireless channel.
The authors use a special software that creates a virtual, therefore secure, WiFi
connection between the two devices. The system is resilient to both remote and co-
located attacks and adds a significant usability improvement without compromising
security. However, it still requires the use of special software (i.e., to create a virtual
WiFi), which needs to be installed on every newly used device.

3.2.3 Ambient Sound

Sound-Proof [17] is a proximity-based 2FA solution targeted for web authentica-
tion. The proximity is verified by comparing the ambient sound recorded by both
devices. The user’s computer, first, transmits the recorded sound to an application
running on the user’s smartphone over the Internet. The application then verifies
that the received sound matches the one it has recorded and sends a signed as-
sertion to the web server accordingly. It can also provide continuous authentication
by periodically comparing the two ambient sounds to ensure the two devices remain

Table 3.1: Overview of the reviewed proximity-based user-to-web authentication
schemes

Work Approach Security Usability Deployability

[15] Bluetooth

Resilient to both
remote and co-located
attacks when using an
authenticated channel

Transparent
2FA

Requires a Bluetooth
API to be supported

by the browser

[16]
Virtual
WiFi

Resilient to both
remote and co-located

attacks

Transparent
2FA

Requires a computer
software to create a

virtual WiFi
connection

[17]
Ambient
sound

Resilient to remote
attacks only

Transparent
2FA

Requires HTML5 and
WebRTC API to be

supported

in close proximity. However, this may affect the phone’s battery life. The authors
show that their proposed solution is resilient to remote attacks, even if the attacker
has sufficient knowledge of the user’s environment. For example, by embedding a
malicious application on the user’s phone to record the ambient noise around the
user. Moreover, replay attacks are prevented by time stamping the recorded sound.
Although achieving significant usability improvement with an almost zero false re-
jection rate, Sound-Proof is not resilient to co-located attacks. Finally, the system
requires HTML5 and the WebRTC API to be supported by browsers.

3.3 Context-aware Authentication

Context-aware authentication systems aim to improve the usability of MFA by relying
on context checking as an implicit authentication factor. They are also known as risk-
based or adaptive authentication systems, in which the number and type of explicit
factors are determined based on an estimated risk score and preconfigured policies.
In this section, we discuss the security of these systems with respect to the attacks
listed in Section 3.3.2.

3.3.1 Contextual Features

The following contextual features are commonly used by risk-based authentication
systems to build a behavioural profile for each user or group of users.

(i) Geolocation: The geolocation can be determined by several means (e.g., GPS,

WiFi, cellular triangulation, or IP2Geolocation databases [18]). Modern web
browsers usually expose APIs through which the website can request users’
consent to obtain their coordinates. However, geolocation accuracy depends
on the used technique and whether the device is located indoors or outdoors.

(ii) Time features: Time plays an important role in authentication decisions. Ex-
amples of used time features are login time, time of day and day of week. Ge-
olocation and time of day are usually combined to determine the geovelocity of
the user. For example, it is considered suspicious when a user authenticates
from Amsterdam, while the last login attempt was from San Jose two hours
ago.

(iii) Browser fingerprinting: Web browsers reveal information about the device on
which they run. Although this is mostly used for device-to-web authentication,
risk-based authentication systems use this information to build a user-related
device profile. However, this method of device identification is not very accu-
rate, as most of the identified features can be spoofed and are not identical per
device. Some of the revealed attributes are browser type and version, operat-
ing system, user-agent string, cookies, supported languages, installed fonts,
screen resolution, and active plugins.

(iv) Behavioural features: Behavioural-based features (e.g., mouse and keystroke
dynamics) are mostly used for continuous authentication. However, some risk-
based authentication systems combine them with contextual features to im-
prove security. The effect of behavioural-based features on usability is dis-
cussed in Section 3.4.

3.3.2 Attacker Model

In our security analysis, we assume that the attacker has managed to obtain the
user’s password. We exclude the ability of the attacker to record and imitate user
behaviour (e.g., mouse and keystroke dynamics). Moreover, we exclude the case
where the attacker steals the MFA device (e.g., YubiKey or phone). These are ex-
tremely powerful attacks and not considered in the analysis. The following attacks
are considered to assess the security of the reviewed systems:

A1 Context guessing and spoofing: In this attack, the attacker attempts to imper-
sonate the user by guessing and spoofing the contextual features (e.g., time
of day, geolocation, etc.).

A2 Phishing and spoofing: In this attack, the victim visits a phishing website that
captures both the password and multiple contextual features. The attacker

then attempts to spoof the captured attributes to impersonate the legitimate
user.

A3 Session hijacking and context spoofing: In this attack, the attacker steals the
session cookie by exploiting Cross-Site Scripting (XSS) vulnerabilities, or via
an improperly configured HTTPS connection [19], and attempts to spoof the
contextual features. Alternatively, the attacker can physically access the au-
thenticated device.

3.3.3 Risk-based Authentication Systems

Rocha et al. [20] introduce a risk-based authentication system in which the user
behaviour is represented by a set of events related to an executed activity. The
system builds three profiles for each user; an explicit, implicit and session profile.
The explicit profile is constructed during the user’s first interaction with the system
by explicitly collecting information from the user’s device (e.g., calls and schedules).
The implicit profile is created by processing users’ actions and their spatio-temporal
characteristics using a Vector Space Model (VSM) as in [21]. The session profile
consists of the current status of the user (i.e., context) and the last performed ac-
tions. Both the session and the implicit profiles consist of the used device, location,
timestamp, the requested application and its sensitivity. The system calculates the
degree of similarity between the two profiles using a VSM permutation model to
classify a login event as normal, abnormal or suspicious according to predefined
thresholds. When an abnormal or suspicious event is detected, a security question
is presented to the user as an additional authentication factor. The success of A1
and A2 depends on the used contextual features, which are not clearly indicated in
the paper. For example, the paper does not indicate how the device is being iden-
tified. Moreover, it depends on the system’s predefined risk thresholds (i.e., high
threshold leads to high success probability). We therefore consider the systems to
be partially resilient to A1 and A2. Since the authenticity of the user is checked only
at the start of the session, the system is not resilient to A3. Furthermore, the system
relies on challenge questions, which are not a strong form of MFA.

Bakar et al. [22] propose an adaptive context-aware authentication system built
on top of a unified authentication platform (i.e., an SSO system). The system fol-
lows a rule-based approach to classify login activities as normal or abnormal based
on predefined trust-level thresholds. An event is considered to be normal if it has
occurred more than 10 times in the last 14 days and if its frequency of occurrence
is more than 30%. Each login event is represented by the following attributes: time
of day, geolocation (i.e., IP to geolocation), the requested application, browser type
and operating system. Each attribute is assigned a preconfigured weight that con-

Table 3.2: Overview of the reviewed risk-based authentication systems

Work Features Algorithm Security

[20]
Device, location, timestamp,

application, application
constraints

Vector Space
Model (VSM)

Partially resilient
to A1 & A2,

non-resilient to A3

[22]
Time of day, geolocation,

application, browser, operating
system

Static rules
Partially resilient

to A1 & A2,
non-resilient to A3

[23] IP address, user agent
Logistic

Regression

Less resilient to
A1 & A2,

non-resilient to A3

[24]

Browser, useragent, device
model, software version, colour

depth, language, screen
resolution, plugins (client-side); IP
address and range, geolocation,

time of access and request
headers (server-side)

Hoeffding
trees

Resilient to A1 &
A2, non-resilient

to A3

[25]
login time, IP address, country

and useragent string; mouse and
keystroke dynamics

Random
Forest

classifier

Resilient to A1,
A2 & A3

tributes to the user’s attribute penalty. The system deploys four different authentica-
tion methods; password, OTP token, smsPIN, and digital certificate. Each method
is assigned a trust score according to the strength of the presented authentication
factor. The final trust score is calculated by subtracting the user’s attribute penalty
from the trust score of the used authentication factor. The system presents an ad-
ditional authentication factor when the final score is less than that is required by the
requested application. For low-risk applications where passwords are sufficient, A1
and A2 are likely to succeed, as the used contextual features can be spoofed. How-
ever, for high-risk applications where a second authentication factor is presented,
both A1 and A2 are not sufficient to gain access. Moreover, the system does not
continuously verify the identity of the user and therefore it is not resilient to A3.

Freeman et al [23] conducted the first public assessment of risk-based authen-
tication systems by designing Reinforced Authentication; a context-aware adaptive
authentication framework. The system follows a statistical machine learning ap-
proach using two attributes; IP address and user agent string. Multiple features are
extracted from these attributes, such as symbolic location (i.e., country and city),

IP address reputation, OS type and version and browser. The algorithm compen-
sates for unseen events by using multiple smoothing techniques such as Backoff
smoothing and Linear Interpolation. The algorithm is tested using a real life dataset
from LinkedIn resulting in a recall of 89% at a false positive rate of 10%. The used
attributes can easily be spoofed; however, spoofing the same IP address for two-
way communication is not useful. The system is not resilient to an internal attacker
sharing the same public IP address of the user’s device. Moreover, a remote at-
tacker may obtain an IP address from the same ISP to gain access. The system is
therefore not resilient to both A1 and A2. Although the system aims to strengthen
password-based login and not to completely get rid of MFA, A3 is likely to succeed
due to the absence of continuous user authentication.

