

1

Normal map prediction from light field data through deep
learning
Matthijs	van	Veen	
S0133299	
	 	

2

Preface
Since	the	resurrection	of	VR	a	few	years	ago,	one	of	the	things	that	caught	my	
interest	is	that	of	light	fields	which,	at	least	in	theory,	allow	for	the	capture	and	
playback	of	captured	scenes	with	6	degrees	of	freedom	in	VR.	Although	this	
promise	is	still	long	off	due	to	technical	constraints,	light	fields	can	also	be	used	
for	other	applications	like	predicting	depth	maps	and	scene	dissection.	This	
research	then	would	allow	me	to	explore	this	topic	and	learn	more	about	light	
fields	in	general.	I	must	say	that	although	it	took	me	longer	than	expected,	it	was	
an	interesting	experience	that	brought	new	insights	and	knowledge	of	a	topic	of	
great	personal	interest.	
	
In	this	preface	I	would	like	to	thank	all	people	who	supported	me	in	completing	
this	research.	First	I	would	like	to	thank	my	employer,	Saxion	University	of	
Applied	Sciences	for	allowing	me	the	opportunity	to	pursue	my	interest.	
Secondly	I	would	like	to	thank	my	graduation	coach	Gwenn	Englebienne	for	the	
support	and	feedback	during	the	process.	I	must	honestly	say	that	I	think	I	could	
not	have	finished	it	without	him	and	wished	we	had	met	earlier	during	my	
studies.	Thirdly	I	would	like	to	thank	NEP	and	especially	Robert	van	Merweland	
for	hosting	me	during	a	part	of	my	research.	Lastly	I	would	like	to	thank	my	
beautiful	and	lovely	wife	Paula,	without	whose	support	this	would	never	have	
been	possible.	
	
Enschede,	31-12-2019	 	

3

Summary
Recently	the	increasing	use	of	augmented	reality	has	demanded	for	a	more	
realistic	integration	of	synthetic	and	real	world	images.	One	of	the	ways	in	which	
this	integration	could	be	improved	is	by	attaining	a	normal	map	of	the	real	world	
which	in	turn	theoretically	allows	for	relighting	and	physic	interaction	with	
computer	generated	objects.	This	research	aims	to	explore	if	deep	learning	in	
combination	with	a	light	field	data	can	be	used	to	solve	this	problem	by	
predicting	normal	maps	directly	from	RGB	inputs.	
	
To	do	this	two	methods	for	the	construction	normal	maps	from	RGB	inputs	have	
been	researched	as	a	baseline.	Since	normal	maps	can	only	be	computed	from	
depth	maps	this	is	done	in	two	steps.	First	two	methods	to	compute	normal	
maps	from	depth	data	have	been	implemented	and	evaluated.	Secondly	two	
methods	to	compute	depth	maps	from	RGB	light	field	data	have	been	
implemented	and	evaluated.	
	
In	order	to	see	if	machine	learning	can	be	utilized	for	the	prediction	of	normal	
maps,	a	dataset	has	been	created.	For	this	purpose	8	synthetic	scenes	have	been	
built	with	a	3d	programme.	From	these	scenes	288	light	fields	have	been	
rendered.	Image	enhancement	methods	through	the	use	of	gamma,	saturation	
and	value	adjustments	as	well	as	flipping	and	rotating	are	used	to	scale	up	this	
data	set	to	24624	light	fields	for	training	(6	scenes),	4104	for	validation	(1	
scene)	and	1	for	testing	(from	a	novel	scene).	
	
To	determine	the	deep	learning	architecture	nine	experiments	have	been	done	to	
test	a	large	number	of	network	architectures.	In	these	experiments	various	
parameters	have	been	tested	as	well	as	different	activation	and	loss	functions.	
Based	on	these	experiments	a	final	architecture	has	been	chosen.	
	
In	order	to	evaluate	the	quality	of	the	network	the	predicted	results	are	
compared	with	two	other	methods	mentioned	above.	Here	two	depth	maps	are	
made	using	stereoscopy	and	EPInet.	Based	on	these	depth	maps	the	
Hinterstoisser	method	is	applied	to	create	two	normal	maps.	These	maps	are	
compared	with	the	prediction	result	visually	and	using	a	metric	called	mean	of	
difference	in	angles	(MDA).	
	
For	the	comparison	it	can	be	concluded	that	although	the	network	architecture	
used	in	this	research	produces	better	normal	maps	than	the	combined	methods	
above,	it	is	still	far	from	the	ground	truth.	This	would	make	them	difficult	to	use	
in	any	real	world	application.	For	improving	upon	this	result	it	is	suggested	to	
look	at	a	higher	quality	synthetic	dataset,	possible	precomputations	and	
parameter	tweaking	of	both	the	neural	network	and	light	field	camera	setup.	
	 	

4

Table of contents

Preface ...2	
Summary..3	
Table of contents ..4	
1. Introduction ..5	
2. Problem definition ..6	

2.1. Problem analysis..6	
3. Research Question .. 11	
4. Research Methodology ... 12	

4.1. Scene setup .. 12	
4.2. Synthetic light field camera ... 14	
4.3. Experiments setup ... 15	
4.4. Training setup and data enhancement .. 16	

5. Experiments ... 17	
5.0. Experiment 0: Baseline measurement .. 17	
5.1. Experiment 1: Normal only versus normal and depth 19	
5.2. Experiment 2: Dropout versus non-dropout ... 20	
5.3. Number of filters ... 21	
5.4. Cross versus full, RGB versus grey and different filter sizes 22	
5.5. Dataset size ... 24	
5.6. Alternative activation functions ... 26	
5.7. Custom loss function: Mean Vector Distance... 27	
5.8. Custom loss function: Mean Different Angle ... 29	
5.9. Flipped and rotated dataset .. 31	

6. Results ... 34	
6.1. How can machine learning be used to predict normal maps? 34	
6.2. How does a normal map generated with machine learning compare with other
depth based normal map generation methods based? .. 35	

7. Conclusion ... 38	
8. Discussion .. 39	
9. Recommendation ... 40	
Literature List .. 41	
Appendix 1 – Final network code ... 42	
Appendix 2 – Data generator .. 44	
Appendix 3 .. 47	

5

1. Introduction
Given	the	recent	progression	in	graphics	hardware,	computer	vision	and	
machine	learning,	augmented	reality	(AR)	has	become	a	part	of	our	everyday	life.	
Applications	for	this	technology	can	be	found	in	various	areas	and	on	various	
devices.	Examples	include	AR	face	augmentation	for	mobile	(Snapchat,	Snap	
Inc.),	television	shows	that	mix	real	people	and	virtual	sets	(Ziggo	Sports,	NEP)	
and	remote	assist	applications	for	wearable	AR	glasses	(Remote	Assist,	
Microsoft).	
	
Although	the	applications	available	have	various	uses	and	run	on	different	
devices,	all	share	the	same	underlying	computer	vision	problems.	Here	a	set	of	
algorithms	try	to	understand	the	real	world	through	an	input	device.	One	of	
these	problems	involves	the	understanding	of	the	geometric	properties	of	the	
real	world.	If	a	correct	representation	of	the	scene	can	be	known,	virtual	objects	
can	be	scaled	and	mixed	accordingly.	Another	problem	that	needs	to	be	solved	
involves	the	understanding	of	the	physical	aspects	of	the	world.	Here	one	would	
like	to	determine	properties	of	materials,	which	in	turn	allows	for	realistic	
relighting	and	physics	interaction.		
	
To	provide	input	for	these	algorithms,	various	input	devices	are	currently	being	
used.	Ranging	from	simple	mobile	cameras	to	complex	solutions	like	laser	
scanner	and	light	field	cameras.	Complex	input	devices	like	laser	scanners	and	
light	field	cameras	provide	rich	structural	data	that	allow	for	slower	but	more	
precise	scene	reconstruction.	On	the	other	hand	simple	input	system	allow	for	
quick	but	less	accurate	reconstruction.		
	
Recently	machine	learning	in	combination	with	light	field	data	resulted	in	a	huge	
step	forward	in	determining	the	geometric	quantities	of	real-world	scenes.	By	
using	a	convolutional	network	Shin,	Jeon,	Yoon,	So	Kweon,	and	Joo	Kim	(2018)	
computed	reasonably	accurate	disparity	maps	with	little	trade-off	with	respect	
to	speed.	Given	this	result	it	seems	obvious	to	explore	if	these	same	algorithms	
can	also	be	used	to	compute	the	physical	quantities	of	scenes.	Especially	the	
computation	of	normal	maps	would	be	interesting,	since	this	would	allow	for	the	
additional	lighting	to	be	added	to	real	world	scenes.	
	
The	report	consist	of	the	following	sections.	In	section	two	the	problem	will	be	
described	and	analysed.	Here	several	methods	for	the	creation	of	normal	maps	
are	explored.	In	section	three	the	research	questions	and	its	sub	questions	are	
laid	out.	In	section	four	the	research	methodology	is	described.	Section	five	
describes	the	results.	At	last	section	six	and	seven	respectively	describe	the	
conclusion	and	recommendations.	
	
		
	 	

6

2. Problem definition
Given	the	need	for	more	realistic	and	precise	augmented	reality	applications,	the	
understanding	of	the	physical	reality	of	the	world	allows	for	the	addition	of	
computer-generated	lights.	
	
In	order	to	add	a	virtual	light	to	a	real-world	scene	realistically,	two	problems	
need	to	be	solved.	First	a	normal	for	each	pixel	needs	to	be	determined.	Here	the	
normal	represents	the	orientation	of	the	pixel	in	the	real	world.	A	correct	normal	
is	required	to	compute	the	reflected	lighting	towards	the	capture	device.	The	
second	property	required	is	that	of	the	reflective	properties	of	the	material	
captured	by	the	pixel.	Both	problems	are	challenging	to	solve	and	this	research	
will	focus	on	the	former	and	not	on	the	latter.	

2.1. Problem analysis
Computing	normal	maps	from	real	world	scenes	is	a	challenging	and	difficult	
task.	Various	methods	exist	that	either	use	RGB	image	data	or	a	depth	
measurements.	Below	an	overview	of	the	current	state-of-the	art	of	how	normal	
maps	can	be	computer	through	hardware	device	and	the	utilization	of	depth	
maps.	
	
2.1.1. RGB image based normal map creation methods
Methods	that	compute	normal	maps	from	RGB	data	usually	employ	some	kind	of	
hardware	device	in	order	to	control	the	environment,	lighting	or	both.	
	
One	such	method	is	that	of	Gardner,	Tchou,	Hawkins,	and	Debevec	(2003).	Their	
solution	uses	a	scanning	device	as	depicted	in	Figure	1	that	is	drawn	on	a	semi	
flat	surface.	Through	measuring	the	change	in	light,	different	material	properties	
can	be	computed	including	the	normal	map.	
	
