
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Incremental Symbolic Execution

Joran J. Honig
M.Sc. Thesis

June 2020

Supervisors:
prof. dr. M. Huisman

dr. M. H. Everts

Telecommunication Engineering Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

Symbolic execution is a popular analysis technique used for finding bugs in Ethereum
smart contracts. However, symbolic execution is computationally expensive. Fur-
thermore, during the development of smart contracts, analysis is started from scratch
for each new version of the software, recomputing many redundant results. Many
approaches exist for the optimisation of symbolic execution, one of which is the use
of symbolic summaries. In this thesis, we design a technique which efficiently per-
mits the re-use of symbolic summaries between analyses, allowing for incremental
symbolic execution for smart contracts. In particular, the technique aims to permit
the re-use of summaries for code with syntactic changes.

First, we analyse the changes which occur in smart contracts for the design
and evaluation of the summary checking approach. We formulate a set of three
algorithms that use program normalisation and dataflow analysis to deal with the
identified change types. We evaluate the performance of our summary checking
approach through three benchmarks, focussing on particular change types, real-
world scenarios, and compiler introduced changes.

The results show that this technique can be applied effectively in real-world sce-
narios, allowing for the re-use of, on average, 85% of symbolic summaries. Fur-
thermore, the methods are particularly effective for program changes resulting from
changes in the compiler, reaching a summary re-use rate of 100%. Finally, in our
experiments, summary validation requires an order of magnitude less time than the
re-generation of the summaries which remain valid between program versions.

In conclusion, the proposed normalisation based summary checking approach
is an effective method for incremental symbolic execution by allowing the re-use of
symbolic summaries.

Contents

1 Introduction 1
1.1 Symbolic Summary Re-use . 3
1.2 Method . 4

1.2.1 Research Question . 5

2 Background 7
2.1 Symbolic Execution . 7

2.1.1 Key Concepts . 8
2.1.2 Guiding Example . 8

2.2 Symbolic Summaries . 13
2.2.1 Introduction . 13
2.2.2 Formalisation . 14
2.2.3 Guiding Example . 14
2.2.4 Must-summary checking problem 15

3 Program Changes 17
3.1 Change Origins . 17

3.1.1 Compiler Passes . 18
3.1.2 Compiler Versions . 18
3.1.3 Developer introduced changes 19

3.2 Change categories . 20
3.2.1 No change to dependent basic blocks 20
3.2.2 Syntactic change to basic block 20
3.2.3 Semantically equivalent change to basic blocks 21
3.2.4 Effectless semantic changes 21
3.2.5 Basic block structure changes 22
3.2.6 Semantic changes . 22

4 Related Work 23
4.1 Incremental and Differential Analysis Techniques 23

4.1.1 Differential program analysis 24

iii

4.1.2 Incremental program analysis 28

4.2 Symbolic summary re-use . 31

5 Approach 33

5.1 Algorithm 1 . 33

5.1.1 Algorithm . 34

5.1.2 Conclusion . 34

5.2 Algorithm 2 . 35

5.2.1 Algorithm . 35

5.2.2 Normalisation . 35

5.2.3 Correctness . 42

5.2.4 Conclusion . 44

5.3 Algorithm 3 . 45

5.3.1 Algorithm . 45

5.3.2 Correctness . 46

5.3.3 Conclusion . 47

6 Evaluation 49

6.1 Implementation . 49

6.1.1 Mythril . 50

6.1.2 Discussion . 52

6.2 Benchmarks . 54

6.3 Benchmark 1: Arbitrary changes . 54

6.3.1 Formulation . 55

6.3.2 Results . 58

6.3.3 Discussion . 58

6.3.4 Limitations . 59

6.4 Benchmark 2: Real-world version increments 59

6.4.1 Formulation . 60

6.4.2 Results . 60

6.4.3 Discussion . 61

6.4.4 Limitations . 62

6.5 Benchmark 3: Compiler Versions . 63

6.5.1 Formulation . 64

6.5.2 Results . 65

6.5.3 Discussion . 65

6.5.4 Limitations . 66

7 Conclusion 69
7.1 Future Work . 70

7.1.1 Program Normalisation . 70
7.1.2 Change Categories . 71
7.1.3 Improved Evaluation . 73

References 75

Chapter 1

Introduction

Symbolic execution is a versatile program analysis technique that is computationally
expensive. In this thesis, we propose a novel approach for the must-summary check-
ing problem [1] that allows for incremental symbolic execution. The approach aims
to efficiently enable the re-use of must-summaries between the analyses of two ver-
sions of a program. Enabling such incremental symbolic execution by allowing the
re-use of must-summaries between the analysis of two versions of a program, has
the potential to provide improvements to the scalability and real-world performance
of symbolic execution based tools. In this chapter, we motivate the merits of such
an approach by demonstrating that such an optimisation can be leveraged to assist
the mitigation of security risks for smart contracts on the Ethereum blockchain [2].

Blockchain platforms like Ethereum [2], provide a platform that supports the ex-
ecution of programs, called smart contracts. Unlike with regular programs, that a
server or personal computer executes, it is the participants of the Ethereum network
that execute smart contracts. Because they run on Ethereum blockchain, smart
contracts gain properties like censorship resistance, immutability and verified exe-
cution [2].

These properties are attractive for applications that require a high level of secu-
rity. However, the open Ethereum blockchain also makes for a high-risk environment.
Firstly, smart contracts deployed on the Ethereum blockchain are visible and acces-
sible to all the participants in the Ethereum network. Additionally, smart contracts
are immutable; once deployed to the blockchain, they cannot be changed anymore.
These aspects create a high stakes environment where smart contract developers
have to be diligent in ensuring the correctness and security of their smart contracts.
Unfortunately, there have been several cases where adversarial Ethereum users still
managed to exploit a bug in a deployed smart contract; take, for example, The DAO
hack [3], the Parity wallet hack [4] and the batchOverflow bug [5].

To help developers prevent such incidents from happening the Ethereum and
academic communities are investing much effort into implementing and designing

1

2 CHAPTER 1. INTRODUCTION

different formal methods to reduce the risk of another security incident happening
[6]–[9].

Mythril [6] is one of the tools implemented with this purpose. It is a tool that
leverages symbolic execution [10], [11] to find bugs in smart contract systems. This
tool allows developers to analyse smart contracts and find a wide range of potential
vulnerabilities in their smart contracts. Examples of the bugs that can be detected
using Mythril include integer overflows [12] and unprotected fund extractions [13].
Additionally, Mythril does not require any input from the user other than the contract
that needs to be analysed, making the tool usable for a large part of the development
community.

The primary technique used by Mythril is symbolic execution [10], [11], a versa-
tile program analysis approach that finds uses in both autonomous analysis systems
and user-aided verification. These uses cover program analysis problems like bug
finding, property checking and automatic test case generation (see Section 2.1.2).
At its base, symbolic execution is a program analysis technique that tries to explore
all behaviours of a program, while determining what inputs lead to those specific
program-behaviours. It does so by executing a program using so-called symbolic
input variables, rather than concrete values. There are several benefits to this ap-
proach. Firstly, the exploration of the program-behaviours in symbolic execution
does not require any input from the user. This trait is not shared by various other
analysis approaches, that often require input in the shape of invariants or lemmas.
As a result, symbolic executors are relatively easy to apply to software projects
without requiring an understanding of formal methods. Secondly, while symbolic ex-
ecution does not require aid from the user, it is still able to provide precise analysis
results. This level of precision is not provided by various other autonomous analysis
techniques that use abstraction to approximate all the behaviours of a program such
as abstract interpretation [14]. The high precision of symbolic execution is crucial
for a bug finding application, as it is essential to have a low false-positive rate when
reporting bugs to developers [15]. False positives can both distract and delay devel-
opers in the triaging process; a high false-positive rate might even cause developers
to ignore some of the analysis results.

Even though symbolic execution has clear benefits, there are some challenges
to its development and use. One of the most prevalent problems is called “state
explosion” [10], it results from the trait that many non-trivial programs have a near-
infinite amount of possible program paths. Such situations can, for example, occur
for programs that include loops over dynamically sized inputs. These programs will
have a path for each possible size of the input variable. Moreover, the number of
program paths grows exponentially for each of these loops. As a result, a program
analysis approach that tries to enumerate all of those paths is not able to terminate

1.1. SYMBOLIC SUMMARY RE-USE 3

within a reasonable time frame.
Furthermore, symbolic execution relies heavily on SMT solvers to check the

reachability for all the different explored paths. SMT solving is often computationally
expensive and checking reachability for the different paths takes up a large part of
the symbolic execution process [10].

Many approaches have been proposed to address these challenges, including
several that aim to re-use partial results throughout the analysis [1], [16]–[18]. One
such optimisation is called composite analysis [19], an approach that relieves both
SMT solver costs and state explosion. Compositionally approaching the analysis of
a program allows the analysis to explore each of the different functions in the target
program just once. Each time the analysis reaches an unexplored function, it will
analyse and explore that function and create a summary. On each subsequent call
to the function, the analysis can use the summary rather than exploring the function
again. Additionally, by applying the summary of the function, rather than determining
all possible paths through it, the analysis can limit the effects of state explosion.

1.1 Symbolic Summary Re-use

Re-using partial analysis results within one analysis effort can be extended to the
re-use of analysis results between different analysis campaigns. The prime ob-
servation behind incremental analysis and symbolic summary re-use is the follow-
ing: “Between the analysis of two versions of a program; many of the computations
are redundant.” Optimising the analysis process to leverage these redundancies,
rather than exhausting computational resources on redundant computations, allows
an analysis tool to both conserve effort and speed up the generation of analysis
results.

Such incremental analysis approaches provide many benefits in a situation where
different versions of a program continually need analysis. Two common use-cases
we identify are:

1. A continuous integration (CI) pipeline, where a program is analysed for each
newly added feature or bugfix

2. An IDE which continually provides the user with hints and feedback on their
code

For the first use-case, developers might set some time bound on the analysis, re-
using analysis results will allow the analysis to cover more of the program behaviours
within the set bound. For the second use-case, the use of incremental analysis ap-
proaches makes it possible to provide the same results within a smaller timeframe,
something which improves the usability of the analysis approaches [20].

4 CHAPTER 1. INTRODUCTION

In this thesis, We specifically consider symbolic summaries as partial analysis re-
sults that can be re-used to prevent redundant computations between analysis runs.
Given two versions of a program, those functions that have not changed will gener-
ate equivalent summaries. A lightweight approach to show unchanged parts of the
program between two program versions allows for the exploitation of this property.
Godefroid et al. formalised this problem as the must-summary checking problem [1].

In order to enable incremental symbolic execution, Godefroid et al. [1] propose
three algorithms to solve this must-summary checking problem. Furthermore, there
exist a range of approaches aimed at the re-use of partial analysis results in sym-
bolic execution [16]–[18], [21]–[23]. Many of these approaches leverage syntactic
equivalence to discover which partial analysis results can be re-used. However,
syntactic equivalence checks are limited in that they do not permit the re-use of
analysis results for code where there are syntactic changes without an effect on the
partial analysis results.

In this thesis, we provide a categorisation of these syntactic program changes
that do not affect the semantics of a program. Moreover, we propose an approach
that improves the current state-of-the-art by allowing the re-use of partial analysis
results for code with such changes. We implement the approach to check must-
summaries for Ethereum smart contracts, enabling efficient incremental bug find-
ing. Lastly, we aggregate three benchmarks that evaluate the performance of must-
summary algorithms for EVM smart contracts [2].

1.2 Method

In this thesis, we discuss the application of must-summary re-use for the analysis of
smart contracts. Furthermore, we propose novel algorithms that improve upon the
performance of current state-of-the-art in must-summary checking and incremental
analysis.

For the implementation and evaluation of the proposed approaches, we leverage
Mythril [6], a popular symbolic executor and bug finder for the Ethereum Blockchain
that targets EVM bytecode [2]. Currently, Mythril does not support the generation
and use of symbolic summaries. In the execution of this research, we have ex-
tended Mythril with the support for symbolic summaries, using a plugin for its sym-
bolic execution engine. Furthermore, we leverage analysis-capabilities based on the
abstract interpretation [14] of EVM bytecode [8]. This provides the required capabil-
ities to perform the operations we propose in Chapter 5. We identify and categorise
common change types introduced between smart contract versions in Chapter 3.
Lastly, we propose the summary checking algorithms in Chapter 5 and evaluate
their performance using the benchmarks proposed in Section 6. These benchmarks

1.2. METHOD 5

evaluate the summary checking algorithms both on real-world performance and on
the performance for arbitrary program changes.

1.2.1 Research Question

How can we efficiently check must-summaries for EVM bytecode [2] smart con-
tracts1that have semantically preserving changes in the summarised code?

Subquestions:

1. Which different origins introduce program changes in smart contracts, and how
do they affect the type of program change.

2. Which types of program changes are identifiable in smart contracts relating to
the summary checking problem?

3. How can we efficiently check equivalence for the different types of program
changes with respect to the summary checking problem?

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

An approach to incremental symbolic execution is likely to leverage a wide range of
program analysis techniques and theories. This chapter contains a description of
several program analysis techniques in order to introduce the reader to the topics
discussed in this thesis.

2.1 Symbolic Execution

Symbolic execution [10], [11] is a program analysis technique central to this the-
sis. It is a technique that strikes a balance between dynamic and static analysis
approaches. Like dynamic analysis techniques, it can create concrete counterex-
amples to disprove program properties. Like static analysis techniques, it provides
semantic insight into the program.

The general approach of symbolic execution is to try to explore all possible paths
through a program. A path through the program is a sequence of consecutive in-
structions starting from the entry of a program, continuing to an exit point of the
program. For each path w, the analysis maintains a path constraint φw. This path
constraint is the condition for the execution to take the path w through the program.
Additionally, the analysis computes a symbolic state Σ for all the steps in the path.
This state stores the expressions for each memory location and the path constraint
until that point. During the exploration of the program, one can leverage this infor-
mation for a variety of purposes.

One of the uses is property checking, where for each reachable program state,
an analysis verifies that some properties hold. Automatic test case generation is
another use of symbolic execution; The path constraints φw can be used to create
concrete inputs that will cover each distinct program path covered by the symbolic
execution. Lastly, symbolic execution is applicable in the area of bug finding. The
use of symbolic execution for bug finding is similar to property checking, but with

7

8 CHAPTER 2. BACKGROUND

generic pre-defined properties that imply the existence of bugs like buffer overflows.
One factor that has inhibited the mainstream adoption of symbolic execution is

the scalability of the approach. A popular research topic for scalability has been
the path explosion problem. Another factor that inhibits the scalability of symbolic
execution is the computational cost associated with exploring a program path. It
involves the computation of the program states, path constraint and satisfiability of
the path constraint.

2.1.1 Key Concepts

In this subsection, we will iterate the core concepts of symbolic execution; these
concepts will be demonstrated with a guiding example in Subsection 2.1.2.

Symbolic execution, as opposed to concrete execution, executes a program with
symbolic values. A symbolic value is an algorithmic variable that can represent all
values that a type can take. The analysis starts with an initial state Σinit and path
condition φw. Symbolic variables are used to represent all inputs in this initial state.
The path condition for this initial state is True. Execution of the program is similar to
concrete execution. In concrete execution, each program statement is represented
by some function f that implements some behaviour in the concrete domain. For
symbolic execution, it is possible to formulate a function f ′ which implements the
same behaviour in the symbolic domain.

The state after the execution of this statement is defined as Σ = f ′(Σinit), where
Σ is the result after the application of f on the initial state. The execution continues
by continually computing successor states.

The analysis follows with this process until it reaches some branching statement.
A branching statement has some conditional value, which determines which pro-
gram branch to take. In concrete execution, this value is available, and the executor
will follow the corresponding path. In symbolic execution, the branch condition can
be symbolic, in which case, both the true and false case of the condition could be
possible. The symbolic executor will, therefore, follow both branches, and store this
branch condition as part of the path condition φw.

2.1.2 Guiding Example

This section will demonstrate the introduced concepts using an example. Figure 2.1
contains a simple function in the Solidity programming language, which we will use
as a guiding example.

Figure 2.2a shows the control flow graph for the program. The numbers in the
nodes correspond to the line numbers in the code, and the arrows indicate tran-

2.1. SYMBOLIC EXECUTION 9

sitions. There are two possible paths (a sequence of execution steps through a
program) in this function. One of the paths enters the if statement at line 4, the other
continues execution at line 6. These paths are visualized in Figure 2.2b and Figure
2.2c.

Figure 2.2d describes the symbolic state space of a program. This figure shows
a graph of all the symbolic states discovered during symbolic execution. There are
three types of elements in the graph: states, state transitions and branch condi-
tions. Nodes and edges, respectively represent the states and state transitions. The
branch conditions are shown as guards at the edges.

The first node and symbolic state represent the initial symbolic state Σinit. At this
state in the execution, there are no initialized variables yet. This happens with the
execution of the next statement, which defines the variable result.

