Creating 3D faces from 2D images using GANs

1°* Thomas Reesink
Data Science (DS)
University of Twente
Enschede, Netherlands
thomas @tbjreesink.nl

Abstract—This research looks into the viability of generating
realistic 3D data based on a single 2D image by means of
Generative Adversarial Networks. Many existing methods for
generating 3D faces from 2D information require models, making
them lose detail as they tend to smooth identifying traits. This
research aims to make a system which generates raw 3D data and
does not require a predefined model. This is achieved by utilizing
Generative Adversarial Networks (GANs) which can generate
convincing samples based on a given dataset. By conditioning
the GAN it is possible to base the generated 3D data on a given
2D image. In order to objectively measure the quality of 3D
data generated by its models, this research trains its models
using 3D facial data and uses 3D facial recognition to verify its
results. Using 3D facial recognition on the generated samples
allows for comparison between methods as well as new insights.
By transforming 3D to a 2D matrix it was possible to train a
conditional Wasserstein GAN to produce 3D data which could
be correctly identified in 63.3% of the cases.

Index Terms—GAN, CGAN, WGAN, 3D, Facial Recognition

I. INTRODUCTION

Computing power has seen improvements in both speed
and memory capacity for years. With the improvements in
computing power it becomes increasingly simple to consider
more variables in problems. Calculations which were very hard
or even impossible before are now possible. One variable to
consider is 3D, many captures and representations of reality
are in 2D, reality however has more dimensions. By adding
depth to an image, the image both becomes a more correct
representation of reality as well as better understandable for a
human.

Adding 3D data has other advantages as well, 3D data is
unaffected by orientation or lighting [[1]]. Making it possible
to inspect objects in new ways. However obtaining 3D data
is more complex than obtaining 2D data. Most methods for
obtaining 3D data are not compatible with simple cameras.
Devices which can acquire 3D data and are accurate enough
either require the object to remain fixed, have a low resolution
or are too expensive.

The goal of this research is to construct a method which
generates 3D data based on a 2D image. Generating 3D data
from 2D images has been a goal for many researchers for
a long time [2]. Many methods were proposed with varying
levels of success. However, most of these methods lack a clear
and objective performance measurement and rely on visual
inspection.

This research focusses on adding 3D data to 2D images
of faces. Faces are intrinsically complex and have a lot of
detail. This research focusses on the details and identifying
traits of the faces. Most methods for generating 3D are used
for visualisation or entertainment purposes and do not require
a high accuracy, a person inspecting the result would not notice
errors as long as the face is consistent. Which is also why the
lack of an objective performance measurement is a problem.

To generate the 3D data this research uses a Generative
Adversarial Network (GAN) [3]. A GAN is a generative
model, generative models aim to generate new and unique
samples based on a training dataset. GANs have shown that
they are capable to generate very good, almost real samples
and is one of the most innovative machine learning structures
in recent years [4]. However this research needs the generated
samples to be based on a 2D image. To achieve this a condition
is added, this structure is called a Conditional GAN (CGAN)
[S]. This condition can be a simple class, for example to
generate an image of a boat or bridge, but also an entire image.

3D data is often represented as a point cloud. A point cloud
is a set of points which have coordinates and possibly other
information. Every point corresponds to a 3D measurement
and represents an object being present at those coordinates.
Point clouds are however not natively compatible with GANs
and research is being performed to achieve this [6].

A. Research Questions

To achieve the goal this research will answer the following
research questions

RQ How can we generate 3D faces from 2D images using
GANs?

RQI GAN:s do not natively support point clouds,
how can we make point clouds compatible
with GANs?

RQ2 A GAN generates new and unique samples,
how can we make sure these are based on
a given 2D input?

RQ3 How can we objectively quantify the quality

of generated 3D facial data?

By answering the research questions this research con-
tributed several findings. This research proposes a method to
represent 3D point clouds in a machine learning friendly man-
ner which should be compatible with most existing models.

This method preserves most of the 3D data within a predefined
range and can be converted from and to a point cloud.
Additionally a CGAN based on the Wasserstein GAN [7]]
called Conditional Wasserstein GAN (CWGAN) was designed
which is able to transform data from one domain (2D image) to
another (3D data). Within this research the CWGAN was only
trained to transform 2D images to the corresponding 3D data,
however it could be trained for many other transformations. To
objectively measure the performance with a focus on details,
3D facial recognition is used, by comparing the real world
performance of the 3D facial recognition with the generated
3D data, the amount of detail retained can be measured.

B. Overview

The paper is structured as such that the following sections
first describe the related work is. In Section the different
solutions for the 3D point cloud representation are considered
as well as specific considerations when designing a CGAN.
The experiments and results section explains the systems and
dataset used, after which the 3 experiments and results are
described. Finally all conclusions are summarized in Section

vl

II. RELATED WORK

In this section, related work is explored. This is done
by first researching traditional methods for generating 3D
from 2D, these can have important considerations for both
handling and generating 3D data. Followed by methods that
use deep learning to generate 3D data, GANs are a form of
deep learning and thus many findings from deep learning are
applicable to GANs as well. After deep learning a general
introduction of GANs is given followed by what they can be
used for, the problems that GANs suffer from and how these
problems can be solved. Finally methods that use GANSs in
combination with 3D data are explored.

A. Classical 3D from 2D

Though the research to transform 2D into 3D has been
going on since the 70’ [2] this research will focus on methods
specifically made for faces.

Research by D. Jiang et al. [8] showed an efficient way
to generate a 3D face from a 2D image. The method they
proposed uses a 2D alignment algorithm which was proposed
in earlier research by the same group in order to determine
key feature points on a 2D image of a face [9]. These
feature points are then used to to determine the 3D shape
coefficients to create a model. Finally a texture was extracted
from the original image. This method however only uses the
3D space to alter the 2D image, the method is able to change
pose, change expression and change lighting. The goal of
this research is to generate raw 3D data which is usable for
methods in the 3D space, the method of D. Jiang et al. only
uses the 3D space to generate a new 2D image.

One of the most cited methods is the 3D Morphable Model
(BDMM) [10]-[16]. The 3DMM was first introduced in 1999
[17] and later used for facial recognition [18]. A 3DMM is

a technique for modelling textured 3D faces. The 3D data of
this model consists of an average face with modifier vectors.
These modifier vectors map the average face to the actual face
based on facial features. Additionally a texture is stored which
can be applied to the 3D shape. 3DMM are useful for photo-
realistic image manipulations of both orientation and lighting.

In 2003 Romdhani and Vetter constructed a way to generate
a 3DMM by means of a single image [10]]. They achieve this
by using Multi-Feature Fitting (MFF), this fitting combines
several features which they define. The features they use are
pixel intensity, edge, specular highlight, gaussian prior and
texture constraint. For each of these features they defined a
cost function. A cost function, or loss function, is a function
which scores the output of a method is, the score is then used
to optimize parameters. A low loss means the parameters are
good. These features are then used to maximise the likelihood
of the Multi-Feature Fitting to a face. However research has
shown that 3DMM lose a lot of identifying traits and are biased
to the average face [19], making 3DMM unsuitable for this
research.

A Survey conducted by Levine and Yu in 2009 [20] looked
into methods to create 3D facial images from single 2D
images. Including the method of D. Jiang et al. [§] and 3DMM
itself [|10]. They compared four different methods, and found
that in order to be efficient D. Jiang et al. [8|] sacrifice a
significant amount of pixel information, their method uses the
data of 87 pixels to estimate the geometry instead of the entire
image. However other methods are more dependent on pre-
defined models, which as stated have a bias to the average
face which makes them unsuitable for this research.