Preuveneers et al. [24] designed SmartAuth; a context-aware continuous au-
thentication platform built on top of OpenAM. The system provides periodic context
validation to continuously verify the user’s authenticity by using Hoeffding trees [26].
The system collects two classes of features; client-side and server-side. The client-
side features include browser, user agent, device model, software version, colour
depth, language, screen resolution and plugins. While the server-side features are
IP address, IP range, geolocation, time of access and request headers. For each
attribute, the user must provide consent before it can be collected and used. Each
attribute is assigned a dynamic score based on the obtained consent. The system
preserves user’s privacy by hashing the client-side fingerprints using a similarity-
preserving hash function before they are sent over the network. To prevent phishing
and replay attacks, the system adds counters and timestamps to the fingerprints
before they are hashed. These fingerprints are compared to the last received finger-
prints to check their validity. For an invalid fingerprint, an OTP (e.g., sent via SMS
or email) is required as an additional authentication factor. Although hashing the
device fingerprint with a counter makes the system resilient to both A1 and A2, this
is inefficient for an attacker employing A3 to steal the session cookie. An attacker
employing A3 is able to steal both the counter and the cookie.

Solano et al. [25] propose a risk-based authentication mechanism that combines
browser fingerprinting and behavioural dynamics into one model. The former con-
sists of login time, IP address, country and user agent string. While the latter is a
combination of mouse and keystroke dynamics. Login features are converted into a
vector of normalized probabilities computed by estimating the likelihood of each fea-
ture value and assigning 1 to the most likely one. Moreover, mouse and keystroke
dynamics are combined into a single-feature vector. The system uses one separate
Random Forest classifier for each vector. The results of the two classifiers are then
combined into a single model using a linear convex combination of equal weight.
The proposed model is evaluated using two real datasets; a browser fingerprinting

dataset from the banking domain, and The Wolf Of SSUTD (TWOS) dataset [27],
which contains mouse and keystroke dynamics. The results show a reduction in the
false negative rate (i.e., undetected attacks) at the expense of a high false positive
rate. For a threshold between 0.2 and 0.25, the model achieves a false negative
rate of 1.9%-3.5% at the cost of 35%-24.6% false positive rate respectively. In other
words, one out of four legitimate users will need to preform 2FA. The authors argue
that these detection rates are due to the used dataset, where 75% of the entries are
attacks. The system is clearly resilient to both A1 and A2, as the attacker needs to
capture and replay the user behavioural dynamics, which is considered extremely
difficult. Furthermore, the user’s authenticity is periodically verified, making the sys-
tem resilient against A3.

3.4 Discussion

In this chapter, we have reviewed the state-of-the-art web authentication systems
addressing the balance between security and usability to answer the first sub-ques-
tion. Proximity-based authentication systems can achieve a good balance by estab-
lishing a secure and transparent second authentication factor. However, some de-
ployability issues arises; both [15] and [16] require the use of special plugins that are
not compatible with current browsers. On the other hand, [17] does not require the
use of a special software, however it is not resilient to co-located attacks. A compar-
ison between the three papers is shown in Table 3.1. Moreover, risk-based authenti-
cation systems address this balance by triggering MFA only when there are sufficient
doubts about the identity of the user. These doubts are determined through a risk
assessment by checking the current context against the reference profile of the user.
However, the used contextual features are susceptible to spoofing. Preuveneers et
al. [24] adds additional spoofing resistance by dynamically varying the used client-
side contextual attributes and hashing them with a counter. However, an attacker
stealing the user’s device may succeed to authenticate only by using the stolen
password. Furthermore, combining behavioural biometrics with contextual features
creates resilience against the three defined attack vectors, such as in [25]. However,
relying on behavioural biometrics may affect the desired balance, since they are very
complex to deploy, sometimes turn intrusive, and may change over time. Therefore,
the user of behavioural biometrics for context-aware web authentication systems is
still an open issue. A summary of the reviewed risk-based authentication systems is
given in Table 3.2.

To achieve a good balance between security and active user involvement, we
recommend the use of contextual features alongside MFA. Although, the contex-
tual features can be spoofed, they can still improve the security of SSO systems by

choosing an appropriate second authentication factor such as in [22]. In the desired
system, guessing attacks can be mitigated by setting a maximum number of failed
logins and using a stronger form of MFA accordingly. Phishing attacks can also be
mitigated by using two (or more when necessary) different authentication factors
(e.g., a password and a smartphone). The risk of session hijacking and context
spoofing can be reduced by ensuring the use of proper TLS connections and edu-
cating users about safe browsing (i.e., to reduce the risk of XSS attacks). However,
detecting device theft during an authenticated session without affecting the system’s
usability is still a challenge. People should be instructed not to leave their devices
unattended without taking proper measures (e.g., logging out, turning the screen
off, etc.). To improve usability (i.e., reduce active user involvement), we propose a
novel SSO authentication mechanism to synchronize the authentication information
(i.e., session cookies) between multiple applications on the same device in Chapter
4. Finally, in Chapter 5, we propose a novel mechanism to dynamically adapt the
user’s authorization according to the user’s posture. The proposed mechanism also
allows MFA to be triggered during an authenticated session to reduce security risks
when anomalies are detected.

Chapter 4

True Per-device SSO

4.1 Motivation

Enterprise SSO infrastructures enable users to authenticate with a single (trusted)
entity (i.e., an IdP or SSO server). Once the user has authenticated for one service,
via passwords and/or additional authentication factors, this authentication can serve
for another service as long as the user has a valid session with the IdP. Users do
not need to manually re-authenticate as they move from one service to another.
However, the current SSO authentication mechanism only works on a per-user-
application basis. This means that users can authenticate only once per session
to access any of the services that they are authorized to use, provided that they
use the same application. When using another application, the user must manually
re-authenticate from the same device. In this chapter, we address this problem by
proposing a novel, true per-device SSO experience for all applications on the user’s
device. True per-device SSO enables users to access the enterprise services from
multiple applications with manual authentication only needed once per session. Our
design goals are to improve usability (i.e., reduce the manual efforts involved when
using multiple applications during a session) without compromising security (i.e.,
without introducing a new attack vector). Moreover, the proposed solution must be
deployable on current SSO systems without requiring any modifications at service
providers or client applications.

4.2 Related Work

Logan et al. [28] propose a method for synchronizing authentication information (i.e.,
session cookies) between multiple browsers. In their solution, a remote proxy server
is used to manage cookies on behalf of browsers. However, this only works for one
type of application (i.e., a browser) and therefore does not provide the user with
a true per-device single-sign-on experience. Moreover, authentication cookies are

23

stored remotely and provided to the browsers when a request is received from the
same IP address. This is clearly problematic as devices behind the same NAT box
share the same public IP address.

Cox et al. [29] have improved usability of the Plan 9 operating system used in
Bell Labs by introducing a central component called Factotum. It is a trusted agent
that takes control of all security interactions on behalf of all local applications or
servers on the machine on which it operates. Moreover, it protects itself from be-
ing paged out to disk, against being debugged, and provides a central location for
storing secrets and running security protocols. Although Factotum meets our us-
ability and security design goals, it is never used for SSO purposes. To the best of
our knowledge, there is no study that provides the user with a true per-device SSO
authentication experience.

4.3 Proposed Solution

Similar to Factotum, our solution includes a trusted agent running locally on the
user’s device that manages the authentication for the local applications. However,
it stores only the SSO session cookies and not user secrets. These cookies are
only valid for the duration of a session or when the user logs out. Depending on the
design choice, the local agent may only interact with the local applications on behalf
of the IdP. Alternatively, it may act as a proxy that interacts with the IdP on behalf
of the applications. It therefore behaves as an IdP for local applications and as a
trusted application for the IdP, so we call it a Local Identity Provider Agent (LIPA).
For this to happen, we propose three design alternatives for our novel authentication
mechanism. In designs I and II, the IdP is aware of the LIPA existence and neither
the applications nor the service providers need to be modified. Moreover, in case
the IdP code cannot be modified, we propose a third design that does not require
any modifications at any of the three participating entities. The three solutions are
presented and discussed in Sections 4.3.2, 4.3.3 and 4.3.4. In this chapter, We
introduce the following new entity participating in the SSO authentication flow:

• LIPA: a local application that manages authentication and authorization infor-
mation across multiple applications on the same device.

Since the thesis focuses on web (i.e., cookie-based) SSO protocols such as
SAML and OpenID, the following two session cookies need to be distinguished:

(i) Identity Provider Cookie (IdPCookie): A session cookie that is installed on
the UA by the IdP using the HTTP set-cookie header. It identifies the user’s
session with the IdP and is sent by the UA to the IdP within each subsequent
request.

(ii) Service Provider Cookie (SPCookie): A session cookie that is installed on the
UA by the SP using the HTTP set-cookie header and acts as a reference to the
user’s session information (e.g., authorization and identity attributes) stored at
the SP.

In the proposed authentication mechanism, only the IdPCookie is synchronized
between the applications by the LIPA. This avoids the need for additional manual
authentication when using another application for the first time in a session.

