
 

1 
 

Strategic capacity planning with workforce 
flexibility to deal with seasonal and 

variable demand 
 

A case study in the agriculture sector at Company A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Harmen Denekamp, 01-07-2020, University of Twente 

  

 

  



 

2 
 

Author 

Harmen Denekamp 

Master Industrial Engineering and Management 

Production and Logistics Management 

Supervisors 

Faculty of Behavioural Management and Social Sciences 

Dep. Industrial Engineering and Business Information Systems (IEBIS) 

Dr. E. Topan 

Dr. Ir. J.M.J. Schutten 

 

Company A Group, part of Croda International 

M. Mulder, Supply Chain Manager 

R. Boots, Planning Manager 

 

Date: 10-05-2020 

  



 

3 
 

Preface 

This master thesis was my first glance in the agriculture industry. Company A has been a great 

window in the world of seeds. Their pioneering and commitment to the craft of seed 

enhancements is inspiring. Despite being part of a large multinational since 2015, the 

atmosphere remains closer to a family-owned business. I want to thank Michiel and Rowan for 

their time and expertise, you were always ready to answer questions and provide new 

perspectives, which helped me tremendously. And of course the entire supply chain department 

for the fun we have had together. Not only the various dinners and trips, but especially the 

conversations and jokes.  

I also want to thank Engin and Marco for their guidance. Engin, I appreciate your kindness and 

the discussions we have had, it helped me to think more critically. Marco, I appreciate your 

honest and specific feedback, it especially helped me to improve the structure of my thesis.  

I hope this thesis will be enjoyable to read, if it is your cup of tea, and contribute to the theory 

on capacity planning and the daily reality at Company A.  



 

4 
 

Management summary 

Company A is the market leader in vegetable seed treatments. Their position is built on 

innovation, industry-leading quality, and high on-time delivery. In the past five years, growth has 

come to an halt, as the market became saturated. The current goal of Company A is to retain their 

market share by providing high on-time delivery and quality, while reducing costs. Company A is 

struggling with the demand uncertainty and strong seasonality inherent in the vegetable market. 

They experience a reduced on-time delivery of 91% during peak season, down from 95% during 

low season. Within Company A, this problem is often attributed to a lack of capacity. However, 

they are currently unable to form a coherent strategic and tactical capacity plan to address this 

issue. The main research question of this research is as follows. 

How can machine- and operator capacity planning deal with seasonal and 

uncertain demand to improve on-time delivery in a cost-efficient way? 

We find that the underlying problem is three-fold. First, the current demand forecasts are 

unreliable; they assume demand is equal to last year without considering uncertainty. Second, 

the calculation of capacity demand from product demand is inaccurate, as the number of orders 

is not linearly related to processing time, thus product demand forecasts cannot be used for 

capacity planning. Third, capacity decisions are considered individually, resulting in a misaligned 

capacity plan. For example, when making machine procurement decisions, Company A currently 

does not consider that machine capacity can be increased through additional shifts. Strategic 

capacity decisions (i.e. machine investment) are related to tactical decisions (i.e. workforce 

planning).  

We designed a capacity planning model that addresses these three problems. Our model first 

calculates historical capacity demand from historical sales orders to address the problem of 

inaccurate capacity demand calculations. By including all relevant details, some of which are 

unique to Company A, the capacity demand is calculated accurately.  

Second, our model uses the historical capacity demand from the calculation part to generate 

future capacity demand forecasts. The forecasting part is based on the Error-Trend-Seasonality 

model by Hyndman et al. (2008). We use one-tailed upper prediction intervals to reflect demand 

uncertainty and seasonal components to reflect demand seasonality. The prediction interval 

covers the actual capacity demand with a certain coverage probability. We define several capacity 

demand scenarios that each correspond to a coverage probability. We add two methods to the 

forecasting part to include judgmental forecasts: adjustment factors and future sales orders. An 

adjustment factor is the expected percentage change from history, as caused by external factors 

such as legislation or technological innovation. The second method uses future sales orders, when 

there is no historical data, such as for new products. The prediction intervals, seasonal 

components, and judgmental methods address the problem of unreliable demand forecasts by 

modeling demand variability. 