Some	other	methods	utilise	the	UCS	light	stage	depicted	in	Figure	2	that	requires	
a	person	to	sit	inside	a	sphere	with	cameras.	These	methods	(Ma	et	al.,	2007;	
Weyrich	et	al.,	2006)	all	use	multiple	photographs	where	a	person	or	object	is	
relit	from	multiple	angles.	The	problem	however	with	the	methods	mentioned	
above	is	that	they	are	very	dependent	on	complex	hardware,	controlled	
environments	and	they	are	limited	to	objects	that	can	be	placed	in	their	
respective	hardware	setups.	
	

	 	

7

Figure	1:	The	Linear	Light	Source	Apparatus	of	
Gardner	et	al.	(2003).	

Figure	2:	Newer	version	of	the	UCS	light	stage	used	in	
the	research	of	Ma	et	al.	(2007).	

2.1.2. Depth based normal map creation methods
As	mentioned	earlier,	other	methods	utilise	a	depth	map	to	compute	normals.	
These	methods	can	be	used	when	a	depth	maps	is	available.	A	simple	method	is	
to	calculate	normal	based	on	local	x	and	y	derivatives	through	formula	1	and	2.	
Then	by	using	the	cross	product	the	normal	direction	can	be	computed	through	
3.		
	
𝑑𝑧
𝑑𝑥 	=

𝐷(𝑥 + 1, 𝑦) − 𝐷(𝑥 − 1, 𝑦)
2 		 (1)	

	
𝑑𝑧
𝑑𝑦 	=

𝐷(𝑥, 𝑦 + 1) − 𝐷(𝑥, 𝑦 − 1)
2 	 (2)	

	

𝑛 = 0
1
0

𝑑𝑧 𝑑𝑥⁄
3 × 0

0
1

𝑑𝑧 𝑑𝑦⁄
3	

	

(3)	

To	test	the	accuracy	of	this	method	an	implementation	has	been	made	and	
compared	with	a	ground	truth	depth	map.	As	depicted	in	Figure	3,	this	method	
produces	correct	normal	on	continued	surfaces.	However,	normals	are	
incorrectly	calculated	around	sharp	edges	and	discontinuities.	This	can	be	seen	
in	the	third	image	where	the	absolute	difference	of	the	two	normal	maps	is	
shown.	
	

	 	 	
(a)	 (b)	 (c)	

	

	 	

(d)	 	 	

8

Figure	3:	Comparison	of	computed	normal	map	through	image	derivatives	with	a	ground	truth.	(a)	original	
RGB	image.	(b)	Ground	truth,	(c)	Calculated	normal	based	on	image	derivatives,	(d)	Absolute	difference	
between	the	computed	normal	map	and	the	ground	truth.	

Another	more	complex	method	is	that	of	Hinterstoisser	et	al.	(2011).	This	
solution	computes	a	normal	based	on	its	8	surrounding	neighbours.	By	using	a	
threshold	value,	neighbours	with	a	large	depth	disparity	are	discarded	when	
computing	the	normal.		
	
An	implementation	of	Hinterstoisser	has	been	made	and	its	results	are	depicted	
in	Figure	4.	Here	again	a	ground	truth	depth	map	has	been	used	to	compute	a	
normal	map.	A	threshold	value	is	chosen	through	trial	and	error.	As	can	be	seen	
the	results	on	continued	surfaces	and	sharp	edges	are	comparable	to	that	of	the	
method	above.	However,	when	it	comes	to	discontinuities,	improvements	are	
visible.		
			

	 	 	
(a)	 (b)	 (c)	

	

	 	

(d)	 	 	
Figure	4	Comparison	of	a	computed	normal	map	with	the	Hinterstoisser	method	and	a	ground	truth.	A	
threshold	value	of	0.05	is	used	to	ignore	depth	disparities.	(a)	original	RGB	image.	(b)	Ground	truth,	(c)	
Calculated	normal	on	its	eight	surrounding	neighbours,	(d)	Absolute	difference	between	the	computed	
normal	map	and	the	ground	truth.

In	Table	1	an	overview	of	both	methods	and	their	performance	in	different	scene	
properties.	
	
Table	1:	Overview	of	normal	map	from	depth	map	methods	and	their	strong	and	weak	points.	

	 Continues	surfaces	 Discontinuities	 Edges	
Image	derivatives	 Accurate	 Inaccurate	 Inaccurate	
Hinterstoisser	 Accurate	 Accurate	but	only	for	

the	right	threshold.		
Inaccurate	

	

9

2.1.3. Normal maps from light field camera’s
Both	implementations	described	above	use	ground	truth	depth	maps	which	are	
computer	generated	by	a	3D	modelling	programme.	However,	when	utilising	real	
world	scenes,	these	ground	truth	depth	maps	are	not	available.	A	normal	map	
has	to	be	based	on	a	depth	map,	which	itself	has	to	be	generated	based	on	RGB	
inputs.	
	
However,	looking	at	the	current	state	of	depth	map	prediction	from	RGB	inputs,	
this	itself	is	not	a	solved	issue.	Monocular	and	stereo	based	methods	are	poor	in	
performance.	This	can	be	seen	in	Figure	5	where	a	stereo	matching	algorithm	is	
used	to	compute	a	depth	and	normal	map	for	a	scene.	Both	normal	map	
generation	methods	result	in	noise	and	incomplete	normal	maps.	
	

	 	 	
(a)	 (b)	 (c)	

	 	

	

(d)	 (e)	 	
Figure	5:	Normal	maps	computed	based	on	a	stereo	matching	algorithm.	(a)	Right	input	for	the	algorithm.	
(b)	disparity	map	generated	by	stereo	matching.	(c)	Depth	map	computed	from	the	disparity	map.	(d)	
Normal	map	computed	with	image	gradients.	(e)	Normal	map	generated	by	the	Hinterstoisser	method.	

Recently	depth	maps	from	light	field	data	algorithms	in	combination	with	deep	
learning	have	made	huge	accuracy	improvements	("4D	Light	Field	Benchmark,"	
2019).	Here	light	fields	provide	rich	structural	data	that	can	be	used	to	more	
accurately	predict	the	depth	of	a	scene.	
	
One	such	method	is	that	of	Shin	et	al.	(2018)	which	uses	a	5	by	5	light	field	
camera	array.	The	algorithm	utilises	deep	learning	to	find	a	mapping	from	RGB	
to	disparity.	Shown	in	Figure	6	this	method	generates	a	depth	map	based	on	17	
RGB	inputs.	Based	on	these	depths	a	normal	map	is	computed	both	by	the	image	
derivatives	and	the	Hinterstoisser	method.	
	

10

	 	 	
(a)	 (b)	 (c)	

	 	

	

(d)	 (e)	 	
Figure	6:	Normal	maps	indirectly	computed	from	a	light	field	image.	(a)	The	centre	image	of	the	5x5	cross	
light	field	input.	(b)	disparity	map	generated	by	the	EPInet	solution.	(c)	Depth	map	computed	from	the	
disparity	map.	(d)	Normal	map	computed	with	image	gradients.	(e)	Normal	map	generated	by	the	
Hinterstoisser	method.	

2.1.4. Conclusion
Computing	normal	maps	from	depth	maps	remains	an	unsolved	problem.	Even	
in	ideal	situations	depth	disparities	and	sharp	edges	will	result	in	incorrect	
normals.	However,	when	using	computed	and	predicted	depth	maps	the	problem	
becomes	even	more	problematic	due	to	noisy	and	incorrect	depth	maps.	
	 	

11

3. Research Question
Given	recent	advances	in	using	machine	learning	for	depth	map	prediction	from	
light	fields,	this	research	investigates	if	this	same	method	can	be	used	to	directly	
predict	normal	maps.	By	training	an	neural	network	to	predict	normals	from	
RGB	inputs,	errors	propagated	from	depth	map	generation	might	be	avoided.	
This	leads	to	the	following	research	question:	
	
How	can	machine	learning	be	used	to	compute	normal	maps	based	on	light	field	
data	and	how	does	this	method	compare	with	other	normal	map	generation	
methods	based	on	depth	maps?		
	
With	the	following	sub	questions:	

1. How	can	machine	learning	be	used	to	predict	normal	maps?	
2. How	does	a	normal	map	generated	with	machine	learning	compare	with	

other	depth	based	normal	map	generation	methods	based?	
	 	

12

4. Research Methodology
In	order	to	answer	the	research	question	an	experiment	will	be	conducted.	Here	
a	learning	algorithm	will	be	trained	on	synthetic	lights	fields	and	ground	truth	
depth	maps.		
	
After	the	network	is	trained	several	scenes	will	be	analysed	and	compared	to	
already	existing	normal	map	creation	methods.	

4.1. Scene setup
In	order	to	train	the	neural	network	for	the	prediction	of	normal	maps	8	
synthetic	3D	scenes	have	been	created.	Here	the	computer	generated	
environment	is	chosen	because	it	allows	for	the	generation	of	perfect	ground	
truths.	Furthermore,	according	to	the	work	of	Lee	and	Moloney	(2017)	and	
Prakash	et	al.	(2018)	synthetic	images	would	be	a	valid	alternatives	real	world	
data,	hereby	not	reducing	training	quality	or	prediction	on	real	world	examples.		
	
All	scenes	are	situated	in	a	closed	indoor	environment	of	different	sizes.	Within	
these	environments	a	range	of	objects	have	been	added.	This	includes	geometric	
primitives	and	objects	like	doors,	tables,	statues,	etc.	A	wide	range	of	synthetic	
materials	have	been	created	to	mimic	real	world	materials.	Materials	are	all	
procedurally	generated	and	physically	based.	Displacement	maps	are	used	to	
add	detailed	surface	variations.		
	
Due	to	the	possible	complexity	of	real-world	scenes	the	synthetic	environments	
have	been	limited	to	not	include	transparent,	highly	reflective	or	anisotropic	
materials.	This	is	considered	out	of	the	range	of	the	research	and	will	also	limit	
the	data	set	needed	for	the	learning	algorithm.	
	
Furthermore,	lights	added	to	the	scenes	are	placed	in	such	a	way	that	the	light	
source	is	out	of	the	camera	viewport	and	does	not	show	up	in	the	light	field	
renders.	Also	lighting	and	materials	are	tweaked	to	avoid	over	and	under	
exposure	and	strong	reflection.	All	scenes	are	created	in	the	Houdini	software	
environment.	In	Figure	7	a	render	from	each	of	the	created	scenes	can	be	seen.	
	

13

	 	
(a)	Scene	1	 (b)	Scene	2	

	 	
(c)	Scene	3	 (d)	Scene	4	

	 	
(e)	Scene	5	 (f)	Scene	6	

14

	 	
(g)	Scene	7	 (h)	Scene	8	
Figure	7:	Overview	of	the	8	scenes	created	in	Houdini.	For	each	scene	36	light	fields	have	been	rendered.	

4.2. Synthetic light field camera
For	the	light	field	camera	rig	configuration,	a	3	by	3	rig	is	chosen.	This	decision	
has	two	reasons.	First,	a	smaller	rig	would	allow	for	cheaper	and	easier	camera	
construction	when	the	result	would	need	to	be	tested	with	real	hardware.	
Secondly,	a	smaller	rig	would	allow	for	quicker	computation	times.	This	would	
make	real-time	procession	possible	in	the	near	future.	
	