Branch conditions are signified using edge guards. They specify the condition
for a specific branch to be taken. A path that follows a specific branch needs to
satisfy the branch condition. This imposes constraints on the possible values that
the variables in the symbolic states can take further along the path. The condition
for a specific path to be taken is calculated by aggregating the branch conditions
along that path. We formally say that φw is the path condition for path w and the
conjunction of branch conditions of the branches on w.

1 f u n c t i o n execute (u in t256 inpu t) p u b l i c re tu rns (u in t256) {
2 u i n t r e s u l t = 0 ;
3 i f (i npu t > 10) {
4 r e s u l t = i npu t ;
5 }
6 r e t u r n r e s u l t ;
7 }

Figure 2.1: Symbolic Execution Guiding Example

10 CHAPTER 2. BACKGROUND

1

2

3

46

7

(a) Control Flow Graph

1

2

3

6

7

(b) Path 1

1

2

3

4

7

(c) Path 2

1: Initial State

2: result = 0

3: result = 0

4: result = input6: result = 0

6: result = inputexit: return value = 0

exit: return value = input

[input > 10][input <= 10]

(d) Symbolic state space

Figure 2.2: Models of the guiding example in Figure 2.1

Execution steps

In the next part of this subsection, we will go through all of the specific states, to
describe how the program statements affect the symbolic states.

The first state is the initial state of the program at the entry of the function. At this
point, there are not any initialized variables or path constraints.

The first statement after entry into the program is “uint memory result = 0;”. This

2.1. SYMBOLIC EXECUTION 11

statement sets a variable in memory to the concrete value 0. The symbolic state in
Figure 2.2d at number 2 shows the state after the execution of this statement.

The statement at line three is a branching statement; it compares input > 10 and
then branches according to the result of this comparison. In this case, the input >

10 can be both true and false, as input can have values like 1 or 20. Therefore
both branches are followed. The analysis also records the condition input > 10 for
the branch that goes to line 4, and input <= 10 for the branch that immediately
continues to line 7.

In the explanation of the example, we will first continue with the path that does
not enter the if statement. The next state in this path is the return statement at line
6; this returns the value of the variable result, which is the concrete integer 0. This
statement is also the exit point of the function and the end of this path.

Here we continue with the explanation of the path that does satisfy the branch
condition. This path does enter the if statement, and executes “result = input;”. This
statement sets the value for result to the symbolic value of input. Note that the value
of result is not unconstrained. The path condition, which is the conjunction of the
different branch conditions along that path, is input > 10. Therefore, the variable
result is also constrained to have a value higher than 10.

Since this is the only statement in the if body, execution continues to line 6, where
the return statement is reached. Here the value of result is returned, which is “input”.

Property checking

This section demonstrates how symbolic execution can be used to check the validity
of a property for the available example. Consider the property “the return value of
the function execute() is always 0”, which we will check for the function execute()
in Figure 2.1. Formalizing the example property “the return value of the function
execute() is always 0” as a logical formula results in the following:

returnvalue == 0

Here returnvalue represents the return value of the function execute().
Proving that a property P always holds can be demonstrated by showing that

there is no satisfying solution for φw ∧¬P for each of the relevant states. This logical
formula represents the following intuition: “Given the conditions for reaching this
state, it is not possible to violate the property”.
In this example, the property P is defined as returnvalue == 0; thus, we need to
show that there is no state for which φw ∧ returnvalue! = 0 has a satisfying solution.

Figure 2.2d shows that there are two possible symbolic states for the exit point of
the function execute(). The first node has returnvalue = 0. In this case the condition

12 CHAPTER 2. BACKGROUND

that needs to be checked is input ≤ 0 ∧ returnvalue = 0 ∧ returnvalue 6= 0. The
condition contains a trivial contradiction and is not satisfiable; thus, the property
holds in this state.

The second node has returnvalue = input. For this case this formula looks like
input > 10∧returnvalue = input∧returnvalue 6= 0. An off-the-shelf SMT solver, like
Z3 [24], can be used to show that this is in fact, satisfiable. One possible satisfying
solution that could be generated by such an SMT solver is input = 11. Since we
can show that the property does not hold for this exit state, we can conclude that the
property does not hold for the function.

In conclusion, the symbolic execution allowed for the iteration of program states
to check the satisfiability of property violations. Moreover, the semantic insight pro-
vided by symbolic execution allowed for the generation of a concrete input that
demonstrates how the property is violated.

Test case generation

Symbolic execution can be used to generate concrete test cases for a program. A
basic approach to test case generation is to generate one concrete input for each
path discovered during the symbolic execution. By iterating the leaf nodes of the
symbolic state space, and finding a satisfying solution to the path condition φw for
each of those nodes, one can find concrete inputs that cover all paths in the state-
space.

The symbolic state space in figure 2.2d, shows two leaf nodes. For these sym-
bolic states, we find the path conditions input <= 10 and input > 10. Similar to
the previous approach, we can use an off-the-shelf SMT-solver like Z3 [24], to find a
satisfying solution for both of the path conditions.

In this case, such a solver might output input == 5 and input == 11 respectively.
These two concrete inputs can now be used to extend a concrete test suite to cover
the possible paths of execute().

Bug finding

Another use of symbolic execution is bug finding. The process of using symbolic
execution to find bugs in a program is similar to the approach of verifying properties.

In property checking, there is a property P. By showing that P is not violated we
show that the function or program is correct. Showing violation of P for some state
demonstrates the incorrectness of the function or program.

Consider a bug finding use case, where there is a condition Q. If Q does not hold
at some point in the program, then this indicates the existence of a vulnerability.

2.2. SYMBOLIC SUMMARIES 13

Different from property checking, the absence of violations of Q does often not imply
correctness of the program since there are likely bugs that Q does not identify.

The approach to finding violations to the condition Q is equal to the process for
verifying a property P.

When symbolic execution is applied for property checking users commonly pro-
vide the property P that is to be checked. Bug finding tools, on the other hand, often
come packaged with general conditions Q that find common bugs in software.

2.2 Symbolic Summaries

Chapter 1 provided a brief introduction into composite analysis techniques and sym-
bolic summary re-use. The use of summaries was introduced by Godefroid [19],
to improve dynamic test case generation [25]. This section provides an in-depth
description of symbolic summaries and demonstrates the summarisation concept
using the guiding example from Section 2.1.2.

2.2.1 Introduction

During symbolic execution, an analysis might cover some sections of code multiple
times. Multiple calls to a single function throughout the code is a clear example
of this event; similarly, program loops are another excellent example of this phe-
nomenon. Within normal symbolic execution, such pieces of code are analysed
multiple times for each different call or entry. A compositional approach to symbolic
execution aims to decrease the redundancy of the analysis by re-using previous
analysis results.

The analysis achieves this by storing symbolic summaries for each part of the
already covered code. Each time the analysis encounters a previously encountered
section of code, the analysis can re-use the respective previously computed sum-
mary of that section, instead of re-computing the required analysis results.

In addition to preventing redundant analysis, compositionality decreases the ef-
fect of the path explosion problem. In non-compositional approaches, each reach-
able path in the callee would result in a distinct path in the symbolic state space.
Whereas in compositional approaches, the analysis applies a summary to the call-
ing symbolic state similar to the application of a regular program statement; thus, the
analysis creates just one successor state. Note, that while this approach reduces
the number of resulting states, the complexity of the expressions in the successor
state is relatively more complex.

14 CHAPTER 2. BACKGROUND

2.2.2 Formalisation

In Section 2.1 we denoted the path condition for a given path w as φw. The path
condition represents prew, the precondition that needs to hold for w to be executed.
A summary for the path w can be formulated using the path condition and resulting
symbolic state Σ. Specifically, a postcondition wpost holding over Σ can describe the
effects of the execution of w. A conjunction of prew and postw describes the symbolic
summary for the path w.

Formally, we describe a formula of the form φw = prew ∧ postw, where prew

denotes the path condition and postw is a conjunction of constraints on the memory
state after w has been executed [19]. Given the summaries for the paths w in a
function f we can also formulate the function summary φf , as a disjunction of the
path summaries φwf

, where φwf
describes the path summary for a path w in f [19].

For summary checking, we consider the must-summary notation < lp, P, lq, Q >

proposed by Godefroid et al. [1]. lp and lq are arbitrary locations in the program and
represent the entry and exit point of the summary, respectively. P is the summary
precondition holding in lp, and Q is the summary postcondition holding in lq; P and
Q reflect to prew and postw respectively. A summary of this form specifies that if the
program executes the statement at lp and the precondition P holds, then eventually
lq is reached where the postcondition Q holds.

Note that this formal notation of must-summaries can represent the path sum-
maries of the form φwf

= prewf
∧ postwf

. Therefore, a set of must-summaries for
different paths of the form < lp, P, lq, Q > can be used to describe a function sum-
mary.

2.2.3 Guiding Example

Let us consider the example function in Figure 2.1, and the corresponding symbolic
state space in Figure 2.2d. The symbolic state-space contains two program paths
for the function execute. Since the paths are contained within and fully describe the
function, they can also be seen as describing the partitions of the function execute().

One might formulate symbolic summaries for this symbolic state space, and func-
tion in the following way. There are two program paths in the function that share the
same entry and exit points. Therefore the symbolic summaries will be of the form:
<execute entry, P , execute exit, Q>. Note that we can derive the postcondition Q
from the symbolic state Σ.

Using this information, we formulate the following summaries:

• <execute entry, input > 10, execute exit, result = 0 ∧ returnvalue = result >

2.2. SYMBOLIC SUMMARIES 15

• <execute entry, input <= 10, execute exit, result = input ∧ returnvalue =

result>

The combination of the two summaries constitutes the function summary for the
function execute(). Each time that the function execute() is called during the analy-
sis, instead of entering and executing the function, the analysis can apply function
summary φexecute = (input > 10 ∧ result = 0 ∧ returnvalue = result) ∨ (input <=

10 ∧ result = input ∧ returnvalue = result).

2.2.4 Must-summary checking problem

Compositionally approaching symbolic execution has two significant benefits: a re-
duction of redundant computations, and decreased effects of path explosion. The
former is an aspect that is also applicable to incremental analysis. Consider the
execution of a composite symbolic executor on two versions of a program. Assum-
ing that the changes affect just small parts of the program as a whole, then it is
possible to re-use many of the summaries between those two program versions. A
lightweight approach that would allow the analysis to re-use valid summaries from
previous executions avoids unnecessary re-computation of symbolic summaries.

Godefroid et al. [1] provide a formalisation of this problem:
“Given a set S of symbolic summaries for a program Prog and a new version

Prog‘ of Prog, which summaries in S are still valid must-summaries for Prog‘?”
Previous work by Godefroid et al. [1] provides light-weight algorithms that allow

re-use of symbolic summaries for a limited set of program changes (see Section
4.2).

In Chapter 5, we propose a set of algorithms that aim to enable the re-use of
symbolic summaries for an broader spectrum of program changes.

16 CHAPTER 2. BACKGROUND

Chapter 3

Program Changes

Between the versions of a program, one can identify many classes of program
changes. Furthermore, a variety of actors and causes can affect changes be-
tween different program versions. In this section, we provide an overview of different
change origins and a categorisation of changes that pose different challenges to the
must-summary checking problem [1].

We leverage the identified change categories to inform the design of the pro-
posed must-summary checking algorithms (see Chapter 5). Furthermore, to enable
the evaluation of the approaches proposed in Chapter 5 we formulate a set of bench-
marks (see Chapter 6) that aim to represent the program changes from the change
categories identified in this chapter.

3.1 Change Origins

It is possible to identify multiple origins that can introduce changes between two
versions of a program. First of all, programmers can introduce changes in a program.
These are often changes that occur at the source code level. However, program
analysis does not necessarily operate at this level. Some tools analyse programs
written in some high-level language like Solidity or C, whereas others analyse lower-
level languages like the EVM [2] and x86 instruction sets. The programs written in a
higher-level language are often compiled to lower-level languages.

In this thesis, we propose algorithms for summary checking at the EVM level.
Therefore, for the categorisation of changes and their origins, it is necessary to
consider both the changes made by the developer at the source code level (see
Section 3.1.3). In addition to the changes that can result from the compilation to
EVM bytecode (see Section 3.1.1 and Section 3.1.2).

17

18 CHAPTER 3. PROGRAM CHANGES

3.1.1 Compiler Passes

Many modern compilers enable the application of different optimisations. Depending
on situational factors, a program will be compiled with different compiler passes
enabled. For example, during the development phase, a developer might be inclined
to disable thorough compiler optimisations which take more time to finish. This
allows for a smoother incremental development process. It also means that between
different analysis runs of increments of the program, there are changes introduced
by enabled compiler passes.

Some examples of changes that different compiler passes can introduce are
stack canaries [26], dead code removal [27], constant folding [27] and memory lay-
out optimisation [28]. In general, we can divide these changes into two categories:

• Semantically preserving

• Semantically changing

Semantically preserving

The compilation passes that apply optimisations are generally semantically preserv-
ing under the assumption that the source language is typesafe. This property is
imperative when considering the summary validation problem, as it implies that for
a given program p mutated by some semantically preserving compiler pass, it is
possible to re-use all previously found (partial) analysis results.

Semantically changing

Contrary to the previous category, semantically changing passes, as the name im-
plies, do not necessarily preserve semantic equivalence.

Recall one of the previously mentioned compiler passes which introduce stack
canaries or stack guards [26]. This is a compiler pass that introduces some addi-
tional checks throughout the code that check the integrity of the stack. This pass
does not assume type safeness; rather, it is a pass solely introduced because type
safety can be violated. Moreover, since the change introduces new behaviour in
the program, it is not necessarily possible to re-use previously computed analysis
results.

3.1.2 Compiler Versions

Similar to how enabling different compiler passes can cause changes in the final pro-
gram, different compiler versions can also introduce changes. Different versions of

3.1. CHANGE ORIGINS 19

a compiler should produce semantically equivalent programs. There are two cases
where this assumption does not hold. Firstly, a compiler can include a new seman-
tically changing pass, changes caused by this will be equivalent to the changes dis-
cussed in Section 3.1.1. Secondly, some compiler versions may include unintended
behaviour, or bugs, which result in semantically divergent compilation results.

We performed a study of changes that can be introduced between the recent
versions of solc [29] (the compiler for the Solidity programming language), to iden-
tify the changes that a must-summary checking algorithm for EVM bytecode might
encounter. Specifically, we looked at the versions of solc between 0.5.0 and 0.5.9.
The scope of this analysis is limited to solc, and compilers might exhibit different
behaviour.

The following subsections provide an overview and discussion of the most preva-
lent changes that we identified.

New operator

The Constantinople hardfork [30] (an update to the Ethereum blockchain) introduced
changes in the Ethereum virtual machine. Among these changes is the addition of
new instructions for the EVM. Between versions 0.5.4 and 0.5.5 solc introduced the
application of these new EVM instructions.

Dispatch function restructuring

The first four bytes of the calldata in a transaction to a smart contract are used to
identify the function that the sender wants to execute. The Solidity compiler im-
plements dispatching logic that directs control flow to the function entry point; we
discovered changes in this dispatch logic introduced by different versions of the solc
compiler.

Improved optimisation passes

The solc compiler implements dead code analysis and stack layout optimisation.
We observe that newer versions of the solc compiler can designate more sections
as dead code, allowing them to minimise the smart contracts more.

3.1.3 Developer introduced changes

Developers can introduce a range of changes that influence the verification of sum-
maries to a different extent. We identify three main aims that a developer wants to
achieve when introducing changes in their software:

20 CHAPTER 3. PROGRAM CHANGES

• Feature Addition or Removal

• Bug Fixing

• Software Refactoring

Feature addition, removal and bug fixes are cases where the developer introduce
meaningful changes in the program. Such changes inhibit the ability of incremental
analysis techniques to re-use partial analysis results for the changed code.

Software refactoring [31] is different, as the purpose of a refactor is to change the
code while preserving the existing functionality and semantics. As a result, changes
in this last category should permit the re-use of partial analysis results.

3.2 Change categories

In this section, we look at the different situations that program changes can create
and how they affect summary re-validation. Note that this is not an exhaustive cat-
egorisation of program changes. Future work can extend upon this categorisation
with the addition of specific categories. Such refinements can permit optimisation of
the must-summary checking algorithms for these specific cases.

For each summary S, defined as a quadruple < lp, P, lq, Q > (see Chapter 2.2),
we define the set of all possible traces between lp and lq as T . Additionally, we
specify a single trace T ′εT as the specific path taken through the program given the
summary conditions. As shown in Section 4.2, demonstrating conditional equiva-
lence is sufficient to verify a previously valid summary S. Therefore a summary can
be proven valid for a new version of a program if one can prove that there are not
semantically relevant changes in T ′.