Third and finally, our model determines the optimal capacity plan that deals with uncertain and 

seasonal demand in a cost-efficient way. The optimization part is primarily based on models by 

Bihlmaier et al. (2009) and Fleischmann et al. (2006). We use three capacity demand scenarios 

as input (i.e. coverage probabilities of 50%, 70%, and 90%) to generate three alternative capacity 

strategies. The strategic and tactical capacity decisions are jointly optimized to find the optimal 

capacity strategy for each scenario. Each capacity strategy is evaluated by fixing the strategic 

decisions and optimizing the tactical decisions for a certain scenario. 
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The results of our model answer the research question. We find that the current capacity levels 

are sufficient to fulfill capacity demand with a coverage probability of at least 90%. Moreover, we 

find that Company A can realize the same coverage probability at a lower cost, by reducing 

machine investment and increasing the use of workforce flexibility. Specifically, by using double 

shifts in all months except August and September, the number of C0414 dryers can be reduced to 

12 and the number of P100 coating pans can be reduced to 6. Company A needs only one coating 

pan of all other types. Compared to the current situation, the total savings over ten years is 

€874,000 for the most conservative strategy (90%) and €1257,000 for the 70% capacity strategy. 

We find that the judgmental forecasts do not change the optimal capacity strategies, because the 

impact of judgmental forecasts on capacity demand is too small.  

To deal with demand seasonality, Company A must have sufficient machines to deal with peak 

demand using double shifts, while reducing workforce flexibility in case of low demand to save 

costs. The coverage probability of prediction intervals for capacity demand forecasts is an 

intuitive and practical way to deal with demand uncertainty. Using this method, Company A can 

decide on the trade-off between coverage probability and costs. We recommend to use either a 

70% or 90% coverage probability.  

From a practical perspective, the results are especially useful for the replacement of dryers, which 

Company A aims to finish in 2023. Company A can purchase 12 C0414 dryers, instead of 14, while 

maintaining a high coverage probability. The largest savings can be realized when replacing 

coating pans. We recommend Company A to reevaluate the capacity plan every year, for which 

we designed a simple to use dashboard to update data, run the model, and view the results. 

Company A can use this tool for tactical workforce planning as well, by fixing strategic decisions 

to the current situation. We recommend two future research directions for Company A. First, a 

more advanced scheduling method and tool can improve on-time delivery and enable Company 

A to increase the utilization of machines and operators. Second, demand smoothing can further 

reduce the need for machine capacity. For example, the peak capacity for C0414 dryers is in 

March. If this can be smoothed towards April, where demand is much lower, Company A can 

satisfy demand with fewer machines. 

Our research and model make three contributions to theory. First, the use of a detailed calculation 

model for capacity demand has shown to be useful when a piecewise linear transformation from 

product- to capacity demand is not accurate. Furthermore, this method can be used to calculate 

the capacity demand for new machines with different characteristics, based on historical sales 

orders. Second, adjustment factors and future sales orders are practical methods to include 

external factors not reflected in historical data. These methods enable Company A to determine 

the number of machines for upcoming new products and assess the impact of, for example, 

legislation. While the impact of these judgmental forecasts is currently low, there have been 

various cases in the past where these methods would have been very useful. Third and finally, the 

prediction interval for capacity demand is an intuitive and practical method to consider demand 

uncertainty in strategic capacity planning. In our literature review we found no research that uses 

prediction intervals for strategic capacity planning. Instead of the common stochastic models that 

use scenarios with probabilities to generate one optimal capacity strategy, prediction intervals 

allow us to generate alternative capacity strategies for various coverage probabilities, using a 

simpler linear model. This enables companies to make a trade-off between increasing the 

certainty of having sufficient capacity and the associated costs.  
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1 INTRODUCTION 

The purpose of this research is to advise Company A on the capacity planning of machines and 

operators. We perform a quantitative study to create a strategic capacity plan that deals with 

demand seasonality and uncertainty that Company A faces. Our approach involves the forecasting 

of capacity demand and optimization of the capacity plan. The client is the operations 

management team. They want to use the results of our research for upcoming machine 

investment- and workforce decisions. We execute the research in collaboration with the supply 

chain manager and planning manager.  

Section 1.1 introduces the company Company A. Section 1.2 introduces the problem and Section 

1.3 identifies the core problem. Section 1.4 describes the research approach and research 

questions. Section 1.5 discusses the research scope. 