Although	the	distance	between	cameras	can	be	varied,	for	this	experiment	a	
fixed	camera	baseline	of	9	mm	is	chosen.	Hereby	mimicking	a	light	field	camera	
system	that	has	its	camera	in	a	close	setup.	This	other	camera	parameters	can	be	
found	in	the	table	below.	
	
Table	2:	Light	field	camera	parameters.	

Focal	range	 50	mm	
Resolution	 512	x	512	pixels	
Aperture	 41.4214	mm	
Focus	distance	 5	m	
F-stop	 5.6	
	
To	create	a	large	data	set	for	training,	for	each	scene	36,	3	by	3	light	fields	are	
rendered	at	a	resolution	of	512	by	512	pixels.	This	is	done	by	placing	the	virtual	
light	field	camera	rig	inside	each	scene	and	rotate	it	in	steps	of	10°	inside	the	
environment.	Each	step	a	light	field	is	rendered	including	a	depth	and	normal	
map	for	each	camera.	In	Figure	8	a	screenshot	of	scene	3	with	a	light	field	camera	
pointing	at	its	centre.	
	

15

Figure	8:	Scene	setup	in	Houdini.	A	light	field	camera	can	be	seen	in	the	top	left	corner	pointing	at	the	centre	
of	the	room.	The	light	field	camera	can	be	rotated	around	the	centre	point	to	generate	new	light	field	
renders.	

4.3. Experiments setup
For	the	learning	algorithm	the	EPInet	(Shin	et	al.,	2018)	solution	is	used	as	a	
starting	point.	This	framework	uses	grayscale	images	of	a	light	field	to	predict	a	
disparity	map.	The	stacked	horizontal,	vertical	and	diagonal	cross	sections	of	a	
light	field	are	used	as	an	input	as	depicted	in	Figure	9.	By	convoluting	over	these	
stacked	inputs	the	neural	network	tries	to	learn	the	depth	of	a	scene	by	
analysing	the	Epipolar	Plane	Images	(hence	EPInet).	
	

	
Figure	9:	EPInet	architecture	(Shin	et	al.,	2018).	

16

4.4. Training setup and data enhancement
From	the	8	scenes	described	in	4.3.	Experiments	setup,	7	are	used	for	machine	
learning.	1	scene	(scene	8)	is	used	for	the	evaluation	of	the	results	in	chapter	6.	
For	all	experiments	7-fold	cross	validation	is	used	to	determine	the	mean	and	
standard	deviation	for	each	network	architecture.	In	each	fold	the	data	is	split	
between	a	training	and	validation	data	sets.	For	all	experiments	(with	the	
exception	of	experiment	5)	6	light	field	scenes	are	used	for	training	and	one	for	
validation.		
	
For	the	software	pipeline	Keras	(Tensorflow)	is	used.	Data	generators	are	used	
for	generating	and	enhancing	light	field	data.	During training Keras EarlyStopping
(min-delta = 0) is used to determine to maximum numbers of epochs needed. In most
experiments a T-test is used to see if the results are significant.	
	
For	all	experiments	data	enhancement	methods	are	used	to	enlarge	the	datasets.	
This	is	done	by	adjusting	the	gamma,	saturation	and	value	changed	in	various	
degrees.	In	Table	3	the	three	methods,	their	minimum,	maximum	values	and	step	
size	are	given.	Using	these	enhancement	methods	increases	the	dataset	19	times	
resulting	in	a	dataset	of	4104	light	fields.	
	
Table	3:	Light	field	enhancement	methods	and	values.	

Method	 Minimum	 Maximum	 Step	
Gamma	 1.6	 2.5	 0.1	
Saturation	 -0.2	 0.3	 0.1	
Value	 -0.2	 0.3	 0.1	
	
In	the	last	experiment	light	fields	are	also	flipped	over	the	x	and	y	axis	as	well	as	
rotated	90,	180	and	270	degrees	to	increase	the	number	of	inputs	even	further	to	
24624.	As	depicted	in	Figure 10	this	not	only	includes	rotating	and	flipping	of	
images	but	updating	the	configuration	as	well.			
	

	 	 	 	
(a)	Original	 (b)	Rotated	90	 (c)	Rotated	180	 (d)	Rotated	270	

	 	

	 	

(e)	Flipped	X	 (f)	Flipped	Y	 	 	

Figure 10: Overview of rotation and flipping of light field for data enhancement.	

17

5. Experiments

5.0. Experiment 0: Baseline measurement
To	measure	the	result	of	any	solution	found	in	the	experiments	below	it	is	
necessary	to	compare	the	result	with	the	state	of	the	art	from	chapter	2.	Here	the	
mean	of	difference	in	angles	(MDA)	is	used	as	a	metric.	To	establish	a	baseline	
two	light	fields	from	scene	7	and	8	are	used	(rotation	0).	In	Figure	11	an	
overview	of	the	two	light	fields,	their	ground	truths,	normal	maps	and	computed	
normal	maps	from	stereo	depth	and	EPInet,	combined	with	the	Hinterstoisser	
method.	
	

	 	 	
(a)	 (b)	 (c)	

	

	 	

(d)	 	 	

	 	 	
(e)	 (f)	 (g)	

18

	

	 	

(h)	 	 	
Figure	11:		Inputs	and	normal	maps	for	two	light	fields	scenes.	(a)	RGB	middle	input	image	of	the	light	field,	
(b)	ground	truth	normal	map,	(c)	normal	map	generated	by	Hinterstoisser	and	naive	stereo	depth,	(d)	
normal	map	generated	by	Hinterstoisser	and	EPInet	(5x5	input).	(e-h)	Similar	to	a-e	for	scene	8.	

For	the	creation	of	the	stereo	depth	map	the	left	and	middle	image	from	the	
middle	row	of	a	3x3	light	field	is	used	(see	Figure	5	for	a	depth	map	created	
through	this	method).	The	StereoSGBM	algorithm	(number	of	disparities	=	16,	
block	size	=	9)	from	OpenCV	is	used	to	compute	a	disparity	map	which	in	turn	is	
computer	to	a	depth	map	using	the	camera	rigs	parameters.	
	
Similarly	EPInet	is	used	to	create	a	disparity	map	based	on	a	5x5	light	field	input	
(see	Figure 6	for	a	depth	map	created	through	this	method).	Based	on	this	map	a	
depth	map	is	created	with	the	camera	rig	parameter.	Here	a	similar	rig	setup	is	
used	as	that	in	the	experiments	below;	with	the	difference	being	the	number	of	
cameras	(25	instead	of	9).	As	described	above	the	Hinterstoisser	method	is	then	
used	to	create	the	normal	maps	in	Figure	11.		
	
Based	on	the	computed	normal	maps	above	the	MDA	from	formula	4	is	used	to	
establish	the	difference	between	the	computed	and	ground	truth	normal	maps.	
An	overview	of	the	MDA	for	both	methods	can	be	found	in	Table	4.	The	
computed	images	above	and	the	table	below	shows	that	currently	the	computed	
normals	are	noisy	and	quit	far	from	the	ground	truth.	

𝑀𝑒𝑎𝑛	𝑜𝑓	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	𝑎𝑛𝑔𝑙𝑒𝑠 =
1
𝑛	@cosDE F

𝑎(𝑖) ⋅ 𝑏(𝑖)
|𝑎(𝑖)| ⋅ |𝑏(𝑖)|J

K

L

 (4)	

	
Table	4:	Baseline	measurement	of	the	mean	of	different	angles	for	two	state	of	the	art	workflows.		

Normal	map	 Mean	Different	Angle	
Scene	7	
Stereo	+	Hinterstoisser	 60°	
EPInet	+	Hinterstoisser	 73°	
Scene	8	
Stereo	+	Hinterstoisser	 52°	
EPInet	+	Hinterstoisser	 66°	

19

5.1. Experiment 1: Normal only versus normal and depth

5.1.1. Experiment setup
The	first	experiment	is	done	to	determine	if	there	is	a	difference	in	training	only	
on	normal	map	data	or	a	combination	of	normal	and	disparity	data.	
	
As	inputs	the	512x512	images	from	the	cross	sections	of	the	3	by	3	rendered	
light	fields	are	used.	The	RGB	images	are	all	converted	to	greyscale	using	formula	
5	as	defined	by	the	CCIR	601	standard.	The	inputs	are	then	stacked	according	to	
the	configuration	of	the	EPInet	architecture.	
	
𝐺𝑟𝑒𝑦 = 0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵 (5)	
	
For	the	outputs	the	normals	are	converted	to	normal	maps	space.	Here	the	X	and	
Y	coordinates	of	the	normals	are	mapped	from	their	original	range	of	-1	to	1,	to	a	
range	between	0	and	1.	The	Z	coordinate	which	always	points	towards	the	
camera	is	mapped	to	a	range	between	0.5	and	1.	To	create	the	disparity	map	the	
depth	value	for	each	pixel	is	converted	to	a	disparity	value	using	the	parameters	
of	the	light	field	rig	through	formula	6.	
	

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦	 = 		
(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒	 ∗ 	𝑓𝑜𝑐𝑎𝑙)

𝑑𝑒𝑝𝑡ℎ 		 (6)	

	
For	trai	ning	2x2	kernel	filters	are	used.	The	number	of	filters	is	set	at	45,	the	
maximum	that	is	allowed	for	training	on	the	GPU	(2080ti,	8Gb).	In	accordance	
with	EPInet,	MSE	and	Relu	are	used	as	loss	and	activation	function	as	well	the	
root	means	squared	propagation	optimizer	with	a	learning	rate	of	0.00001.	An	
overview	of	the	networks	used	during	training	can	be	found	in	Table	5.	
	
For	the	training	a	maximum	of	two	epochs	are	used	to	evaluate	the	difference.	
This	to	reduce	training	times.	7-fold	cross	validation	and	data	enhancement	are	
used	as	described	in	the	previous	chapter.	
	
Table	5:	Two	networks	used	to	see	testing	training	loss	for	different	outputs.	

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

Cross	 Relu	 2x2	 45	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 45	 Grey	 No	 Normal		

	
5.1.2. Experiment results
The	mean	squared	error	validation	loss	of	the	first	experiment	can	be	found	in	
Table	6.	From	a	t-test	it	can	be	concluded	that	the	difference	between	both	
networks	is	not	significant;	after	one	epoch	(P	=	0.719)	and	two	epochs	(P	=	
0.612).	Although	there	is	no	significant	different	between	the	two	network	we	
can	however	still	see	that	the	network	trained	with	depth	slightly	better.		
Therefore	this	setup	will	be	used	in	the	next	experiments.	

20

	
Table	6:	Validation	loss	(lower	is	better)	of	two	trained	networks	after	the	first	and	second	epoch.	The	first	
network	only	trains	on	normal	map	data.	The	second	network	on	normal	and	depth	data.	