B. Deep 3D from 2D

Since 2011 Deep Learning really took off as graphics
processing units (GPUs) were starting to get fast enough to
train convolutional neural networks “without” the layer-by-
layer pre-training [21]]. Because of this, people started to look
into new fields where deep learning could be used, generating
3D faces being one of them.

In a research by Tran et al. a method was constructed to
generate 3DMM based on a single picture [22]]. They noted
several interesting things for this research. Known 3D facial
datasets are relatively small and therefore not well suited for
deep learning. To overcome the lack of training data, Tran
et al. used proven methods for generating 3DMM based on
multiple images of the same person and assigned the resulting
3DMM to correspond to all used images. By generating new
3D data they were able to artificially increase the training data
drastically. However, the accuracy of the new 3D is dependent
on the accuracy of the used method.

Tran et al. also noted in the deep learning segment that using
a Euclidean loss function resulted in a particular issue. Since
3DMM are based on vectors which belong to a multivariate
Gaussian, when using Euclidean loss the resulting generated
3DMM have a bias to the origin, the average face. This
happens because those faces on average give a low distance
to the desired result and therefore give a low loss. However

Real world
data

Discriminator

Generator

Fig. 1. Generative Adversarial Network

these faces are not unique and not detailed. To overcome this
problem they used an asymmetric Euclidean loss function
which was designed to encourage the network to favour
estimates further away from the origin. They found that the
asymmetric Euclidean loss was a great way to prevent the
tendency of deep learning methods to produce average results.

Other than Tran et al. many others also tried using Deep
Learning to construct 3DMM [23]-[31]. However, as stated
before, since 3DMM are based on predefined models and have
a bias to the average face, they are not well suited for facial
recognition and therefore estimating 3DMM parameters is not
the goal of this research.

As far as the author can tell there are no papers describing
a method to produce a 3D face from an 2D image through
deep learning without the use of a pre-defined model.

C. Generative Adversarial Networks

GANs were first introduced by Goodfellow et al. in 2014
[3]. GANs consist of both a generative model and a discrim-
inative model

Generative models aim to generate the new and unique
samples from latent space. Latent space is a hidden space in
which observable data can be mapped such that the distance
between data is based on similarity. For example in latent
space considering shape two chairs are closer to each other
than a chair and a table, as the chairs are more similar, however
a chair is closer to a table than a bookcase, as they both have
four legs and a surface. By generating samples from the latent
space between two chairs, a new chair with features from both
will be generated. A generative model often takes features
from many training samples.

Discriminative models aim to classify their input into given
classes. For example in a dataset of animals pictures, a
discriminative model can be trained to classify every picture
into their species.

Goodfellow et al. noticed the high success of deep dis-
criminative models and the low success of deep generative
models. They proposed a way to estimate generative models
by simultaneously training two models. Next to training a
generative model (generator) they proposed to also train a dis-
criminative model (discriminator) which would decide whether
a given input is part of the real dataset or generated by the
generator. The generator can then train itself by maximizing
the probability of the discriminator making a mistake. The
general structure of a GAN can be found in Figure

The generator can be compared to counterfeiters trying to
produce fake currency. The discriminator would be the police
trying to detect the fake currency. Over time the counterfeiters
will get better at faking currency however as better fakes show
up, the police will also get better at detecting fakes. In this
metaphor the loss of traditional generative models would be
comparable to having a perfect police, giving the counterfeiters
almost no possibility to improve.

Since their introduction GANs have proven to be valuable
to generate realistic samples from a latent space in many
different contexts [32]. GANs have been modified to use with
images, videos, music, natural languages and medical images.
Especially in images, multiple real world applications have
been found. Specifically for images, GANs have been used
for image transformation, super-resolution, object detection,
object transfiguration, face transformation, image generation,
image restoration and brain activity visualisation [4], [32],
[33]. Lastly GANs have empirically shown to produce more
realistic results than other generative models [32].

D. Problems with GANs

Even though GANs have many advantages and possibilities,
they suffer from instability. This is among other reasons
because the generator and discriminator do not know when
they have reached the ultimate strategy. When the generator
is making “perfect” fakes, very close the actual dataset,
the discriminator will try to root them out, to reduce False
Positives, and by doing so it classifies more real samples as
False Negative. Therefore the generated results of a GAN can
get worse over time, making it prone to instability [32].

Another problem with GANs is Mode collapse. Mode col-
lapse is the phenomenon when a generator does not generate
all different kinds of samples present in the original dataset. A
mode, or kind of sample, is a subsection of the training dataset.
For example, in the MNIST dataset [34] which contains
handwritten numbers, see Figure @ all numbers fall into the
training dataset and the subset of all zeros can be considered
a mode. Since the only goal of the generator is to fool the
discriminator, if it trains itself to only produce one mode
which is good enough, it achieves its goal but not the real
goal. In the example mode collapse could occur where only
the number four would be generated, or when all numbers
except the number nine are occurring.

E. Wasserstein GAN

One way to overcome mode collapse was proposed by
Arjovsky et al. [7]. They called it the Wasserstein GAN
(WGAN). In a WGAN instead of having a discriminator
decide whether a given input sample is real or fake it only
has a continuous value output. This allows for a more gradual
approach to updating weights. In the paper they compare this
discriminator to an art critic, it won’t decide whether it is
real art, it will decide whether it is good art by giving it a
grade. Arjovsky et al. state that, mode collapse comes from
the fact that the optimal generator for a fixed discriminator is
a sum of deltas on the points which the discriminator assigns

AN STNTMIT WO
o % N G R —~Q
SRyl XdNn—o
N e cWN—O
) eq4rdNN0O
QSN A LW DO
LN RN-LW =0
N~ s AR ONND
NN O vyYy~o
(RS ER NN PR Y
QAN BN LW N -
ASHVNPLLWNND
SN AR RWN-D
\.naoug\o*gw\u\o
NN esneWwey -9

Fig. 2. Samples from the MNIST dataset [34]

the highest values. For example, in an MNIST experiment the
discriminator gives a specific shape of the number nine a high
probability to be real. The discriminator updating is paused
and the generator then gets trained till it has a very low loss.
Most generated samples will look exactly like the shape of the
number nine with the high probability and the other modes
will not show up as this is what the loss of the generator
seeks to achieve. Because the loss of a WGAN is based on
a grade instead of a choice, it can lower the grade of often
generated modes without being wrong, which would increase
its loss. Additionally the modes that are seldomly generated,
gradually get a higher grade. This way mode collapse will not
occur according to Arjovsky et al..

WGAN uses Earth-Mover (EM) distance, aka Wasserstein-
1, to determine its loss. EM distance is a representation of
the distance between two probability distributions within a
specific region. Thus instead of looking at the distance of a real
sample and a generated sample, EM considers the difference
between the distribution of real samples and the distribution
of generated samples. EM distance has a Lipschitz constraint
which needs to be guaranteed. A Lipschitz constraint limits
the slope of a continuous function. Because of this the update
of the weights has to be within a specific range. In the WGAN
paper they achieve this by means of weight clipping, however
they state that this is “a clearly terrible way to enforce a
Lipschitz constraint”. Gulrajani et al. improved the WGAN by
replacing the weight clipping with a gradient penalty [35]. The
new method has a more complex loss function. This results
in a longer training time per batch. However they also show
that the results after the same real world time are better than
those when using weight clipping.