1.1 ABOUT COMPANY A 
Company A is a seed treatment company, leading in high-end vegetable seed treatments and 

expanding in field crop seed treatments. Company A has about 450 employees working all over 

the world, of which about 200 are based in the headquarters in Enkhuizen. Revenue was 27.7 

million euros in 2018. In Enkhuizen, the main activities are various treatments of vegetable seeds 

on a make-to-order basis. Customers deliver their proprietary seeds, which are enhanced by 

Company A and then sent back to the customers. The most important treatments are priming, 

coating and upgrading. Figure 1-1 shows one step of each treatment. These treatments use 

patented technologies and materials, developed by Company A’s R&D for specific seed types.  

    

Figure 1-1. The main treatment processes: priming, coating and upgrading. (Incotec, 2020) 

Around 1970, Company A’s inventions were revolutionary for the agricultural sector: crop yield 

and quality increased, while the amount of chemicals required decreased. Company A’s yearly 

growth was about 20% for years on end. To meet the demand, high capital investments were 

made and the number of employees was increasing rapidly. However, customers and competition 

started to catch up, developing their own seed treatments. As the market became saturated, 

Company A’s growth halted around 2014. These days Company A remains market leader in the 

vegetable crop market, retaining about 50% market share of the outsourced seed treatments. 

Company A is in the premium segment; their treatments are still considered as industry standard. 

This is where Croda stepped in, a chemical company that acquired Company A in 2015. Croda 

helped Company A to reshape their business strategy, which can be summarized as follows. 

1. Develop the most sustainable and environmentally-friendly treatments 

2. Expand in the field crop market by developing treatments for field crops 

3. Retain market share and improve margins in the vegetable crop market through 

operational excellence and cost reduction 

Croda and Company A have already taken several steps to realize the strategy. Regarding 

operational excellence and cost reduction, the most important step was to integrate Company A 
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in Croda SAP (i.e. Croda’s ERP software) in 2018. This enabled Company A to automate many 

business processes, resulting in significant cost savings and improved operational performance. 

Our research is another step in this strategic direction; it contributes to operational excellence 

and cost reduction with the purpose of retaining market share and improving margins.  

1.2 PROBLEM INTRODUCTION 
The strategic goal behind this research is to retain market share and improve margins in the 

vegetable crop market. To retain market share, new customers need to be attracted and current 

customers need to be retained. The key question here is: what attracts and keeps customers? In 

the seed treatment market, the answer is, in order of importance: quality consistency, delivery 

performance, and price.  

Company A defines quality as the percentage of seeds that grow according to plan. Quality 

consistency depends on the process design by R&D and process control by operators. Process 

control has been an issue a few times, with costly consequences. However, this issue is out of 

scope for this research, due to the biology expertise required to understand the issues. 

Delivery performance is crucial, because most customers have a time window of a few weeks 

between harvesting and sowing season. Customers deliver their harvested seeds and need them 

back before the sowing season. When Company A is unable to enhance the seeds in this time 

window, customers lose an entire season, which is extremely costly. To reduce risks, Company 

A’s largest customers use both in-house treatment and outsourcing. Smaller customers do not 

have the scale for in-house production. Therefore, delivery performance is even more critical for 

these customers. If delivery performance is too low, customers will move to competitors or 

increase in-house production. 

Company A measures delivery performance using the ‘on-time delivery’ metric, which they define 

as the fraction of orders that are delivered no later than the requested delivery date. The 

requested delivery date is provided by customers upon ordering. Company A aims for an on-time 

delivery of 95% in each month. Additionally, we define the ‘almost-on-time delivery’ metric as 

the fraction of orders that are delivered at most a week later than the requested delivery date. 

When orders are a few days late, it is usually agreed upon with the customer. For example, 

delaying an order such that it can be shipped with another order for the same customer. The 

almost-on-time delivery shows more serious delivery issues, because these are more than a week 

late. 

Figure 1-2 shows the on-time delivery and almost-on-time delivery for 2018 and 2019. We 

observe a performance difference in low season (April through October) and peak season 

(November through March). On average, the on-time delivery is 96% in low season and 91% in 

peak season. June 2019 is an outlier for on-time delivery, but not for almost-on-time delivery. 

This outlier is most likely caused by deviating from the requested delivery date in agreement with 

customers, which is not a serious problem. Company A aims for an on-time delivery of 95%, thus 

is not meeting their target in peak season.  