3.2.1 No change to dependent basic blocks

We say that the set of basic blocks that are executed in T ′ are B′. Similarly, the set of
basic blocks that can be executed by the traces T are B. This category describes all
changes that do not affect the basic blocks in B′. For these cases, syntactic equiv-
alence of the basic blocks in B′ demonstrates conditional equivalence. Showing
syntactic equivalence of all basic blocks in B is sufficient, as B′ ⊆ B.

3.2.2 Syntactic change to basic block

For changes in this category, we say that at least one basic block BB that gets
executed in T ′ has some syntactic change. We also confine the change to preserve
partial equivalence of the basic block BB.

3.2. CHANGE CATEGORIES 21

We identify the following examples of changes in this category:

• stack reordering

• arithmetic operation change

• changes to dead code 1

3.2.3 Semantically equivalent change to basic blocks

Similar to the previous category, we say that at least one basic block BB in the trace
T ′ has some syntactic change. Different from the previous category, the change
does not result in partial equivalence of BB. There is a subset of consecutive blocks
in T ′ BT that includes BB, for which we can show partial equivalence.

We identify the following concrete cases:

• stack reordering

• parameter order change

• changes to dead code

3.2.4 Effectless semantic changes

For this category, we consider changes in the basic blocks of T , that introduce a new
behaviour in the program, but not in the result of T ′.

Take the following example

1 fn example (i npu t) {
2 i = i npu t ∗ 2;
3 i f (i npu t < 0) {
4 r e t u r n 0 ;
5 }
6 r e t u r n i ;
7 }

Removing the first line of the function will not have an effect on a trace that originally
executed lines 1, 2, 3 and 4. Note that this category is in actuality a special case of
the previous category. We identify this as a separate category because an algorithm
can potentially optimise to treat such semantic changes efficiently.

1Statements are dead whenever they do not affect the execution of the program

22 CHAPTER 3. PROGRAM CHANGES

3.2.5 Basic block structure changes

The previous categories identify program changes that do not modify the basic block
structure of a program. This category describes the range of changes that do not
introduce semantic changes in a program, but that do change this basic block struc-
ture. An example of a change in this category is partial-loop unrolling [32], a compiler
optimisation technique.

3.2.6 Semantic changes

In this category, we consider all changes that disallow the re-use of symbolic sum-
maries. However, we identify a series of special cases where it is still possible to
leverage previously computed symbolic summaries.

These cases allow the executor to optimise its interaction with the SMT solver
by leveraging the assumption that the precondition P of S is satisfiable. Such an
approach could extend existing constraint caching approaches [33], [34].

Stronger constraints

The first sub-category is that of changes for which there is a valid summary S ′ for
the new program, where S ′ has a stronger precondition but is otherwise equivalent
to S. In this case, the symbolic executor can be allowed to assume that the original
precondition P is satisfiable.

Weaker constraints

Similar to the previous sub-category, this category defines changes that induce
a change in summary preconditions. In particular, this category describes those
changes for which there is a valid summary S ′ for the new program, where S ′ has a
weaker precondition but is otherwise equivalent to S.

Changed effects

For this category, we consider the changes for which there is a valid summary S ′ for
the new program, where S ′ has a changed post-condition compared to S. Changes
to the effects of a summary can coincide with the two change types mentioned
above.

Chapter 4

Related Work

In this section, we provide an overview of current state-of-the-art in incremental and
differential analysis techniques. Furthermore, we provide an extensive discussion
on symbolic summary re-use as one of the specific approaches taken in incremental
program analysis.

4.1 Incremental and Differential Analysis Techniques

During the software development life cycle, a program undergoes many changes.
For each addition to, or refactor of, the program, the developer ponders two ques-
tions:
(1) Did the change introduce any unwanted behaviour or remove desired behaviour
(regression testing)?
(2) Did the change introduce the desired behaviour?
Incremental and differential analysis techniques enable optimisations or provide an
answer to these questions.

This section provides an overview of incremental and differential analysis tech-
niques. The first category that we discuss are differential program analysis tech-
niques [35]–[38] (see Section 4.1.1), which focus on the discovery and characteri-
sation of changes between two versions of a program.

The second category is that of incremental analysis techniques, which leverage
information on program changes to direct and speed up future analyses (see Section
4.1.2). In this research area we identify two main approaches.

Firstly, instead of focusing the analysis on the entire program, one can focus the
analysis only on those parts of the program that might be influenced by the program
changes, leaving old and already analysed program behaviours alone [21]–[23].

The second approach is to re-use parts of the previously computed analysis
results to reduce redundant computation [1], [16], [18], [20], [39], [40].

23

24 CHAPTER 4. RELATED WORK

4.1.1 Differential program analysis

This subsection provides an overview of the work in differential analysis. Additionally
we reflect on the possible application of these techniques and approaches to the
must-summary checking problem.

The first two techniques [36], [37] that we discuss, introduce methods for change
characterisation. Change characterisation intends to increase developer under-
standing of changes, giving more information than the binary program equivalence
property; thus, they help the developer with both question (1) and (2).

Proposed by Jackson and Ladd [37], the first of these two methods describes
an early approach for providing a semantic diff for programs. They leverage depen-
dence relations of variables to report changes in the program to the user. The goal
of this approach is to increase developer understanding of the effects of program
changes. This approach does not directly solve either of the problems highlighted at
the start of this subsection; rather they help the developer understand the changes
in order to answer the questions.

Jackson and Ladd provide an approach for visualising the difference between
program versions. By showing changes in control- and dataflow, the authors in-
crease developer understanding of the changes that occur. However, such change
information is not sufficient to soundly determine equivalence of two programs;
therefore, it does not apply to the must-summary checking problem.

The second method, which was proposed by Person et al. [36], is an approach
to differential analysis based on symbolic execution. The researches apply a combi-
nation of abstract and symbolic summaries to verify that two versions of a program
are semantically equivalent. The researchers exploit the similarity between program
versions to improve and refine analysis results.

This aspect allows for the application of the method to the must-summary check-
ing problem, as the technique does not spend computational resources on showing
equivalence for sections of the program that are equivalent. The approach is com-
plementary to the methods proposed in Chapter 5, as their approach to determine
equivalent parts of the code that can be extended with the algorithms proposed in
this thesis.

The previous two techniques provided tools to characterise program changes,
another set of approaches [35], [38], [41] tries to solve the first question “Did the
change introduce any unwanted behaviour or remove desired behaviour?” by show-
ing program equivalence.

Godlin and Strichman [38] implemented an technique for regression verification
using equivalence checking. This helps developers to verify that refactors do not
introduce unwanted changes, which solves question (1) that was posed at the be-
ginning of this section. In their approach, they transform two versions of a program

4.1. INCREMENTAL AND DIFFERENTIAL ANALYSIS TECHNIQUES 25

into loop-free and recursion free versions of that program through substitution with
uninterpreted functions. Consecutively, the programs are transformed into static sin-
gle assignment (SSA) form. This form is leveraged to dispatch an equivalence query
to an SMT solver.

Unlike the technique proposed in this thesis, Godlin and Strichman do not lever-
age the fact that two versions of a program are very close. However, their approach
can deal with generic program changes. Therefore, their approach is complemen-
tary to ours with regards to the must-summary checking problem and can be used
to prove equivalence for those changes where the algorithms in this thesis are not
able to determine validity.

Lahiri and Hawblitzel implemented a tool called SYMDIFF [35], a semantic dif-
ference tool for imperative programs that uses verification conditions rather than a
technique based on symbolic execution. In their approach, they ask the user to pro-
vide two versions of a loop-free program and a mapping between the functions of
the two program versions. They then formulate a procedure for each function that
checks for partial equivalence. This procedure calls the two versions of a function
with the same inputs. Additionally, it includes an assertion that the outputs of the two
versions of the function must be the same. The generated procedures are thereon
checked for faults using the Boogie modular verifier [42].

Similar to the research by Godlin and Strichman [38], and Person et al. [36], this
approach to equivalence checking can deal with general program changes. This
allows it to be used in unison with the algorithms proposed in this research, to try and
check for partial equivalence for those summaries where the proposed algorithms
are unable to show equivalence.

Backes et al. [41] propose an additional approach for equivalence checking and
regression verification. This technique leverages DiSE [21] to create impact sum-
maries, which summarise the behaviour of modified parts of the code. By showing
that the impact summaries for two versions of a program are equal, they are able to
demonstrate semantic equivalence.

Similar to the earlier work by Person [36], the approach proposed by Backes
et al. leverages symbolic execution to determine the equivalence of a program.
The approach itself is based on computing the symbolic summaries for the different
versions of the program. This technique can be extended with algorithms proposed
in this thesis, allowing the equivalence checker to re-use summaries for parts of the
code that can efficiently be shown equivalent.

26 CHAPTER 4. RELATED WORK

Reverse engineering

In addition to the application to formal methods, and the improvement of develop-
ment processes, differential program analysis has also seen a successful application
in reverse engineering applications. Here program differencing is used in two ways.
Firstly, difference data can be used to port reverse-engineered information efficiently
between program versions. Secondly, differences allow for the identification of soft-
ware patches, allowing for targeted manual analysis. These goals overlap precisely
with those of incremental formal verification. In this section, we provide an overview
of the work in this field and compare it to the contributions of this thesis.

BinDiff is a well-known binary differencing tool that leverages graph-theoretical
approaches to compare binaries [43]. Dullien and Rolles [44] introduce these ap-
proaches and implement a binary differencing analysis using graph comparison. In
their paper, they identify three change types that occur between two variants of the
same executable:

1. Different Register Allocation

2. Instruction Reordering

3. Branch Inversion

These change types map to some of change types described in Section 3.2.2. For
the purposes identified in their paper (namely porting reverse engineering results),
it is not strictly necessary to soundly approximate differences between two versions
of a program. Instead, to compare basic blocks, they use the small primes product,
an efficient, but unsound method of comparing two basic blocks.

The algorithms proposed in this thesis find and use a mapping between the basic
blocks of two smart contracts. Similar to Dullien and Rolles, we leverage a range of
heuristics to map basic blocks between the versions of a program incrementally. Our
approach can leverage the heuristics identified by Dullien and Rolles to improve the
speed and efficiency of the algorithms; as such, their research is complementary
to ours. Additionally, our work provides an extension to that of Dullien and Rolles;
Algorithm 2 introduces a heuristic that leverages dataflow relations to map different
basic blocks.

Bourquin et al. [45] extend BinDiff with Hungarian algorithm [46] for bipartite
graph matching. The main contribution is the addition of a heuristic that considers
graph edit distance for the potential mapping of basic blocks. Similar to the heuris-
tics proposed by Dullien and Rolles [44], our algorithm potentially benefits from the
extension with this heuristic.

Another technique based on the comparison of the control flow of two programs
is that of Ming et al. [47]. In their paper, the authors propose a binary diffing algorithm

4.1. INCREMENTAL AND DIFFERENTIAL ANALYSIS TECHNIQUES 27

that uses interprocedural control flow to match basic blocks between two versions of
a program. Furthermore, the authors show that their approach is more resistant to
obfuscation techniques such as function inlining. While improvements with regards
to obfuscations are not relevant for this thesis, the proposed matching algorithm
could be leveraged by Algorithm 2.

Gao et al. [48] introduce a tool called BinHunt. They identify changes to reg-
ister allocation or instruction selection as potential issues for program differencing.
They leverage symbolic execution to compare the semantic effects of basic blocks;
as such, their approach becomes agnostic of the changes introduced within a basic
block (see Section 3.2.2). In this thesis, we propose a technique based on normal-
isation, rather than strict equivalence checking using symbolic execution. Further
research is required to show which is more efficient on the scope of basic blocks,
or whether a hybrid approach is warranted. Furthermore, their approach only con-
siders the comparison of semantic effects between two basic blocks. Normalisation
potentially considers a broader scope, without incurring the cost of symbolically ex-
ecuting parts of the target program.

Fluri et al. [49] implement an analysis technique that leverages tree differencing
to identify changes in source code. Their approach efficiently finds and charac-
terises program changes between program versions. However, this technique is
focused on the identification of syntactic program changes and does not reason
about the possible preservation of some program behaviours. Furthermore, the
technique allows for finding changes in source codes, rather than bytecodes, such
as the approach proposed in this thesis. That said, in their paper, Fluri et al. in-
troduce a taxonomy of different program changes. The fine-grained taxonomy of
change types provides a valuable overview of different change types that a must
summary checking algorithm might consider. Their taxonomy provides an alterna-
tive perspective on program changes when compared to the change categorisation
in Section 3.2 as the taxonomy identifies different syntactical changes, while the
categorisation particularly considers semantics preserving program changes.

Egele et al. [50] take an alternative approach to similarity testing. They lever-
age dynamic analysis runs to compare the semantic behaviour of two versions of a
program. This approach bases itself on the intuition that similar code must behave
similarly, using a dynamic analysis approach they approximate the semantics of a
function which can then be used to compare the similarity of two programs. Note
that similarity is not sufficient to permit the re-use of analysis results, as similar code
might still have semantic differences. Therefore, this research is orthogonal to ours.

Baker et al. [51] design an approach to express syntactic differences between
program versions efficiently. This technique allows for the compression of software
patches to smaller sizes. Their research is orthogonal to ours, as it revolves around

28 CHAPTER 4. RELATED WORK

syntactic differences, rather than the presence or absence of semantic differences.
In addition to efforts from the academic community, we find some open-source

tools implementing novel differential analysis techniques. Firstly, a popular binary
diffing implementation is called Diaphora [52]. This tool leverages several heuristics
to find mappings between the functions of two programs. Similarly, Turbodiff [53]
is a tool that allows for function matching. These tools implement functionality to
match the functions of two programs, which is not considered by the algorithms in
this research.

4.1.2 Incremental program analysis

In this section, we will first look at some incremental analysis approaches that have
been used in techniques other than symbolic execution [20], [54]–[57]. Next in Sec-
tion 4.1.2, we will look at incremental analysis approaches that have been proposed
for symbolic execution.

Binkley [58] studied the application of semantic differencing for improving the ef-
ficiency of regression testing. He uses this technique to reduce cost in two ways:
Firstly, using the difference information, it is possible to distinguish affected test
cases from unaffected cases. Unaffected test cases do not have to be re-run, as
their results will remain unchanged. Secondly, Binkley can compute a simplified ver-
sion of the program under test, that only exhibits those changed behaviours, that
improve the runtime of those remaining tests. Their approach is a precursor to the
one proposed in this thesis. Similarly, they soundly approximate the affected loca-
tions in the code, which lets them re-use previous analysis results. However, our
work improves upon the prior research of Binkly by introducing normalisation,, in-
tending to remove common semantics preserving change categories. Additionally,
in his paper, Binkley uses program slicing techniques to determine whether different
changes affect other program changes. In algorithm 3 (see section 5.3), we similarly
use dataflow information to improve on the precision of our analysis. As is discussed
in section 5.3, this is more effective than program slicing.

An approach for incremental program analysis has been proposed by Leino and
Wustholz [20]. They use a flow insensitive approach to detect whether a statement
depends on a change in the program. For those assertions where they can show
that the assertion is not dependent on a changed statement, they inject assume
statements before the assertion. This makes the approach agnostic of the verifica-
tion tool that is being used to check the validity of the assertions. Their approach
to checking for changed statements, and semantic divergence between two ver-
sions of a program, while efficient, is limited to syntactic equivalence and does not
consider different semantically preserving change categories (see Chapter 3). The

4.1. INCREMENTAL AND DIFFERENTIAL ANALYSIS TECHNIQUES 29

algorithms we propose in this thesis can be used to extend the approach by Leino
and Wustholz to be able to re-use more intermediate verification results.

Unlike Leino and Wustholz, Szabo et al. [54] leverage an approach that is or-
thogonal to ours. In their work, Szabo et al. leverage an incremental solver for rete
networks to allow them to formulate a DSL (domain-specific language) that allows
the specification of several analyses.

Similarly orthogonal, Rothenberg et al. [57] propose an incremental checking
approach based on trace abstraction.

Lastly, an approach to incremental analysis based on summary re-use was pro-
posed by Ondrej et al. [55], [56]. They implement an approach to check the validity
function summaries derived using Craig’s interpolation.

In their research, Ondrej et al. focus on re-using function summaries. Ondrej
et al. check whether previous summaries are still valid over-approximations of new
functions. The approaches proposed in this thesis aim to allow the re-use of must-
summaries; thus, the approach proposed by Ondrej et al. is orthogonal to ours.

Incremental symbolic execution

Specifically, for symbolic execution, there has been ongoing research interest in in-
cremental analysis techniques as a way to improve and scale the analysis technique.
As mentioned in the initial section of this chapter, we identify two main approaches
to incremental computation. The first is optimising or directing the coverage of sym-
bolic execution to changed program behaviours, instead of trying to cover the entire
program. The second is re-using analysis results from previous executions to reduce
redundant computations between analyses.