FE. Conditional GANs

Conditional GANs (CGANs) were already proposed by
Goodfellow et al. in the original GAN paper [3]]. In a research
by Mirza and Osindero [5]], they explain how to implement a
condition as well as show the potential. A conditional GAN
takes the completely random generating GAN and conditions

Real world
data

Discriminator

Generator

op o]

Fig. 3. Conditional Generative Adversarial Network

both the discriminator and generator on some kind of condi-
tional information. In the paper they used the MNIST dataset
(Figure |2) along with the classes (0-9) which are also in the
dataset as a condition. This allowed them to force the generator
to generate a specific number instead of a random number. The
structure they used can be found in Figure [3] Though this is
a simple example, they state that the conditional information
can be any kind of auxiliary information. The conditioning is
performed by adding the conditional information by feeding
it into both the discriminator and generator as additional input
layer.

G. GAN 3D

Due to the potential GANs have shown in various fields,
researchers have also sought to implement the method for
experiments with 3D data.

Following the research of Tran et al. [22] Galteri et al. saw
an opportunity to improve the results by using GANs [36].
They state that generating 3D where no a priori knowledge
is available about the image is challenging. Therefore they
decided to first generate a 3DMM and use a Conditional GAN
(CGAN) to improve it. To make the 3DMM compatible with
a CGAN they convert it to three separate 2D matrices, based
on the research by Gilani et al. [37]. This method loses no
information compared to the 3DMM. These matrices are then
used as inputs for teaching the CGAN.

They compared several different models with different in-
puts for the Generator, Discriminator and Loss function. One
of the matrices was based on depth. They found that reducing
the amount of information for the discriminator and loss
function to only the depth matrix actually lowered the mean
average error between the ground truth and the estimate. They
explain that this is because when the depth of a face is coherent
the other data is inherently also coherent.

Because most methods for 3D representations based on 2D
images are based on models (see section they are not
suitable for this research, as the goal is to be able to use the
generated data within 3D space. S. Moschoglou et al. proposed
a method to generate 3D faces as a 3D mesh [38]]. They also
state no GAN-based method has been proposed in the literature
that can successfully represent, generate or translate 3D facial
shapes(meshes).

The method they proposed converts the 3D face meshes to
UV spatial maps [39], this way the face data is represented
in 2D space and easier to put into a network. An UV spatial

map is a 2D image recording the 3D coordinates of a complete
facial point cloud. It is a depth image with semantic meaning
at each pixel. The method uses an encoder-decoder structure
for both the Generator and Discriminator. An encoder-decoder
structure first lowers the amount of channels (encoding) and
then increases the amount of channels (decoding) to the
original amount. This forces the model to focus on rough
features over details. They claim means that the encoder-
decoder models can be pre-trained before the adversarial
training.

Though the research of Galteri et al. [36] and S. Moschoglou
et al. [38|] are cutting edge, they do not look into a way to
directly base the 3D face on a 2D image. As far as I can tell,
no-one has attempted to construct a 3D face based on a single
image using GANS.

One of the biggest problems, preventing using 3D data in
combination with deep learning, is the size of the datasets.
Tran et al. have stated that the facial datasets are relatively
small for deep learning [22]. As GAN is based on two
Networks that use deep learning, it suffers from the same
problems. In a dataset reduction research by Fajar Ulin Nuha et
al. [40] they also confirm that datasets of around 2000 samples
give poor results, they recommend around 50,000 samples.
Other research specifically focussed on faces has shown good
results with around 14,000 samples [41]]. The most popular
datasets like FRGC v2.0 [42] (4,007 3D images), Bosphorus
[43] (4,666 3D images) and Casia 3qﬂ (4624 3D images) are
all too small. As such it is needed to combine multiple datasets
or augment the dataset. Augmentation can be done for example
by rotating faces [41], mirroring or adding noise.

III. METHODS

This research aims to generate 3D facial data from 2D facial
data using GANS. In order to achieve this, a 3D presentation
compatible with most GANs as well as a state of the art
Conditional GAN were designed.

A. 3D Representation

The 3D datasets stated in Section [I-G| consist of point
clouds, a list of x, y and z coordinates. GANs have a fixed
number of inputs and outputs. Thus it is not possible to directly
output a non fixed amount of points. With 3DFaceGAN S.
Moschoglou et al. [38] already showed that it is possible
to generate 3D data using GANs. However there are other
possible methods.

The biggest challenge to overcome is the multidimensional
aspect. Possible methods to process this data multidimensional
data in a GAN are:

e X,y and z coordinates as nodes for every pixel, as shown
in Figure {4

o a separate generator for every dimension with one dis-
criminator, as shown in Figure [3]

o Construct a single layer representation, focussed on
depth, as shown in Figure [6]

ICASIA-FaceV5, http://biometrics.idealtest.org/

®HEE - PO -G

Random Generated i Critic
Generator 3D data Discriminator
Real 3D
data
Real world facial
data
G(x)
Fig. 4. Simple WGAN
Q
1 Generator 4,@ @
Random @ Generated i Critic
—1 Generator @ Discriminator
@
@ ’ data
5 ’
—1 Generator H@
i
@ @ Real world facial
data

Fig. 5. Split generator WGAN

This research uses the third option, a depth image (Figure|[6).
The x and y coordinates are encoded as part of the coordinate
within the depth image. This way the resulting images can be
easily transformed to real world data. By representing the 3D
data in a 2D matrix the data becomes compatible with most
GANSs. A plane is selected on which the 3D is placed, from
a frontal view the depth compared to this plane is recorded
in the 2D matrix. The methods from Figures [4] and [5] can be
considered for future work.

In Figure [/| a sample registration can be found. The regis-
tration is performed using an frontal projection to a 2D plane.
In this plane the depth is stored in mm in a grid of 165x195.
The real world distance between the pixels is fixed, 0.67 mm,
this ensures that 3D points can be calculated. The position of
the face on the plane is determined based on the nose, this
ensures that the facial features are in roughly the same spot
for all samples. Additionally the 2D images are registered to
have a grayscale value corresponding to the 3D measurement.

In order to lower the training duration as well as increase the
chance that the GAN successfully generates faces the methods

http://biometrics.idealtest.org/

Random P Critic
K Discriminator
input x Score

Generator

Real world facial
data

Fig. 7. Registering of 3D and 2D data

are first confirmed at lower resolutions. To accomplish this the
above data has been rescaled and cropped to 32x32, 64x64 and
128x128 resolutions. To construct these resolutions bilinear
interpolation is used, since it can be assumed that the skin
is continuous and roughly linear between known datapoints,
this should give a decent interpolation. In order to improve
the compatibility with known models the depth data was
transformed to be in the [-1, 1] range.

B. Conditional GAN

A regular GAN is purely trained to generate new samples,
the goal of this research however is not to generate new 3D
faces but to generate 3D facial data which corresponds to a 2D
image. This is achieved by adding a condition to the training
of the GAN. The condition in this case being a 2D image.
This is done by using the conditional GAN (CGAN) method
as first described by Mirza et al. []5[], a schematic can be found
in Figure [§]

The CGAN has a generator which has an encoder-decoder
structure in order to transform from an 2D input to correspond-
ing 3D data. This way the model is forced to focus more on
how pixels are related rather than every pixel individually.