Action problem 

On-time delivery was 91% on average during peak season in 2018 and 2019, 

which is well below the target on-time delivery of 95%.  
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Figure 1-2. On-time delivery and almost-on-time delivery as % of all orders 

Price is less important to customers than quality consistence and delivery performance. The 

added value of Company A’s seed treatments far outweighs the costs. To illustrate, the value of 

one kilogram of tomato seeds is five times more than one kilogram of gold. However, prices are 

under pressure due to an increasing market maturity and competition. For that reason, cost 

reduction is the main way to improve margins for Company A. The action problem must be 

addressed in a cost-efficient way, otherwise Company A could simply double capacity levels to 

resolve most delivery issues. 

1.3 PROBLEM IDENTIFICATION 
To address the action problem effectively, the core problem must be identified. A problem cluster 

is useful to identify the core problem. Figure 1-3 visualizes the problem cluster. An important 

property is that the core problem must be influenceable (Heerkens & Van Winden, 2012). The 

causes from the problem cluster that are not the core problem are listed below.  

1. Quality issues during production is one of the causes of late delivery. Recall from Section 

1.2 that we consider quality issues as out of scope, due to the biology expertise required 

to address these issues. 

2. The planning department schedules orders within two workdays of receiving them. They 

use a backward scheduling method, working back from the requested delivery date. Once 

an order is scheduled, which is the reservation of a timeslot for the required resources, 

this is not changed. The reason is that it is a manual and time consuming task to change 

the schedule in the current ERP system, which is SAP. Company A is currently not 

interested in changing the scheduling process and systems, because of the costs and risks 

associated with such a change. 

3. Rejecting orders to improve delivery performance is not a feasible alternative. Company 

A forms partnerships with customers for many years. Rejecting an order hurts the 

partnership, as many customers rely on Company A’s treatments. 

4. Demand peaks can cause capacity shortages for resources that have low usage during 

other times of the year. This demand seasonality is part of agriculture; crops grow in 

specific time windows (i.e. seasons). Recall from Section 1.2 that orders must be 

processed within these time windows, thus demand smoothing through delaying is 

restricted. Furthermore, it is against Company A’s business strategy to delay orders; they 

distinguish themselves by being a flexible partner. 
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5. Demand peaks cannot be addressed with inventory. Customers deliver their proprietary 

seeds after harvesting them and retrieve them right after treatment, it is not possible for 

Company A to have seeds in inventory. 

6. From a capacity point of view, flexibility is limited because operators require at least two 

and up to 24 months of training. They learn sensitive information during this training. 

That is why each operator is a permanent employee. 

 

Figure 1-3. Problem cluster that identifies the core problem for the action problem. 

Now the causes that are out of influence have been described, we identify the core problem. We 

find that the core problem is three-fold: unreliable product demand forecasts, inaccurate capacity 

demand calculations, and misaligned capacity decisions. We define capacity demand as the 

processing time required of each machine- and operator-type to satisfy product demand. In the 

remainder of this thesis, we refer to treatments as products, simply because Company A does so 

as well.  

Company A’s product demand forecasts are unreliable. Company A has sold 161 different 

products since 2015, most of which are sold infrequently (<5 times per year). For each product, 

Company A assumes demand for each month is equal to the same month previous year. This is 

the seasonal naïve method. This method does not provide accurate forecasts, because of demand 

uncertainty. Demand depends on harvest quantity and timing. These are different each year due 

to, for example, weather conditions. Another source of uncertainty is competition, which causes 

the customer portfolio to change each year. As an alternative to seasonal naïve forecasts, the top 

five customers provide judgmental forecasts that consider external factors (e.g. weather). 

However, the accuracy of these judgmental forecasts remains inconsistent.  

Even if demand is known, the calculation of capacity demand is inaccurate. Currently, Company 

A measures capacity demand as the number of orders. Each order consists of a product type (i.e. 
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treatment) and seed quantity to be treated. The required resources and processing times vary 

depending on the product type and seed quantity. Therefore, the capacity demand for 100 orders 

for coating machine can be completely different than for dryer machines, depending on the 

product type and seed quantity of each order. The quantity of each product type depends on the 

season. For example, in winter the demand can be 80% chicory and 20% lettuce, while in summer 

50% tomato and 50% lettuce. That is why some machines are only used during a few months of 

the year.  