4.3.1 Standard SSO Authentication

In this section, we present how the standard SSO authentication flow operates be-
fore introducing the LIPA. The flow is shown in Figure 4.1 and works as follows:

User User Agent IdP SP

[1] Starts application

[2] HTTP Get sp.com/service.php

SPCookie is
not available

[3] HTTP Redirect idp.enterprise.com [SAMLRequest]

[4] HTTP Get idp.enterprise.com [SAMLRequest]

IdPCookie is
not available

[5] Login Request[6] Displays Login Forum

[7] Enters username&password [8] HTTP Post idp.enterprise.com [username, password]

Validates user
credentials

Accepts push
notification
using Duo App

ref [9] Duo push notification

[10] MFA response

opt [Multi-factor Authentication]

[11] HTTP redirect sp.com [SAMLResponse, set-cookie: IdPCookie]

Installs the IdPCookie

[12] HTTP Get sp.com/service.php [SAMLResponse]

Validates the SAML
response, generates
a SPCookie

[13] HTTP Get resources [set-cookie: SPCookie]

Figure 4.1: The standard SSO user authentication mechanism

User LIPA IdP SP

[1] Starts device

[2] HTTP Get /service.php

SPCookie is
not available

[3] HTTP Redirect IdP [SAMLRequest]

[4] HTTP Get IdP [SAMLRequest]

IdPCookie is
not available

[5] Login Request[6] Login Forum

[7] Enters username&password [8] HTTP Post IdP [username, password]

Validates user
credentials

Accepts push
notification
using Duo App

ref [9] Duo push notification

[10] MFA response

opt [Multi-factor Authentication]

[11] HTTP redirect SP [SAMLResponse, set-cookie: IdPCookie]

Stores a copy of
the IdPCookie

[12] HTTP Get /service.php [SAMLResponse]

Parses the SAML
response, generates
a SPCookie

[13] Http Get resources [set-cookie: SPCookie]

Figure 4.2: LIPA registration with the IdP (IdPCookie not available)

1. The user requests a resource by using a UA for the first time. This request is
sent to the back-end server of the SP without an authorization grant (i.e., the
SPCookie).

2. The SP observes the absence of the SPCookie and redirects the UA to the IdP
with an encoded authentication request (e.g., in the form of a SAML request).

3. The UA forwards the request to the IdP.

4. First, The IdP checks the user’s authentication status by validating the IdP-
Cookie. In this scenario, the user is not yet authenticated. The IdP therefore
initiates an authentication dialogue with the UA asking the user to authenticate
(e.g., via password and/or MFA).

5. After a valid authentication, the IdP installs the IdPCookie on the UA that allows
the UA to re-authenticate without resubmitting the password. Moreover, the
IdP provides the UA with an authorization token (e.g., in the form of a SAML
response) that allows the UA to authenticate to the SP, and finally redirects the
UA back to the SP.

6. Before visiting the SP with the authorization token, the UA installs the IdP-
Cookie, and then forwards the response to the SP.

7. Finally, the SP validates the authorization token, installs the SPCookie on the
UA, which acts as a reference to the validated token, and replies with the
requested resource.

4.3.2 Solution Design I

In the first design, the IdP is aware of the existence of the LIPA, which is started
before any other application can be used (e.g., when the device is started). In order
to obtain an IdPCookie from the IdP, the LIPA sends an access request to a ser-
vice provided by the IdP. When the IdP is satisfied with the LIPA’s identity (via, e.g.,
password and MFA), it generates an authorization token for the LIPA and provides
an IdPCookie to the LIPA. The LIPA stores the cookie and uses it for its future inter-
actions with the IdP. This results in the registration of the LIPA with the IdP as shown
in Figure 4.2. When the IdP receives a request from another UA, it redirects the UA
with the request to the LIPA to obtain the IdPCookie as shown in Figure 4.3. The
modified SSO authentication flow becomes:

1. After the LIPA registration is complete, the user requests a service using a UA
for the first time. The UA sends an access request to the back-end server of
the SP. This time without the SPCookie.

2. The SP redirects the UA to the IdP with an encoded authentication request
(e.g., a SAML request) as a parameter in the redirect URL.

3. The UA visits the IdP with the authentication request and without an IdPCookie.
Then the IdP redirects the request to the LIPA.

4. The UA now sends the request to the LIPA, which is running on localhost.

5. The LIPA ensures that the request is sent by a local application and includes
the authentication cookie it has in the HTTP set-cookie header. Finally, the UA
is redirected back to the IdP.

6. The UA stores the cookie for the IdP domain (i.e., *.idp.enterprise.com) and
includes it in the requests it sends to the IdP.

7. The IdP validates the cookie, provides the UA with an authorization token ,and
redirects the UA back to the SP.

8. The SP validates the authorization token it receives from the UA, and replies
with the requested resource as well as a reference to the authorization token
(i.e., SPCookie).

This solution requires the LIPA to authenticate to the IdP before any other appli-
cation can be used. The LIPA must therefore be started when the device is started.
Moreover, the IdP needs a reliable way to identify the device from which it receives
the request to verify the presence of the LIPA. For managed devices, the device
can be identified using digital certificates. However, for unmanaged devices, there
is no accurate method for checking the presence of the LIPA. A possible solution to
overcome this problem is discussed in Section 4.3.3.

4.3.3 Solution Design II

In this solution, the LIPA does not need to register itself with the main IdP when the
device is started. Instead, the IdPCookie is stored when the user requests a service
using the first UA in a session. In this solution, the LIPA’s URL is a subdomain of
the main IdP (e.g., local.idp.enterprise.com). This URL is registered in DNS with
the same IP address as of the IdP. In other words, there is a remote host running
on the IdP server with the same URL as the LIPA’s to avoid receiving an HTTP 404
response when there is no LIPA running on the user’s device. This remote host only
forwards the requests without storing or adding any cookies. There is therefore no
need to assume the existence of the LIPA as mentioned earlier in solution I. When
the LIPA is present on the device, it can be contacted by adding an entry in the
/etc/hosts file that maps the LIPA’s URL to localhost address (i.e., overriding DNS).

Figure 4.4 shows how the IdPCookie is made available to the LIPA when the first
UA is started. In this scenario, the IdPCookie is not previously available neither at
the UA nor the LIPA. The call flow in Figure 4.2 changes into:

1. When the user starts the UA, an access request is sent to the back-end server
of the SP.

2. The SP generates an authentication request (e.g., a SAML request) and redi-
rects the UA to the IdP.

User User Agent LIPA IdP SP

[1] Starts application

[2] HTTP Get /index.php

SPCookie is
not available

[3] HTTP Redirect IdP [SAMLRequest]

[4] HTTP Get IdP [SAMLRequest]

IdPCookie is
not available

[5] HTTP Redirect LIPA [SAMLRequest]

DNS Lookup (local.cisco
.com), returns localhost
address (i.e., 127.0.0.1)

[6] HTTP Get LIPA [SAMLRequest]

Validates the request,
Adds the stored cookie
to the setcookie header
in the request for the
domain (*.idp.enterprise
.com), redirects to the IdP

[7] HTTP Redirect IdP [SAMLRequest, set-cookie: IdPCookie]

Installs the IdPCookie
for (*.idp.enterprise
.com)

[8] HTTP Get IdP [SAMLRequest, IdPCookie]

Validates the
IdPCookie

[9] HTTP redirect SP [SAMLResponse]

[10] HTTP Get SP [SAMLResponse]

Validates the SAML
response, generates
a SPCookie

[11] Http Get resources [set-cookie: SPCookie]

Figure 4.3: The LIPA provides authentication for a local application (Solution I)

3. The IdP observes the absence of the IdPCookie at the UA and redirects the
UA to the LIPA with the received authentication request.

4. The LIPA verifies that the request is received from a local trusted application.
Then redirects the UA back to the IdP with a URL parameter (e.g., from local -
agent=true) to indicate that the request is from the LIPA. This is necessary to
avoid redirecting the UA to the LIPA again to obtain the IdPCookie.

5. The IdP observes the absence of the IdPCookie at the LIPA. Therefore, it starts
an authentication dialog with the UA.

User User Agent I LIPA IdP SP

[1] Starts Application

[2] HTTP Get SP/service.php

SPCookie is
not available

[3] HTTP Redirect IdP [SAMLRequest]

[4] HTTP Get IdP [SAMLRequest]

IdPCookie is
not available

[5] HTTP redirect LIPA [SAMLRequest]

[6] HTTP Get LIPA [SAMLRequest]

Validates the incoming
connection, redirects
to the IdP with a url
parameter from_local_
idp=true

[7] HTTP redirect IdP [SAMLRequest, from_local_idp=true]

[8] HTTP Get IdP [SAMLRequest, from_local_idp=true]

IdPCookie is not
available && from_
local_idp==true

[9] Login Request[10] Displays Login Forum

[11] Enters username&password [12] HTTP Post IdP [username, password]

Validates user's
credentials

Accepts push
notification
using Duo App

ref [13] Duo push notification

[14] MFA response

opt [Multi-factor Authentication]

[15] HTTP redirect LIPA [SAMLResponse, setcookie: IdPCookie]

Installs the IdPCookie
for (*.idp.enterprise
.com)

[16] HTTP Get LIPA [SAMLResponse, IdPCookie]

Stores a copy of
the IdPCookie

[17] HTTP redirect SP [SAMLResponse]

[18] HTTP Get /service.php [SAMLResponse]

Validates the SAML
response, generates
a SPCookie

[19] Http Get resources [set-cookie: SPCookie]

Figure 4.4: Solution Design II (IdPCookie is not available)

6. When the IdP is satisfied with the user’s identity, it generates an authorization
grant (e.g., a SAML response), installs an IdPCookie on the UA, and redirects
the UA to the LIPA instead of the SP.

7. The LIPA stores a copy of the IdPCookie before redirecting the UA to the SP’s
Assertion Consumer Service (ACS) on behalf of the IdP. This is done by inter-
preting the relay state parameter in the response, and for saving an additional
redirect from the LIPA to the IdP.

8. This time, the UA visits the SP with the authorization grant. The SP validates
the response, creates a SPCookie, and provides the UA with the requested
resource.