Person et al. [21] proposed an approach to symbolic execution that directs the
symbolic execution to cover changed program behaviours. They do this by first
using a static data- and control-flow analysis to compute which program statements
are affected by changes in the program. The regular symbolic execution process,
as described in Section 2.1, is then used with a depth-first exploration approach.
During the symbolic execution the executor will keep track of the affected program
statements that have been covered. At each point where the execution reaches a
state that is not able to cover a changed program statement that has not yet been
covered, then the execution will prune that state. At each point where the symbolic
execution covers a changed statement, it will re-try to cover the program statements
that are dependent on the just covered statement. In doing so, they guarantee that if
the symbolic execution terminates, that they have covered each possible sequence
of influenced program statements.

Taneja et al. [22] implemented an approach called eXpress, using a dataflow

30 CHAPTER 4. RELATED WORK

analysis they prune paths from the search space that do not meet one of three
requirements:

1. The path covers a changed statement

2. The change introduced by the changed statement in a path propagates to the
output

3. The changed statement introduces a change in the state.

The purpose of this selection is to do efficient regression testing
Marinescu and Cadar [23] proposed an approach for testing of program patches.

Similarly to directed incremental symbolic execution, their approach optimises the
analysis’ coverage of the changed code. In their approach, they use an existing
suite of test cases to seed the analysis of the patch. From the test cases, the input
that covers the path with the shortest branch distance of the patch is selected. It then
uses a combination of greedy exploration, informed path generation and definition
switching to flip branches in this original test case to get an input that covers the
desired statements in the patch.

These three approaches [21]–[23] are all directed at steering symbolic executors
towards changed parts of the code, rather than the re-use of previously computed
analysis results. This aspect makes the approaches complementary to the re-use
of summaries, as they optimise different aspects of incremental analysis. Note that
these works can leverage the algorithms proposed in this research to direct effort to
parts of the program that have semantic changes.

Yang et al. [18] implement a technique called memoized symbolic execution in
a tool called Memoise. In their approach, they maintain a trie that represents the
symbolic search space. In successive iterations of the analysis, they query the trie
discovered by previous iterations, this allows for several optimisations.

1. It allows them to refrain from checking the constraints on paths that have pre-
viously been covered.

2. It allows them to select the states for which the suffix can not include a changed
instruction, and pruning it

3. It allows them to perform a heuristic search

The approach relies on syntactic equivalence with the original program to be able to
re-use analysis results. The technique can be extended to filter for many program
changes that do not impact the semantics of the program, and thus would permit the
re-use of intermediate analysis results such as stored in the trie by Yang et al.

4.2. SYMBOLIC SUMMARY RE-USE 31

Yang et al. leverage this work to efficiently do incremental property checks in a
tool called iProperty [17]. In their approach, they first apply property differencing to
find property clauses that are not implied by previous analysis results. Consecutively
they leverage DiSE [21], to only symbolically explore the program behaviours that
have changed. Yang uses property differences to speed up symbolic execution; as
such, their approach is complementary to the re-use of symbolic summaries.

Lauterberg et al. [16] proposed an approach to state-space exploration analysis
techniques. In their approach, Lauterberg et al. store a representation of the state
space after the analysis of the program. During the analysis of newer versions of the
program, they query this representation to see whether some transitions and states
have been checked before. Using this information, they defer checking properties
over the state if the property has been proven to hold previously. Laterberg et al.
leverage the syntactic equivalence of unchanged program parts to speed up sym-
bolic execution. This technique can be extended with the approach in this thesis to
check for semantic equivalence rather than pure syntactic equivalence.

4.2 Symbolic summary re-use

In Chapter 1 we introduced symbolic summary re-use and the must-summary check-
ing problem. The latter is more formally described in Section 2.2.4. Symbolic sum-
mary checking and the possibility of re-use was introduced by Godefroid et al. [1]; in
their paper, they introduce a formalisation of the must-summary checking problem
and three algorithms to solve the problem.

In their first algorithm, Godefroid et al. [1] use a light-weight control flow analysis
and syntactic equivalence check to show that all paths between the entry and exit
point of a summary are unchanged.

Their second algorithm uses a more precise analysis, using Boogie [42], to de-
termine which basic blocks are potentially part of the summarised code.

These two techniques use syntactic equivalence checks to determine whether
code has changed. As mentioned before this is unnecessarily restrictive; this the-
sis extends upon this work by permitting summary re-use for code with syntactic
changes.

Furthermore, we observe that the approach used to determine which basic blocks
are summarised by a symbolic summary is both computationally expensive and
imprecise. Rather than approximating the path summarised, we record the basic
blocks covered by a summary, during the summary generation. By recording the
basic blocks covered by a symbolic summary, we remove the need for expensive
approximation.

32 CHAPTER 4. RELATED WORK

The final algorithm proposed by Godefroid et al. does not consider possible sim-
ilarities or equalities between two versions of a program. Instead, they aim to prove
the validity of a must-summary directly using Boogie [42]. This aspect makes this
third algorithm complementary to light-weight must-summary checking algorithms,
as this algorithm can be used whenever it is not possible to check the validity of a
must-summary using a more light-weight approach.

Chapter 5

Approach

In Chapter 4, we discussed the current state-of-the-art in incremental and differen-
tial analysis techniques. Our primary observation is that the program differencing
approaches which use the similarity between two versions of a program usually
leverage trivial syntactic equivalence checks to determine which parts of the code
have changed.

However, using purely syntactic equivalence is unnecessarily restrictive. In this
chapter, we propose an approach (see Section 5.2) which allows incremental anal-
ysis techniques to re-use more intermediate analysis results. We achieve this by
increasing the ability for the tools to show the equivalence of parts of the code that
have syntactic changes without any semantic effect.

Additionally, we introduce a novel approach which leverages the dataflow re-
lations in a program to determine whether a semantic change affects a symbolic
summary.

We designed these algorithms with the must-summary checking problem in mind,
but they are extensible to other incremental analysis techniques (see Section 4).

We propose a set of algorithms that can be used in successive phases. Algo-
rithms 1 to 3 each provides increasingly extensive analyses, increasing both the
computational cost and the algorithm’s ability to show equivalence.

5.1 Algorithm 1

The first algorithm we propose in this thesis constitutes a syntactic bytecode equiv-
alence check.

While such an algorithm does not provide a significant contribution, it does offer
a practical performance bonus. The observation driving the inclusion of this algo-
rithm is that there are frequent occurrences of fully equivalent bytecodes within the
benchmark sets to validate the approaches in this thesis. While the ensuing two

33

34 CHAPTER 5. APPROACH

algorithms also allow summary checking for unchanged contracts, this algorithm
provides a more efficient approach. This algorithm is more efficient since a string
comparison of the original, and new bytecodes are sufficient to proof validity of all
previous summaries, given that those two bytecodes are equivalent.

5.1.1 Algorithm

function CHECKSUMMARY(originalProgram, newProgram, summary)
return originalProgram.bytecode == newProgram.bytecode

end function

Figure 5.1: Pseudo code algorithm 1

Figure 5.1 demonstrates the pseudocode for this algorithm. The correctness of
this approach is intuitive, as naturally, it seems apparent that intermediate results
can be re-used when a program has not changed.

More formally, we can demonstrate the correctness of this approach using nega-
tion. Assume there is one summary valid for the original program ”Program A” and
not valid for the new program ”Program B”. Furthermore, assume that Program A
and Program B are syntactically equivalent.

These two programs can not be semantically equivalent since there is some
behaviour in Program A that is not in Program B. Semantic inequivalence of two
programs implies that there is a path through Program A, which is not present in
Program B. Thus; Program A and Program B cannot be syntactically equivalent.
This conclusion contradicts the syntactic equivalence assumption. Therefore, the
syntactic equivalence of two programs implies the validity of symbolic summaries
between the two versions.

5.1.2 Conclusion

We identify a range of cases in real-world scenarios where there are no changes
in analysis targets between two versions of a project. While more refined analysis
techniques can correctly validate these summaries, this algorithm is more efficient
when faced with exactly equivalent bytecodes. Here we provide a trivial algorithm
that allows for the efficient evaluation of the must-summary checking problem for
programs without changes.

5.2. ALGORITHM 2 35

5.2 Algorithm 2

The second algorithm we propose poses a novel approach to summary checking
that extends the current-state-of-the-art enabling the re-use of symbolic summaries
for code with syntactic changes. Program changes can be purely syntactic, meaning
that the changes only affect the appearance of the program. Such changes do not
affect the semantics of a program, which is crucial for program analysis and the
re-use of program analysis results. Summary checking algorithms can be sensitive
to these syntactic changes, and unable to re-use analysis results for code which
exhibits semantics-preserving changes. We introduce an approach that transforms
the program into a representation where many syntactic changes are normalised,
which makes it less sensitive to syntactic changes.

There are two core intuitions to this algorithm. Firstly, the language of a program
can be sensitive to program changes. For example, a stack-based language such
as EVM is sensitive to changes to the stack layout. Secondly, both the user (see
Section 3.1.3) and compiler (see Section 3.1.1 and Section 3.1.2) can introduce
purely syntactic changes that can efficiently be normalised.

This algorithm leverages a translation, and several normalisation passes to han-
dle a range of program changes. In particular, the design of the algorithm enables
summary checking agnostic of the following change types (see Section 3.2):

1. statement and parameter re-ordering

2. equivalent statements (arithmetic operation change)

3. effectless changes

The section below demonstrates how the algorithm handles these change types.

5.2.1 Algorithm

The pseudocode functions in Figure 5.2 and Figure 5.3 represent the core logic of
this algorithm. These figures introduce the normalisation and summary checking
logic, respectively. In this section, we will first discuss the normalisation procedure,
followed by the summary checking logic.

5.2.2 Normalisation

Above, we formulated the two primary insights that drive the design of this algorithm.
The normalisation procedure performs the transformations necessary for the desired
outcome.

36 CHAPTER 5. APPROACH

function NORMALISE(originalProgram, newProgram)
CONVERTTOSSA(originalProgram)
CONVERTTOSSA(newProgram)
NORMALIZEARITHMETICEXPRESSIONS(originalProgram)
NORMALIZEARITHMETICEXPRESSIONS(newProgram)
PROPAGATECONSTANTS(originalProgram)
PROPAGATECONSTANTS(newProgram)
REMOVEDEADCODE(originalProgram)
REMOVEDEADCODE(newProgram)
MAPVARIABLENAMES(originalProgram, newProgram)
ORDERSTATEMENTS(originalProgram, newProgram)

end function

Figure 5.2: Pseudocode for normalisation procedure

function CHECKSUMMARY(originalProgram, newProgram, summary)
NORMALISE(originalProgram, newProgram)
mapping = GETMAPPING(originalProgram, newProgram)
originalSubgraph = GETSUBGRAPH(originalProgram, summary.trace)
newSubgraph = GETMAPPEDSUBGRAPH(newProgram, originalSubgraph,mapping)
return originalSubgraph.equals(newSubgraph)

end function

Figure 5.3: Pseudocode algorithm 2

First, we translate the program into an SSA representation, which is less sensi-
tive to program changes. Second, we perform a range of normalisation transforma-
tions that aim to remove a range of purely syntactic changes.

SSA conversion

As mentioned above, the first transformation in the normalisation procedure com-
prises a conversion from the original language (EVM bytecode) to an SSA form rep-
resentation. SSA (static single assignment) [59] form is a property of intermediate
representations. This property ensures that each variable is defined and written to
only once. As a result, programs in SSA form encode explicit dataflow relations. The
application of SSA representations is a well-known practice in compiler engineer-
ing [59], which enables efficient transformation procedures like dead code removal
and constant propagation.

In this thesis, we consider the must-summary checking problem in the context
of EVM smart contracts. The language of those smart contracts, EVM bytecode, is

5.2. ALGORITHM 2 37

stack-based and therefore is sensitive to changes in the stack layout. In the transla-
tion to an SSA based representation, the stack-based language is transformed into
a register-based representation.

Using an SSA form, register-based internal representation (IR for short) provides
a benefit for summary checking, as it is agnostic of stack layout. This property
enables the instruction order normalisation discussed below. Furthermore, similar
to the application in compiler systems, we leverage the SSA form in the normalising
transformations which apply constant propagation and dead code removal.

Normalisation procedures

Following a transformation to an SSA form representation of the programs, we apply
a series of normalisation procedures. We implement these normalisation proce-
dures based on the kinds of changes discovered in Chapter 3.

Note that there is no restriction on the implemented normalisation passes. De-
pending on the target architecture or language, different normalisation procedures
can be beneficial. Even more so, we identify finding additional effective normalisa-
tion transformations for EVM as a topic for future research.

Figure 5.2 introduces the applied normalisation transformations, which we will
re-iterate:

• Constant propagation

• Dead code removal

• Arithmetic normalisation

• Variable name mapping

• Statement order normalisation

Constant propagation

Constant propagation is a compiler optimisation technique [59]. It leverages ab-
stract interpretation in the domain of constants to determine which variables in the
programs have a constant value. The compiler uses this information to replace uses
of constant variables with the constant value.

This procedure targets changes of the three different kinds discussed previously
as constant propagation normalises semantics preserving changes to constant ex-
pressions.

38 CHAPTER 5. APPROACH

Original Replacement

a: variable + b: constant b + a
a: variable * b: constant b * a
a: constant + b: constant *evaluate
a: constant * b: constant *evaluate
a: constant + (b: constant + c:any) (a + b) + c
a: constant * (b: constant * c:any) (a * b) * c
a: variable + (b: constant + c:any) b + (a + c)
a: variable * (b: constant * c:any) b * (a * c)
a: const mod b: const * evaluate
(a mod b) * (c mod b) (a * c) mod b

Table 5.1: Arithmetic rewrite rules

Dead code removal

The second normalisation approach, dead code removal, is another compiler optimi-
sation technique [59]. This technique leverages dataflow relations within a program
to find the statements that do not affect the result of the program. Since they do not
affect the result of the program, they can be removed without changing the mean-
ing of the program. For a compiler this means that it will not have to emit bytecode
for dead code, which allows for improved performance. For the summary check-
ing algorithm it has the effect that the changes in dead code are removed from the
program, allowing the algorithm to deal with effectless changes.

Arithmetic normalisation

Additionally, we leverage a simple normalisation of the arithmetic expressions in
each basic block, allowing the algorithm to handle semantics preserving changes
to arithmetic expressions. This normalisation contributes to the algorithms ability to
verify summaries in the presence of the change type equivalent statements.

This normalisation is similar to the expression simplification that occurs within
compilers. However, compilers aim to optimise code, whereas the purpose of nor-
malisation is to remove syntactic divergences. Instead of trying to reach a normal
form, the goal of this procedure is to normalise the syntactic changes commonly
introduced by developers and compilers. To normalise the arithmetic expressions,
we leverage a fixpoint algorithm that applies a set of rewrite rules until it reaches a
fixed point. The rewrite rules can be found in Table 5.1.

5.2. ALGORITHM 2 39

Variable name mapping

function MAPVARIABLENAMES(originalProgram, newProgram)
mapping = FINDMAPPING(originalProgram, newProgram)
worklist = mapping
while worklist do

for originalBasicBlock, newBasicBlock in worklist do
MAPVARIABLES(originalBasicBlock, newBasicBlock)

end for
newMapping = FINDMAPPING(originalProgram, newProgram)
worklist = newMapping \mapping
mapping = newMapping

end while
end function

Figure 5.4: Pseudo code for variable name mapping

The fourth transformation applies a mapping procedure that renames the vari-
ables that are recurrent between the two versions of the program. Unlike the other
procedures, this pass is the unique transformation that correlates between the orig-
inal program and the newer version.

Figure 5.4 shows a pseudocode representation of the implemented variable re-
naming approach. In essence, the algorithm iteratively performs two actions until it
reaches a fixed point. Firstly, the algorithm computes a partial mapping between the
basic blocks of the two versions of the program. Subsequently, the variable renam-
ing procedure finds a mapping between the variables in the mapped basic blocks
and renames the variables in the new version to match their mapped equivalents
in the original program. It is possible to re-use information between the iterations
of the algorithm; we refrain from discussing these for simplicity. The result of the
variable renaming then provides additional information to the basic block mapping
procedure.

Basic block mapping It is necessary to find a mapping between similar basic
blocks to find the basic blocks for which we can apply the variable name mapping.
This algorithm (see Figure 5.6) applies a set of heuristics to determine which blocks
are sufficiently related to apply the variable name mapping procedure.

The following is a list of the applied heuristics:

1. Two basic blocks do not have conflicting usage of previously mapped variables

2. Two basic blocks share uniquely mapped parents

3. Two basic blocks share uniquely mapped children

40 CHAPTER 5. APPROACH

function FINDMAPPING(originalProgram, newProgram)
worklist = originalProgram.basicBlocks
mapping = new Map()
while worklist do

originalBasicBlock = worklist.pop()
for newBasicBlock in newProgram.basicBlocks do

score = SCORE(originalBasicBlock, newBasicBlock)
if score > threshold then

mapping[originalBasicBlock] ∪ [newBasicBlock]

end if
end for

end while
REMOVENONUNIQUE(mapping)
return mapping

end function

Figure 5.5: Pseudo code to find a mapping between programs

4. Two basic blocks are both entry points to the contract

5. Two basic blocks have similar instructions

This procedure is run incrementally along the renaming process, as more vari-
able names get mapped more basic blocks will be uniquely mappable.