To clarify, the capacity demand cannot be calculated from the number of orders for each product 

type using a linear formula. The reason is that the seed quantity of each individual order 

determines the machine type and processing time. The total seed quantity cannot be used either, 

because orders for the same treatment must never be combined. The seeds within each order are 

unique, even for individual customers. 

Due to unreliable product demand forecasts and inaccurate capacity demand calculations, 

Company A has been unable to create an aligned capacity plan. Instead, capacity decisions are 

currently taken individually. For one department, the demand planner decides on hiring 

decisions, while the production manager decides this for another department. For each machine 

investment, a new project team is set up to decide on capacity levels. The consequence is that 

Company A is unable to provide the capacity to fulfill demand in a cost-efficient way.  

We summarize the three core problems using the following definition of the core problem. 

Core problem 

Unreliable product demand forecasts and inaccurate capacity demand 

calculations leave Company A unable to create a capacity plan that deals with 

seasonal and uncertain demand in a cost-efficient way. 

1.4 RESEARCH QUESTIONS AND APPROACH 

1.4.1 Main research question 

The action problem is below-target delivery performance  during peak season. The core problems 

underlying the action problem are unreliable product demand forecasts, inaccurate capacity 

demand calculations, and a misaligned capacity plan. Based on the action problem and core 

problems, we define the main research question as follows.  

Main research question 
How can machine- and operator capacity planning deal with seasonal and 

uncertain demand to improve on-time delivery in a cost-efficient way? 

1.4.2 Research approach 

The research approach describes how we answer the research question. The core problems are 

the starting point, from which the research is structured in three steps, as visualized in Figure 

1-4. First, the capacity demand must be calculated more accurately. We calculate historical 

capacity demand in this first step to be able to forecast future capacity demand in the second step. 

Second, instead of product demand, the capacity demand must be forecasted. Forecasting product 

demand is not viable, because there is not enough demand data to forecast the demand and seed 

quantity distribution for each product. This seed quantity is needed to calculate capacity demand. 

Finally, the optimal capacity plan can be determined, based on the capacity demand forecasts and 

other relevant parameters. 
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Figure 1-4. The research steps that follow from the core problems. 

We structure our research in the following parts: problem identification; current situation; 

literature review; model design; model results; conclusion and recommendations. We combine 

this structure with the three research steps to form the research approach. Figure 1-5 visualizes 

this combination. Note that calculating historical capacity demand is not discussed in the 

literature review, because it requires a calculation model tailored to Company A’s production 

processes.  

 

Figure 1-5. The research approach. 

1.4.3 Research sub-questions 

For each part of the research approach, we list the research sub-questions below. To answer these 

questions, interviews have been held with people at many different positions in Company A, 

including upper management and operating personnel. In addition, we analyze data from SAP and 

Excel to support these interviews and answers the questions. 

Chapter 2 describes the current situation, where we answer to the following questions.   

2.1 How are Company A’s production processes currently organized? 

2.2 How does Company A currently determine capacity demand? 

2.3 How does Company A currently make capacity decisions? 

Chapter 3 is a literature review, where we answer the following questions. 

3.1 What are the top performing forecasting models from literature that use historical data 

to model uncertainty and seasonality?  

3.2 What forecasting methods are available in literature that use human judgment? 

3.3 How should forecasting performance be measured, according to literature?  

3.4 What frameworks are available in literature to classify capacity planning models? 
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3.5 What capacity planning models are available in literature for strategic capacity planning 

with workforce flexibility? 

Chapter 4 concerns the model design, which consists of three parts, as described in the research 

approach.  

4.1 How can the capacity demand be calculated more accurately?  

4.2 How can the forecasting models from literature be applied to Company A?  

4.3 How can the capacity planning models from literature be applied to Company A?  

Chapter 5 discusses the model results, where we answer the main research question through the 

following four questions. 

5.1 How accurate can our model calculate capacity demand? 

5.2 How accurate can our model forecast capacity demand? 

5.3 How does the capacity strategy from our model compare to the current capacity plan? 

5.4 What is the sensitivity of the model regarding parameters subject to uncertainty or 

change? 

Finally, we conclude our research with recommendations on how Company A can integrate the 

model in their organization. 

6.1 How can Company A integrate the designed model for future decision making? 

1.5 SCOPE 
Before diving into the analysis of the current situation, we first define the scope of this research. 

To fulfill demand, Company A depends on the capacity of machines and operators. The operator 

capacity impacts the machine capacity. Therefore, to create a useful capacity plan, both machines 

and operators must be included in this research. Chapter 2 discusses this in detail. 