When the user starts another UA, also for the first time, the previously obtained
IdPCookie is used to avoid manual authentication as shown in Figure 4.5. The
modified call flow becomes:

User User Agent II LIPA IdP SP

[1] Starts application

[2] HTTP Get SP/service.php

SPCookie is
not available

[3] HTTP Redirect IdP [SAMLRequest]

[4] HTTP Get IdP [SAMLRequest]

IdPCookie is
not available

[5] HTTP redirect LIPA [SAMLRequest]

[6] HTTP Get LIPA [SAMLRequest]

Validates the incoming
connection, adds the
IdPCookie in the set-
cookie header for the
domain (*.idp.enterprise
.com), redirects to the IdP

[7] HTTP redirect IdP [SAMLRequest, setcookie: IdPCookie]

Installs the IdPCookie
for (*.idp.enterprise
.com)

[8] HTTP Get IdP [SAMLRequest, IdPCookie]

Validates IdPCookie

[9] HTTP redirect SP [SAMLResponse]

[10] HTTP Get /service.php [SAMLResponse]

Validates the SAML
response, generates
a SPCookie

[11] Http Get resources [set-cookie: SPCookie]

Figure 4.5: Solution Design II (The IdPCookie is available at the LIPA)

1. An access request is sent to the SP without the SPCookie.

2. The SP redirects the UA to the IdP for authorization.

3. The IdP validates the request and redirects the UA to the LIPA.

4. The LIPA verifies that the request is sent by a local trusted application, installs
the IdPCookie on the UA for the IdP domain (e.g., *.idp.enterprise.com) and
redirects the UA back to the IdP.

5. The UA stores the IdPCookie and sends it this time to the IdP.

6. The IdP validates the IdPCookie, issues an authorization token, and redirects
the UA back to the SP with an authorization grant.

7. The UA visits the SP with a valid authorization grant, and receives the re-
quested resources.

Note that in solutions I and II, there is no direct interaction between the IdP
and the LIPA. Instead, the authentication cookie is communicated through the UA
by specifying the cookie’s domain as (*.idp.enterprise.com). The LIPA’s URL must
therefore be a sub-domain of the IdP to make the LIPA receive the IdPCookie from
the UA. Moreover, the LIPA requires a signed SSL certificate to be trusted by the UA
and to receive the cookie.

4.3.4 Solution Design III

In this section, we present a third design alternative that does not require any modi-
fications at any of the participating entities (i.e., the IdP, the SP and the UA). In this
design, the LIPA acts as an HTTP reverse proxy with two separate TLS sessions,
one with the IdP and the other with the UA. Both the UA and the IdP are not aware
of the existence of the LIPA, while acting as a man in the middle. Unlike [28], the
LIPA intercepts only the traffic from and to the IdP. The LIPA impersonates the IdP
while talking to the local applications. It can direct the IdP traffic to itself by adding
an entry to the /etc/hosts file that maps the IdP’s URL to localhost, or by modifying
the routing table on the machine it runs. Moreover, the LIPA should later be able to
send traffic to the actual IdP by ignoring the added DNS entry or route.

User User Agent I LIPA IdP SP

[1] Starts application

[2] HTTP Get SP/service.php

SPCookie is
not available

[3] HTTP Redirect IdP [SAMLRequest]

DNS lookup (idp.enterprise
.com), Returns localhost
(i.e., 127.0.0.1)

[4] HTTP Get IdP [SAMLRequest]

DNS Lookup (idp.enterprise
.com), LIPA uses the real
IP address of the IdP

[5] HTTP Get IdP [SAMLRequest]

IdPCookie is
not available

[6] Login Request[7] Forwards Login Forum[8] Displays Login Forum

[9] Enters username&password [10] HTTP Post IdP [username, password] [11] HTTP Post IdP [username, password]

Validates user
credentials

Accepts push
notification
using Duo App

ref [12] Duo push notification

[13] MFA response

opt [Multi-factor Authentication]

[14] HTTP redirect SP [SAMLResponse,
 set-cookie: IdPCookie]

Stores a copy of
the IdPCookie

[15] HTTP redirect SP [SAMLResponse,
 set-cookie: IdPCookie]

Installs the IdPCookie

[16] HTTP Get /service.php [SAMLResponse]

Validates the SAML
response, generates
a SPCookie

[17] Http Get resources [set-cookie: SPCookie]

Figure 4.6: Solution Design III (The IdPCookie is not available)

Figure 4.6 shows how the LIPA obtains a copy of the IdPCookie for itself, when
the first UA is used. The modified call flow is as follows:

1. The UA sends an access request to the SP.

2. The SP replies with a redirect to the main IdP due to the absence of the SP-
Cookie.

3. The UA forwards the request to the LIPA by interpreting the added DNS entry
or route.

4. The LIPA checks whether the request contains an IdPCookie or, otherwise, if
it has a copy of the cookie. In this scenario, the LIPA has not yet authenticated

with the main IdP, and therefore does not have a valid IdPCookie. It then
forwards the request to the IdP using its real IP address.

5. The IdP starts an authentication dialogue with the LIPA, which it forwards to
the UA.

6. After a successful authentication, the IdP provides the LIPA with an authoriza-
tion grant and the IdPCookie. Then it redirects the LIPA to the SP.

7. The LIPA stores a copy of the IdPCookie and forwards the response to the UA.

8. The UA can now contact the SP using the authorization grant.

User User Agent II LIPA IdP SP

[1] Starts application

[2] HTTP Get SP/service.php

SPCookie is
not available

[3] HTTP Redirect IdP [SAMLRequest]

DNS lookup (idp.cisco
.com), returns (127.0.0.1)

[4] HTTP Get IdP [SAMLRequest]

Validates the request,
Adds the stored cookie
to the request, redirects
to the main IdP

[5] HTTP Get IdP [SAMLRequest, IdPCookie]

Validates IdPCookie

[6] HTTP redirect SP [SAMLResponse]
[7] HTTP redirect SP [SAMLResponse,

 set-cookie: IdPCookie]

[8] HTTP Get /service.php [SAMLResponse]

Parses the SAML
response, generates
a SPCookie

[9] Http Get resources [set-cookie: SPCookie]

Figure 4.7: Solution Design III (The IdPCookie is available at the LIPA)

Figure 4.7 shows how the previously obtained IdPCookie is made available to the
second UA without manual authentication. The corresponding call flow is as follows:

1. The second UA sends an access request to the SP.

2. The SP encodes an authentication request in the redirect URL and redirects
the UA to the IdP.

3. The UA sends the request to the LIPA, which has a copy of the IdPCookie.

4. The LIPA verifies that the request arrives from a local trusted application, re-
trieves the stored IdPCookie, and forwards the request to the main IdP with
the cookie.

5. The IdP validates the cookie, generates an authorization token, and redirects
the LIPA to the SP.

6. The LIPA forwards the response to the UA.

7. This time the UA visits the SP with a valid authorization.

8. Finally, the SP validates the authorization token, generates a SPCookie and
provides the UA with the requested resource.

4.4 Evaluation

In this section, the three proposed solution designs are evaluated with respect to
the three design goals; security (i.e., ensuring at least the same security level),
usability (i.e., reducing the number of manual authentications) and deployability (i.e.,
compatibility and ease of deployment).

4.4.1 Security

In our proposed solutions, users manually prove their identity only once per session,
instead of every time a new application is started. This is done by managing and
synchronizing the IdPCookie between all local trusted applications. A copy of the
IdPCookie is stored by the LIPA and may remain available even when all applications
are closed. It is therefore necessary to ensure at least the same security level as
when the LIPA is not present. In this section, we discuss how the proposed designs
meet the defined security goals.

Cookie Storage

To protect the cookie from being stolen by a malicious application, the LIPA must
store the cookie securely. The cookie must at least be stored in the same way as
done by the local applications or the browsers. The LIPA can do that by storing the
cookie in an isolated storage in memory [30]. Encrypting the cookie may not add
any security improvements, as there might be at least one unencrypted copy stored
by another application.

Cookie Deletion

In the absence of the LIPA, the application ultimately deletes the session cookie
when it is closed, the user logs out, or when the device is rebooted. It is necessary
to ensure that there is no new security compromise by keeping a copy of the session
cookie at the LIPA. The cookie must therefore be removed from the LIPA when the
user logs out (e.g., single log out), the user deliberately stops the LIPA, or when
the device is rebooted. As long as the LIPA is running, a previously closed applica-
tion can still reuse the same cookie when it is restarted. In this case, an additional
authentication is saved without any added security risk.

Co-located and Remote Attacks

The main functionality of the LIPA is to provide the IdPCookie to local applica-
tions when it receives an authentication request. We must ensure that this cookie
is made available to only local applications and not to an application running on a
different device. The LIPA runs a local web server, which means remote attackers
cannot access it. However, an internal attacker, behind the same NAT box, may
redirect the request to the victim’s LIPA by specifying the private IP address of the
victim. Therefore, the LIPA must validate the incoming request (i.e., by checking its
source IP address) to ensure that only local applications are served. Spoofing the
source IP address is not useful because the response will not reach the attacker’s
device. Furthermore, as long as users install the real trusted LIPA application on
their machine, the system’s overall security relies on the strength of the adopted
authentication method (e.g., passwords only or MFA). As discussed in Section 3.4,
MFA is necessary to achieve a high level of security. Hence, the system’s security
depends on the strength of the used MFA technique. While evaluating the different
MFA methods is not part of this master’s thesis. In the proposed solution, the Duo
Mobile App [31] is used for MFA due to its improved usability. Since stealing the MFA
device is considered difficult, knowing the password is not enough to impersonate
the user. However, the attacker may succeed (with the presence or absence of the
LIPA) by:

1. Stealing the device during an active session.

2. Stealing the session cookie due to an improper TLS connection [32] or via
malicious browser extensions.

3. A powerful phishing attack (e.g., by using Modlishka phishing tool [33]). This
can only work, though, if the attacker is watching at the right time.