Fold	

cross,	2x2,	45,	grey	
normal	only	

cross,	2x2,	45,	grey	
normal	&	depth	

1st	epoch	 2nd	epoch	 1st	epoch	 2nd	epoch	
1	 0.0511	 0.0560	 0.0549	 0.0550	
2	 0.0498	 0.0543	 0.0505	 0.0502	
3	 0.0511	 0.0509	 0.0513	 0.0521	
4	 0.0519	 0.0589	 0.0567	 0.0525	
5	 0.0933	 0.0866	 0.0767	 0.0723	
6	 0.0591	 0.0581	 0.0596	 0.0575	
7	 0.0511	 0.0557	 0.0767	 0.0618	

Mean	 0.0582	 0.0601	 0.0609	 0.0573	
SD	 0.0158	 0.0120	 0.0112	 0.0076	

	

5.2. Experiment 2: Dropout versus non-dropout	
A	second	experiment	is	done	to	measure	the	effects	of	a	dropout	layer	in	the	
middle	section	of	the	neural	network.	
	
5.2.1. Experiment setup
The setup of the experiment is similar to that of experiment 1. The only difference
being the network itself. Here two network configurations are tested based on the
outcome of experiment 1. In	one	of	the	networks	dropout	layers	with	50%	
dropout	are	added	to	the	middle	section	of	the	neural	network	(after	the	
concatenation	in	Figure	9).	The	other	network	is	unadjusted.	Since	dropout	
layers	also	add	the	GPU	memory	usage	the	number	of	filters	is	reduced	from	45	
to	24.	An	overview	of	the	networks	used	can	be	found	in	Table	7.	
	
Table	7:	Two	networks	used	to	test	the	effects	when	applying	dropout	during	network	training.	Output	
(normal	and	depth)	is	based	on	the	outcome	of	experiment	1.	

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

Cross	 Relu	 2x2	 24	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 24	 Grey	 Yes,	
middle	
layer	(50%	
dropout)	

Normal	
Disparity	

	
5.2.2. Experiment results
The	result	from	the	training	can	be	found	in	Table	8.	Although	the	result	for	
training	on	a	network	using	a	dropout	layer	is	slightly	better,	the	result	are	not	
significant	(P	=	0.1455).	Furthermore,	based	on	the	number	of	epochs	needed	to	
conclude	training	(due	to	Earlystopping)	it	can	be	seen	that	there	are	not	much	
epochs	needed	for	attaining	the	optimal	result.	As	to	the	reason	why	this	is,	it	can	
be	argued	that	each	scene	generates	36	very	similar	light	fields.	Since	these	light	
fields	are	very	familiar,	the	number	of	epochs	needed	for	an	optimal	training	
result	might	be	on	the	lower	than	expected.	Based	on	these	results	the	

21

subsequent	networks,	with	the	exception	of	the	next	experiment	will	include	
dropout	layers.	
	
Table	8:	Validation	loss	(lower	is	better)	of	two	trained	networks	and	the	number	of	epochs	needed	to	
conclude	training.	The	first	epoch	is	trained	without	a	dropout	layer.	The	second	network	uses	a	dropout	
layer	(50%	dropout).	
	 cross,	2x2,	45,	grey	

no	dropout	
cross,	2x2,	45,	grey	
dropout	(50%)	

Fold	 Last	epoch	 Epochs	trained	 Last	epoch	 Epochs	trained	
1	 0.0441	 3	 0.0358	 3	
2	 0.0456	 3	 0.0353	 4	
3	 0.0435	 2	 0.0396	 4	
4	 0.0497	 2	 0.0401	 6	
5	 0.0556	 2	 0.0456	 3	
6	 0.0444	 3	 0.0545	 3	
7	 0.0437	 5	 0.0431	 4	

Mean	 0.0467	 2.86	 0.0420	 3.86	
SD	 0.0045	 	 0.0066	 	

	

5.3. Number of filters
A	third	experiment	is	done	to	test	how	the	number	of	filters	influences	training	
results.	

5.3.1. Experiment setup
For	this	test	the	setup	and	outcome	of	experiment	1	is	used.	Dropout	
(experiment	2)	is	not	used	to	allow	for	training	on	more	than	24	filters.	9	
networks	are	used	with	a	range	in	the	number	of	filters	from	5	to	45.	An	
overview	of	the	networks	trained	for	the	third	experiment	can	be	found	in	Table
9.	
	
Table	9:	Nine	networks	trained	to	test	the	influence	of	the	number	of	filters	on	the	training	result.	The	
output	is	based	on	the	outcome	of	experiment	1.	Although	based	on	experiment	2,	dropout	will	be	applied	in	
the	subsequent	test.	For	this	experiment	it	is	disabled	to	reduce	training	time.	

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

Cross	 Relu	 2x2	 5	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 10	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 15	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 20	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 25	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 30	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 35	 Grey	 No	 Normal	
Disparity	

Cross	 Relu	 2x2	 40	 Grey	 No	 Normal	
Disparity	

22

Cross	 Relu	 2x2	 45	 Grey	 No	 Normal	
Disparity	

	
5.3.2. Experiment results
The	results	for	experiment	3	can	be	found	in	Table	10.	From	the	table	it	can	be	
seen	that	a	lower	number	of	filters	results	in	a	lower	validation	loss.	When	
comparing	the	best	results	(5	filters)	with	the	second	best	(15	filters)	the	
difference	is	not	significant	(P	=	0.2271).	However	given	that	it	is	still	the	best	
result	5	filters	will	be	used	in	the	next	experiment.		
	
Table	10:	Validation	loss	(lower	is	better)	of	seven	trained	networks	with	different	number	of	filters	(5	till	
45).		

Fold	

cross,	2x2,	45,	grey,	no	dropout	
number	of	filters	used	in	training	

5	 10	 15	 20	 25	 30	 35	 40	 45	
1	 0.0415	 0.0385	 0.0403	 0.0423	 0.0443	 0.0436	 0.0394	 0.0386	 0.0410	
2	 0.0420	 0.0384	 0.0385	 0.0425	 0.0417	 0.0408	 0.0466	 0.0419	 0.0466	
3	 0.0358	 0.0386	 0.0398	 0.0419	 0.0399	 0.0437	 0.0439	 0.0410	 0.0459	
4	 0.0377	 0.0414	 0.0400	 0.0451	 0.0437	 0.0509	 0.0664	 0.0741	 0.0434	
5	 0.0385	 0.0540	 0.0498	 0.0570	 0.0663	 0.0456	 0.0524	 0.0527	 0.0603	
6	 0.0429	 0.0484	 0.0421	 0.0428	 0.0446	 0.0460	 0.0452	 0.0445	 0.0491	
7	 0.0361	 0.0409	 0.0402	 0.0406	 0.0410	 0.0417	 0.0432	 0.0432	 0.0435	

Mean	 0.0392	 0.0429	 0.0415	 0.0446	 0.0459	 0.0446	 0.0482	 0.0480	 0.0471	
SD	 0.0029	 0.0060	 0.0038	 0.0056	 0.0092	 0.0033	 0.0089	 0.0123	 0.0064	

5.4. Cross versus full, RGB versus grey and different filter sizes
In	this	experiment	various	configurations	are	tested	using	different	input	
configurations,	RGB	and	a	combination	of	two	filter	sizes.	
	
5.4.1. Experiment setup
For	this	experiment	a	similar	setup	is	chosen	as	experiment	1	with	the	following	
adaptations:	
	
Input	mode	
Where	previous	experiments	all	used	the	cross	section	input	similar	to	the	
EPInet	architecture,	here	two	networks	are	tested	that	both	use	the	complete	
light	field	as	input.	A	schematic	display	of	the	difference	in	input	configuration	
can	be	seen	in	Figure	12.	
	

	

	
(a)	 (b)	
Figure	12:	Different	input	configurations	for	the	classifier.	(a)	Horizontal,	vertical	and	diagonal	(cross)	
inputs.	(b)	Full	light	field	input	that	utilized	8	input	stacks.	

Filter size

23

The	EPInet	solution	uses	2x2	filters	in	order	to	predict	pixel	disparity.	As	the	
normals	are	dependent	on	their	direct	neighbourhood,	this	filter	size	seems	a	
good	choice.	However	since	the	light	field	images	can	contain	larger	areas	of	
similar	colours,	the	2x2	filters	are	tested	in	combination	with	5x5	and	7x7	filters	
sizes.	

Colour	mode	
As	mentioned	above	the	EPInet	solution	uses	greyscale	images	as	inputs.	By	
converting	RGB	to	greyscale	any	information	stored	in	the	RGB	channels	is	lost.	
Therefore	RGB	inputs	in	combination	with	3D	convolutions	are	tested	as	an	
alternative	to	greyscale	only.		

Based	on	the	variables	above	different	combination	have	been	made	for	training.	
An	overview	of	these	networks	trained	can	be	found	in	Table 11.		
	
Table	11:	Nine	networks	trained	to	test	the	influence	of	different	features	on	the	training	result.	The	output	
is	based	on	the	outcome	of	experiment	1.	The	use	of	dropout	is	based	on	experiment	2.	The	number	of	filters	
is	reduced	to	5	based	on	experiment	3.	

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

Cross	 Relu	 2x2	 5	 Grey	 Yes	 Normal	
Disparity	

Cross	 Relu	 2x2	 5	 RGB	 Yes	 Normal	
Disparity	

Full	 Relu	 2x2	 5	 Grey	 Yes	 Normal	
Disparity	

Full	 Relu	 2x2	
	

5	 RGB	 Yes	 Normal	
Disparity	

Cross	 Relu	 2x2	
5x5	

5	
5	

RGB	 Yes	 Normal	
Disparity	

Cross	 Relu	 2x2	
7x7	

5	
5	

RGB	 Yes	 Normal	
Disparity	

	
5.4.2. Experiment results
For	experiment	4	the	training	results	can	be	found	in	Table 12.	The	best	
performing	network	uses	a	cross	section	RGB	input,	a	2x2	and	5x5	filter,	5	filters	
and	a	dropout	layer.	Comparing	the	best	results	with	the	second	best	it	can	be	
concluded	that	the	results	are	significant	(P	=	0.0255).		
	
Table	12:	Validation	loss	(lower	is	better)	for	six	network	with	various	network	architectures.		

Fold	

cross,	2x2,	
5,	grey,	
dropout	

full,	2x2,	
5,	grey,	
dropout	

cross,	2x2,	
5,	rgb,	

dropout	

full,	2x2,		
5,	rgb,	

dropout	

cross,	2x2,	
5x5,	5,	rgb,	
dropout	

cross,	2x2,	
7x7,	5,	rgb,	
dropout	

1	 0.0471	 0.0384	 0.0491	 0.0569	 0.0394	 0.0456	
2	 0.0445	 0.0339	 0.0415	 0.0531	 0.0357	 0.0356	
3	 0.0437	 0.0354	 0.0958	 0.0432	 0.0385	 0.0392	
4	 0.0424	 0.0975	 0.0367	 0.0384	 0.0362	 0.0466	
5	 0.0473	 0.0335	 0.0449	 0.0473	 0.0357	 0.0590	
6	 0.0489	 0.0594	 0.0451	 0.0550	 0.0476	 0.0687	
7	 0.0690	 0.0433	 0.0349	 0.0378	 0.0360	 0.0472	

Mean	 0.0490	 0.0488	 0.0497	 0.0474	 0.0385	 0.0489	
SD	 0.0091	 0.0233	 0.0209	 0.0079	 0.0043	 0.0114	

24

Visual inspection
Based	on	the	training	result	the	best	network	is	used	for	the	prediction	of	
validation	(scene	7)	and	unseen	(scene	8)	data.	After	prediction	the	normal	map	
is	normalized	and	any	values	below	0	and	1	are	min/maxed	to	0	and	1.	As	can	be	
seen	in	Figure	13	this	prediction	is	far	off	from	the	ground	truth	normal	map.