The generator of a regular GAN uses a random vector (aka
noise), which it maps back to the image space. The output
is then presented to the discriminator. By using this noise
in combination with the trained weights a GAN is able to
generate the samples. Because there is an actual input for

Generated
3D data
(3D image,
2D image)

Generator

Critic
Score

Discriminator

2D image

Real world facial
data

(3D image,
2D image)

Fig. 8. Conditional WGAN

the generator of a CGAN (the 2D image), the random vector
becomes optional. Various research have removed the random
vector input of CGAN [44]-[46], in this research both were
implemented and compared. The random noise is added as an
additional input layer of the same size as the original image.

The possible models are:

1) Generator with only 2D input

2) Generator with both 2D and noise input

IV. EXPERIMENTS AND RESULTS

This research answers its research questions by performing
three experiments.

Experiment 1 focusses on the question posed in RQ1, how
3D data can be adapted to be used in GANSs, the product is
a GAN that can create 3D facial data from latent space. Thus
experiment 1 is to select and train GANs with the prepared
data.

Experiment 2 will add the conditional information (2D
image) as an input for the GAN in order to answer RQ2.
The product is a Conditional GAN that can create 3D data
corresponding to an 2D image.

Experiment 3 is a verification experiment to answer RQ3,
it uses known 3D facial recognition on generated 3D samples
to compare them to their ground truth.

A. Systems

All machine learning is done in Python 3.7, this choice was
made due to the experience of the author and the available
libraries that support machine learning in Python. Version 3.7
was chosen as it is the most recent stable release at the start
of the research. All machine learning models were defined in
Pytorch 1.3.1. Pytorch was recommended and version 1.3.1
was the most recent version at the start of this research.

The known 3D facial recognition for Experiment 3 was
produced by Spreeuwers in 2011 and is called FaceUT3D [47],
[48]. This method was chosen as it has a high identification
accuracy and collaboration with the creator is possible.

B. Dataset

The primary dataset used in this research is the FRGC
v2.0 dataset. FRGC is a dataset of 3D facial data with
corresponding 2D information that was released to promote
and advance face recognition technology [42]. It contains
4,007 3D images of 466 persons. The 3D data is represented
as a grid of 480x640 3D points. The corresponding 2D data
is a pixelmap of 480x640 24 bit color pixels.

Fig. 10. Sample batch from the 2D data of FRGC v2.0 after preparation

This dataset has been converted to registered depth images
described in section [[II-A] A sample batch of the prepared
images can be found in Figure 0] and Figure In order to
separate the dataset in a train and test set, 10% of the persons
are designated as testpersons, the remaining persons are the
training set.

This dataset is too small as discussed in Section[[I-Gl It was
not possible to combine the datasets in time for this research
as the different datasets have different structures which are
not completely compatible. Training with a combined dataset
should be considered future work. In order to augment the
data, Gaussian noise was added. This research compares
various intensities of Gaussian noise on the 2D images in order
to augment the dataset.

There were 4 different noise levels to find which amount
of Gaussian Noise on the 2D input gave the best results. The
datasets used are:

1) No noise

2) Gaussian Noise, mean=0, var=0.001

3) Gaussian Noise, mean=0, var=0.002

4) Gaussian Noise, mean=0, var=0.005
A sample of each of these noise levels on different image sizes
can be found in Figure [TT]

Additionally other methods for augmenting data were con-
sidered. Flipping the image and 3D data in the y direction
should provide valid faces and double the dataset. Selecting
multiple crops of the face was also considered, however this
method could also have negative effects by moving feature
locations within the image could make it harder to train. Both
were considered but not used due to time constraints, there was
not enough time to thoroughly compare the different results.

C. Exp I1: Wasserstein GAN with Gradient Penalty

In order to test whether the 3D data representation described
in Section [[II=A] works a GAN was trained.

The GAN used in this research was selected by a prelimi-
nary experiment on the CelebA dataset [49]]. CelebA contains
images of 2D faces, making it relatively close to the actual data
in this research. The considered GANs were DCGAN [50],

[No Noise

l Variance = 0.001 " Variance = 0.002 " Variance = 0.005]

. |

| 32x32

64x64

128x128

Fig. 11. Comparison of how different noise levels affect the used image sizes

TABLE I
WGAN TESTBATCHES

Testbatch | Model | Dataset | Resolution | Iterations
tl WGAN | Registered FRGC 32x32 35,000
2 WGAN | Registered FRGC 64x64 70,000
3 WGAN | Registered FRGC 64x64 70,000

WGAN and WGAN with Gradient Penalty (WGANGP)
[35]. Wasserstein GAN with gradient penalty was chosen as it
produced the most unique results without defects, is state of
the art and claims to have solved mode collapse.

The specific layers that were used for this experiment can
be found in Appendix [A] The WGAN was trained with the
images of the 32x32 dataset as well as the 64x64 dataset. The
entire dataset was used as the focus was to create new and
unique samples there was no need for a comparison between
seen and unseen data. All training was done with a standard
batch size of 64 as given by Arjovsky et al.

The goal of a generative model is best described as to
generate samples with variation which have not been seen
before. Since samples which exist in the sample database do
not need to be generated and a model that generates roughly
the same sample every time is not very useful. To analyse these
two factors three generated sample batches are taken, one from
the 32x32 trained model (t1) and two from the 64x64 trained
model (t2 and t3), an overview of these batches can be found
in Table[l] The t1 and t2 are visually inspected whether there is
variation in the results. In order to check confirm whether the
generated samples are new and not part of the original dataset,
t3 has the closest match within the original dataset looked up
and the absolute difference displayed. If all comparisons show
differences then the experiment can be considered a success.

A sample batch generated by the WGANGP trained on
32x32 data, t1, can be found in Figure @, these samples look
promising and show variation. The variation is most obvious
around the nose, there is also variation in the eyes and some
samples even have hair.

In Figure [T3] a sample batch generated by the WGANGP
trained on 64x64 depth images can be found, t2. In these
samples the difference is also most noticeable around the
nose. The higher resolution makes the width of the nose more

Fig. 12. Testbatch tl: Generated samples by WGANGP after 35,000 training
batches of the prepared 32x32 dataset

Fig. 13. Testbatch t2: Generated samples by WGANGP after 70,000 training
batches of the prepared 64x64 dataset

visible. The variation around the eyes seems lower however
is still there. The variation in hairstyle is also still present.
Additionally there is now a sample with a visible mouth
(second row first sample). Unfortunately one sample has an
artefact(second row fifth sample), artefacts should not present.
Upon inspection of 640 samples(10 batches) 11 samples had
artefacts, 1.7%.

In Figure[T4] 3 is displayed along with the closest matches.
By portraying the closest match alongside a sample it is
possible to determine whether the sample is actually new or
that the WGANGP is generating existing faces. In the first
sample(first row first sample) the main difference is in the
eyebrows as the match has them higher, in the second the nose
of the real sample is more upright and in the third sample the
nose in the real sample is less pointy. In the difference row it
is clear that every match has some difference.

As there are differences between all images, some clearer
than others, it can be concluded that there are new and unique
samples generated.

As the WGANGP was able to generate new and unique
faces with variation, the 3D representation proposed in Section
[IT-A] is a successful method to represent 3D data for a GAN.
Thus the proposed method is a valid solution for RQ1. The
artefacts should not have been present but do not invalidate
the above conclusion, they are probably a result of the small
dataset size.

D. Exp 2: Conditional WGAN

The core of this research is to generate 3D faces from 2D
images. The previous section showed that a WGANGP using
the 3D representation is able to generate 3D data. In the second
experiment the WGANGP was altered to accept an image as
described in Section [[II-B] to create the Conditional WGAN
(CWGAN). The full structure of the used CWGAN can be
found in Appendix

As described in Section [B| there are two models, one with
and one without noise as input. Additionally to augment the

Fig. 14. Testbatch t3: Generated samples (left) by WGANGP after 70,000
training batches of the prepared 64x64 dataset with the closest match (right)
in the original dataset and the difference (middle). The difference is from
low(black) to high(white).