Variable mapping Above we describe the basic block mapping algorithm, the
other main component of the variable renaming normalisation procedure is the vari-
able name mapping procedure. Whereas the previous algorithm discovered a map-
ping on the scope of basic blocks, this algorithm will discover a mapping between the
variables in the basic blocks. The variables in the representation of the changed pro-
gram will be changed to reflect their mapped equivalent in the original basic blocks
using the mapping discovered using the process above.

The process can be described as follows. Initially, the algorithm builds a forest-
like graph representation of the instructions in both basic blocks, similar to the in-
struction order normalisation procedure. Such a representation neatly encodes the
dependencies between the instructions in the basic blocks. Then, the algorithm it-
erates over each layer of the forest graph correlating variables and building up a
mapping between the variables. Finally, the variable names in the entire control flow
graph are renamed based on the discovered mapping.

More variables in the control flow graph are mapped after the successful comple-
tion of the variable renaming pass. The renamed variables then provide improved

5.2. ALGORITHM 2 41

function SCORE(originalBasicBlock, newBasicBlock)
if MAPPEDVARIABLECOLLISION(originalBasicBlock, newBasicBlock) then

return 0
end if
score = 0
if SHAREUNIQUELYMAPPEDPARENT(originalBasicBlock, newBasicBlock)

then
score += 1

end if
if SHAREUNIQUELYMAPPEDCHILD(originalBasicBlock, newBasicBlock) then

score += 1

end if
if AREENTRYNODES(originalBasicBlock, newBasicBlock) then

score += 1

end if
if SIMILARINSTRUCTIONS(originalBasicBlock, newBasicBlock) then

score += 1

end ifreturn score

end function

Figure 5.6: Pseudo code for scoring potential basic block matches

input to the basic block mapping procedure, which can leverage the discovered vari-
able relations.

Instruction order normalisation

The last transformation normalises the order of statements in a basic block, which
enables handling of the change type statement and parameter re-ordering.

First, the procedure constructs a directed graph of the instructions in the basic
block. In the graph, the nodes represent the instructions, and the edges the depen-
dency relations between the instructions. We say that an instruction is dependent
on another when changing their order will change the semantics of the program.

For the construction of the graph, we leverage the fact that the internal repre-
sentation is in SSA form, which explicitly encodes dataflow relations between the
statements in the basic block. Each of the dataflow dependencies is added to the
graph, except those caused by loops in the program. We do not include these re-
lations, as they do not constrain the order of the statements within the basic block.
In addition to these dataflow relations, we add dependency edges to jump instruc-
tions when they are present, as changing their position in the basic block likely has

42 CHAPTER 5. APPROACH

a semantic effect.
Followed by the construction of this graph, we assign a layer value to each of the

nodes using the formula described in Figure 5.7.
Within each layer, the order of instructions may change since there are never

dependencies between the nodes of one layer. Computation of the layers requires
linear time since the graph does not have any cycles.

After having computed the layers, the algorithm sorts the statements within each
layer based on their operation name and arguments.

layer(statement) =

0, isPHINode(statement)
1, parents(statement) = ∅
max(map(layer, parents(statement))

Figure 5.7: Node layer formula

5.2.3 Correctness

To reason about the correctness of the algorithm we have to identify the high-level
structure of the technique. Algorithm 2 takes two versions of a program and a set
of symbolic summaries as its input. The algorithm then performs a normalising
transformation on both programs. Consecutively, the algorithm will leverage the
normalised program representations to check the validity of every summary.

This section first provides an intuitive explanation for the correctness of this ap-
proach, followed by a formalisation of the intuition.

Intuition

There are two intuitive properties that indicate the correctness of the algorithm:
(property 1) Normalising transformations do not introduce semantically divergent

behaviour. Therefore, any must-summary that would be valid for an original program
is also valid for the normalised version of that program, and vice versa.

(property 2) If there are two syntactically equivalent paths through the two pro-
grams, then a summary for either path must be valid for both.

The following is a concrete example to demonstrate these intuitions in the sum-
mary checking technique.

Suppose we have two programs, O (for original) and N (for new). Additionally,
let S be a valid symbolic summary for program O.

5.2. ALGORITHM 2 43

The algorithm will start by normalising the original and new programs; the nor-
malised programs will be called O′ and N ′ respectively. From property 1, we have
that S must be valid for O′ since it was valid for O.

The algorithm will now try to find if the path through O′, summarised by S, is also
present in N ′. If it cannot find such a path, then the algorithm will not be able to
determine the validity of the summary.

If a syntactically equal path through N ′ does exist, then the summary S must also
be valid for N ′ according to property 2.

Lastly, when S is a valid summary for N ′, then it must also be valid for N following
the property 1.

Theorems

This section formalises the two properties introduced above as Theorems 5.2.1 and
5.2.2.

Theorem 5.2.1 elaborates the first property mentioned above: ”The normalis-
ing transformations do not introduce semantically divergent behaviour. Therefore,
any must-summary that would be valid for an original program is also valid for the
normalised version of that program, and vice versa.”

Theorem 5.2.1. Let N(Prog) be a normalising transformation that takes a program
and produces a normalised version Progn of that program. Furthermore, assume
that N is semantically preserving and does not alter the control flow of the program.
Then, for any path t in Prog there exists a path t′ in Progn which is semantically
equivalent to t. Furthermore, any valid summary that summarises t or t′ is a valid
summary for either.

Proof. For each path t through Prog there must be a path t′ through Progn which
executed under the same precondition, as the normalisation procedure does not in-
troduce changes that alter the semantics or control flow of the program. Additionally,
the effect of t′ must be semantically equivalent to that of t since Prog and Progn are
semantically equivalent. Thus t and t′ must be semantically equivalent. Since t and
t′ are semantically equivalent, any summary valid for either is valid for both.

Theorem 5.2.2 elaborates the second property mentioned above: ”If there are
two syntactically equivalent paths through the two programs, then a summary for
either path must be valid for both.”

Theorem 5.2.2. Let Prog and Prog′ be two syntactically inequal programs. Further-
more, let there be two paths t ∈ Prog and t′ ∈ Prog′. Lastly, let S be a symbolic
summary. If the paths t and t′ are syntactically equivalent, and S is a valid summary
that summarises either, then S must be valid for both Prog and Prog′.

44 CHAPTER 5. APPROACH

Proof. The correctness follows from the fact that syntactically equivalent code must
also be semantically equivalent. Recall that Algorithm 1 leverages the same prop-
erty to show validity when the entire program is syntactically equivalent. Different
from the application of this property in Algorithm 1, here reasoning centres around
semantic equivalence of individual paths rather than entire programs.

Formally the correctness of the theorem can be shown through negation. As-
sume two programs Prog and Prog′ which respectively have a path t and t′. Let t
and t′ be syntactically equivalent and let t be summarised by a summary S. Assume
that S is not a valid summary for t′. Since S is not a valid summary for t′, t and t′ can
not be semantically equivalent. Since t and t′ can not be semantically equivalent,
they must have some syntactic divergence. This last statement leads to a contradic-
tion with the prior assumption that t and t′ are syntactically equivalent. Therefore,
the theorem must hold.

Conclusion

When combined, the beforementioned theorems demonstrate the correctness of
Algorithm 2.

The first phase of the algorithm, namely the normalisation transformation, satis-
fies the requirements of the normalisation procedure defined in Theorem 5.2.1. In
this phase, two versions of a program O and N are normalised into O′ and N ′.

The subsequent phase takes each summary S for O and finds the path t through
O′ summarised by S. When it finds that there is a path t′ through N ′ which is syn-
tactically equivalent to t, it will be able to determine that S is valid for N ′ (following
Theorem 5.2.2) and thus also for N (following Theorem 5.2.1).

5.2.4 Conclusion

In conclusion, we designed an algorithm that leverages a conversion into SSA form
and normalising procedures to gain a representation that is resistant to syntactic
changes. The algorithm includes specific normalisation passes that target changes
such as those discussed in the introduction of this section. However, the approach
is not limited to the formulated normalisation procedures. It is possible to extend
the normalisation passes used by the algorithm to cover more change categories.
Furthermore, use of an alternative intermediate representation is also possible. Sim-
ilar to the benefits of SSA, an alternative language might have additional beneficial
properties for summary validation.

5.3. ALGORITHM 3 45

5.3 Algorithm 3

In the previous section, we described Algorithm 2. This algorithm performs several
transformations on a program to make it less sensitive to syntactic changes. One
of the change categories that the algorithm can deal with is changes in program
statements that have no semantic effect (also called dead code). A similar program
change category is that of changes to partially dead code. A statement is partially
dead when there are executions of the program where the statement has an ob-
servable effect and executions where the statement does not. (see Figure 6.5 for an
example of a change to partially dead code). Algorithm 3 provides an improvement
on Algorithm 2 by allowing the analysis to ignore partially dead statements if they do
not affect a summary.

5.3.1 Algorithm

function CHECKSUMMARY(originalProgram, newProgram, summary)
NORMALISE(originalProgram, newProgram)
mapping = GETMAPPING(originalProgram, newProgram)
originalSubgraph = GETSUBGRAPH(originalProgram, summary.trace)
newSubgraph = GETMAPPEDSUBGRAPH(newProgram, originalSubgraph,mapping)
REMOVEDEADCODE(originalSubgraph)
REMOVEDEADCODE(newSubgraph)
return originalSubgraph.equals(newSubgraph)

end function

Figure 5.8: Pseudo code algorithm 3

Figure 5.8 demonstrates the pseudocode for this algorithm.
A comparison of the pseudocode for Algorithm 2 and Algorithm 3 demonstrates

significant overlap. To simplify the pseudocodes and explanations, we have dupli-
cated these statements between the two algorithms. However, an implementation
of the proposed algorithms might run the three proposed algorithms in succession
and re-use the normalisation results between Algorithm 2 and 3.

As described above, the intuition behind this algorithm is that we can ignore
program changes in statements that do not affect the result of a summary under
test.

To achieve this, we require a method of determining which statements affect the
result of a summary. A commonly used analysis technique used for this purpose is
program slicing. The program slicing technique starts with a slicing criterion, which
describes a set of program statements and variables. Consecutively, an algorithm

46 CHAPTER 5. APPROACH

will compute all statements that have a direct or indirect effect on the slicing crite-
rion. However, such an approach is unnecessarily general for our purpose, since
a program slice can still include partially dead program statements. In the eval-
uation (see Figure 6.5) we introduce an example of exactly such a change to a
partially dead program statement. Therefore we designed an alternative approach
that would achieve the desired benefits. The key insight behind this algorithm is that
dead code analysis achieves something very close to the desired effect. Namely, it
removes all statements that do not have a semantic effect. In this particular case,
we want to remove all statements that do not have a semantic effect within a specific
path. Therefore we take the subgraph of a program with just those basic blocks sum-
marised by the summary. Given this subgraph, we perform a dead code analysis,
which will remove any statements that do not affect the semantics of this subgraph
and summary.

5.3.2 Correctness

To demonstrate the correctness of this third algorithm, we leverage the theorems in-
troduced in Section 5.2.3. Additionally, we formulate Theorem 5.3.1, which reasons
about the additional analysis performed in Algorithm 3.

Theorem 5.3.1. Assume a path t through a program Prog. Furthermore, let M(t)

be a transformation, which removes all statements that do not affect the semantics
of t, and produces t′. Then a summary valid for t is valid for t′, and vice versa.

Proof. M preserves the semantics of t as it only removes statements without a
semantic effect. Thus, since t and t′ are semantically equivalent, a summary valid
for either must be valid for both paths.

Conclusion

When combined with the theorems discussed in the previous section; Theorem 5.2.1
and Theorem 5.2.2, Theorem 5.3.1 demonstrates the correctness of Algorithm 3.

Similar to Algorithm 2, the first phase of this algorithm applies a normalisation
transformation, which satisfies the requirements of the normalisation procedure de-
fined in Theorem 5.2.1. The result of this phase is the programs O′ and N ′, the
normalised versions of O and N respectively.

The subsequent phase takes each summary S for O and finds the path t through
O′ summarised by S. Furthermore, the algorithm determines a corresponding path
t′ through N ′ based on the discovered mapping between the basic blocks of the two
normalised programs (see Section 5.2.2). The algorithm will then remove any state-
ments in t and t′ that do not affect their semantics, producing td and t′d respectively.

5.3. ALGORITHM 3 47

When it finds that td and t′d are syntactically equivalent, it will be able to determine
that S is a valid summary for N using the following reasoning:

1. We know that S is a valid summary for Prog, summarising the path t.

2. S must be a valid summary for O′ summarising the path t′ (following Theorem
5.2.1).

3. Thus S also summarises td (following Theorem 5.3.1).

4. Since S summarises td, S must also summarise t′d (following Theorem 5.2.2).

5. As S is valid for t′d, it also summarises t′ in N ′ (following Theorem 5.3.1).

6. Finally, S must be a valid summary for N (following Theorem 5.2.1).

5.3.3 Conclusion

In conclusion, Algorithm 3 provides an extension to Algorithm 2, allowing for sum-
mary re-use in the presence of semantic changes that do not affect a particular
summary. It does so by leveraging previously computed analysis results, and a
compiler optimisation approach called dead code analysis.

48 CHAPTER 5. APPROACH

Chapter 6

Evaluation

This chapter provides an evaluation of the techniques proposed in Chapter 5. First,
we describe the implementation of the algorithms and symbolic summary genera-
tion plugin. Then we discuss three benchmarks, which evaluate the efficiency of
the approach for particular program changes, real-world projects, and changes in-
troduced by compiler version changes respectively. All experiments were executed
on an Ubuntu 19.10 machine with a Threadripper 1950X CPU and 32GB ram.

6.1 Implementation

In the previous chapter, we described three summary checking algorithms which
enable the re-use of symbolic summaries and incremental symbolic execution. We
provide an implementation of these algorithms in a tool called Eternity.

We identify three main areas in Eternity:

1. Core

2. Static analysis

3. Summary checking

Core To the core component belongs the logic related to data models and the
logical operations on it. For example, the control-flow graph (CFG) and data-flow
graph (DFG representations are implemented here. Examples of the logical oper-
ations include operations that allow for querying control- or data-flow and functions
which perform mutations on the control-flow graph.

Static Analysis Eternity leverages the Vandal static analysis framework [8] to
perform abstract interpretation on smart contracts. This framework allows for anal-
ysis in the constant domain and recovers the control- and data-flow of the smart
contract.

49

50 CHAPTER 6. EVALUATION

CFG & DFG Normalised IR
Normalisation

Abstract Interpretation

Summary
Check

Original
Program

Summary

CFG & DFG Normalised IR
NormalisationAbstract InterpretationOriginal

Program

Summary CheckingStatic Analysis

Figure 6.1: High level flow of Eternity

Summary Checking The summary checking component is the primary area of
Eternity which regards the implementation of the proposed algorithms. This compo-
nent leverages leverages the Core and Static Analysis components to perform the
normalisations, data-flow analysis and summary validation.

Figure 6.1 demonstrates the flow of Eternity and highlights which elements of the
process are handled Summary Checking and Static Analysis components . The
diagram does not explicitly indicate where the Core component is used, as it is used
uniformly throughout the summary checking process.

The remaining part of this section describes the extension to Mythril, enabling the
generation of summaries for this evaluation. Additionally, at the end of this section,
we reflect on the implementation and its limitations.

6.1.1 Mythril

This thesis introduces an approach to the must-summary checking problem that en-
ables the re-use of symbolic summaries for EVM bytecode. Mythril is a security
analysis tool that targets EVM bytecode, and can benefit from the proposed algo-
rithms to enable incremental analyses. In this chapter, we leverage the symbolic
execution engine in Mythril to generate summaries for the benchmarks in the next
sections.

Internally, Mythril applies symbolic execution (see Section 2.1) to explore the
different behaviours of a smart contract. The primary application of Mythril is bug

6.1. IMPLEMENTATION 51

finding (see Section 2.1.2). Here, Mythril enables the detection of bugs such as
integer overflows and re-entrancy vulnerabilities [6]. Mythril also has more generic
detectors that can identify code structures that allow an attacker to extract funds or
destroy a contract. In addition to bug finding, Mythril has also been used for the
property checking problem [60].

We implement two extensions to the Mythril analysis tool. First, we implement
support for plugins in Mythril, allowing for modification of the symbolic execution
process. This improves the extensibility of Mythril with regards to existing and future
work on symbolic execution. Second, using the plugin architecture in Mythril, we
implemented support for symbolic summarisation.