(a)	Scene	7	centre	image.	 (b)	Predicted	normal	map.	Scene	

7,	rotation	0.	
(c)	Ground	truth	normal	map.	
Scene	7,	rotation	0.	

 	
(d)	Scene	8	centre	image.	 (e)	Predicted	normal	map.	Scene	

8,	rotation	0.	
(f)	Ground	truth	normal	map.	
Scene	8,	rotation	0.	

Figure 13: Predicted normal maps using the best performing network.

Given	the	unsatisfactory	result	of	the	trained	network	adjustments	are	
necessary.	However	before	changes	are	made	to	the	network	design,	first	a	test	
is	done	to	see	how	the	number	of	light	field	scenes	influences	training	results.	

5.5. Dataset size
The	fifth	experiment	done	is	to	test	the	influence	of	the	number	of	light	field	
scenes	on	the	training	results.		

5.5.1. Experiment setup
For	the	experiment	a	range	of	1	till	6	light	field	scenes	of	each	36	light	field	
inputs	are	selected	for	training	and	compared	on	their	training	results.	Here	the	
experiment	setup	is	similar	to	that	of	experiment	1	and	just	like	previous	
experiments	data	enhancement	is	used	to	increase	the	training	data	set.	The	
design	of	the	network	used	in	this	experiment	can	be	found	in	Table	13.	
	
Table	13:	The	network	used	to	test	the	influence	of	the	number	of	light	fields	on	the	training	result.	

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

25

Cross	 Relu	 2x2	 24	 Grey	 Yes	 Normal	
Disparity	

	
5.5.2. Experiment results	
The	results	of	the	fifth	experiment	can	be	found	in	Table 14.	From	the	mean	and	
standard	deviation	it	can	be	seen	that	there	is	improvement	as	soon	as	more	
light	fields	are	added	to	the	training	dataset.	From	Figure 14	it	can	be	seen	that	
although	the	training	is	still	improving	after	training	on	more	than	three	light	
field	scenes,	the	validation	loss	curve	is	flatting	out.	This	would	mean	that	adding	
more	light	field	scenes	would	probably	improve	performance	but	the	
improvement	would	be	minimal.	
		
Table	14:	Validation	loss	(lower	is	better)	of	the	last	epoch	of	six	trained	networks.	Each	network	is	trained	
on	a	various	number	of	light	field	scenes.	

	
cross,	2x2,	24,	grey,	dropout	

number	of	light	field	scenes	used	for	training	
Fold	 1	 2	 3	 4	 5	 6	

1	 0.0351	 0.0789	 0.0349	 0.0408	 0.0344	 0.0358	
2	 0.0455	 0.0493	 0.0430	 0.0425	 0.0397	 0.0359	
3	 0.0563	 0.0498	 0.0368	 0.0431	 0.0356	 0.0360	
4	 0.1068	 0.0491	 0.0577	 0.0384	 0.0425	 0.0376	
5	 0.0448	 0.0332	 0.0370	 0.0403	 0.0321	 0.0468	
6	 0.0627	 0.0686	 0.0544	 0.0590	 0.0562	 0.0513	
7	 0.0843	 0.0413	 0.0386	 0.0388	 0.0459	 0.0394	

Mean	 0.0622	 0.0529	 0.0432	 0.0433	 0.0409	 0.0404	
SD	 0.0253	 0.0157	 0.0092	 0.0071	 0.0083	 0.0062	

	
	

Figure 14: Diagram showing the influence of the number of light field scenes on training quality.

Based	on	these	result	it	can	concluded	that	adding	more	training	data	currently	
is	not	useful.	The	next	experiment	will	focus	on	different	activation	functions.	

0.0622

0.0529

0.0432 0.0433 0.0409 0.0404

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.1000

1 2 3 4 5 6

Va
lid
at
io
n	
lo
ss

Number	of	light	field	scenes	used	for	training

26

5.6. Alternative activation functions
A	sixth	experiment	is	done	to	test	different	activation	functions.	This	due	to	the	
discrepancy	between	the	range	of	the	Relu	function	(0	-	∞)	and	that	of	the	
normal	map	(0-1).	As	an	alternative	the	Hard	sigmoid	activation	function	with	a	
similar	range	to	that	of	a	normal	map	is	tested.		
	
5.6.1. Experiment setup
For	this	experiment	three	networks	are	compared.	A	network	that	uses	Rely	
only,	a	network	with	Relu	and	a	Hard	Sigmoid	at	the	end	and	a	network	using	
only	Hard	Sigmoid	functions.	
	
In	order	to	facilitate	the	change	to	Hard	Sigmoid	the	output	(ground	truth)	has	to	
be	adjusted	as	well.	The	disparity	map	which	uses	a	range	between	0	and	infinity	
(theoretically)	has	been	removed.	For	the	normal	map	the	Z	component	is	
adjusted.	Here	the	previous	conversion	from	a	range	between	0.5	and	1	is	
replaced	to	a	range	between	0	and	1.	The	number	of	filters	have	been	raised	to	
18,	the	maximum	that	allowed	for	training	on	the	GPU.	An	overview	of	the	
networks	used	for	training	can	be	found	in	Table 15.	
	
For	the	training	all	networks	have	been	trained	on	three	epochs.	This	to	reduce	
training	times.		
	
Table	15:	The	networks	used	to	test	the	influence	of	different	activation	functions	on	the	training	result.	

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

Cross	 Relu	/	Relu	 2x2	 18	 Grey	 Yes	 Normal	
Cross	 Relu	/	Hsig	 2x2	 18	 Grey	 Yes	 Normal	
Cross	 Hsig	/	Hsig	 2x2	 18	 Grey	 Yes	 Normal	
	
5.6.2. Experiment results
The	results	of	the	sixth	experiment	can	be	found	inTable 16.	From	the	training	
results	in	Table 16	it	can	be	seen	that	the	Hsig/Hsig	performs	better	than	the	
other	two.	Although	the	difference	between	the	best	performing	and	two	other	
networks	is	not	significant	(Relu/Hsig:	P	=	0.1523	|	Relu/Relu:	P	=	0.1852)	it	is	
still	the	best	choice	for	attaining	a	good	training	result.	Therefore	hard	sigmoid	
will	be	used	as	a	activation	function	in	the	next	experiments.	

Table	16:	Validation	loss	(lower	is	better)	of	the	last	epoch	of	the	three	trained	networks.	Each	network	uses	
different	activation	functions.	

 cross,	2x2,	18,	grey,	dropout
Fold Hsig / Hsig Relu / Hsig Relu / Relu

1 0.0726	 0.0676	 0.0695	
2 0.0649	 0.0631	 0.0647	
3 0.0610	 0.0671	 0.0662	
4 0.0621	 0.0957	 0.0791	
5 0.0570	 0.1029	 0.1132	
6 0.0962	 0.0864	 0.0838	
7 0.0624	 0.0758	 0.0784	

Mean 0.0680	 0.0798	 0.0793	
SD 0.0133	 0.0155	 0.0166	

27

5.7. Custom loss function: Mean Vector Distance
The	next	two	experiment	are	done	to	test	alternative	loss	functions.	This	due	to	
the	MSE	not	representing	the	relation	between	the	three	vector	components	of	
the	normal	map.	The	two	loss	functions	that	are	tested	are	the	mean	vector	
distance	(MVD)	of	formula	7	and	mean	different	angles	(MDA)	of	formula	8.	
	

𝑀𝑒𝑎𝑛	𝑣𝑒𝑐𝑡𝑜𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	
1
𝑛@

|𝑎(𝑖) − 𝑏(𝑖)|
K

L

 (7)	

	

𝑀𝑒𝑎𝑛	𝑜𝑓	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	𝑎𝑛𝑔𝑙𝑒𝑠 =
1
𝑛	@cosDE F

𝑎(𝑖) ⋅ 𝑏(𝑖)
|𝑎(𝑖)| ⋅ |𝑏(𝑖)|J

K

L

 (8)	

	
5.7.1. Experiment setup
The	first	loss	function	tested	is	mean	vector	distance	(MVD)	of	formula	6,	which	
computes	the	distance	between	the	predicted	and	ground	truth	normal	vector.	
	
Due	to	the	resizing	of	the	light	fields	and	the	poor	performance	of	experiment	4	
various	network	configurations	are	tested	to	evaluate	the	loss	functions	
performance.	Different	filter	size	are	tested	as	well	as	different	colour	inputs.	An	
overview	of	the	networks	trained	can	be	seen	in		
Table	17.		For	comparison	all	networks	have	been	trained	on	ten	epochs.	
	
To	compare	both	the	MVD	and	the	MDA	both	functions	are	used	in	this	
experiment.	The	MVD	is	used	as	the	loss	function.	The	MDA	is	added	as	a	metric.	
The	MDA	metric	is	used	in	the	next	experiment	for	comparison.	
	
Another	change	done	for	this	experiment	is	the	resizing	of	the	dataset.	Here	the	
original	images	and	normal	maps	are	resized	from	512x512	to	128x128	through	
Lanczos	resampling.	This	allows	for	reduced	training	times	and	testing	of	more	
parameters	(e.g.	number	of	filters).	Due	to	this	the	this	experiment	is	done	with	
70	filters,	similarly	to	that	of	EPInet.	
	
Table	17:	Five	networks	trained	to	test	the	performance	of	the	mean	vector	distance.		

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

Cross	 Hsig		 2x2	 70	 Grey	 Yes	 Normal	
Cross	 Hsig		 3x3	 70	 Grey	 Yes	 Normal	
Cross	 Hsig		 4x4	 70	 Grey	 Yes	 Normal	
Cross	 Hsig	 5x5	 70	 Grey	 Yes	 Normal	
Cross	 Hsig	 2x2	

5x5	
70	
70	

Grey	 Yes	 Normal	

Cross	 Hsig	 2x2	
5x5	

70	
70	

RGB	 Yes	 Normal	

28

5.7.2. Experiment results
From	the	training	results	in	Table	18	it	can	be	seen	that	the	experiment	is	
slightly	overfitting,	especially	when	looking	at	the	training	loss	(not	shown	in	the	
table).		

Table	18:	Mean	validation	loss	(lower	is	better)	of	the	7-fold	cross	validation	for	each	epoch	for	each	
network	trained.	