TABLE I
SCENARIOS AND THEIR PARAMETERS

Dataset

Scenario Model Variance
Augmented

CWGAN-NoNoise CWGAN No -
CWGAN-0.001Var CWGAN Yes 0.001
CWGAN-0.002Var CWGAN Yes 0.002
CWGAN-0.005Var CWGAN Yes 0.005
CWGAN_NOISY-NoNoise | CWGAN_NOISY | No -
CWGAN_NOISY-0.001Var | CWGAN_NOISY | Yes 0.001
CWGAN_NOISY-0.002Var | CWGAN_NOISY | Yes 0.002
CWGAN_NOISY-0.005Var | CWGAN_NOISY | Yes 0.005

3x 10!
CWGAN-NoNoise
CWGAN-0.001Var
CWGAN-0.002Var
CWGAN-0.005Var
CWGAN_NOISY-NoNoise
CWGAN_NOISY-0.001Var
CWGAN_NOISY-0.002Var
CWGAN_NOISY-0.005Var

MSE in mm

2x 10!

30000 40000 50000 60000 70000

Generator Iterations

o 10000 20000

Fig. 15. MSE error between generated samples by several CWGAN and
ground truths from the unregistered 2D 64x64 dataset

dataset, noise is added to the 2D data as described in Section
[[V-B| This noise is randomly assigned every time a sample is
used, thus independent of image size and amount of samples
in the dataset. This results in 8 scenarios shown in Table [
When comparing the performance of a conditional GAN
there are additional objective performance measurements.
These are possible as the ground truth is known in this case.
As such the CWGAN is only trained on the trainpersons and

—— CWGAN-0.002Var
40 CWGAN_NOISY-0.001Var
—— CWGAN_NOISY-0.002Var

—— CWGAN_NOISY-0.005Var
301

N
o
L

MSE in mm

10 /\/\

30000 40000 50000 60000 70000

Generator Iterations

o 10000 20000

Fig. 16. MSE error between generated samples by several CWGAN and
ground truths from the registered 2D 64x64 dataset

the objective measurements are based on the testpersons.

To estimate the best model and noise variance, the mean
squared error (MSE) between the generated samples of a
scenario and the corresponding ground truths is calculated for
all test persons. The reasoning is that a lower MSE should
indicate that the the generated sample should be closer to the
wished result. The trained models for this estimation were
based on unregistered 2D data with registered 3D data both
with a resolution of 64x64.

In Figure [T3] the progression of the MSE between generated
samples and the ground truths is displayed. It is clear that the
MSE when not augmenting the data (no noise) is the highest.
It also seems that the CWGAN_NOISY model is more stable,
the CWGAN model has more and higher spikes. In the end
however most seem perform equally well.

The four scenarios with the lowest MSE after 70,000
iterations were selected for additional dataset training. These
are, in order from lowest to highest MSE:

1) CWGAN_NOISY-0.002Var
2) CWGAN_NOISY-0.005Var
3) CWGAN_NOISY-0.001Var
4) CWGAN-0.002Var

The additional datasets used for training are based on regis-
tered data for both the 2D and 3D data, as shown in Figures
] and [T0] By reducing the amount of transformation that the
generator needs to learn, by fixing the 2D datapoints to the
corresponding 3D datapoints, the resulting model should be
able to give better results. By increasing the resolution of
the image the error may increase, intuitively as the generative
model needs to generate more data training is difficult.

By registering the the 2D information the MSE in the
result was lowered by around 8 mm, this is a lot as it
nearly halves the MSE. Increasing the resolution had the
expected result on CWGAN_0.002Var however on the CW-
GAN_NOISY the resulting error did not increase. Though

—— CWGAN-0.002Var
40 - CWGAN_NOISY-0.001Var
—— CWGAN_NOISY-0.002Var

—— CWGAN_NOISY-0.005Var
301

MSE in mm
N
o

10 A

30000 40000 50000 60000 70000

Generator Iterations

o 10000 20000

Fig. 17. MSE error between generated samples by several CWGAN and
ground truths from the registered 2D 128x128 dataset

all CWGAN_NOISY models ended clearly below CW-
GAN_0.002Var however both CWGAN_NOISY_0.002Var
and CWGAN_NOISY_0.005Var had more extreme spikes The
MSE of CWGAN_NOISY_0.001Var was the most stable of all
models. It is clear that the model with noise performs better
when training at higher resolutions than the model without
noise.

Based on these results it can be concluded that a GAN is
able to generate 3D data based on 2D images, however the fact
that the generator is able to transform data from one domain
to another does not mean that the generated faces actually
matches with the person in the 2D data, just that a set of 3D
facial data is made with 2D images as input. It can also be
concluded that the augmentation of the dataset helps to lower
the distance between generated samples and the ground truth.
What cannot be concluded is that augmentation will always
help, only that it helps here. It is possible that the positive
effect of data augmentation is because the dataset has a small
size. Lastly it can be concluded that removing the noise from
the generator when using an image as generator input is not
beneficial for the results.

E. Exp 3: 3D facial recognition

As stated in the previous section, MSE only checks the sim-
ilarity between two images on a surface level. MSE focusses
on a overall depth distance instead of identifying treats and
thus it could not be concluded that the generated facial data
matches the person it is based on. To measure this performance
a third experiment was performed. In the third experiment the
resulting CWGANSs from experiment 2 is verified by means
of 3D facial recognition.

The 3D facial recognition method used was designed by
Spreeuwers [47]], [48]]. This method produces a similarity score
between 0 and 60 on the test and reference data. These 60
points are based on 60 “judges” which score either O or 1
on different regions. These judges are set to have a threshold

which corresponds with a maximum False Acceptance Rate
of 10%. Resulting in an identification rate of 99.3% and
verification rate of 99.4% at FAR=0.1% on real data.

For the experiment several datasets were generated us-
ing the models trained in the previous experiment. CW-
GAN_NOISY_0.001Var and CWGAN_0.002Var are exam-
ined in depth as these performed the best for CWGAN_NOISY
and CWGAN respectively. For every sample in the original
dataset for every scenario 3D data was generated. So for every
sample the scenario datasets contain:

1) 2D image, real2D

2) 3D data, real3D

3) generated 3D data, fake3D

The fake3D samples can be considered as a new 3D
measurement and are used as probes, the real3D samples are
used as the gallery. This results in a score between 0 and 60 for
every fake3d, real3d combination. There are two types of tests
present in this scoring. Genuine test, when the fake3D data is
compared to the real3D data of the same person. Imposter
test, when the fake3D data is not from the same person as
the real3D data it is compared to. The CWGAN is performing
properly if the genuine tests score observably higher than the
imposter tests.

There are 2 considerations, a genuine test should score as
high as possible and a imposter test should score as low
as possible, though similar these do not consider the same
thing. The imposter score can be correlated to the similarity
of faces, thus if the model generates an average face the
imposters score higher. The genuine score can be correlated
to the uniqueness of faces, thus how well the model is able
to transform identifying features. The less the genuines and
imposters overlap in score the better our generated faces are.

To visualize the above considerations the scores are dis-
played in a normalized bar graph on a logarithmic scale. Addi-
tionally the identification and verification rates are calculated.
The identification rate is the percentage of cases where the
highest FaceUT3D match score belonged to the correct person.
The verification rate is the percentage of genuine persons
which pass whilst only allowing 0.1% of the imposters to pass
the check.