Plugin

To explain the architecture of the symbolic summary plugin, we first provide some
background on the EVM and how Mythril models the relevant components of the
EVM.

The EVM has two principal state components. First is the global state, which is
the persistent state of the blockchain. The global state includes the current state
of the persistent storage, as well as which accounts exist and how many Ether (the
native currency of the Ethereum blockchain) they have. Second is the machine state,
which only persists during the execution of a transaction on the Ethereum network.
The current program counter, stack and memory regions are examples of elements
in the machine state.

The summary generation plugin will generate symbolic summaries that describe
an entire transaction. As a result, the generated summaries do not need to define
mutations that occur on the machine state, because the machine state does not
persist after evaluation of a transaction.

In Figure 6.2, we provide a pseudocode representation of the algorithm and how
it alters the behaviour of the symbolic executor. We have excluded logic related
to the application of symbolic summaries for simplicity. Furthermore, the execution
of a symbolic transaction might result in zero or more symbolic summaries. For
simplicity the pseudocode will assume that the symbolic transaction results in a
single resultingState.

The process has three phases. First is the setup phase, where the algorithm
creates a state with plain symbolic variables and constrains them to be equal to the
values of the input globalState. It is easier to compute the effects of the ensuing
symbolic execution on the state because the new state is symbolic. In the sec-
ond phase, the function applies regular symbolic execution on the created symbolic
state. Finally, in the third phase, the result of the execution is recorded and reported

52 CHAPTER 6. EVALUATION

as a symbolic summary. After which, the function uses the summary to compute the
successor state to the input globalState.

function EXECUTESYMBOLICTRANSACTION(globalState, transaction)
symbolicState = generateSymbolicState() . Phase 1
constrainSymbolicState(symbolicState, globalState)
resultingState = execute(symbolicState, transaction) . Phase 2
summary = computeSummary(symbolicState, resultingState) . Phase 3
return summary (globalState)

end function

Figure 6.2: Summary recording

6.1.2 Discussion

Here we reflect on three aspects of the implementation, relevant to the evaluation of
the algorithms.

Gas modelling

The use of gas, or gas-metering, is a method to price the computation of a transac-
tion [2], which is a part of the EVM semantics that the algorithms intentionally do not
model. In this section, we describe the mechanics of gas, followed by a discussion
on its significance for summary re-use.

Background Putting a price to execution serves several purposes in the Ethereum
blockchain.

Firstly, it prevents potential abuse, where users send transactions that consume
many computational resources, inhibiting the throughput of the network for real traf-
fic. By associating a cost to the expended computational resources, it becomes
unprofitable to perform this type of attack.

Additionally, gas-metering puts a monetary incentive on the optimisation of smart
contracts. As a result, developers optimise their code and put only critical busi-
ness logic in their smart contracts, potentially saving on storage and improving the
throughput of the Ethereum network.

Lastly, a finite amount of gas (called the gasLimit) is available for each block,
which guarantees termination of the smart contracts.

Each transaction has an amount of available gas for the execution of a smart
contract. The evaluation of each instruction costs some gas which is deducted from
the available gas. Once the execution has finished the remaining gas is refunded to

6.1. IMPLEMENTATION 53

the transaction sender. The virtual machine will halt in an exceptional state should
the gas ever run out.

Gas and summary re-use As described above, gas is not accounted for by the
algorithms in Chapter 5.

Firstly, it is our observation that many smart contract analysis approaches do not
model exact gas cost [6], [8].

Secondly, the smart contract source language Solidity is agnostic of gas cost.
Therefore, it is not necessary to accurately model gas cost for functional properties
over the Solidity smart contracts.

Lastly, program analyses that currently consider potential vulnerabilities that re-
late to gas usage [61] also do not require accurate gas estimation. Instead, they
recognise constructs in the code that are vulnerable, regardless of the precise gas
cost that would be associated with specific instructions.

Thus, there would be little merit to the accurate modelling of gas for the two
primary purposes: bug finding and property checking. On the other hand, accurate
modelling of gas usage would significantly reduce the capability to re-use summaries
for changed code since many, otherwise semantics preserving, changes will affect
the gas usage of parts of the program.

Computational cost of SSA conversion

The first step of the proposed algorithms is a conversion from the stack-based in-
struction language EVM, to a single static assignment form intermediate language.
The translated program is more amenable for the later normalisations and transfor-
mations, as SSA form programs explicitly encode the data-flow within the program.
This translation is non-trivial, and as seen in Chapter 7, can require relatively many
computational resources. For this reason, one might consider improving our algo-
rithms by removing the dependency on this translation. Such a change could indeed
improve the performance of the algorithm when only the must-summary checking
problem is considered. However, the SSA translation of the original program is not a
worthless byproduct. Consider the symbolic executor Mythril. While available on its
own as an open-source project, Mythril is just one component in a commercial bug
finding application called MythX. In this platform, MythX engineers strive to leverage
and combine multiple analysis techniques to provide better and more accurate anal-
ysis techniques. In such an application, SSA conversion of the bytecode is likely
to occur, regardless of the possibility for symbolic summary re-use. In this sce-
nario, the summary checking algorithms could use the previously computed SSA
form representation, rather than compute the SSA form of a program, saving much
of the otherwise required checking time.

54 CHAPTER 6. EVALUATION

Abstract interpretation failure

The implementation of the proposed approaches occasionally encounters a program
that it is not able to recover control- and data-flow relations for within a reasonable
timeout.

For the control- and data-flow analysis, we leverage the implementation provided
by the authors of Vandal [8]. In their paper, the authors evaluated the performance
of Vandal and found that it would timeout for roughly 5 % of the smart contracts they
used to assess it.

For these cases, it is not possible to evaluate the efficiency of Algorithm 2 and 3
as proposed in Chapter B, as they are dependent on the successful completion of
this analysis step. Furthermore, possible issues and optimisations for the supportive
analysis techniques such as the static analysis performed by Vandal are out of scope
for this research. Therefore, we omitted the results from our experiments where
Vandal was unable to provide analysis results within a timeout of 30 seconds.

6.2 Benchmarks

To evaluate the proposed algorithms, we design three benchmarks that each aim
to cover a different aspect of must-summary checking performance. Specifically we
measure the speed of the algorithms, as well as the percentage of summaries that
they are able to re-validate (summary validation rate).

We identify the following three main factors for the evaluation of the proposed
algorithms:

1. Which change categories can the algorithm handle?

2. How does the algorithm perform in real-world scenario’s?

3. How does the algorithm perform when faced with compiler-introduced changes?

We formulate a benchmark to assess each of the topics mentioned above. Each
of these benchmarks comprises a set of contracts for which there are one or more
versions. For each unique contract, we will use the Mythril symbolic execution tool
to generate symbolic summaries. For each contract in the benchmark, we evaluate
which of the discovered summaries are valid between the present program versions.

6.3 Benchmark 1: Arbitrary changes

Chapter 3 describes a range of change types and possible instances thereof. In
addition to demonstrating the general performance of must-summary checking algo-

6.3. BENCHMARK 1: ARBITRARY CHANGES 55

rithms, it is beneficial to provide a detailed evaluation of the must-summary checking
algorithms, and the change types they support. This benchmark achieves that by
evaluating the summary checking results for a set of minimal smart contracts, that
exhibit an instance of a single change type. With this approach, the benchmark
takes a testing approach to the evaluation of must-summary checking algorithms.
Thus, this benchmark reflects on the first factor discussed in the introduction of this
section: ”Which change categories can the algorithm handle?”

Note that Algorithm 2 and Algorithm 3 enable re-use of summaries for syntac-
tically changed code. At the same time, Algorithm 1 cannot deal with any pro-
gram changes and is primarily beneficial for real-world projects where some con-
tracts remain unchanged between versions. Therefore, this benchmark primarily
provides an insight into the performance of the techniques applied in Algorithm 2
and Algorithm 3.

6.3.1 Formulation

The benchmark consists of a set of contracts that each have two versions, a base
version and a changed version. This changed version is precisely equal to the base
version, except for a single syntactic change. We demonstrate whether a sum-
mary checking algorithm covers the introduced type of program change by seeing
whether all generated summaries for the base version are confirmed to be valid for
the changed program.

The benchmark we constructed contains examples which introduce the following
kinds of program changes (see Chapter 3 for extended definitions):

• Arithmetic change

• Effectless change

• Statement order change

Arithmetic changes

The category of arithmetic changes involves syntactic changes to arithmetic state-
ments that are demonstrably equivalent using arithmetic normalisation.

Specifically we introduce a change as described in Fig. 6.3. A summary checking
algorithm might use the commutativity of multiplication to show equivalence of the
functions base and changed.

56 CHAPTER 6. EVALUATION

function BASE(x)
a := 2 * x
return a * 2

end function
function CHANGED(x)

a := 4 * x . The second multiplication with 2 has been moved here
return a

end function

Figure 6.3: Benchmark 1: Arithmetic change

Effectless change

To represent this category we add two cases that each represent one type of effect-
less change.

The first entry is described by Figure 6.4, which includes an effectless statement
that has no effect in any code path.

Figure 6.5 describes the second entry, a change to a statement that only affects
one code path. Specifically, we can say that if x ≤ 10 the behaviour of the program
remains unchanged, only the code path through the modified if statement is affected.
Therefore, a summary checking algorithm should only report one invalid summary
for this code.

function BASE(x)
a := 0
b := x
a = b*2
return a * 2

end function
function CHANGED(x)

a := 0
b := x
a = b*2
b = 0 . This statement was added
return a * 2

end function

Figure 6.4: Benchmark 1: Effectless change

6.3. BENCHMARK 1: ARBITRARY CHANGES 57

function BASE(x)
a := 0
b := x
if x > 10 then

b += a
end if
return b

end function
function CHANGED(x)

a := 10 . a now has a different constant value
b := x
if x > 10 then

b += a
end if
return b

end function

Figure 6.5: Benchmark 1: Partially dead code

Statement order change

Figures 6.6 contains an example of the change type tested in this part of the bench-
mark. Changes to the order of statements do not necessarily change the behaviour
of the code.

function BASE(x, y)
a := y
b := x
return a * b

end function
function BASE(x, y)

b := x
a := y . The definition of a and b have been switched
return a * b

end function

Figure 6.6: Benchmark 1: Statement order change

58 CHAPTER 6. EVALUATION

Change Type Valid Summaries Total Summaries Algorithm 1 Algorithm 2 Algorithm 3 Validation Rate

arithmetic change 5 5 0 5 - 100%
commutative change 5 5 0 5 - 100%
effectless change 5 5 0 5 - 100%
partially dead change 5 6 0 4 1 100%
statement order change 5 5 0 5 - 100%

Table 6.1: Results benchmark 1

6.3.2 Results

Table 6.1 shows the the results of the benchmark. Each entry in the table corre-
sponds to a pair of smart contracts in the benchmark test set, a base version and a
changed version.

The second column describes how many summaries are valid between the ver-
sions of the smart contract, whereas the third shows the total number of summaries
generated using Mythril. Note that while the smart contracts have just a single code
path on the Solidity level, they usually have more paths in their bytecode represen-
tations. Similar divergences in the number of code paths might exist for other source
languages and their compilation targets.

The ensuing three columns describe how many summaries each algorithm was
able to validate.

Since the algorithms provide increasing capabilities at the expense of increased
computational cost, we run the algorithms in succession passing on summaries that
an algorithm was not able to validate to the next. For example, each summary that
Algorithm 2 was unable to validate, will be passed on and rechecked by Algorithm 3.

Note that for many of the cases in this benchmark, Algorithm 2 can successfully
validate all summaries. For these cases, the “-” sign is used to denote when an
algorithm is not applied.

The final column highlights the percentage of valid summaries that the algorithm
was able to validate.

6.3.3 Discussion

We define the research question in Section 1.2.1 as follows: “How can we effi-
ciently check must-summaries for smart contracts that have semantically preserving
changes in the summarised code?”

This benchmark provides a partial answer concerning the ability of a summary
checking algorithm to validate summaries for changed code. Specifically, it shows
instances of the specific change types that the algorithms can effectively handle.

As is visible in the results, the algorithms cover all the changes included in this
initial benchmark. The benchmark demonstrates both that the algorithms have the

6.4. BENCHMARK 2: REAL-WORLD VERSION INCREMENTS 59

capability of validating summaries for syntactically changed code, and a range of
examples of the changes that the algorithm can effectively handle.

In our discussion on related work (see Chapter 4), we discuss a range of tech-
niques aimed at program differencing and incremental analysis techniques.

While other program differencing approaches, such as those based on sym-
bolic execution or verification condition generation, can determine the equivalence
of these examples. Our approach, to our knowledge, is the only one able to achieve
this by leveraging similarities between the original and new code of a program.

Furthermore, the results for the test case illustrated by Figure 6.5 confirm that
the data-flow analysis used by Algorithm 3 is indeed effective for changes to partially
dead code. Here, existing techniques [58] using program slicing would have proven
insufficient.

6.3.4 Limitations

As mentioned above, this benchmark resembles a testing-based approach to evalu-
ation, which introduces some limitations to the evaluation.

Firstly, the cases in the benchmark do not represent the full range of program
changes that a summary checking algorithm could encounter. Instead, these are
cases aimed at demonstrating the capabilities of the summary checking algorithms
for particular examples. Furthermore, the ensuing two benchmarks provide a com-
plimentary assessment of the algorithms by evaluating the test suite with test cases
representative of the changes introduced in real-world projects.

Secondly, the results of the benchmark are insufficient to conclude that the al-
gorithms can appropriately deal with all possible instances of the tested change
types. Nevertheless, they show that the applied normalisation strategies are indeed
capable of handling the included cases as expected. Furthermore, its results are
beneficial for the comparison of summary checking algorithms, as the results high-
light how our approach improves over alternative approaches. Additionally, future
publications might use an extended version of this benchmark to demonstrate their
contribution.

6.4 Benchmark 2: Real-world version increments

Where the previous benchmark demonstrates the capabilities of a summary check-
ing algorithm on minimal examples, this benchmark will show the efficiency of sum-
mary checking problems when faced with changes that occur in non-arbitrary pro-
grams.

60 CHAPTER 6. EVALUATION

This benchmark evaluates the performance of the algorithms on real-world projects.
Therefore, this algorithm allows evaluates the second factor discussed above: “How
does the algorithm perform in real-world scenarios?”

6.4.1 Formulation

For the construction of this benchmark, we selected two well maintained smart con-
tract projects: openzeppelin-solidity [62] and aragonOS [63]. There are three argu-
ments why we have selected these projects.

Firstly, these two projects have an available long history of releases, which is not
the case for most smart contract projects. Ethereum is relatively new compared to
other execution platforms. Additionally, development teams regularly use a waterfall
process to design a smart contract system. As a result, the published version his-
tory for most projects is sparse. AragonOS and openzeppelin-solidity are different
because they provide a host of smart contract implementations, which have seen
recurrent releases over time.

Secondly, both projects provide reference implementations of many of the stan-
dards in Ethereum [64]. Furthermore, they serve as libraries used by many other
smart contract systems. For this reason, the code in these projects will feature the
most common patterns used in smart contract development.

Finally, the selected projects are of non-trivial size. Some deployed smart con-
tract systems are relatively small when compared to applications on traditional plat-
forms. AragonOS and openzeppelin-solidity, however, feature various smart contract
implementations, with non-trivial business logic.

To construct the benchmark, we take advantage of the version control systems
used by aragonOS and openzeppelin-solidity to collect the history of the respec-
tive projects. Then, we compile the contracts in each available version using the
toolchain configuration as provided in its respective project. Over the versions of
the project, this toolchain configuration will also change, potentially introducing new
compiler versions. These steps construe a database which encompasses the ver-
sion history of compiled smart contracts from both aragonOS and openzeppelin-
solidity, including both changes introduced by developers, and changes introduced
by compilers.

6.4.2 Results

We first generated symbolic summaries for the bytecodes present in this benchmark,
which took, on average, 8.5 seconds per summary. The benchmark implementation
includes a timeout which limits the computation time per version-comparison to 16

6.4. BENCHMARK 2: REAL-WORLD VERSION INCREMENTS 61

minutes. In the subsequent execution of the benchmarks, the algorithms were able
to run without error or timeout for 89% of the smart contracts. Table 6.2 presents the
results of this benchmark.

The first column called “Target” provides an identification of the project for which a
row is describing the results. As described above, these two projects are aragonOS
and openzeppelin-solidity. The bottom row shows the accumulated results for both
projects.

Following the initial column, is the column called “Total” which describes the total
amount of summaries that comprise this benchmark.

The three subsequent columns describe the number of summaries that were
determined valid using each algorithm. It is important to note that the algorithms
run in order. More specifically, any summary which is determined valid will not be
checked using any of the ensuing algorithms.

The next column describes the summary re-validation rate, which denotes the
percentage of summaries that the algorithm could re-use between the different ver-
sions of the projects.