Machine investments have a high financial impact and machines operate up to 20 years, which is 

strategic capacity planning. Workforce planning at Company A concerns a one-year horizon and 

has a medium financial impact, which is tactical capacity planning. (Slack & Lewis, 2011) 

Therefore, this research concerns strategic- and tactical capacity planning. Operational planning 

activities, such as scheduling, are not part of this research.  

Within Company A Enkhuizen, there are nine production processes, each with their own 

machines and operators. In terms of strategic importance and cost, the most important processes 

are coating, priming, and drying. To be able to complete this research in six months, the scope 

only includes coating and drying. Priming is not in scope, because there is currently insufficient 

data to accurately calculate capacity requirements for priming machines. Company A ensures that 

priming capacity is never a bottleneck, because margins for priming treatments are very high. 

The other production processes are not a capacity bottleneck, thus can be left out of scope without 

any issues.  
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2 CURRENT SITUATION 

In Chapter 1, we identified the three core problems. In this chapter, we aim to understand how 

the current organization and processes contribute to the core problems. Section 2.1 describes the 

production processes. Section 2.2 describes how Company A currently determines capacity 

demand, which is the basis for capacity decisions. Section 2.3 describes the processes for machine 

and operator capacity decisions.  

2.1 PRODUCTION PROCESSES 
In this section we answer the following research question. 

(Q2.1) How are Company A’s production processes currently organized? 

Capacity planning is the alignment of capacity and demand (Slack et al., 2013). Therefore, the 

available and required capacity must be known for each machine and operator. The following 

questions summarize the information required of each production process to plan capacity. 

1. What resources are required in the process? 

2. How to measure the capacity of the resources? 

3. How can the capacity be increased or decreased? 

4. What parameters must be considered for the capacity decisions?  

Before answering these questions in detail, it is useful to have an understanding of the production 

processes at Company A. 

2.1.1 Overview of production processes 

Company A offers a variety of products, each product is a combination of seed treatments. Figure 

2-1 gives an overview of the processes and possible production paths at Company A Enkhuizen. 
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Figure 2-1. Production process for seed treatment in Enkhuizen. 

To help understand the process, each processing step is described briefly. 

1. When the seeds are received, they first undergo quality inspection. The seeds must meet 

some quality standard pre-treatment, such that Company A can guarantee a post-

treatment quality level.  

2. Sometimes the seeds must undergo mechanical upgrading, which is the separation of 

good and bad seeds based on weight. 

3. Liquid separation is another way of separating good and bad seeds, using liquids with 

different densities.  

4. Drying is necessary to preserve seed quality, by drying at the right temperature, humidity, 

and duration. The duration varies from half an hour up to ten hours. Drying can be used 

at multiple stages in the production. 

5. Priming is the process of putting the seeds in a liquid for a specific time and temperature. 

The required time ranges from a few hours to multiple weeks, depending on the seed and 

treatment type. It is a proprietary technology to improve seed quality. Seeds will 
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germinate faster and more evenly. Furthermore, the percentage of seeds that germinate 

is increased. The plants from primed seeds are also less susceptible to stressful 

conditions, such as extreme weather.  

6. X-ray upgrading is another way to separate good and bad seeds, by analyzing the embryo 

within the seed, using x-ray machines. The process takes one to up to four hours. 

7. Coating is the process of adding powder and liquid to create a layer around the seeds. This 

is done by hand in a coating pan by a trained coating operator, who carefully controls the 

dryness and thickness of the seed coating. The process takes around 2.5 hours per batch. 

The advantages of a coated seed are a more efficient sowing process using mechanical 

planting equipment and the addition of crop protection products, nutrients and 

biologicals. This greatly reduces the amount of chemicals required for the farmers and 

protects seeds from harmful effects. A specific coating color can be added, which is 

branding for customers and improves visibility for farmers. 

8. Sieving is a quality check, by sieving out coated seeds that are not the right size. Sieving is 

also done during coating. The sieving process is an extra quality check.  

9. Packing and shipping is always the last step. The seeds are packed in either bags or tins 

of the requested size. Some customers pick up their own seeds, while others are shipped 

by Company A. 