From the MSE results in Figure§I6] and [I7] it is expected

that CWGAN_002VAR and CWGAN_NOISY_001VAR
score roughly the same on 64x64 images, CW-
GAN_NOISY_001VAR performs roughly the same on

64x64 and 128x128 images and that CWGAN_002VAR
scores worse than CWGAN_NOISY_001VAR on 128x128.

In Figures [[8] and [I9] a normalized histogram of the scores
by genuine and imposter tests. Figure [T8] and Figure [19] look
mostly identical, however CWGAN_NOISY_001VAR seems
to have higher scores in the 50-60 range.

Extending the same comparison to 128x128 images, an in-
teresting phenomena occurs, Figures 20|and 21} More than half
of the imposters score zero. This can probably be accounted to
the FaceUT3D method working better with more data points.

Figure [21] shows the same as Figure [I9 namely that
CWGAN_NOISY_001VAR has more genuines with higher

100%

—— Genuine
Imposters

Occurrence
=
8
—
n
1
glf'
|
]
u
T
]
T
—
=)
1
1
-
m|
]
-
|
=]
1
]
u
F
1
-
1
|
1
1
1
|
1)
—

0.1% A

0 10 20 30 40 50 60
FaceUT3D Score

Fig. 18. Comparison of scores by genuine and imposters normalized for the
amount of cases for CWGAN_002VAR with 64x64 images

100%

—— Genuine
Imposters

10% o

Occurrence
I
—
|
:;i.
L
|
.|
|
1
d
]
g
5
]
|
=]
1
|
1
T
]
T
1

1% o

0.1% o

0 10 20 30 40 50 60
FaceUT3D Score

Fig. 19. Comparison of scores by genuine and imposters normalized for the
amount of cases for CWGAN_NOISY_001VAR with 64x64 images

scores and less genuines with zero score compared to CW-
GAN_002VAR. However imposters also score higher in CW-
GAN_NOISY_001VAR, in both models most imposters score
below 31. The higher score of CWGAN_NOISY_001VAR is
in line with the expected result.

The values in Table [[TI] give an overview of all the model re-
sults. CWGAN_NOISY_001VAR scored the highest for both
64x64 and 128x128 images, and CWGAN_002VAR scored the
lowest for both 64x64 and 128x128 images. Whilst the identi-
fication rate of CWGAN_002VAR on 64x64 is roughly equal
the verification rate is about 5.0% lower than the others. This
means that even though the samples are roughly as good, they
are more similar. The 128x128 results show that even though
the MSE loss of CWGAN_NOISY_001VAR on 64x64 was
lower than on 128x128, the verification rate is lower. As stated
before, a lower verification rate is correlated to more similar
faces, which is unwanted. The highest identification score of
CWGAN_NOISY_001VAR is in line with the expected result.

100%

—— Genuine
Imposters

10% o

1%

Occurrence
|
|
—

==l

0.1% A

0 10 20 30 40 50 60
FaceUT3D Score

Fig. 20. Comparison of scores by genuine and imposters normalized for the
amount of cases for CWGAN_002VAR with 128x128 images

100%

—— Genuine
Imposters

10% 1

| .
g _ il L
1% H JLrb'Jjﬂ-rrl-L F‘-""_r |

Occurrence
L
|

0.1%

T T T T T T T
[10 20 30 40 50 60
FaceUT3D Score

Fig. 21. Comparison of scores by genuine and imposters normalized for the
amount of cases for CWGAN_NOISY_001VAR with 128x128 images

Based on that imposters score lower than genuines and
a identification rate of 63.3%, it can be concluded that the
CWGAN is able to determine identifying treats of faces and
transform them to actual 3D data. However due to the high
overlap in the scores up to 30 the method is not directly viable,
as seen in the verification rates. These results could probably
be increased by collecting a larger dataset.

Using 3D facial recognition to verify generated 3D faces
has given good and objectively comparable results. It can
be concluded that 3D facial recognition is a good way to
verify and measure the performance of a 2D image to 3D
face method. This method of comparing 3D faces should be
considered for research which generate 3D facial data.

Additionally it can be concluded that removing the noise
from the CWGAN generator gives measurable worse results,
especially on higher resolutions.

TABLE III
IDENTIFICATION AND VERIFICATION RATES OF THE DIFFERENT MODELS

. . Verification
Model Data Identlﬁtcatlon rate at

rate FAR=0.1%
CWGAN_002VAR 64x64 57.6% 36.5%
CWGAN_NOISY_001VAR 64x64 58.6% 41.6%
CWGAN_NOISY_002VAR 64x64 56.3% 41.6%
CWGAN_NOISY_005VAR 64x64 57.3% 40.2%
CWGAN_002VAR 128x128 49.6% 18.6%
CWGAN_NOISY_001VAR | 128x128 63.3% 39.4%
CWGAN_NOISY_002VAR | 128x128 59.6% 38.9%
CWGAN_NOISY_005VAR | 128x128 59.6% 37.2%

V. CONCLUSION

This research aimed to improve facial recognition. Most
facial recognition only consider 2D images, mostly because
this is easier to acquire than 3D data. Instead of using
measurement devices this research looked into a method to
generate the 3D data from 2D using machine learning. With
an additional focus on usability in 3D facial recognition.

This research answers the question, “how can we generate
3D faces from 2D faces by using GANs?”, by answering three
sub questions.

A method to represent 3D data which is compatible with
most GAN and other generative models was proposed which is
able to preserve most of the 3D information. This method was
verified by successfully training a WGAN to generate unique
and varying 3D faces using this method.

To base the generated 3D faces on 2D images, a conditional
WGAN was designed to accept both a 2D and random input.
This research has shown that removing the random input of
the WGAN produces measurably worse results, especially on
higher resolutions. Based on a mean squared error of less
than one mm, it was concluded that this CWGAN transforms
2D images to 3D data. Thus that adding a condition as first
designed by Mirza et al. [5]] a 3D face can be based on a 2D
image.

In order to verify that the generated faces objectively belong
to the person they are based on, this research proposed to
use 3D facial recognition. By using 3D facial recognition
it was possible to see that the CWGAN preserves at least
some of the identifying features of the faces. By comparing
the identification rate, a method can be scored on preserving
identifying features. By comparing the verification rate, a
method can be scored on the similarity of the faces. 3D facial
recognition was able to give aditional insight in results which
would otherwise be very similar and can be considered a good
performance measurement for generating 3D facial data.

By transforming 3D to a 2D matrix it was possible to train
a CWGAN to produce 3D data which was able to be correctly
identified in 63.3% of the cases. Though improvement is
needed for real world purposes, this shows that there is
viability in this method.

A. Future Work

From the research a few recommendations for future work
arose.

1) Bigger dataset: As discussed in multiple sections of
this research the size of the dataset is too small for effective
training. By combining FRGC v2.0, Bosphorus and Casia
3D, a dataset of 13,297 samples could be constructed, this
would probably increase the performance of this method
considerably. Additionally other methods of augmenting could
be considered, such as flipping the faces on the x axis.

2) Asymmetric Euclidean loss: As noted by Tran et al. [22],
deep learning on 3DMM had the tendency to return faces close
to the origin of the 3DMM. Though our method does not use
3DMM, forcing the loss to focus on unique and identifying
traits aligns with the goals of this research. Designing a GAN
which uses asymmetric Eclidean loss can be beneficial for
generating identifiable 3D data.