In order to mitigate these attacks, behavioural biometrics (e.g. application use,
mouse and keystroke dynamics, gait, etc.) may be used to continuously check the
authenticity of the user and, if necessary, to trigger MFA. However, this may affect
the usability of the system (i.e., nonzero false rejection rate) as discussed in Section
3.4.

4.4.2 Usability

The second design goal of the system is to improve usability with a convenient end
user experience. In the first solution, the LIPA must authenticate with the IdP before
any application can be used (e.g., when starting the device). This requires explicit
user interaction, which may not result in a good user experience. On the other hand,
in solutions II and III, the LIPA functions transparently to the end user. In solutions I
and II, the IdP redirects the UA to the LIPA whether or not it is running on the device.
The requests must therefore be handled even when the LIPA is not present to avoid
any service interruption. This is achieved by running a remote host on the IdP server
with the same URL of the LIPA. When the LIPA is present on a device, the localhost
address is used instead by adding an entry in the /etc/hosts file that overrides DNS.
Finally, in all the three solutions, MFA is triggered only once per session improving
the usability of MFA (i.e., less active user involvement). The only added cost is the
need for additional redirects in case of the first two solutions. However, they are
performed transparently to the end user.

4.4.3 Deployability

In this section, we discuss how our proposed solutions can be deployed without any
compatibility issue. Only in the first solution, the LIPA requires a user interface to
authenticate with the IdP as any other UA (e.g., using the default browser). In both
solutions I and II, the LIPA hosts a local web server with a subdomain of the IdP.
While in solution III, it acts as a reverse proxy that opens two TLS sessions; one
with the UA and another with the IdP. Therefore, an SSL certificate (e.g., signed by
the IdP) is needed for the LIPA. Moreover, in solution III, the LIPA intercepts only
traffic to/from the IdP. It needs to manipulate DNS or modify the routing table to
direct the IdP traffic to itself. Therefore, it must run with a ”superuser” capability on
the host in which it runs.

4.5 Discussion

In this chapter, the second research sub-question is answered to improve our sys-
tem’s usability without compromising on security. This is achieved by using a lo-

Table 4.1: Overview of the proposed LIPA design alternatives

Design Security Usability Deployability

I
Meets the security

goals
Involves explicit user

interaction

Requires a user
interface and hosting

a web server as a
subdomain of the IdP

II
Meets the security

goals
Transparent to the

end user
A web server as a

subdomain of the IdP

III
Meets the security

goals
Transparent to the

end user
Must run with

superuser capabilities

cal identity provider agent that manages the IdPCookie on behalf of local applica-
tions. We have introduced three design alternatives and discussed how each of
them meets the system design goals. As shown in Table 4.1, design II outperforms
the other two designs. Since, it runs transparently to the end user and can easily be
deployed compared to solutions I and III. Moreover, solution III requires a superuser
capability, therefore, it may not be desirable. However, it can be deployed without
any modifications to either the SP, the IdP or the UAs. Finally, a proof-of-concept
implementation of the first two solutions is described in Appendix A.

Chapter 5

Dynamic Access Authorization

5.1 Motivation

Traditional service providers often used Authentication, Authorization and Account-
ing (AAA) services such as RADIUS to manage the authentication and authorization
of their users. The RADIUS protocol allows the authorization server (i.e., IdP or RA-
DIUS server) to dynamically change the authentication, authorization and account-
ing session attributes after the user is authenticated [34]. However, this change is
signaled asynchronously towards the SP, which updates the session asynchronously
according to the new authorization changes. Nowadays, enterprises are moving to-
wards the use of SSO services using SAML and OAuth, which allow the authorized
user to simultaneously log in to multiple enterprise and cloud services after authen-
ticating with the central enterprise IdP. These authorization decisions are based on
dynamic attributes and predefined policies that dynamically change according to
user, device and network postures. The current user’s authorization must therefore
be dynamically and immediately adapted when the user’s posture changes (e.g.,
change in location, IP address, device health, etc.).

Unlike traditional AAA services, current SSO procedures do not provide a mech-
anism for the IdP to signal Change of Authorization (CoA) events towards the SP
(i.e., similar to RADIUS CoA). In a more dynamic environment where the user’s au-
thorization can change rapidly, the SSO service can at best only use short lived
authorizations (e.g., SAML or OAuth tokens) and periodically redirect the user to
the IdP to evaluate the current authorization and obtain new access tokens. How-
ever, this creates a load on both the IdP and the SP. Moreover, it may cause service
disruptions leading to frequent end user annoyance, and that would thus be unde-
sirable. In order to address this problem, we propose a novel mechanism to address
the change of authorization in current SSO frameworks such as SAML and OAuth.
This mechanism can also handle the changing confidence in user identity by allow-
ing triggering MFA during an ongoing session. Our proposed solution must enable

39

the CoA synchronously without introducing a security vulnerability.

5.2 Related Work

The SAML standard [35] defines a mechanism for the IdP to signal session termina-
tion towards the SP, which is referred to as IdP-initiated logout. Similar functionality
is supported in OAuth 2.0 [36] which allows the client to send a revocation request
to the authorization server to invalidate a token and to signal the results towards the
SP. However, both approaches do not handle dynamic changes in the user autho-
rization, instead they only asynchronously terminate the session (i.e., when the user
logs out).

Symeonidis et al. [37] describe a revocation mechanism for SAML long-lived au-
thorizations. The introduced mechanism allows the SP to discover revocation of
authorization by consulting a revocation list located at the IdP. There are three com-
ponents introduced in the article: a revocation list manager located at the IdP that
marks a session as invalid, a revocation database that holds identifiers for the re-
voked sessions, and a revocation controller at the SP that discovers a revoked ses-
sion. The article does not provide details on when or how the SP polls for updates.
However, it is an example of a communication from the IdP to the SP to terminate
an ongoing session.

A Continuous Access Evaluation Protocol (CAEP) has been introduced in [38]
to allow both the IdP, the SP and the applications to control the authorization of
an ongoing session. CAEP is a standard-based proposal to dynamically signal a
change of user authorization during an active session. It follows a publish-and-
subscribe model that allows an IdP to publish updated information about the session
to all subscribed entities such as SPs and mobile applications. In this model, any
entity may act as a publisher or a subscriber to certain type of information. However,
all the dynamic authorization updates are communicated asynchronously between
the participating entities. To the best of our knowledge, there is no prior work that
enables user’s CoA synchronously in today’s SSO systems.

5.3 Proposed Solution

In this section, we introduce a novel CoA procedures for enabling today’s SSO sys-
tems to dynamically and synchronously update the current authorization of the user
without the need for session termination. In the proposed solution, SPs can re-
act immediately to different security events such as the change in user, device or
application posture in an enterprise network, or when the user’s access rules for
enterprise services change. Based on the event, a current authorization may be

revoked, changed, or renewed before expiration. We aim to implement the CoA with
the minimal possible changes to SSO frameworks such as SAML and OAuth 2.0.
To achieve this goal, the SP relays a call-back URL (CBU) to the IdP during the
process of exchanging authentication messages. The CBU includes an identifier to
the user, and is used by the IdP as a destination for submitting HTTPS-based POST
messages to trigger the CoA at the SP. In case of using RADIUS for AAA services,
where the IdP acts as a RADIUS client, the IdP relays this CBU to the RADIUS
server. Then, the RADIUS uses it to submit CoA messages. For simplicity and a
more general case, both the identity management and authorization functionalities
are embedded in one single entity (i.e., the IdP).

5.3.1 SAML CoA

IdP Policy Server User Agent SP

[1] HTTP Get resource

[2] HTTP Redirect IdP [SAMLRequest, callback=(nonce)]

[3] HTTP Get IdP [SAMLRequest, callback, IdPCookie]

[4] Pull user's state

[5] HTTP Redirect SP [SAMLResponse]

[6] HTTP Get SP [SAMLResponse]

Validates the SAML
response, generates
SPCookie, returns
resources to user

[7] HTTP Get resource [set-cookie:SPCookie]

[8] Change of user's status
 due to posture change

[9] HTTP Post callback [nonce]

Cancel authorization for
subscriber with identifier
nonce, redirects first inc-
oming call from UA back
to the IdP

[10] HTTP Get resource [SPCookie]

[11] HTTP Redirect IdP [SAMLRequest, callback=nounce]

[12] HTTP Get [SAMLRequest, IdPCookie]

[13] Pull user's NEW state

[14] HTTP Redirect SP [SAMLResponse]

[15] HTTP Get SP [SAMLResponse, SPCookie]

Updates user
authorization

[16] HTTP Get resource

Figure 5.1: Change of user authorization (SAML SSO)

Figure 5.1 describes how the CoA procedures are implemented in SAML-based
SSO systems. The CBU may be added as an attribute to the Extensions element
in the SAML request, or as a URL parameter in the redirect URL (i.e., from the
SP to the IdP). We shall discuss how our solution ensures the integrity of the CBU
in Section 5.5. The following steps describe a scenario in which a CoA event is
triggered when using SAML:

1. When the SP receives a request from the UA, it creates a unique identifier for
the user (i.e., a nonce), adds the CBU as an attribute to the SAML request, and
redirects the UA to the IdP (i.e., to obtain an authorization for the requested
resource).