Epoch	

cross,	2x2,		
grey,	

dropout	

cross,	3x3,	
grey,	

dropout	

cross,	4x4,	
grey,	

dropout	

cross,	5x5,	
grey,	

dropout	

cross,	2x2,		
5x5,	grey,	
dropout	

cross,	2x2,	
5x5,	RGB,	
dropout	

1	 0.8007	 0.7966	 0.7567	 0.7744	 0.7649	 0.7684	
2	 0.7028	 0.8297	 0.7131	 0.7017	 0.7746	 0.7636	
3	 0.7964	 0.7456	 0.7081	 0.7428	 0.7933	 0.7438	
4	 0.7376	 0.7878	 0.7993	 0.7697	 0.7362	 0.8395	
5	 0.7518	 0.7933	 0.8082	 0.7217	 0.7230	 0.7764	
6	 0.7363	 0.8165	 0.8112	 0.8352	 0.7258	 0.7292	
7	 0.7329	 0.8362	 0.7781	 0.7711	 0.8173	 0.7935	
8	 0.7423	 0.8391	 0.7356	 0.7770	 0.7423	 0.8176	
9	 0.7488	 0.9051	 0.7616	 0.7406	 0.7377	 0.8211	
10	 0.8202	 0.8993	 0.8326	 0.7960	 0.7591	 0.7886	

	
This	is	probably	due	to	the	increased	number	of	filters	(70)	which	allows	the	
network	to	store	more	information.	In	order	to	still	make	an	informed	decisions	
about	which	networks	perform	better,	the	best	performing	epoch	is	used	as	a	
guide.	
	
In	Table	19	an	overview	of	the	best	performing	epochs	is	shown.	As	can	be	seen	
the	result	are	very	similar,	therefore	two	networks	are	selected	for	the	next	
experiment.	The	cross,	2x2,	grey	architecture	for	its	simplicity	and	the	cross,	2x2,	
5x5,	grey	due	to	its	performance	in	experiment	4.	
	
Table	19:	Validation	loss	(lower	is	better)	for	the	MVD	of	the	best	performing	epoch	for	the	six	trained	
networks.		

Fold	

cross,	2x2,		
grey,	

dropout	

cross,	3x3,	
grey,	

dropout	

cross,	4x4,	
grey,	

dropout	

cross,	5x5,	
grey,	

dropout	

cross,	2x2,		
5x5,	grey,	
dropout	

cross,	2x2,	
5x5,	RGB,	
dropout	

Epoch 2	 Epoch 3	 Epoch 3	 Epoch 2	 Epoch 5	 Epoch 6	
1	 0.6961	 0.7920	 0.6769	 0.6672	 0.7461	 0.7494	
2	 0.6870	 0.9771	 0.7950	 0.9870	 0.6741	 0.7058	
3	 0.6760	 0.6093	 0.9354	 0.8362	 0.7758	 0.8360	
4	 0.6262	 0.8386	 0.5711	 0.6903	 0.8863	 0.8032	
5	 0.6992	 0.5567	 0.4764	 0.4421	 0.6686	 0.5458	
6	 0.8637	 0.6515	 0.7521	 0.6414	 0.5654	 0.8697	
7	 0.6713	 0.7943	 0.7501	 0.6476	 0.7442	 0.5945	

Mean	 0.7028	 0.7456	 0.7081	 0.7017	 0.7230	 0.7292	
SD	 0.0750	 0.1471	 0.1507	 0.1707	 0.1005	 0.1220	

29

5.8. Custom loss function: Mean Different Angle
In	this	experiment	the	mean	different	angle	is	used	as	a	loss	function.	

5.8.1. Experiment setup
The	second	loss	function	tested	is	mean	different	angle	from	formula	7	which	
computes	the	angle	between	the	predicted	and	ground	truth	vector.	The	
experiment	is	similar	in	setup	than	the	previous	one	with	the	difference	that	only	
the	two	best	performing	networks	are	tested.	In	order	to	compare	both	
validation	functions	the	MDA	is	used	as	a	loss	function	while	the	MVD	is	added	as	
a	metric.	The	trained	networks	can	be	seen	in	Table	20.	

Table	20:	Two	networks	trained	to	test	the	performance	of	the	mean	difference	of	angles.	

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

Cross	 Hsig		 2x2	 70	 Grey	 Yes	 Normal	
Cross	 Hsig	 2x2	

5x5	
70	
70	

Grey	 Yes	 Normal	

5.8.2. Experiment results
After	analysing	the	result	during	training	the	experiment	is	stopped	after	1	fold.	
This	due	to	the	mean	different	angle	resulting	in	high	validation	losses.		
As	can	be	seen	from	Table	21	the	training	is	stopped	after	two	epochs	by	the	
Keras	Earlystopping.	When	looking	at	the	mean	vector	distance	metric	it	can	also	
be	observed	that	this	is	higher	than	that	of	the	previous	experiment.	For	
comparison	the	difference	between	the	first	fold	for	the	cross,	2x2	network	from	
the	previous	and	current	experiment	is	shown	in	Table	22.	

Table	21:	Mean	difference	angles	and	their	corresponding	mean	vector	difference	for	two	trained	networks.	
As	can	be	seen	the	loss	function	does	not	decrease	the	metric.	

Epoch	
cross,	2x2,		grey,	dropout	 cross,	2x2,		5x5,	grey,	dropout	

MDA	 MVD	 MDA	 MVD	
1	 54.7168	 1.4158	 54.7168	 1.4158	
2	 54.7168	 1.4158	 54.7168	 1.4158	

Table	22:	Difference	between	validation	loss	for	two	similar	networks	for	the	first	fold.	The	first	network	
uses	the	MDA	as	a	loss	function	and	the	MVD	as	a	metric.	The	second	network	uses	the	MVD	as	a	loss	
function	and	the	MDA	as	a	metric.	

Epoch	
cross,	2x2,		grey,	dropout	 cross,	2x2,		5x5,	grey,	dropout	

MDA (loss)	 MVD	(metric)	 MDA (metric)	 MVD	(loss)	
1	 54.7168	 1.4158	 38.80	 0,6941	
2	 54.7168	 1.4158	 34.83	 0,6961	
3	 33.22 0,6775
4	 32.56 0,6764
5	 31.75 0,7082
6	 31.14 0,7199
7	 30.85 0,7575
8	 30.70 0,7126
9	 30.49 0,7250
10	 30.36 0,7244

30

31

Visual	inspection	
When	comparing	the	results	from	this	and	the	last	experiment	visually	in	Figure	
15	the	difference	become	clear	as	well.	Here	to	current	experiment	classifies	
inputs	as	white	images	while	the	former	experiment	predicts	something	that	
could	go	for	a	normal	map.	Based	on	these	outcomes	the	next	and	last	
experiment	will	be	done	with	the	mean	vector	distance	as	a	loss	function.	

(a)	Scene	7,	2x2,	5x5,	
mean	vector	distance	as	
loss	function	

(b)	Scene	8,	2x2,	5x5,	
mean	vector	distance	as	
loss	function	

(c)	Scene	7,	2x2,	mean	
vector	distance	as	loss	
function	

(d)	Scene	8,	2x2,	mean	
vector	distance	as	loss	
function	

(e)	Scene	7,	2x2,	5x5,	
mean	different	angles	as	
loss	function	

(f)	Scene	8,	2x2,	5x5,	
mean	different	angles	as	
loss	function	

(g)	Scene	7,	2x2,	me	
mean	different	angles	as	
loss	function	

(h)	Scene	8,	2x2,	mean	
different	angles	as	loss	
function	

Figure 15: Visual comparison of the predictions done by similar networks trained on the MVD and MDA.

5.9. Flipped and rotated dataset
The	last	experiment	in	this	research	is	done	on	an	extended	dataset	to	see	if	this	
results	in	a	better	prediction.		

5.9.1. Experiment setup
For	this	experiment	the	simplest	of	the	two	chosen	networks	from	experiment	7	
and	8	is	picked.	This	due	to	there	being	no	significant	difference	between	the	
networks	used.		
	
For	training	the	dataset	has	been	expanded	by	utilizing	flipping	and	rotating	of	
the	light	field	as	described	in	section	4.4	since	this	would	increase	the	dataset	
size	from	4104	to	24624	samples.	The	configuration	of	the	final	network	trained	
can	be	found	in	Table	23.	

Table	23:	The	final	network	trained	on	an	expanded	dataset	of	24624	samples.	

Input	 Activation	 Filter	size	 #	Filters	
Colour	
mode	 Dropout	 Output	

Cross	 Hsig		 2x2	 70	 Grey	 Yes	 Normal	

32

5.9.2. Experiment results
The	result	of	the	experiment	can	be	found	in	Table	24.	When	comparing	the	
validation	loss	with	the	best	epoch	(mean:	0.7029	,	sd:	0.075)	of	the	same	
network	from	experiment	7	it	can	be	concluded	that	there	is	no	significant	
improvement	(P	=	0.8083)	for	using	an	extended	dataset.		

Table	24:	Validation	loss	(mean	vector	distance)	of	the	last	epoch.	Network	is	trained	on	an	extended	
dataset.	

Fold	
cross,	2x2,		grey,	dropout	

MVD	
1	 0.7681	
2	 0.7329	
3	 0.7260
4	 0.6842
5	 0.8241
6	 0.5515
7	 0.7070

Mean	 0.7134
SD	 0.0846

Visual	inspection	
When	analysing	the	result	visually	in	Figure	16	a	clear	improvement	with	
regards	to	the	outcome	of	experiment	4	can	be	seen.	However	as	will	be	
discussed	in	of	the	results	these	predictions	are	still	far	off	from	the	ground	
truth.	

	

	 	

(a)	Scene	7	centre	image.	 	 	

	 	 	
(b)	Scene	7	prediction	result	
experiment	4.	

(c)	Scene	7	prediction	result	
experiment	9.	

(d)	Scene	7	ground	truth	

33

	

	 	

(e)	Scene	8	centre	image.	 	 	

	 	 	
(f)	Scene	8	prediction	result	
experiment	4.	

(g)	Scene	8	prediction	result	
experiment	9.	

(h)	Scene	8	ground	truth	

Figure	16:	Comparison	between	prediction	results	from	experiment	4,	8	and	the	ground	truth.	

Mean	of	difference	in	angles	
Given	both	predictions	of	this	last	experiments	we	can	also	computer	the	mean	
in	difference	of	angles	for	the	predicted	normal	maps	of	scene	7	and	scene	8.	

Table	25:	Overview	of	normal	maps	and	their	distance	from	the	ground	truth.	

Normal	map	 Mean	Different	Angle	
Scene	7	
Direct	prediction	trough	machine	learning	 49°	
Scene	8	
Direct	prediction	trough	machine	learning	 45°	

34

6. Results

6.1. How can machine learning be used to predict normal maps?
Given	the	experiments	done	in	chapter	5	a	network	architecture	has	been	
defined	that	can	predict	normal	maps.	This	network	is	trained	on	a	large	dataset	
of	24624	light	fields	based	on	6	light	field	scenes.	The	mean	vector	distance	is	
used	for	optimization.	Given	the	validation	loss	it	can	be	concluded	that	on	
average	the	distance	between	prediction	and	ground	truth	normals	is	0.7134	in	
normal	map	space.	
	