Lastly, the final two columns denote the average time taken to compute the equiv-
alence of each summary and the average percentage of basic blocks that the nor-
malisation algorithm was able to map using the basic block mapping algorithm (see
Section 5.2.2).

Target Total A
lg

or
ith

m
1

A
lg

or
ith

m
2

A
lg

or
ith

m
3

Re-use Percentage Average Time per Summary Average percentage of mapped basic blocks
openzeppelin-solidity 4,215 576 2,519 1 73% 0.29 s 85%
aragonOS 14,987 10,698 2,600 5 88% 0.55 s 81%
Total 19,202 11,274 5,119 6 85% 0.50 s 83%

Table 6.2: Results benchmark 2

6.4.3 Discussion

Recall the research question established in Chapter 1: “How can we efficiently check
must-summaries for smart contracts that have semantically preserving changes in
the summarised code?”

In this benchmark, we evaluate the performance of the summary checking tech-
niques on the versions released for real-world projects. The benchmark demon-
strates the efficacy of summary re-use for Ethereum smart contracts.

The results show that the algorithms are effective at validating symbolic sum-
maries. The algorithms were able to re-validate a significant portion of the symbolic
summaries (73% and 88% for the two projects, respectively), spending on average
0.50 seconds on validation where summary generation took 8.5 seconds. Therefore,

62 CHAPTER 6. EVALUATION

using summary validation, rather than re-generating the summaries for unchanged
code provides an order of magnitude speedup.

The results also show that the added capability of Algorithm 3 provides a limited
improvement over Algorithm 2; this is an indication that within the domain of smart
contracts, changes that only sometimes affect the execution are rare.

Finally, the results show an interesting difference between the summary re-validation
rate of aragonOS and openzeppelin-solidity. Specifically, the number of summaries
that Algorithm 1 determines valid is divergent. Recall that Algorithm 1 used a syn-
tactic equivalence check to compute the possible validity of symbolic summaries.
These results indicate that between the versions of aragonOS and openzeppelin-
solidity, the latter had comparatively less contracts that were unaffected by any syn-
tactic change.

6.4.4 Limitations

The following subsections will address the potential limitations of this benchmark.

Summary Scope

Symbolic executors may compute symbolic summaries at different scopes. For ex-
ample, the benchmarks in this thesis handle summaries at the scope of ethereum
transactions. Other summary checking implementations might operate at a different
scope, such as that of function summaries. Decreasing the scope of a summary
could decrease the difficulty of showing the correctness of that summary because it
will less likely cover some changed piece of code. More fine-grained symbolic sum-
maries might also increase the required computational resources, however. Evaluat-
ing the effect of symbolic summary scope on the must-summary checking problem,
and finding an optimal scope is a topic for future work.

Domain

The implementation of the proposed algorithms and the design of the normalisa-
tion procedures aims to allow the re-use of symbolic summaries for ethereum smart
contracts, which has a potential effect on the reproducibility of these results for al-
ternative platforms.

Firstly, ethereum smart contracts potentially follow other architectural patterns
when compared to alternative platforms.

For example, a best practice in smart contract development is to limit the busi-
ness logic implemented in a smart contract. An off-chain (i.e. a non-blockchain)

6.5. BENCHMARK 3: COMPILER VERSIONS 63

application should implement non-critical business logic, and only critical compo-
nents should be committed to the blockchain.

As a result, smart contracts might generally be less complex than alternative
programs. However, this benchmark comprises two relatively large and non-trivial
projects, aragonOS and openzeppelin-solidity.

Furthermore, differences in idiomatic programmatic structures are likely to be
present for any platform. Therefore, it might be necessary to design normalisation
procedures specific to other platforms to be able to replicate the demonstrated per-
formance.

Language Level

A factor that influences the performance of a summary checking algorithm is the
language level of the program for which the summaries are generated. In this thesis,
we consider summaries generated for EVM bytecode, whereas other approaches
might reason about languages such as Boogie [42] or a source-level language such
as C.

Different challenges arise depending on this level. Take changes introduced dur-
ing compilation (see Section 3.1.2 and Section 3.1.1), such changes are irrelevant
when the analysis operates on the source code level.

Furthermore, the language might have beneficial properties for summary check-
ing algorithms. For example, Algorithm 2 and Algorithm 3 (see Chapter 5) translate
the EVM representation to an SSA form intermediate representation as its proper-
ties are beneficial and enable subsequent normalisation. Similarly, changes intro-
duced in different languages potentially shape up to different challenges for sum-
mary checking and normalisation transformations.

Therefore, the demonstrated results do not necessarily reproduce for alternative
platforms. Despite that, the results do indicate that summary re-use using the pro-
posed algorithms would be beneficial for the analysis of EVM smart contracts. Fur-
thermore, the results indicate that the evaluation of a program normalisation based
summary checking approach is a promising avenue for future work (see Section
7.1).

6.5 Benchmark 3: Compiler Versions

The final benchmark evaluates the performance of summary checking algorithms
when faced with changes caused by the use of different compiler versions. Such
changes occur, for example, whenever a different or newer compiler is used for the
compilation of the smart contracts. Newer versions might include support for new

64 CHAPTER 6. EVALUATION

language features, improved optimisation passes, or changed code synthesis pro-
cedures. These differences in the compiler potentially affect the generated bytecode
for a software project.

This benchmark evaluates the must-summary checking algorithms when faced
with changes introduced by differences in the compiler used, which matches the
third question (see Section 6.2): “How does the algorithm perform when faced with
compiler-introduced changes?”

6.5.1 Formulation

For the construction of this benchmark, we sample a set of thirty smart contract ap-
plications and compile them using different versions of the Solidity compiler. There-
upon, Mythril is used to generate symbolic summaries for each of the generated
bytecodes. Subsequently, we evaluate the algorithms using the generated byte-
codes and summaries for each of the smart contracts.

For the compilation, we selected eighteen versions of the Solidity compiler; specif-
ically, the versions between 0.5.0 and 0.5.17. These capture all the changes that
occurred within a single non-breaking release cycle of the Solidity compiler. The
benchmark does not incorporate breaking releases of the Solidity since breaking
changes might introduce the need for changes to the source code. However, the
goal of this benchmark is the evaluation of the algorithms solely for the changes
introduced by compilers. Furthermore, the new features introduced in breaking re-
leases encourage rewrites and refactorings of source code. The effects of such
changes are not covered when the only changing parameter is the compiler ver-
sions. Benchmark 2, on the other hand, does cover such changes as it tracks the
changes of a real-world project where both the compiler and source can change.

The set of smart contracts have been selected randomly from the verified smart
contracts available on Etherscan [65], specifically the contracts originally compiled
with a 0.5.x version of the solidity compiler. The source of the smart contracts,
Etherscan, is a block explorer which provides a user interface to inspect the state
of the Ethereum blockchain. One of its features allows developers to upload their
source code and link it to the code on the blockchain. Etherscan will use the Solidity
compiler [29] to verify that compiling the provided source code will result in that
bytecode. The set of verified contracts provide a sample of deployed Ethereum
smart contract applications and their source code. Furthermore, the contracts in
this dataset are the recipients of 72% of all Ethereum transactions [66]. As a result,
the test suite samples from those contracts that get deployed, have available source
code and see active use.

6.5. BENCHMARK 3: COMPILER VERSIONS 65

6.5.2 Results

After having generated symbolic summaries for this benchmark, taking on average
25 seconds per summary, we run the algorithms on the benchmark. In the bench-
mark, we introduce a timeout, limiting summary checking time for each version incre-
ment to ten minutes per contract. We saw that the algorithms were able to terminate
without error or timeout for 76% of the smart contracts in the benchmark. The two
tables, Table 6.3 and Table 6.4 describe the results of this benchmark.

Table 6.3 shows the global results for each of the different algorithms. The first
column shows the total amount of summaries that were subject to the summary
checking algorithms. The following three columns demonstrate how many of the
summaries each algorithm was able to re-use. Similar to the previous benchmark
these algorithms run in succession, passing on any unvalidated summaries to the
next algorithm.

Table 6.4 provides a detailed overview of the summary re-use rate for the differ-
ent Solidity compiler version changes. The first column of the table describes the
change in compiler version, and the second column shows how many summaries
the algorithm was able to compute as valid.

Summaries Algorithm 1 Algorithm 2 Algorithm 3 Re-use Percentage Average Time per Summary
5099 0 4180 0 82% 4.29 s

Table 6.3: Results benchmark 3

6.5.3 Discussion

The results demonstrate that summary re-use would be advantageous when analysing
a version of a program that has changed due to changes in a compiler. Specifically,
the normalisation based technique proposed in Chapter 5 enables the re-use of
82% of summaries on average. Furthermore, the percentage of re-usable sum-
maries reaches up to 100% for some of the version changes of the compiler (see
Table 6.4). We see that the techniques can validate a summary in 4.24 seconds,
while Mythril spends 25 seconds on average to generate a summary. Summary val-
idation, therefore, provides a 4.6 times speedup over the regeneration of summaries
for the contracts in this benchmark.

Interestingly, Table 6.3 demonstrates that Algorithm 2 is the algorithm that en-
ables the re-use of all the summaries. The results follow from the nature of the
changes in this benchmark.

We see that changes in the compiler introduce syntactic changes in the bytecode,
which explains the lack of summaries validated using Algorithm 1. This algorithm

66 CHAPTER 6. EVALUATION

Solidity Compiler Version Change Re-use Rate
0.5.0→ 0.5.1 0%
0.5.1→ 0.5.2 0%
0.5.2→ 0.5.3 98%
0.5.3→ 0.5.4 93%
0.5.4→ 0.5.5 22%
0.5.5→ 0.5.6 74%
0.5.6→ 0.5.7 100%
0.5.7→ 0.5.8 96%
0.5.8→ 0.5.9 100%
0.5.9→ 0.5.10 0%
0.5.10→ 0.5.11 99%
0.5.11→ 0.5.12 100%
0.5.12→ 0.5.13 100%
0.5.13→ 0.5.14 99%
0.5.14→ 0.5.15 100%
0.5.15→ 0.5.16 100%
0.5.16→ 0.5.17 100%
0.5.17→ 0.5.18 31%

Table 6.4: Results benchmark 3: Summary re-use with respect to compiler version

applies a trivial syntactic check, which is not efficacious when a compiler change
has transpired.

Additionally, the results show that Algorithm 3 does not provide improved re-
sults over Algorithm 2. The additional analysis in Algorithm 3 allows for summary
re-use in the presence of semantic changes that do not affect all executions. How-
ever, the changes present in this benchmark are all purely syntactic, originating
from a change in the compiler used. As expected, the results in Table 6.3 show that
the added capability of Algorithm 3 does not add improvements for those syntactic
changes introduced by compilers.

6.5.4 Limitations

There are three principal limitations on the conclusions derived from these results.
Firstly, the benchmark considers just the Solidity compiler. Other compilers might

introduce different types of changes, which the current techniques would not ade-
quately handle. Notwithstanding, the results do show the efficiency of the proposed
algorithms for changes introduced by the Solidity compiler.

6.5. BENCHMARK 3: COMPILER VERSIONS 67

Secondly, the results show that there is a small selection of compiler versions be-
tween which the algorithm was not able to re-use a significant amount of summaries.
For these specific version increments, the compiler introduces change types that are
currently not covered by the normalisation strategies. As mentioned above, design-
ing effective normalising transformations that enable the handling of an increased
amount of change types is a topic for future work (see Section 7.1). Even though ex-
tensions to the covered change types are still possible, the current algorithm proves
effective for a majority of the tested Solidity compiler version increments.

Thirdly, the algorithms only successfully terminate for 76% of the smart contracts.
This success rate is remarkably lower than that of Benchmark 2. Nevertheless, the
algorithm shows promising results for a significant amount of the evaluated smart
contracts.

68 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

In this research, we have designed an approach which can determine the validity of
symbolic summaries between the versions of a program. Determining which sum-
maries are still valid for new versions of a program allows a symbolic executor to
re-use those summaries and thus incremental symbolic execution.

During our analysis of the related work, we found that program differencing algo-
rithms rarely considered syntactic program changes without a semantic effect.

We performed a study of the program changes and their origins for Ethereum
smart contracts. Based on this analysis, we propose a novel normalisation based
summary checking algorithm which permits the re-use of symbolic summaries in the
presence of syntactic changes.

Furthermore, we also introduce a new approach leveraging data-flow analysis to
permit re-use of symbolic summaries in the presence of semantic changes which
do not affect a particular summary. This method extends upon existing program
differencing techniques that use program slicing [58], which is more restrictive (see
5.3).

In our evaluation, we found that the techniques permit on average 85% of sym-
bolic summaries to be re-used between the versions of real-world projects (see Sec-
tion 6.4). Furthermore, on contracts with changes introduced by a compiler, we see
that on average, 82% of summaries were able to be re-used (see Section 6.5).
Lastly, we saw that the algorithm was able to normalise a range of program changes
effectively (see Section 6.3).

In the benchmarks, we saw that summary re-use would provide an order of mag-
nitude speed improvement over the re-generation of symbolic summaries, demon-
strating the efficacy of summary re-use and incremental symbolic execution.

In summary, the main contributions of this thesis are as follows:

• The formulation of a novel program normalisation based summary checking
algorithm, that enables incremental symbolic execution for smart contracts with
syntactic changes.

69

70 CHAPTER 7. CONCLUSION

• The formulation of a data-flow analysis based summary checking algorithm,
allowing summary re-use in the presence of semantic changes.

• A study of the origins and types of changes that occur between the versions of
smart contracts.

• The introduction of a novel data-flow based heuristic used for discovering map-
ping between basic blocks.

• An extension of the smart contract analysis tool Mythril with support for sym-
bolic summaries.

7.1 Future Work

This section provides an overview of our recommendations for future work, and is
structured as follows. First, we discuss the future work related to the currently ap-
plied normalisation techniques (see Section 5.1). Then, we discuss the different
research topics related to change categorisation and the extension of the normali-
sation to deal with more change categories. Finally, we discuss the need for com-
prehensive evaluation of incremental analysis techniques for different platforms.

7.1.1 Program Normalisation

In Section 5.2 we introduce several normalisation techniques. Here, we discuss
potential extensions to these normalisation procedures and techniques.

Arithmetic Normalisation

One of the normalising transformations applied in Algorithm 2 (see Section 5.2)
rewrites arithmetic expressions to make them more amenable for syntactic equiva-
lence checking. The arithmetic normalisation is implemented with an abstract rewrite
system, using some trivial rewrite rules. However, future work is needed to formulate
and evaluate an extensive approach for arithmetic normalisation within program nor-
malisation and incremental analysis. Moreover, the evaluation of existing arithmetic
normalisation and simplification approaches within this context would enable the
future design of arithmetic normalisation algorithms for use within program normali-
sation settings. Techniques, such as the arithmetic simplification using off-the-shelf
SMT solvers [24] could improve the percentage of summaries that can be computed
as valid.

7.1. FUTURE WORK 71

Mapping Between Basic Blocks

In Section 4.1.1, we discussed prior work related to reverse engineering, a research
area with much overlap with incremental program analysis, where the core challenge
is as follows: ”How can information be re-used between versions of a program?”.

While different requirements arise from the application area, be it formal meth-
ods or reverse engineering, some techniques apply to both areas. For example,
one of the steps in the normalisation phase of Algorithm 2 requires the discovery
of a map between the basic blocks of two versions of a program. We leverage a
heuristic-based approach, similar to that introduced Dullien et al. [44], that incre-
mentally discovers such a mapping.

Further evaluation of the application of methods in reverse engineering to incre-
mental software analysis is promising. Improvements to the accuracy, completeness
and efficiency of algorithms establishing a mapping between basic blocks apply to
the approach formulated in this thesis and are attractive topics for future work.

Language Design

Section 5.2 discusses the possible effects that an intermediate representation has
on program differencing. Exploring the benefits of different intermediate represen-
tations for program differencing might allow more efficient implementations of a nor-
malisation based summary checking algorithm.

In particular, we identify the E-PEG representation as proposed by Tate et al.
[67]. While initially designed as a representation for use within a compiler, this rep-
resentation provides several benefits for a summary checking algorithm. In their pa-
per Tate et al. already demonstrate the capabilities of the algorithm for equivalence
checking of compiler-generated machine code. An extension of their approach with
normalising transformations is promising for the must-summary checking problem.

7.1.2 Change Categories

The algorithms, as proposed in Chapter 5, currently apply a range of normalisation
strategies to enable the normalisation of a selection of change types. In addition to
improving the presently applied normalisation strategies, one might also extend the
normalisation strategies. Such an extension broadens the range of change types
that a normalisation based summary checking algorithm could deal with.

In the following subsections, we identify three topics for future work related to
extending the range of handled change types.