2. First, the IdP authenticates the user (if not previously authenticated), consults
the policy server to check the user’s predefined policies, and stores the CBU
for the user. Finally, it creates and signs a SAML assertion, which acts as an
authorization grant.

3. The user now visits the SP with a valid authorization, and hence receives the
requested resource.

4. When a change in authorization is detected, the IdP sends a SAML assertion
using the CBU to the SP to inform it with the detected event.

5. The SP immediately cancels the old SAML authorization for the user with iden-
tifier nonce. It then redirects the user back to the IdP when it receives the first
incoming request to obtain the new authorization.

6. The IdP consults the policy server to retrieve the new user’s authorization and
redirects the UA to the SP with the new authorization.

5.3.2 OAuth CoA

A similar approach can be taken for OAuth 2.0 authorization framework. The current
OAuth 2.0 standard defines a token revocation service endpoint in the authoriza-
tion server (i.e., the IdP) that can be used by the resource server (i.e., the SP) to
invalidate an existing token when the user logs out. However, there is no signaling
mechanism from the authorization server to the resource server for token invali-
dation, and hence it does not define CoA procedures. Similar to SAML CoA, we
propose to define a CoA endpoint for the resource server that can be called by the
authorization server (or another authorized entity such as RADIUS). This CoA end-
point is accessed through a callback URL (CBU) sent to the authorization server

with the authorization code request (i.e., the first redirect message from the SP to
the IdP).

Authorization Server
(IdP)

Policy Server
Client

(User Agent)
Resource Server

(SP)

[1] HTTP Get resource

[2] HTTP Redirect IdP [AuthCodeRequest,
 callback=(nonce)]

[3] HTTP Get IdP [AuthCodeRequest, callback, IdPCookie]

[4] Pull user's state

[5] HTTP Get [AuthCode]

[6] HTTP Get IdP [AuthGrant, IdPCookie]

Validates the auth-
orization grant

[7] HTTP Redirect RS [AccessToken]

[8] HTTP Get resource [AccessToken]

Validates the
access token

[9] HTTP Get resource [SPCookie]

[10] Change of user's status
 due to posture change

[11] HTTP Post callback [nonce]

Cancel authorization for
subscriber with identifier
nonce, redirects first inc-
oming call from UA back
to the IdP

[12] HTTP Get resource [SPCookie]

[13] HTTP Redirect IdP [AuthCodeRequest,
 callback=(nonce)]

[14] HTTP Get IdP [AuthCodeRequest, callback, IdPCookie]

[15] Pull user's NEW state

[16] HTTP Get [AuthCode]

[17] HTTP Get IdP [AuthGrant, IdPCookie]

Validates the auth-
orization grant

[18] HTTP Redirect RS [AccessToken]

[19] HTTP Get resource [AccessToken, SPCookie]

Validates the
access token

[20] HTTP Get resource [SPCookie]

Figure 5.2: Change of user authorization (OAuth SSO)

The OAuth 2.0 standard defines multiple variants for its authorization call flow.
In this section, we use the authorization code flow, which is the most common one.
On a high-level view, the OAuth 2.0 flow is similar to the SAML authentication call
flow. For simplicity, both the client and the UA are merged into one entity as shown
in Figure 5.2. The following steps describe how the OAuth 2.0 authorization protocol

works when a CoA event is detected:

1. The client requests a resource on behalf of the user from the resource server.

2. The resource server redirects the client to the authorization server with an
authorization code request and the CBU.

3. The client redirects the user (via the UA) to the authorization server for authen-
tication. In this scenario, the user has a valid session with the authorization
server (i.e., a valid IdPCookie), and hence not asked for credentials.

4. First, The authorization server consults the policy server to check the user’s
predefined policies. Then, it sends an authorization grant, which in turn con-
tains an authorization code, to the UA with a redirect message to the client.

5. The client uses the authorization grant to request an access token from the
authorization server.

6. The authorization server validates the authorization code, generates an ac-
cess token, and redirects the client back to the resource server.

7. The resource server returns the requested resource to the client after validat-
ing the received access token.

8. When the current authorization changes, the authorization server sends a CoA
assertion to the resource server.

9. The resource server immediately cancels the old authorization for the client
with identifier nonce, and redirects the client back to the authorization server
once the next request is received.

Note that OAuth2 supports variants of such procedure where on step 5, in Figure
5.2, the authorization server provides an authorization grant that includes the access
token directly, thus avoiding steps 6 and 7.

5.4 Evaluation

In this section, we evaluate our proposed solution with respect to the predefined
design goals. The first goal is to enable CoA procedures synchronously on today’s
SSO systems. This goal is achieved by relaying a CBU to the IdP, which is used
as a destination for signed SAML assertions. The second goal is to ensure that
there is no introduced security vulnerability. Therefore, we discuss the security of
the proposed mechanism by considering two attack scenarios:

S1 A cheating user manipulating the CBU to prevent CoA from being triggered by
the IdP at the service provider.

S2 An attacker (e.g., a man-in-the-middle) knowing the CBU and using it to interrupt
the service for the end user (i.e., denial of service).

To ensure that our solution is resilient to S1, we must ensure the integrity of the
CBU. In Section 5.3.1, we assumed that the SAML request, which conveys the CBU
to the IdP, is always signed by the SP. However, not all SPs sign the SAML request
that is sent as an HTTP GET parameter in the redirect URL. Therefore, a cheating
client can easily manipulate the CBU. Similarly, there is no provision in the OAUth
2.0 for the resource owner to sign the authentication code request. To overcome this
problem, the integrity of the CBU can be ensured as follows:

(i) In SAML: Assuming the CBU is not signed by the SP, we propose adding the
CBU as an attribute to the SAML response, which is always signed by the IdP
and validated by the SP. After receiving the SAML response, the SP compares
the received CBU with the one it knows before the user is granted access. This
does not prevent the attacker from changing the CBU, however this change can
later be detected by the SP.

(ii) In OAuth 2.0: A similar mitigation approach, as in SAML, can be deployed.
According to OAuth 2.0 standard [39], the information content associated with
the token is made available to the resource server in two ways by using:

(a) Handles: A handle is a reference to an internal data structure located
at the authorization server and contains the attributes of a specific to-
ken. When using this method, the tokens do not have to be signed or
encrypted. The resource server can securely retrieve the CBU from the
authorization server and verify its integrity before the user is granted ac-
cess.

(b) Assertions: It is also possible to use security assertions such as, but not
limited to, SAML statements as a mechanism to send the attributes to
the resource server. These assertions are signed by the authorization
server for integrity. They may also be encrypted for confidentiality. Using
this method, the resource server can ensure the integrity of the CBU by
validating the SAML assertion.

Finally, to mitigate S2, in which the CBU is used for denial of service, the CoA
messages may be conveyed to the SP in the form of SAML assertions. These
assertions are signed by the IdP for integrity and authenticity. Therefore, the SP

needs to provide an API for receiving and validating the CoA assertions, which can
be accessed through the CBU.

5.5 Discussion

In this chapter, we have answered our third sub-question by proposing a novel mech-
anism to support the change of user authorization in today’s SSO frameworks. In
this solution, the SP relays a CBU to the IdP when the first authorization messages
are exchanged. The CBU is used by the IdP to send assertions to the SPs informing
them with possible policy changes. This novel mechanism can be used in, but not
limited to, the following scenarios:

1. Authorization must be revoked due to a security breach, a detected anomaly
or a discovered vulnerability. In this scenario, the user is denied access imme-
diately.

2. When there is sufficient confidence about the user’s identity (e.g., through con-
tinuous monitoring). The IdP can issue a new authentication token to replace
the old one that was about to expire. Therefore, allowing the use of short lived
authentication tokens without high load on the SP and the end user.

3. Re-authenticating the user (e.g., triggering MFA), when the user behaviour is
abnormal, or when there are indications that the user is not legitimate. For
example, if the user is not in the immediate proximity of the device.

4. The access may be limited to fewer resources (or instead extending it to more
resources) depending on the user’s context. For example, a SP may limit
access to less critical resources when the user moves to a foreign country with
weak IP protection.

By adopting the proposed CoA procedures, SP’s can react immediately to vari-
ous security events. This improves the security of existing SSO systems and paves
the way for continuous user authentication.

Chapter 6

Conclusion and Future Work

In this thesis, the main research goal was to establish a balance between security
and usability in Web SSO systems while ensuring deployability (i.e., compatibility
with current web systems). Our main research question was, therefore, how we can
establish a balance between security and usability in Web SSO systems. In order
to answer this question, we started by discussing why relying on secrets (e.g., pass-
words) is not sufficient for proving user’s identity. Passwords are vulnerable to, but
not limited to, phishing and spoofing attacks. We therefore showed that MFA (i.e.,
using two different authentication factors) is necessary to meet our security require-
ments. However, in scenarios such as an enterprise where users access enterprise-
related services using multiple applications, MFA has a significant effect on usability.
We addressed this problem by reducing the number of explicit authentications that
the user needs to perform during a session.

The main research question was divided into three subquestions. To answer the
first subquestion, we conducted an extensive literature study to review different re-
lated web authentication systems and discussed how each system addressed the
balance between security and usability. We showed that proximity-based authenti-
cation can achieve a good balance, however, the existing proximity-based solutions
face deployability challenges. On the other hand, context-aware authentication sys-
tems that rely on context checking as a second authentication factor may still be
vulnerable to context spoofing. However, we argue that using context as a method
for selecting an appropriate second authentication factor, while not replacing it, can
improve security in Web SSO systems.