An	overview	of	the	architecture	of	the	final	network	can	be	found	in	Table 26.	A	
schematic	overview	can	be	seen	in	Figure 17.	An	overview	of	the	code	used	for	
training	and	the	generation	of	data	can	be	found	in	appendix	1	and	appendix	2.	A	
larger	version	of	the	schematic	overview	of	figure	17	can	be	found	in	appendix	3.	

Table	26:	Network	used	to	predict	normal	maps	from	light	field	input	images.	
Layer	(type)	 Output	Shape	 Param	#	 Connected	to	
input_1	(InputLayer)	 (None,	128,	128,	3)	 0	 	
input_2	(InputLayer)	 (None,	128,	128,	3)	 0	 	
input_3	(InputLayer)	 (None,	128,	128,	3)	 0	 	
input_4	(InputLayer)	 (None,	128,	128,	3)	 0	 	
sequential	(Sequential)	 (None,	128,	128,	70)		 100100	 input_1[0][0]	
sequential_1	(Sequential)	 (None,	128,	128,	70)	 100100	 input_2[0][0]	
sequential_2	(Sequential)	 (None,	128,	128,	70)	 100100	 input_3[0][0]	
sequential_3	(Sequential	 (None,	128,	128,	70)	 100100	 input_4[0][0]	
concatenate	(Concatenate)	 (None,	128,	128,	280)	 0	 sequential[1][0]	

sequential_1[1][0]	
sequential_2[1][0]	
sequential_3[1][0]	

sequential_4	(Sequential)	 (None,	128,	128,	280)	 4402160	 concatenate[0][0]	
sequential_5	(Sequential)	 (None,	128,	128,	3)	 79313	 sequential_4[0][0]	
Total	params:	4,881,873	
Trainable	params:	4,876,273	
Non-trainable	params:	5,600	

Figure	17:	Final	network	architecture	for	the	prediction	of	normal	maps.	See	Appendix	3	for	a	larger	rotated	
version.	

35

6.2. How does a normal map generated with machine learning
compare with other depth based normal map generation methods
based?

In	order	to	evaluate	the	trained	neural	network	the	predicted	normal	maps	from	
experiment	5.9	are	used	for	evaluation.	A	visual	comparison	with	the	ground	
truth	can	be	found	in	Figure	18.	
	

	 	 	
(a)	 (b)	 (c)	

	 	 	
(d)	 (e)	 (f)	
Figure	18:	Visual	comparison	of	generated	normal	maps	with	their	ground	truth.	(a)	Scene	7	normal	map	
ground	truth,	(b)	predicted	normal	map,	(c)	absolute	differences	of	the	predicted	and	ground	truth	normal	
map.	(d)	Scene	8	normal	map	ground	truth,	(e)	predicted	normal	map,	(f)	absolute	differences	of	the	
predicted	and	ground	truth	normal	map..	

As	can	be	seen,	there	is	quite	some	difference	with	the	ground	truths	although	
the	general	shapes	can	be	recognized.	Problem	exist	in	areas	of	colour	transition,	
at	discontinuities	and	there	where	the	normal	are	perpendicular	to	the	view	
vector.	Normals	pointing	at	the	camera	are	mostly	predict	fairly	well.		
	
Visual	comparison	
The	results	can	be	compared	with	the	ground	truth	and	normal	maps	generated	
in	experiment	0.	An	visual	overview	of	the	this	comparison	can	be	found	in	
Figure	19.	
	

36

	 	 	
(a)	 (b)	 (c)	

	 	

	

(d)	 (e)	 	

	 	 	
(f)	 (g)	 (h)	

	 	

	

(i)	 (j)	 	
Figure	19:		Inputs	and	normal	maps	for	two	light	fields	scenes.	(a)	RGB	middle	input	image	of	the	light	field,	
(b)	ground	truth	normal	map,	(c)	normal	map	generated	by	Hinterstoisser	and	naive	stereo	depth,	(d)	
normal	map	generated	by	Hinterstoisser	and	EPInet	(5x5	input),	(e)	predicted	normal	map.	(f-j)	Similar	to	
a-e	for	scene	8.	

Mean	of	difference	in	angles	
Besides	a	visual	comparison	the	result	can	also	be	compared	to	the	baseline	
normal	maps	by	using	the	mean	of	difference	in	angles.	In	Table	27	an	overview	
of	the	MDA	for	both	the	baseline	and	predicted	normal	maps	is	given.	As	can	be	

37

seen	the	prediction	done	by	the	neural	networks	is	a	good	improvement	over	the	
baseline	methods.	
	
Table	27:	Overview	of	normal	maps	and	their	distance	from	the	ground	truth.	

Normal	map	 Mean	Different	Angle	
Scene	7	
Stereo	+	Hinterstoisser	 60°	
EPInet	+	Hinterstoisser	 73°	
Direct	prediction	trough	machine	learning	 49°	
Scene	8	
Stereo	+	Hinterstoisser	 52°	
EPInet	+	Hinterstoisser	 66°	
Direct	prediction	trough	machine	learning	 45°	
	

38

7. Conclusion
Given	the	research	results	it	can	be	concluded	that	deep	learning	can	be	used	for	
the	prediction	of	normal	maps	from	light	field	data.	Compared	with	other	
methods	explained	in	this	research,	predicting	normal	maps	directly	from	light	
field	inputs	with	the	trained	neural	network	is	a	good	improvement	compared	to	
other	state	of	the	art	normal	map	generation	methods.	In	both	scenes	the	neural	
network	performed	better:	49°	versus	60°	&	73°	and	45°	versus	52°	&	66°.	
	
However,	as	can	be	seen	visually	from	the	predicted	results,	the	normal	maps	are	
far	from	perfect	making	them	difficult	to	use	in	real	world	applications.	Problems	
exist	in	areas	of	colour	transition,	at	discontinuities	and	where	the	normals	are	
perpendicular	to	the	view	vector.	
	
Given	these	result	the	next	section	will	address	some	issues	encountered	during	
this	research.	After	the	discussion	some	suggestion	for	further	research	will	be	
given.	 	

39

8. Discussion
Given	this	research	there	are	a	few	points	that	are	up	for	discussion.		
	

1. Multi-dimensional	problem	solving	
As	already	mentioned	in	the	conclusion,	finding	a	good	performing	
network	to	accurately	predict	normal	maps	based	on	light	field	data	is	a	
difficult	and	tedious	task.	Part	of	this	problem	is	the	variable	space	in	
which	a	solution	can	be	found.	Not	only	does	this	include	different	filter	
sizes,	number	of	filters,	loss	&	activation	functions	but	also	input	&	output	
configuration;	as	well	as	camera	and	light	field	camera	rig	parameters.	To	
solve	this	multi-dimensional	knot	the	author	tried	to	find	an	optimum	by	
making	smart	decision	based	on	experiments	and	intuition.	However	it	
could	be	that	a	different	strategy	would	have	resulted	in	finding	a	better	
architecture.	

	
2. Synthetic	training	data	

Another	point	of	discussion	is	the	use	of	synthetic	light	field	data	(CGI).	
Even	as	Lee	and	Moloney	(2017)	&	Prakash	et	al.	(2018)	shows	us	that	
when	done	right,	synthetic	data	can	be	used	as	a	substitute,	one	can	
wonder	if	the	renders	used	for	this	specific	research	where	of	sufficient	
quality.	Here	one	can	argue	that	real	world	object	contain	more	
imperfections	and	have	more	visual	complex	materials,	another	
difference	is	that	artificial	images	might	be	devoid	of	noise	naturally	
captured	by	real	optical	camera	system.	Given	these	differences	closer	to	
real	world	images	might	result	in	a	better	learnable	solution.	
	
Of	course	one	can	counter	this	argument	by	saying	that	this	kind	of	
research	is	impossible	without	synthetic	images;	how	would	one	attain	
ground	truth	normal	map	data	for	multiple	light	fields?	one	can	wonder	if	
the	result	where	not	heavily	influenced	by	the	quality	of	synthetic	scenes.	

	
3. Limitation	on	computation	

A	big	limitation	throughout	this	research	is	that	of	computation	times.	
Even	though	a	state-of-the-art	GPU	is	used,	memory	limitation	placed	
huge	restriction	on	what	could	be	computed	in	the	time	available.	Given	
more	specialized	hardware	experiments	might	be	done	quicker,	resulting	
in	a	better	performing	final	network.		

	 	

40

9. Recommendation
Given	these	results,	conclusion	and	discussion	the	following	recommendation	
can	be	given	for	further	research	on	this	topic.	
	

1. Hyper	machine	learning	
Given	the	complexity	addressed	with	regard	to	the	multi-dimensional	
parameters	solving	as	mentioned	in	the	recommendation,	hyper	machine	
learning	could	be	a	beneficial	testing	area	for	continuing	this	research.	
	

2. Precomputation	for	error	reduction	
One	of	the	areas	this	research	did	not	explore	is	how	precomputation	on	
the	light	field	images	can	add	to	the	results	of	a	normal	prediction.	For	
instance,	optical	flow	could	be	used	for	finding	discontinuities	or	blob	
detection	for	finding	larger	areas	of	similar	colour.	
	

3. High	quality	renders	and	larger	datasets	
As	already	mentioned	in	the	discussion	section;	any	network	used	for	
predicting	normal	maps	would	probably	benefit	from	a	larger	and	better	
rendered	dataset.	It	would	be	interesting	to	explore	how	different	light	
field	scenes	would	influence	performance.	Here	one	can	think	of	
discontinuities,	contrasts,	lightness,	colour	usage,	etc.	
	

4. Camera	setup	and	parameters	
Another	interesting	area	of	research	would	be	that	of	how	light	field	
camera	setup	would	influence	performance	of	a	neural	network	for	
determining	normal	maps.	This	does	not	only	include	intrinsic	camera	
parameters	but	also	the	number	of	cameras	used	within	a	light	field	rig.	
	

5. Light	field	computer	vision	pipeline	
Research	the	possibility	to	train	a	neural	network	to	predict	all	the	
physical	properties	of	a	scene.	That	is:	normals,	depth,	refractive	&	
reflective	properties.	This	could	be	very	interesting	for	artificial	relighting	
or	reconstruction	within	a	computer	program.	

	
	
	
	 	

41

Literature List

4D	Light	Field	Benchmark.	(2019).	In.	
Gardner,	A.,	Tchou,	C.,	Hawkins,	T.,	&	Debevec,	P.	(2003).	Linear	light	source	

reflectometry.	ACM	Transactions	on	Graphics	(TOG),	22(3),	749-758.		
Hinterstoisser,	S.,	Holzer,	S.,	Cagniart,	C.,	Ilic,	S.,	Konolige,	K.,	Navab,	N.,	&	Lepetit,	

V.	(2011).	Multimodal	templates	for	real-time	detection	of	texture-less	
objects	in	heavily	cluttered	scenes.	Paper	presented	at	the	2011	
international	conference	on	computer	vision.	

Lee,	K.,	&	Moloney,	D.	(2017).	Evaluation	of	synthetic	data	for	deep	learning	stereo	
depth	algorithms	on	embedded	platforms.	Paper	presented	at	the	2017	4th	
International	Conference	on	Systems	and	Informatics	(ICSAI).	