3) Incremental learning: Research has shown that training
on smaller data first and then extending the model to increase
the data size performs better compared to directly training the
larger model [51]]. As both the 2D and 3D information can
easily be converted to lower resolution versions this could be
beneficial for this method. Additionally one could look into
different sizes for the 2D and 3D information as this research
only considered equal size of these.

REFERENCES

[1] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and 1. Kompatsiaris, “Deep
learning advances in computer vision with 3d data: A survey,” ACM
Comput. Surv., vol. 50, pp. 20:1-20:38, Apr. 2017.

[2] B. K. Horn, “Shape from shading: A method for obtaining the shape of
a smooth opaque object from one view,” 1970.

[3] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27 (Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.),
pp. 2672-2680, Curran Associates, Inc., 2014.

[4] Z.Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng, “Recent progress
on generative adversarial networks (gans): A survey,” IEEE Access,
vol. 7, pp. 36322-36333, 2019.

[S] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
CoRR, vol. abs/1411.1784, 2014.

[6] C. Li, M. Zaheer, Y. Zhang, B. P6czos, and R. Salakhutdinov, “Point
cloud GAN,” CoRR, vol. abs/1810.05795, 2018.

[71 M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.

[8] D.Jiang, Y. Hu, S. Yan, L. Zhang, H. Zhang, and W. Gao, “Efficient 3d
reconstruction for face recognition,” Pattern Recognition, vol. 38, no. 6,
pp. 787 — 798, 2005. Image Understanding for Photographs.

[9] S. Yan, M. Li, H. Zhang, and Q. Cheng, “Ranking prior likelihood

distributions for bayesian shape localization framework.,” in ICCV,

vol. 1, pp. 51-58, 2003.

S. Romdhani and T. Vetter, “Estimating 3d shape and texture using pixel

intensity, edges, specular highlights, texture constraints and a prior,”

in 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), vol. 2, pp. 986-993 vol. 2, June 2005.

Romdhani and Vetter, “Efficient, robust and accurate fitting of a 3d

morphable model,” in Proceedings Ninth IEEE International Conference

on Computer Vision, pp. 59-66 vol.1, Oct 2003.

J. Roth, Y. Tong, and X. Liu, “Adaptive 3d face reconstruction from

unconstrained photo collections,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 4197-4206, June 2016.

D. Zeng, Q. Zhao, S. Long, and J. Li, “Examplar coherent 3d face

reconstruction from forensic mugshot database,” Image and Vision

Computing, vol. 58, pp. 193 — 203, 2017.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3d
face model for pose and illumination invariant face recognition,” in 2009
Sixth IEEE International Conference on Advanced Video and Signal
Based Surveillance, pp. 296-301, Sep. 2009.

C. Ferrari, G. Lisanti, S. Berretti, and A. D. Bimbo, “A dictionary
learning-based 3d morphable shape model,” IEEE Transactions on
Multimedia, vol. 19, pp. 2666-2679, Dec 2017.

J. Booth, E. Antonakos, S. Ploumpis, G. Trigeorgis, Y. Panagakis,
and S. Zafeiriou, “3d face morphable models “in-the-wild”,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5464-5473, July 2017.

V. Blanz, T. Vetter, et al., “A morphable model for the synthesis of 3d
faces.,” in Siggraph, vol. 99, pp. 187-194, 1999.

V. Blanz and T. Vetter, “Face recognition based on fitting a 3d mor-
phable model,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, pp. 10631074, Sep. 2003.

R. van Rootseler, L. Spreeuwers, and R. Veldhuis, “Applica-
tion of 3d morphable models to faces in video images,” in
32nd WIC Symposium on Information Theory in the Benelux
(O. van den Biggelaar, ed.), (Netherlands), pp. 34-41, Werkge-
meenschap voor Informatie- en Communicatietheorie (WIC), 5 2011.
http://opera.ulb.ac.be/wicsp201 1/free/WICSP2011_Proceedings.pdf.

M. D. Levine and Y. C. Yu, “State-of-the-art of 3d facial reconstruction
methods for face recognition based on a single 2d training image per
person,” Pattern Recognition Letters, vol. 30, no. 10, pp. 908 — 913,
2009.

D. Keith, “A Brief History of Deep Learning,” DATAVERSITY, p. 07, 2
2017.

A. T. Tran, T. Hassner, I. Masi, and G. G. Medioni, “Regressing
robust and discriminative 3d morphable models with a very deep neural
network,” CoRR, vol. abs/1612.04904, 2016.

A. Jourabloo and X. Liu, “Large-pose face alignment via cnn-based
dense 3d model fitting,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4188-4196, June 2016.

E. Richardson, M. Sela, and R. Kimmel, “3d face reconstruction by
learning from synthetic data,” in 2016 Fourth International Conference
on 3D Vision (3DV), pp. 460-469, Oct 2016.

E. Richardson, M. Sela, R. Or-El, and R. Kimmel, “Learning detailed
face reconstruction from a single image,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5553-5562, July
2017.

P. Dou, S. K. Shah, and I. A. Kakadiaris, “End-to-end 3d face reconstruc-
tion with deep neural networks,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1503-1512, July 2017.

A. S. Jackson, A. Bulat, V. Argyriou, and G. Tzimiropoulos, “Large
pose 3d face reconstruction from a single image via direct volumetric
cnn regression,” International Conference on Computer Vision, 2017.
S. Sengupta, A. Kanazawa, C. D. Castillo, and D. W. Jacobs, “Sfsnet :
Learning shape, reflectance and illuminance of faces in the wild,” CoRR,
vol. abs/1712.01261, 2017.

A. Tewari, M. Zollhofer, H. Kim, P. Garrido, F. Bernard, P. Pérez, and
C. Theobalt, “Mofa: Model-based deep convolutional face autoencoder
for unsupervised monocular reconstruction,” CoRR, vol. abs/1703.10580,
Oct 2017.

L. Tran and X. Liu, “Nonlinear 3d face morphable model,” CoRR,
vol. abs/1804.03786, 2018.

S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li, “Photorealistic facial tex-
ture inference using deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5144—
5153, 2017.

Y. Hong, U. Hwang, J. Yoo, and S. Yoon, “How generative adversarial
networks and their variants work: An overview,” ACM Comput. Surv.,
vol. 52, pp. 10:1-10:43, Feb. 2019.

Y. Cao, L. Jia, Y. Chen, N. Lin, C. Yang, B. Zhang, Z. Liu, X. Li, and
H. Dai, “Recent advances of generative adversarial networks in computer
vision,” IEEE Access, vol. 7, pp. 14985-15006, 2019.

L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, pp. 141-142, Nov 2012.

1. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” CoRR, vol. abs/1704.00028,
2017.

L. Galteri, C. Ferrari, G. Lisanti, S. Berretti, and A. D. Bimbo, “Deep
3d morphable model refinement via progressive growing of conditional

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471
[48]

[49]

[50]

[51]

generative adversarial networks,” Computer Vision and Image Under-
standing, 2019.

S. Z. Gilani, A. Mian, and P. Eastwood, “Deep, dense and accurate
3d face correspondence for generating population specific deformable
models,” Pattern Recognition, vol. 69, pp. 238 — 250, 2017.

S. Moschoglou, S. Ploumpis, M. Nicolaou, A. Papaioannou, and
S. Zafeiriou, “3dfacegan: Adversarial nets for 3d face representation,
generation, and translation,” CoRR, vol. abs/1905.00307, 2019.

Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, “Joint 3d face recon-
struction and dense alignment with position map regression network,”
CoRR, vol. abs/1803.07835, 2018.

F. U. Nuha and Afiahayati, “Training dataset reduction on generative
adversarial network,” Procedia Computer Science, vol. 144, pp. 133 —
139, 2018. INNS Conference on Big Data and Deep Learning.

L. Galteri, C. Ferrari, G. Lisanti, S. Berretti, and A. Del Bimbo, “Coarse-
to-fine 3d face reconstruction,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2019.

P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, Jin Chang,
K. Hoffman, J. Marques, Jaesik Min, and W. Worek, “Overview of
the face recognition grand challenge,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05),
vol. 1, pp. 947-954 vol. 1, June 2005.

A. Savran, N. Alyiiz, H. Dibeklioglu, O. Celiktutan, B. Gokberk,
B. Sankur, and L. Akarun, “Bosphorus database for 3d face analysis,”
in Biometrics and Identity Management (B. Schouten, N. C. Juul,
A. Drygajlo, and M. Tistarelli, eds.), (Berlin, Heidelberg), pp. 47-56,
Springer Berlin Heidelberg, 2008.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” CoRR, vol. abs/1611.07004,
2016.

D. Pathak, P. Krihenbiihl, J. Donahue, T. Darrell, and A. A.
Efros, “Context encoders: Feature learning by inpainting,” CoRR,
vol. abs/1604.07379, 2016.

X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, Y. Qiao, and
X. Tang, “ESRGAN: enhanced super-resolution generative adversarial
networks,” CoRR, vol. abs/1809.00219, 2018.

L. Spreeuwers, “Fast and accurate 3d face recognition,” International
Journal of Computer Vision, vol. 93, pp. 389—414, Jul 2011.

L. Spreeuwers, “Setting a world record in 3d face recognition,” Vonk,
vol. 33, pp. 11-21, 11 2015.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive grow-
ing of gans for improved quality, stability, and variation,” CoRR,
vol. abs/1710.10196, 2017.

[N

w

o

©

w

IS

w

o

-

o

©

o)

)

APPENDIX A
WGAN

A. WGAN Generator

The generator has an latent vector of size 100 as input. Grayscale is assumed here otherwise the last output size would have
been three.

Listing 1. WGAN generator
Convl(in = 100, out = 1024, kernel size = 4, stride = 1, padding
BatchNorm (features = 1024)
Relu
Conv2(in = 1024, out = 512, kernel size = 4, stride = 2, padding =1)
BatchNorm (features = 512)
Relu
Conv2(in = 512, out = 256, kernel size = 4, stride
BatchNorm (features = 256)
Relu
Conv3(in = 256, out = 128, kernel size = 4, stride = 2, padding =1)
BatchNorm (features = 128)

0)

2, padding =1)

Relu
Conv5(in = 128, out = 1, kernel size = 4, stride = 2, padding =1)
Tanh
B. WGAN Discriminator
The discriminator has the full image as input (1x64x64). Again grayscale is assumed.
Listing 2. WGAN discriminator
Convl(in = 1, out = 128, kernel size = 4, stride = 2, padding =1)

BatchNorm (features = 128)

LeakyRelu(negative_slope = 0.2)

Conv2(in = 128, out = 256, kernel size = 4, stride = 2, padding =1)
BatchNorm (features = 256)

LeakyRelu(negative_slope = 0.2)

Conv3(in = 256, out = 512, kernel size = 4, stride
BatchNorm (features = 512)

LeakyRelu(negative_slope = 0.2)

Conv4(in = 512, out = 1024, kernel size = 4, stride = 2, padding =1)
BatchNorm (features = 1024)

LeakyRelu(negative_slope = 0.2)

Conv5(in = 1024, out = 1, kernel size = 4, stride = 1, padding = 0)

1
—_—
~

2, padding

[N}

w

~

w

o

-

=3

©

S

)

w

=

w

=N

-

%

©

o

w

IS

w

o

-

o

©

o)

)

APPENDIX B
CWGAN

The CWGAN Generator contains an optional noise variable, a generator and a discriminator.

A. CWGAN Generator

The Generator consists of an Encoder and a Decoder.
1) Encoder: The input has twice the number of channels as the image as the added noise is equal in size to the image.

Listing 3. CWGAN generator encoder
Conv2d(in = im channels * 2, out = 128, kernel size = 4, stride = 2, padding =1)
InstanceNorm2d(128, affine = True)
LeakyReLU(0.2, inplace = True)
Conv2d(in=128, out = 256, kernel size = 4, stride = 2, padding =1)
InstanceNorm2d (256, affine = True)
LeakyReLU(0.2, inplace = True)
Conv2d(in = 256, out = 512, kernel size = 4, stride
InstanceNorm2d(512, affine = True)
LeakyReLU(0.2, inplace = True)
Conv2d(in = 512, out = 1024, kernel size = 4, stride = 2, padding =1)
InstanceNorm2d(1024, affine = True)
LeakyReLU(0.2, inplace = True)

2, padding = 1)

2) Decoder: The output has the same number of channels as the image as the added noise is equal in size to the image.

Listing 4. CWGAN generator decoder
ConvTranspose2d(in = 1024, out = 512, kernel size = 4, stride = 2, padding =1)
BatchNorm2d(features = 512)
ReLU(True)
ConvTranspose2d(in = 512, out = 256, kernel size = 4, stride = 2, padding =1)
BatchNorm2d(features = 256)
ReLU(True)
ConvTranspose2d(in = 256, out = 128, kernel size = 4, stride = 2, padding =1)
BatchNorm2d(features = 128)
ReLU(True)
ConvTranspose2d(in = 128, out =im channels, kernel size = 4, stride = 2, padding = 1
Tanh ()

B. CWGAN Discriminator
Since the output is no longer a probability, the sigmoid is not applied.

Listing 5. CWGAN discriminator
Conv2d(in = 2 % im channels, out = 128, kernel size = 4, stride = 2, padding =1)
InstanceNorm2d(128, affine = True)
LeakyReLU(0.2, inplace = True)
Conv2d(in = 128, out = 256, kernel size
InstanceNorm2d (256, affine = True)
LeakyReLU(0.2, inplace = True)
Conv2d(in = 256, out = 512, kernel size = 4, stride
InstanceNorm2d(512, affine = True)
LeakyReLU(0.2, inplace = True)
Conv2d(in =512, out =1024, kernel size = 4, stride = 2, padding =1)
InstanceNorm2d(1024, affine = True)
LeakyReLU(0.2 , inplace = True)
Conv2d(in_channels = 1024, out = 1, kernel size = 4, stride = 1, padding = 0)

4, stride = 2, padding =1)

2, padding =1)

)

	Introduction
	Research Questions
	Overview

	Related Work
	Classical 3D from 2D
	Deep 3D from 2D
	Generative Adversarial Networks
	Problems with GANs
	Wasserstein GAN
	Conditional GANs
	GAN 3D

	Methods
	3D Representation
	Conditional GAN

	Experiments and Results
	Systems
	Dataset
	Exp 1: Wasserstein GAN with Gradient Penalty
	Exp 2: Conditional WGAN
	Exp 3: 3D facial recognition

	Conclusion
	Future Work
	Bigger dataset
	Asymmetric Euclidean loss
	Incremental learning

	References
	Appendix A: WGAN
	WGAN Generator
	WGAN Discriminator

	Appendix B: CWGAN
	CWGAN Generator
	Encoder
	Decoder

	CWGAN Discriminator