To answer the second subquestion, we have introduced a local IdP agent, which
needs to be installed on the local device. The LIPA manages the authentication in-
formation across all local trusted applications. The results show that usability can
be further improved without compromising security in Web SSO. The proposed so-
lution allows users to access the enterprise-related services by authenticating only
once during a session, as long as their posture remains normal. We have introduced

47

three design alternatives, and showed that the second design outperforms the other
two. It allows the LIPA to obtain a copy of the SSO cookie when the user authen-
ticates using the first application in a session. This cookie is then communicated
to other applications and prevents unnecessary authentications. we evaluated our
proposed solution in terms of the three design requirements; security, usability and
deployability.

Furthermore, as mentioned earlier, the current SSO implementations do not al-
low for adapting the user authorization during an ongoing session. In the event when
the user’s authorization changes or when re-authentication is required, this is cur-
rently handled asynchronously by terminating the session and establishing a new
one. In this thesis, we have addressed this problem by providing change of autho-
rization procedures for current SSO frameworks such as SAML and OAuth 2.0, and
we have thus answered the third subquestion. The solution allows SPs to react im-
mediately to security events by communicating a CBU to the IdP while exchanging
the first authentication messages. This CBU is used by the IdP to synchronously
push security updates towards SPs. Moreover, we have discussed how the integrity
of the CBU can be ensured.

To sum up, in this thesis, we have improved both the usability and security of
Web SSO systems while ensuring deployability. However, achieving a perfect bal-
ance between security and usability is still a challenge. Although, the proposed
solution meets our requirements, the overall system is still not perfectly secure. An
attacker may hijack the session by physically stealing the user’s device during an au-
thenticated session. When the LIPA is installed, the attacker will then automatically
access all the applications that use the same SSO service. With no LIPA installed,
the attacker is still able to steal the cookie and may use it for other applications,
however with extra manual efforts. Behavioural biometrics may be a possible solu-
tion to this problem, however they may affect usability, which is not desirable. It is
therefore recommended for future work to investigate the use of behavioural biomet-
rics in Web SSO with the presence of the LIPA. Moreover, we did not discuss how
the change in user authorization could be detected. In other words, how and where
the user’s behavioural dynamics and/or contextual features are to be recorded and
verified.

Finally, it is good to investigate how the LIPA functionalities may be deployed on
the cloud. The main challenge will then be cookie management and how to correctly
identify the end device when a request is received by the LIPA. The cookie must then
be deleted when the session expires (e.g., when the device is shut down). While,
the device may be identified via an installed certificate (e.g., by using the WebAuth
API [40]).

Bibliography

[1] M. A. Sasse and I. Flechais, “Usable security: Why do we need it? how do we
get it?” O’Reilly, 2005.

[2] M. A. Sasse, M. Smith, C. Herley, H. Lipford, and K. Vaniea, “Debunking
security-usability tradeoff myths,” IEEE Security & Privacy, vol. 14, no. 5, pp.
33–39, 2016.

[3] “Teamsid. worst passwords of 2019.” [Online]. Available: https://www.teamsid.
com/1-50-worst-passwords-2019/

[4] “Verizon. “2019 data breach investigations report”.” [Online]. Available:
https://enterprise.verizon.com/resources/reports/dbir/

[5] L. Lamport, “Password authentication with insecure communication,” Commu-
nications of the ACM, vol. 24, no. 11, pp. 770–772, 1981.

[6] C. Herley, P. C. Van Oorschot, and A. S. Patrick, “Passwords: If we’re so smart,
why are we still using them?” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2009, pp. 230–237.

[7] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra, “Formal
analysis of saml 2.0 web browser single sign-on: breaking the saml-based
single sign-on for google apps,” in Proceedings of the 6th ACM workshop on
Formal methods in security engineering, 2008, pp. 1–10.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol–http/1.1,” 1999.

[9] D. Kristol and L. Montulli, “Http state management mechanism,” RFC 2965,
October, Tech. Rep., 2000.

[10] “Sso protocol adoption predictions.” [Online]. Available: https://www.gluu.org/
blog/gluu-web-authentication-sso-protocol-adoption-predictions

[11] J. Kohl, C. Neuman et al., “The kerberos network authentication service (v5),”
RFC 1510, september, Tech. Rep., 1993.

49

https://www.teamsid.com/1-50-worst-passwords-2019/
https://www.teamsid.com/1-50-worst-passwords-2019/
https://enterprise.verizon.com/resources/reports/dbir/
https://www.gluu.org/blog/gluu-web-authentication-sso-protocol-adoption-predictions
https://www.gluu.org/blog/gluu-web-authentication-sso-protocol-adoption-predictions

[12] H. Lockhart and B. Campbell, “Security assertion markup language (saml) v2.
0 technical overview,” OASIS Committee Draft, vol. 2, pp. 94–106, 2008.

[13] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore, “Openid
connect core 1.0 incorporating errata set 1,” The OpenID Foundation, specifi-
cation, vol. 335, 2014.

[14] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun, “Smart-
phones as practical and secure location verification tokens for payments.” in
NDSS, vol. 14, 2014, pp. 23–26.

[15] A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz, “Strengthening
user authentication through opportunistic cryptographic identity assertions,” in
Proceedings of the 2012 ACM conference on Computer and communications
security, 2012, pp. 404–414.

[16] M. Shirvanian, S. Jarecki, N. Saxena, and N. Nathan, “Two-factor authentication
resilient to server compromise using mix-bandwidth devices.” in NDSS, 2014.

[17] N. Karapanos, C. Marforio, C. Soriente, and S. Capkun, “Sound-proof: usable
two-factor authentication based on ambient sound,” in 24th {USENIX} Security
Symposium ({USENIX} Security 15), 2015, pp. 483–498.

[18] “Ip to geo-location.” [Online]. Available: https://pypi.org/project/ip2geotools/

[19] M. Kranch and J. Bonneau, “Upgrading https in mid-air,” in Proceedings of thz
2015 Network and Distributed System Security Symposium. NDSS, 2015.

[20] C. C. Rocha, J. C. D. Lima, M. Dantas, and I. Augustin, “A2best: An adaptive
authentication service based on mobile user’s behavior and spatio-temporal
context,” in 2011 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2011, pp. 771–774.

[21] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for automatic in-
dexing,” Communications of the ACM, vol. 18, no. 11, pp. 613–620, 1975.

[22] K. A. A. Bakar and G. R. Haron, “Adaptive authentication based on analysis of
user behavior,” in 2014 Science and Information Conference. IEEE, 2014, pp.
601–606.

[23] D. Freeman, S. Jain, M. Dürmuth, B. Biggio, and G. Giacinto, “Who are you? a
statistical approach to measuring user authenticity.” in NDSS, 2016, pp. 1–15.

https://pypi.org/project/ip2geotools/

[24] D. Preuveneers and W. Joosen, “Smartauth: dynamic context fingerprinting
for continuous user authentication,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing, 2015, pp. 2185–2191.

[25] J. Solano, L. Camacho, A. Correa, C. Deiro, J. Vargas, and M. Ochoa, “Risk-
based static authentication in web applications with behavioral biometrics and
session context analytics,” in International Conference on Applied Cryptography
and Network Security. Springer, 2019, pp. 3–23.

[26] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery
and data mining, 2000, pp. 71–80.

[27] A. Harilal, F. Toffalini, J. Castellanos, J. Guarnizo, I. Homoliak, and M. Ochoa,
“Twos: A dataset of malicious insider threat behavior based on a gamified com-
petition,” in Proceedings of the 2017 International Workshop on Managing In-
sider Security Threats, 2017, pp. 45–56.

[28] B. Logan and T. Mossing, “Method, apparatus and computer program product
for automatic cookie synchronization between distinct web browsers,” Jul. 5
2007, uS Patent App. 11/326,570.

[29] R. Cox, E. Grosse, R. Pike, D. L. Presotto, and S. Quinlan, “Security in plan 9.”
in USENIX Security Symposium, vol. 2, 2002.

[30] “System isolated storage.” [Online]. Available: https://docs.microsoft.com/
en-us/dotnet/standard/io/isolated-storage

[31] “Duo mobile app.” [Online]. Available: https://duo.com/product/
multi-factor-authentication-mfa/duo-mobile-app

[32] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The cracked cookie jar: Http
cookie hijacking and the exposure of private information,” in 2016 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2016, pp. 724–742.

[33] “Modlishka duszyski phishing tool,” 2002. [Online]. Available: https:
//github.com/drk1wi/Modlishka

[34] M. Chiba, G. Dommety, M. Eklund, D. Mitton, and B. Aboba, “Dynamic au-
thorization extensions to remote authentication dial in user service (radius),”
Internet Engineering Task Force, Request for Comment, vol. 3576, pp. 1–25,
2003.

https://docs.microsoft.com/en-us/dotnet/standard/io/isolated-storage
https://docs.microsoft.com/en-us/dotnet/standard/io/isolated-storage
https://duo.com/product/multi-factor-authentication-mfa/duo-mobile-app
https://duo.com/product/multi-factor-authentication-mfa/duo-mobile-app
https://github.com/drk1wi/Modlishka
https://github.com/drk1wi/Modlishka

[35] J. Hughes and E. Maler, “Security assertion markup language (saml) v2. 0
technical overview,” OASIS SSTC Working Draft sstc-saml-tech-overview-2.0-
draft-08, pp. 29–38, 2005.