Ma,	W.-C.,	Hawkins,	T.,	Peers,	P.,	Chabert,	C.-F.,	Weiss,	M.,	&	Debevec,	P.	(2007).	
Rapid	acquisition	of	specular	and	diffuse	normal	maps	from	polarized	
spherical	gradient	illumination.	Paper	presented	at	the	Proceedings	of	the	
18th	Eurographics	conference	on	Rendering	Techniques.	

Prakash,	A.,	Boochoon,	S.,	Brophy,	M.,	Acuna,	D.,	Cameracci,	E.,	State,	G.,	.	.	.	
Birchfield,	S.	(2018).	Structured	Domain	Randomization:	Bridging	the	
Reality	Gap	by	Context-Aware	Synthetic	Data.	arXiv	preprint	
arXiv:1810.10093.		

Shin,	C.,	Jeon,	H.-G.,	Yoon,	Y.,	So	Kweon,	I.,	&	Joo	Kim,	S.	(2018).	Epinet:	A	fully-
convolutional	neural	network	using	epipolar	geometry	for	depth	from	light	
field	images.	Paper	presented	at	the	Proceedings	of	the	IEEE	Conference	
on	Computer	Vision	and	Pattern	Recognition.	

Weyrich,	T.,	Matusik,	W.,	Pfister,	H.,	Bickel,	B.,	Donner,	C.,	Tu,	C.,	.	.	.	Jensen,	H.	W.	
(2006).	Analysis	of	human	faces	using	a	measurement-based	skin	
reflectance	model.	Paper	presented	at	the	ACM	Transactions	on	Graphics	
(TOG).	

	
	 	

42

Appendix 1 – Final network code

from models.loss_functions.losses import *
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Input , Activation
from tensorflow.keras.layers import Conv2D, Reshape
from tensorflow.keras.layers import Dropout,BatchNormalization
from tensorflow.keras.layers import concatenate

Create layer functions

def get_layer_multistream(filters, input_dimension, convolution_depth):
 seq = Sequential()

 for i in range(convolution_depth):
 seq.add(Conv2D(filters = filters, kernel_size = (2,2), strides = (1,1),
padding = 'same', input_shape = input_dimension))
 seq.add(Activation('hard_sigmoid'))

 seq.add(Conv2D(filters = filters, kernel_size = (2,2), strides = (1,1),
padding = 'same'))
 seq.add(BatchNormalization(axis = -1))

 seq.add(Activation('hard_sigmoid'))

 return seq

def get_layer_merged(filters, input_dimension, convolution_depth):
 seq = Sequential()

 for i in range(convolution_depth):
 seq.add(Dropout(0.5))
 seq.add(Conv2D(filters = filters, kernel_size = (2,2), padding = 'same',

input_shape = input_dimension))
 seq.add(Activation('hard_sigmoid'))
 seq.add(Dropout(0.5))
 seq.add(Conv2D(filters = filters, kernel_size = (2,2), padding = 'same')

)
 seq.add(BatchNormalization(axis = -1))
 seq.add(Activation('hard_sigmoid'))

 return seq

def get_layer_last(filters, input_dimension, convolution_depth):
 seq = Sequential()

 for i in range(convolution_depth):
 seq.add(Conv2D(filters = filters, kernel_size = (2,2), padding = 'same',
input_shape = input_dimension))
 seq.add(Activation('hard_sigmoid'))

 seq.add(Conv2D(filters = 3, kernel_size = (2,2), padding = 'same', input_shape =
input_dimension))

 seq.add(Activation('hard_sigmoid'))

 return seq

def NORnet_cross_grey_n_2_dropout_hsig_hsig_md(fil = 35):
 # Model settings
 lfs = 3

 filters = fil
 dimension = (128, 128, lfs)

 # Create model layers
 input_1 = Input(dimension)
 input_2 = Input(dimension)

 input_3 = Input(dimension)
 input_4 = Input(dimension)

43

 layer_multistream_1 = get_layer_multistream(filters, dimension, 3)(input_1)
 layer_multistream_2 = get_layer_multistream(filters, dimension, 3)(input_2)

 layer_multistream_3 = get_layer_multistream(filters, dimension, 3)(input_3)
 layer_multistream_4 = get_layer_multistream(filters, dimension, 3)(input_4)

 layer_concatenated = concatenate([layer_multistream_1, layer_multistream_2,
layer_multistream_3, layer_multistream_4])

 layer_merged = get_layer_merged(filters * 4, (128, 128, filters * 4), 7)(

layer_concatenated)

 layer_last = get_layer_last(filters, (128, 128, filters * 4), 1)(layer_merged)

 model = Model(inputs = [input_1, input_2, input_3, input_4], outputs = [layer_last])

 # Compile model
 optimizer = RMSprop(lr = 0.1 ** 5)
 model.compile(loss = mean_distance, optimizer = optimizer, metrics =
['mean_squared_error', mean_different_angle, mean_distance])

 return model

44

Appendix 2 – Data generator

import sys
import numpy as np
from tensorflow.keras.utils import Sequence
from matplotlib import pyplot as plt
from matplotlib.colors import hsv_to_rgb
from matplotlib.colors import rgb_to_hsv

class Data_Generator_Cross_Grey_N_Zadjusted_PNG(Sequence):
 def __init__(self, folders, batch_size):
 self.folders = folders
 self.batch_size = batch_size
 self.rgb_adjustements = [
 ['_gamma_adjustment', 0.6],

 ['_gamma_adjustment', 0.7],
 ['_gamma_adjustment', 0.8],
 ['_gamma_adjustment', 0.9],

 ['_gamma_adjustment', 1.0],
 ['_gamma_adjustment', 1.1],
 ['_gamma_adjustment', 1.2],

 ['_gamma_adjustment', 1.3],
 ['_gamma_adjustment', 1.4],
 ['_saturation_adjustment', -0.2],
 ['_saturation_adjustment', -0.1],

 ['_saturation_adjustment', 0.0],
 ['_saturation_adjustment', 0.1],
 ['_saturation_adjustment', 0.2],

 ['_value_adjustment', -0.2],
 ['_value_adjustment', -0.1],
 ['_value_adjustment', 0.0],

 ['_value_adjustment', 0.1],
 ['_value_adjustment', 0.2],
]

 def __len__(self):
 return int(np.ceil((len(self.folders) * len(self.rgb_adjustements))
/ self.batch_size))

 def __getitem__(self, index):

 # Set right start and end index adjusting for RGB adjustements methods
 start = (index % len(self.folders)) * self.batch_size
 end = ((index % len(self.folders)) + 1) * self.batch_size
 folders = self.folders[start:end]

 # Retrieve the right adjustement method and its corresponidng value
 method_counter = int(index / len(self.folders))

 method = self.rgb_adjustements[method_counter][0]
 value = self.rgb_adjustements[method_counter][1]

 # Retrieve inputs and output
 inputs, output = self._load_light_field(folders, method, value)

 return inputs, output

 def _load_light_field(self, folders, method, value):
 input_1 = np.empty((self.batch_size, 128, 128, 3), np.float32)

 input_2 = np.empty((self.batch_size, 128, 128, 3), np.float32)
 input_3 = np.empty((self.batch_size, 128, 128, 3), np.float32)
 input_4 = np.empty((self.batch_size, 128, 128, 3), np.float32)

 output = np.empty((self.batch_size, 128, 128, 3), np.float32)

 for i, folder in enumerate(folders):

 cam030_file = folder + 'input_Cam030.png'
 cam031_file = folder + 'input_Cam031.png'

45

 cam032_file = folder + 'input_Cam032.png'
 cam039_file = folder + 'input_Cam039.png'

 cam040_file = folder + 'input_Cam040.png'
 cam041_file = folder + 'input_Cam041.png'
 cam048_file = folder + 'input_Cam048.png'

 cam049_file = folder + 'input_Cam049.png'
 cam050_file = folder + 'input_Cam050.png'

 cam030 = getattr(self, method, None)(self._load_png_rgb(

cam030_file), value)
 cam031 = getattr(self, method, None)(self._load_png_rgb(
cam031_file), value)

 cam032 = getattr(self, method, None)(self._load_png_rgb(
cam032_file), value)
 cam039 = getattr(self, method, None)(self._load_png_rgb(

cam039_file), value)
 cam040 = getattr(self, method, None)(self._load_png_rgb(
cam040_file), value)
 cam041 = getattr(self, method, None)(self._load_png_rgb(

cam041_file), value)
 cam048 = getattr(self, method, None)(self._load_png_rgb(
cam048_file), value)

 cam049 = getattr(self, method, None)(self._load_png_rgb(
cam049_file), value)
 cam050 = getattr(self, method, None)(self._load_png_rgb(

cam050_file), value)

 cam030 = self._rgb_2_grey(cam030)
 cam031 = self._rgb_2_grey(cam031)

 cam032 = self._rgb_2_grey(cam032)
 cam039 = self._rgb_2_grey(cam039)
 cam040 = self._rgb_2_grey(cam040)

 cam041 = self._rgb_2_grey(cam041)
 cam048 = self._rgb_2_grey(cam048)
 cam049 = self._rgb_2_grey(cam049)

 cam050 = self._rgb_2_grey(cam050)

 input_1[i,:,:,0] = cam039
 input_1[i,:,:,1] = cam040

 input_1[i,:,:,2] = cam041

 input_2[i,:,:,0] = cam030

 input_2[i,:,:,1] = cam040
 input_2[i,:,:,2] = cam050

 input_3[i,:,:,0] = cam031
 input_3[i,:,:,1] = cam040
 input_3[i,:,:,2] = cam049

 input_4[i,:,:,0] = cam032
 input_4[i,:,:,1] = cam040
 input_4[i,:,:,2] = cam048

 output[i,:,:,0:3] = self._load_normal_map(folder +
'input_Cam040_normal.png')

 return [input_1, input_2, input_3, input_4], [output]

 def _rgb_2_grey(self, rgb):
 r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
 gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

 return gray

 def _load_png_rgb(self, file, gamma = 2.2):
 img = plt.imread(file)

46

 return img

 def _load_normal_map(self, file):
 n = plt.imread(file)

 return n

 def _gamma_adjustment(self, rgb, gamma):
 # Adjust gamma value of rgb input

 rgb = rgb.astype(complex) ** (1 / gamma)
 rgb = np.real(rgb)
 rgb = np.clip(rgb, 0, 1)

 return rgb

 def _saturation_adjustment(self, rgb, saturation):
 # Adjust saturation of rgb input
 hsv = hsv_to_rgb(rgb)
 hsv[:,:,1] += saturation

 hsv = np.clip(hsv, 0, 1)
 rgb = hsv_to_rgb(hsv)

 return rgb

 def _value_adjustment(self, rgb, value):
 # Adjust saturation of rgb input
 hsv = hsv_to_rgb(rgb)
 hsv[:,:,2] += value
 hsv = np.clip(hsv, 0, 1)

 rgb = hsv_to_rgb(hsv)

 return rgb
	

47

Appendix 3