72 CHAPTER 7. CONCLUSION

Change Categorisation

An extensive categorisation of the changes that might occur between the versions
of a program is essential for the design of algorithms to deal with them. Chapter 3
describes an initial study and categorisation of the program changes that occur in
Solidity smart contracts. While existing approaches exist for the categorisation of
program changes [49], these approaches handle general categorisation. Future
work could explore the formulation of an automated approach for identifying program
change types which preserve the semantics of a program.

Such a categorisation provides two principal benefits in relation to the technique
formulated in this thesis.

Firstly, an extensive overview of different change types and the frequency at
which they occur enables the targeted design and selection of normalisation proce-
dures.

Secondly, such a study might inform the formulation of a benchmark providing
detailed information on the capabilities of a summary checking algorithm, similar
to the insight provided by Benchmark 1 (see Section 6.3). The changes in such a
benchmark would be representative of the changes introduced in real-world projects;
therefore, it would provide an indication as to the real-world performance of summary
checking algorithms.

A technique to compile such a dataset might use symbolic execution for the iden-
tification of purely syntactic program changes, similar to the techniques applied by
Person et al. and Backes [21], [41] (see Section 4.1.1).

Extended Change Categories

The normalisation strategies used in Algorithm 2 and Algorithm 3 cover some of
the changes identified in Chapter 3, while others remain unsupported. In future
work, one can explore the development of normalisation procedures to handle more
change types.

The following are some of the change types which future normalisation strategies
could handle.

First, the current normalisation manages changes that do not modify the control-
flow of a program (see Section 3.2). Future work can explore strategies which allow
summary re-use when control flow is changed (see Section 3.2.5).

Another extension on the normalisation techniques could follow from the further
identification of change types that preserve semantics.

Architectures other than the EVM, potentially pose different challenges to pro-
gram normalisation and summary checking (see Section 6.4.4). In future work, one
might explore alternative normalisations to manage these challenges.

7.1. FUTURE WORK 73

In addition to the development of normalisation procedures, an appealing topic
for future work is the formulation of an optimised selection of normalisation strate-
gies. An improved selection could improve computational performance and the
amount of re-usable summaries.

Changes Introduced by Compilers

In Section 3.1.2, we introduced the compiler as an actor that can introduce changes
between analysis runs of a program. Later, in the evaluation of the summary check-
ing algorithms (see Section 6.5), we showed summary checking performance in
the face of changes introduced by different compiler versions. However, some of
the compiler versions introduced yet unsupported changes. Similarly, compilers for
other languages can introduce unsupported change types. In future work, one could
design normalisation transformations targeting these particular change types.

Note, that it is possible to enable normalisations based on the observed compiler
version change. Therefore, it is possible to develop and optimise normalisations to
a specific version change without potentially impacting general performance.

7.1.3 Improved Evaluation

During the evaluation of the proposed techniques (see Chapter 6), and the compar-
ison with related work, we noted that different languages pose different challenges
for summary checking algorithms. Some techniques might be universally applicable,
while others are uniquely efficient for a single platform.

The formulation of an extensive benchmark suite that demonstrates the capabil-
ities and efficiency of summary checking and incremental analysis techniques for
different languages and platforms would be beneficial. Such a benchmark allows for
the comparison of the existing and future techniques designed and applied to dif-
ferent platforms. Furthermore, extensive evaluation of this kind improves the future
development of normalisation procedures and incremental analysis approaches.

74 CHAPTER 7. CONCLUSION

Bibliography

[1] P. Godefroid, S. K. Lahiri, and C. Rubio-González, “Statically validating must
summaries for incremental compositional dynamic test generation,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 6887 LNCS, pp. 112–128,
2011.

[2] “Ethereum: A secure decentralised generalized transaction ledger.” [Online].
Available: https://ethereum.github.io/yellowpaper/paper.pdf

[3] “The DAO Attacked: Code Issue Leads to $60 Million Ether
Theft - CoinDesk.” [Online]. Available: https://www.coindesk.com/
dao-attacked-code-issue-leads-60-million-ether-theft

[4] “Parity Bug Security Alert.” [Online]. Available: https://www.parity.io/
security-alert-2/

[5] “Batch overlflow vulnerability - CVE-2018-10299.” [Online]. Available: https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299

[6] “Mythril.” [Online]. Available: https://github.com/consensys/mythril

[7] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev, “Se-
curify: Practical Security Analysis of Smart Contracts,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18, 2018.

[8] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, and
B. Scholz, “Vandal: A scalable security analysis framework for smart contracts,”
CoRR, 2018.

[9] J. J. Honig, M. H. Everts, and M. Huisman, “Practical mutation testing for smart
contracts,” in Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer International Publishing, 2019, pp. 289–303.

75

https://ethereum.github.io/yellowpaper/paper.pdf
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
https://www.parity.io/security-alert-2/
https://www.parity.io/security-alert-2/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299
https://github.com/consensys/mythril

76 BIBLIOGRAPHY

[10] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of
symbolic execution techniques,” ACM Comput. Surv., vol. 51, no. 3, pp. 50:1–
50:39, 2018.

[11] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask),” in Proceedings of the 2010 IEEE Symposium on Security
and Privacy, ser. SP ’10. IEEE Computer Society, 2010, pp. 317–331.

[12] “Swc-101: Integer overflow and underflow.” [Online]. Available: https:
//swcregistry.io/docs/SWC-101

[13] “Swc-105: Unprotected ether withdrawal.” [Online]. Available: https:
//swcregistry.io/docs/SWC-105

[14] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints,” in
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, ser. POPL ’77. ACM, 1977, pp. 238–252.

[15] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler, “A few billion lines of code later: Using
static analysis to find bugs in the real world,” Commun. ACM, vol. 53, no. 2, pp.
66–75, 2010.

[16] S. Lauterburg, A. Sobeih, D. Marinov, and M. Viswanathan, “Incremental state-
space exploration for programs with dynamically allocated data,” p. 291, 2008.

[17] G. Yang, S. Khurshid, S. Person, and N. Rungta, “Property differencing for
incremental checking,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. ACM, 2014, pp. 1059–1070.

[18] G. Yang, S. Khurshid, and C. S. Păsăreanu, “Memoise: A tool for memoized
symbolic execution,” in Proceedings of the 2013 International Conference on
Software Engineering, ser. ICSE ’13. IEEE Press, 2013, pp. 1343–1346.

[19] P. Godefroid, “Compositional dynamic test generation,” ACM SIGPLAN Notices,
vol. 42, no. 1, p. 47, 2007.

[20] K. R. M. Leino and V. Wüstholz, “Fine-grained caching of verification results,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), vol. 9206, pp. 380–397,
2015.

https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-105

BIBLIOGRAPHY 77

[21] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed incremental sym-
bolic execution,” SIGPLAN Not., vol. 46, no. 6, pp. 504–515, 2011.

[22] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux, “eXpress: Guided Path Ex-
ploration for Efficient Regression Test Generation,” in Proceedings of the 2011
International Symposium on Software Testing and Analysis, ser. ISSTA ’11.
ACM, 2011, pp. 1–11.

[23] P. D. Marinescu and C. Cadar, “KATCH: High-Coverage Testing of Software
Patches,” in European Software Engineering Conference / ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE 2013),
2013, pp. 235–245.

[24] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and
J. Rehof, Eds. Springer Berlin Heidelberg, 2008, pp. 337–340.

[25] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random test-
ing,” SIGPLAN Not., vol. 40, no. 6, pp. 213–223, 2005.

[26] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks,” in Proceedings of the 7th Conference on
USENIX Security Symposium - Volume 7, ser. SSYM’98. USENIX Associa-
tion, 1998, pp. 5–5.

[27] P. B. Schneck, “A survey of compiler optimization techniques,” in Proceedings
of the ACM Annual Conference, ser. ACM ’73. ACM, 1973, pp. 106–113.

[28] P. Clauss and B. Meister, “Automatic memory layout transformations to optimize
spatial locality in parameterized loop nests,” SIGARCH Comput. Archit. News,
vol. 28, no. 1, pp. 11–19, 2000.

[29] “Solidity, the Contract-Oriented Programming Language.” [Online]. Available:
https://github.com/ethereum/solidity

[30] N. Savers, “EIP 1013: Hardfork Meta: Constantinople.” [Online]. Available:
https://eips.ethereum.org/EIPS/eip-1013

[31] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Trans. Softw.
Eng., vol. 30, no. 2, pp. 126–139, 2004.

[32] A. V. Aho and J. D. Ullman, Principles of Compiler Design (Addison-Wesley
Series in Computer Science and Information Processing). Addison-Wesley
Longman Publishing Co., Inc., 1977.

https://github.com/ethereum/solidity
https://eips.ethereum.org/EIPS/eip-1013

78 BIBLIOGRAPHY

[33] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “Exe: Auto-
matically generating inputs of death,” in Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security, ser. CCS ’06. ACM, 2006,
pp. 322–335.

[34] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs,” in Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementa-
tion, ser. OSDI’08. USENIX Association, 2008, pp. 209–224.

[35] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, “SYMDIFF: A
Language-Agnostic Semantic Diff Tool for Imperative Programs,” in Computer
Aided Verification. Springer Berlin Heidelberg, 2012, pp. 712–717.

[36] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Differential symbolic
execution,” in Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. SIGSOFT ’08/FSE-16. ACM,
2008, pp. 226–237.

[37] D. Jackson and D. Ladd, “Semantic diff: A tool for summarizing the effects
of modifications,” in Proc. Int’l Conf. Software Maintenance (ICSM). IEEE
Computer Society Press, 1994.

[38] B. Godlin and O. Strichman, “Regression verification,” in Proceedings of the
46th Annual Design Automation Conference, ser. DAC ’09. ACM, 2009, pp.
466–471.

[39] O. Sery, G. Fedyukovich, and N. Sharygina, “Incremental upgrade checking
by means of interpolation-based function summaries,” in Twelfth International
Conference on Formal Methods in Computer-Aided Design (FMCAD), 2012.

[40] G. Fedyukovich, O. Sery, and N. Sharygina, “evolcheck: Incremental upgrade
checker for c,” in Tools and Algorithms for the Construction and Analysis of
Systems. Springer Berlin Heidelberg, 2013, pp. 292–307.

[41] J. Backes, S. Person, N. Rungta, and O. Tkachuk, “Regression verification us-
ing impact summaries,” in Model Checking Software, E. Bartocci and C. R.
Ramakrishnan, Eds. Springer Berlin Heidelberg, 2013, pp. 99–116.

[42] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino, “Boogie:
A modular reusable verifier for object-oriented programs,” in Formal Methods
for Components and Objects, F. S. de Boer, M. M. Bonsangue, S. Graf, and
W.-P. de Roever, Eds. Springer Berlin Heidelberg, 2006, pp. 364–387.

BIBLIOGRAPHY 79

[43] “Bindiff.” [Online]. Available: https://www.zynamics.com/bindiff.html

[44] T. Dullien and R. Rolles, “Graph-based comparison of executable objects (en-
glish version),” SSTIC, vol. 5, no. 1, p. 3, 2005.

[45] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison of bi-
nary executables,” in Proceedings of the 2nd ACM SIGPLAN Program Protec-
tion and Reverse Engineering Workshop, 2013, pp. 1–10.

[46] J. Munkres, “Algorithms for the assignment and transportation problems,” Jour-
nal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp.
32–38, 1957.

[47] J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with inter-procedural
control flow,” in International Conference on Information Security and Cryptol-
ogy. Springer, 2012, pp. 92–109.

[48] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding semantic
differences in binary programs,” in International Conference on Information and
Communications Security. Springer, 2008, pp. 238–255.

[49] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling: Tree differ-
encing for fine-grained source code change extraction,” IEEE Transactions on
software engineering, vol. 33, no. 11, pp. 725–743, 2007.

[50] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution: Dynamic
similarity testing for program binaries and components,” in 23rd {USENIX} Se-
curity Symposium ({USENIX} Security 14), 2014, pp. 303–317.

[51] B. S. Baker, U. Manber, and R. Muth, “Compressing differences of executable
code,” in ACMSIGPLAN Workshop on Compiler Support for System Software
(WCSS). Citeseer, 1999, pp. 1–10.

[52] “Diaphora.” [Online]. Available: https://github.com/joxeankoret/diaphora

[53] “Turbodiff.” [Online]. Available: https://www.coresecurity.com/
corelabs-research/open-source-tools/turbodiff

[54] T. Szabó, S. Erdweg, and M. Voelter, “IncA: A DSL for the Definition of Incre-
mental Program Analyses,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2016. ACM, 2016,
pp. 320–331.

https://www.zynamics.com/bindiff.html
https://github.com/joxeankoret/diaphora
https://www.coresecurity.com/corelabs-research/open-source-tools/turbodiff
https://www.coresecurity.com/corelabs-research/open-source-tools/turbodiff

80 BIBLIOGRAPHY

[55] O. Sery, G. Fedyukovich, and N. Sharygina, “Interpolation-based function sum-
maries in bounded model checking,” in Proceedings of the 7th International
Haifa Verification Conference on Hardware and Software: Verification and Test-
ing. Springer-Verlag, 2012, pp. 160–175.

[56] G. Fedyukovich, O. Sery, and N. Sharygina, “Flexible SAT-based framework
for incremental bounded upgrade checking,” International Journal on Software
Tools for Technology Transfer, vol. 19, no. 5, pp. 517–534, 2017.

[57] B.-C. Rothenberg, D. Dietsch, and M. Heizmann, “Incremental verification using
trace abstraction,” in Static Analysis, A. Podelski, Ed. Springer International
Publishing, 2018, pp. 364–382.

[58] D. Binkley, “Using semantic differencing to reduce the cost of regression test-
ing,” in Proceedings of the Conference on Software Maintenance, vol. 92. Cite-
seer, 1992, pp. 41–50.

[59] K. D. Cooper and L. Torczon, “Chapter 9 - data-flow analysis,” in Engineering
a Compiler (Second Edition), second edition ed., K. D. Cooper and L. Torczon,
Eds. Morgan Kaufmann, 2012, pp. 475 – 538.

[60] K. Weiss and J. Schütte, “Annotary: A concolic execution system for develop-
ing secure smart contracts,” in Computer Security – ESORICS 2019, K. Sako,
S. Schneider, and P. Y. A. Ryan, Eds. Springer International Publishing, 2019,
pp. 747–766.

[61] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis, “Mad-
max: surviving out-of-gas conditions in ethereum smart contracts,” PACMPL,
vol. 2, pp. 116:1–116:27, 2018.

[62] “openzeppelin-solidity.” [Online]. Available: https://github.com/OpenZeppelin/
openzeppelin-solidity

[63] “aragonOS.” [Online]. Available: https://hack.aragon.org/docs/aragonos-intro.
html

[64] “Ethereum Improvement Proposals.” [Online]. Available: https://eips.ethereum.
org/

[65] “Etherscan.” [Online]. Available: https://etherscan.io/

[66] G. A. Oliva, A. E. Hassan, and Z. M. J. Jiang, “An exploratory study of smart
contracts in the ethereum blockchain platform,” Empirical Software Engineer-
ing, pp. 1–41, 2020.

https://github.com/OpenZeppelin/openzeppelin-solidity
https://github.com/OpenZeppelin/openzeppelin-solidity
https://hack.aragon.org/docs/aragonos-intro.html
https://hack.aragon.org/docs/aragonos-intro.html
https://eips.ethereum.org/
https://eips.ethereum.org/
https://etherscan.io/

BIBLIOGRAPHY 81

[67] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation: A new ap-
proach to optimization,” SIGPLAN Not., vol. 44, no. 1, pp. 264–276, 2009.

	Introduction
	Symbolic Summary Re-use
	Method
	Research Question

	Background
	 Symbolic Execution
	 Key Concepts
	 Guiding Example

	 Symbolic Summaries
	Introduction
	Formalisation
	Guiding Example
	Must-summary checking problem

	Program Changes
	 Change Origins
	 Compiler Passes
	 Compiler Versions
	Developer introduced changes

	 Change categories
	 No change to dependent basic blocks
	 Syntactic change to basic block
	 Semantically equivalent change to basic blocks
	 Effectless semantic changes
	 Basic block structure changes
	Semantic changes

	Related Work
	 Incremental and Differential Analysis Techniques
	Differential program analysis
	 Incremental program analysis

	 Symbolic summary re-use

	Approach
	Algorithm 1
	Algorithm
	Conclusion

	Algorithm 2
	Algorithm
	 Normalisation
	Correctness
	Conclusion

	Algorithm 3
	Algorithm
	Correctness
	Conclusion

	Evaluation
	Implementation
	Mythril
	Discussion

	Benchmarks
	 Benchmark 1: Arbitrary changes
	Formulation
	Results
	Discussion
	Limitations

	 Benchmark 2: Real-world version increments
	Formulation
	Results
	Discussion
	Limitations

	 Benchmark 3: Compiler Versions
	Formulation
	Results
	Discussion
	Limitations

	Conclusion
	Future Work
	Program Normalisation
	Change Categories
	Improved Evaluation

	References