[36] T. Lodderstedt and M. Scurtescu, “Oauth 2.0 token revocation,” IETF RFC
7009, 2013.

[37] I. Symeonidis and B. Preneel, “Sarl: A revocation mechanism for long lived
assertions on shibboleth,” 2014.

[38] “Continuous access evaluation protocol (caep),” 2019. [On-
line]. Available: https://cloud.google.com/blog/products/identity-security/
re-thinking-federated-identity-with-the-continuous-access-evaluation-protocol

[39] T. Lodderstedt, M. McGloin, and P. Hunt, “Oauth 2.0 threat model and security
considerations,” IETF2013, 2013.

[40] “Webauth guide.” [Online]. Available: https://webauthn.guide

[41] “Simplesamlphp.” [Online]. Available: https://simplesamlphp.org

[42] “Apache2 with virtual hosts enabled.” [Online]. Available: https://httpd.apache.
org/docs/2.4/vhosts/examples.html

[43] “Demo.” [Online]. Available: https://drive.google.com/drive/folders/
1ldg-h3LtBuWoxwH3GGC6728Lh7gUn6ZU?usp=sharing

https://cloud.google.com/blog/products/identity-security/re-thinking-federated-identity-with-the-continuous-access-evaluation-protocol
https://cloud.google.com/blog/products/identity-security/re-thinking-federated-identity-with-the-continuous-access-evaluation-protocol
https://webauthn.guide
https://simplesamlphp.org
https://httpd.apache.org/docs/2.4/vhosts/examples.html
https://httpd.apache.org/docs/2.4/vhosts/examples.html
https://drive.google.com/drive/folders/1ldg-h3LtBuWoxwH3GGC6728Lh7gUn6ZU?usp=sharing
https://drive.google.com/drive/folders/1ldg-h3LtBuWoxwH3GGC6728Lh7gUn6ZU?usp=sharing

Appendix A

Prototype

A prototype for the two solutions described in Sections 4.3.2 and 4.3.3 was imple-
mented using SimpleSAMLphp [41]. It is a lightweight open source platform written
in PHP that implements Web SSO with several federation protocols (such as SAML,
OpenID and OAuth). In this prototype, SimpleSAMLphp was configured as both an
SP and as an IdP with a custom authentication source as of Cisco internal login.
Moreover, few modifications were added to the SimpleSAMLphp source code, such
that the IdP redirects authentication requests to the LIPA as described in the two de-
signs. The prototype includes two SPs (service.cisco.exp and service2.cisco.exp)
and an IdP (idp.cisco.exp) which were hosted on a Cisco internal server (Ubuntu
18.04.4 LTS). While the LIPA code was hosted on a local laptop (macOS Catalina
v10.15.4). A DNS entry is added to the /etc/hosts file on the laptop to map the LIPA’s
URL (micro.idp.cisco.exp) to localhost address (i.e., 127.0.0.1). All the code used in
the prototype was written in PHP and the servers were running on Apache2 [42] as
virtual hosts.

Testing was performed by contacting any of the two SPs using three different
UAs (i.e., Google Chrome, Safari and Firefox). The first solution was tested by
running a short Python script that contacts an IdP service (idpservice.cisco.exp) to
register the LIPA. In this scenario, the script uses one of the UAs for login. While,
the second solution is tested by contacting any of the SPs using two different UAs.
In both scenarios, authentication was required only once when contacting the SPs
using the three UAs. Note that the code produced in this thesis is developed at
Cisco and therefore not made public. However, a demo is made available at [43]
for illustration. To request access for the full code with installation details, please
contact ahmedbakryhelmy@gmail.com and samullen@cisco.com.

53

Patent No. 1

A method for implementing RADIUS change-of-authorization in an Identity

Provider

Peter Bosch, Sape Mullender, Alessandro Duminuco, Ahm ed Ahmed , Aaron Woland CISCO

January 17, 2020

Abstract:
 Traditional AAA services authenticate, authorize and account for (enterprise) users using a

(remote) access service; RADIUS is such a protocol. While RADIUS supports functions for

establishing and tearing down sessions, RADIUS also supports functionality for a RADIUS service

to change the authorization of a user session. This can happen for instance when a device’s

posture changes, or another system triggers the action due to malicious activity. Such

authorization changes are asynchronously signaled towards the service, which then needs to

update the session asynchronously according to the changed conditions.

Change of Authorization (CoA) can be employed to immediately end a user’s session,

disconnecting them from the network or resource. CoA can also be used to force a re-

authentication and re-authorization of the user with the new conditions being examined,

resulting in a new level of access. CoA can also be used to push an immediate change, such as

ACL changes, moving VLANs or more.

Single-sign-on procedures are used to provide AAA services towards a service provider (e.g., a

web-service). Yet today, no mechanism exists to signal to the service provider that a change of

authorization is required, akin to the equivalent RADIUS functionality. Single-sign-on is most

used to get access to a cloud application and is also used for cloud-based remote-access services,

cf. Cisco’s VPNaaS product, zScaler private access, and for many other vendors. Thus, in the case

where the authorization of a user using a (web or other) service changes, as per the earlier

example, at best the service provider can only use short-lived SAML statements and require

periodic polling of the service provider to obtain a changed authorization. This is undesirable as

it creates load on the service provider, the identity provider, and may create disruptions to the

service.

To address the absence of a change of authorization procedure in today’s single-sign-on system,

we are introducing a novel method to emulate a change of authorization with single-sign-on

procedures. In a nutshell, the service provider signals a call-back URL in a single-sign-on session.

When change of authorization needs to be enforced, the call-back can be triggered to revoke an

earlier SAML authorization, which causes the service provider to require a re-authentication and

re-authorization thus emulating a RADIUS change-of-authorization. Similar approaches can be

used for other authorization frameworks such us OAuth 2.0.

The introduction of the IdP-based change of authorization is (a) needed to provide for integration

with legacy RADIUS services in existing network for remote access functionality, and (b) needed

to enable new cloud-based security product features with integrated and automatic posture

operations (cf. MDM, AnyConnect HostScan, DUO posture and more).

Restatement of invention
Using a Call-Back URL, security events can be processed dynamically for ongoing sessions using service

providers relying on SAML-based authentication and authorization. A full integration between RADIUS

and SAML can be achieved that includes important security events that involve ongoing client-server

sessions.

Advantages
This invention is important for Cisco. A great deal of security infrastructure and procedures are based on

RADIUS and it will take a long time before RADIUS is phased out. Meanwhile, service providers and

browsers are massively using SAML-based cookies and SAML statements for authentication and

authorization.

An example of this is Cisco’s new VPNaaS (= Umbrella Access) service product. A mechanism to relay

security events into ongoing sessions is important. And the integration between RADIUS protocols and

SAML protocols is equally important. This CPOL shows how security events can dynamically be delivered

between RADIUS servers and SAML-based service providers.

The use of CoA is not limited to only RADIUS or DIAMETER sources. Other applications and services could

leverage the same mechanisms, not only the bridge from the AAA protocol.

This CPOL is clearly unique in the industry, in the way it dynamically changes the authorization without

terminating the session.

Patent No. 2

True per-device Single Sign-On
Ahmed Ahmed, Sape Mullender, P eter Bosch, Alessandro Duminuco

CISCO

April 03, 2020

Abstract
Enterprise single-sign-on infrastructures achieve two things: users need to provide their password only to
a trusted enterprise authentication service, and, once the user has authenticated for one service, that
authentication can serve for another service as well. In other words, users do not have to type their
password over and over as they move from one enterprise service to another. At the moment, this tends
to work on a per-user-application basis: a browser can be used to move from one service to another
without re-authenticating, but that user's authentication is not valid for the mailer application, or for a
different browser. We address this problem by proposing a true single-sign-on experience for all
applications on a user's device.

Restatement of invention
A local Identity provider can be run on any host to allow all applications to share the single-sign-on state
created by the first authentication operation triggered by the first application to contact a service
provider. The local Identity Provider can be installed in a way that neither application code, nor service
provider code needs to be modified in any way.

Advantages
Users are no longer forced to type their passwords as they open different applications connecting to
corporate services in the morning. It creates a single application that deals with corporate-security
interactions; with this approach, less trust needs to be placed in individual applications installed on a host.
Moreover, in the future, the local Identity Provider could become a platform for enterprise posture
verification — i.e., help determine whether or not users are behaving badly.

	Abstract
	Introduction
	Problem Statement
	Thesis Goal
	Research Questions
	Thesis Contribution
	Research Method
	Thesis Outline

	Background
	Authentication and Authorization
	User Authentication
	User Authorization

	Single Sign-On
	SSO Terminology
	Cookies vs Tokens
	SSO Authentication Flow
	Web SSO Frameworks

	Overview of Less-Effort MFA Systems
	Motivation
	Proximity-based Authentication
	Bluetooth
	Virtual WiFi
	Ambient Sound

	Context-aware Authentication
	Contextual Features
	Attacker Model
	Risk-based Authentication Systems

	Discussion

	True Per-device SSO
	Motivation
	Related Work
	Proposed Solution
	Standard SSO Authentication
	Solution Design I
	Solution Design II
	Solution Design III

	Evaluation
	Security
	Usability
	Deployability

	Discussion

	Dynamic Access Authorization
	Motivation
	Related Work
	Proposed Solution
	SAML CoA
	OAuth CoA

	Evaluation
	Discussion

	Conclusion and Future Work
	Bibliography
	Prototype
	Publications
	Patent 1
	Patent 2