Of all processes, only coating and drying are in scope. As explained in Chapter 1, these processes 

are of strategic importance and represent the majority of the production costs. Priming is also of 

strategic importance, but we decide to leave it out of scope, due to the complexity and 

confidentiality of the process. In the remainder of Section 2.1 we describe coating and drying in 

detail.  

2.1.2 Resources for coating and drying 
The coating and drying process require several machines and trained operators. For both coating 

and drying operators, there are flex-operators who are available to jump in when demand 

exceeds available capacity. Table 2-1 lists the number of regular operators and flex-operators 

currently available. 

The coating process is done by a coating operator with a coating pan. Coating operators require 

at least three months training for the basic product type. Additional training is provided 

depending on product demand. Drying operators are tasked with loading, configuring, and 

unloading the dryers. Drying operators require only two months training, no crop specific 

training is required.  

Process Type Number available 
Coating Regular 11 
Coating Flex 3 
Drying Regular 1 
Drying Flex 2 

Table 2-1. Number of regular and flex operators for coating and drying processes. 

The coating pans vary in type and size. There are three types of coating processes: regular, rotary, 

and film. A treatment uses either regular or rotary coating. The optional film coat is applied after 

regular or rotary coating. The size of the pan determines the minimum and maximum seed 

quantity that can be processed. All available coating pans are listed in Table 2-2, with the number 

currently available. Each pan requires auxiliary equipment, such as a sieving system. Auxiliary 

equipment is considered part of the coating pans for the remainder of this thesis. 

Technical name Type Diameter (cm) Number available 
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PE-LR300 Rotary 300 1 
PE-HS500 Rotary 500 2 
PE-P055 Regular 55 3 
PE-P060 Regular 60 2 
PE-P090 Regular 90 1 
PE-P100 Regular 100 10 
PE-P160 Regular 160 2 
PF-P070 Film 70 1 
PF-P100 Film 100 1 
PF-P120 Film 120 1 
PF-RD500 Film; Rotary 500 1 

Table 2-2. List of available coating machines. 

There are different types of dryers, which are used at different stages in the process, for different 

treatments, or for different batch sizes. Table 2-3 lists the currently available dryers. 

  



 

19 
 

Resource name Number available 
PD-100 1 
PD-101 1 
PD-102 1 
PD-151-2 2 
PD-C0103 3 
PD-C0414 11 
PD-CS1-2 2 
PD-S1-4 4 

Table 2-3. List of available dryers. 

2.1.3 Capacity decisions for coating and drying 

Capacity decisions concern either an increase, decrease, or replacement of capacity. We 

distinguish between strategic decisions and tactical decisions. The strategic capacity decisions for 

Company A are solely machine procurement. Machine tooling is only applicable to priming, which 

we decided to leave out of scope (Section 2.1.1). Other issues, such as transportation and product 

allocation, are not relevant in this single site case. The tactical capacity decisions concern 

workforce planning. 

Machine procurement is the simplest way to increase or replace machine capacity. Decreasing 

machine capacity through selling is not interesting for Company A. The machines are difficult to 

sell due to their specificity. Machine capacity can also be increased through workforce flexibility 

measures, such as double shifts and overtime. That way, machines can be used for more hours 

per week, resulting in a capacity increase. More specifically, double shifts effectively double 

machine capacity, because the machines are used for 15 hours a day instead of 7.5. The impact of 

overtime depends on how much operators work overtime. 

To increase operator capacity, coating operators can be hired or the number of flex-operators can 

be expanded. Note that flex-operators can work at any department within Company A, such as 

R&D or Supply Chain. The only requirement is that they have the proper training, and are able to 

temporarily leave their regular work when necessary. Operator capacity can also be increased 

through overtime: working on Saturdays. Double shifts do not affect operator capacity. Operator 

capacity can be decreased through either retirement, dismissal, moving to another department, 

or leaving to work for a competitor.  

The most recent strategic capacity decisions have been to set up an organic production line in 

Enkhuizen, for which a new dryer and coating pan has been procured. Other recent projects have 

been in new markets, such as Malaysia for rice seeds. The most important upcoming decision for 

Enkhuizen is the replacement of several dryers, which must be replaced before 2023. On a longer 

term is the replacement of coating pans, which must be replaced before 2026. These replacement 
decisions are the focus of this thesis, while considering the necessary capacity changes to meet 

capacity demand and improve delivery performance.  

Recall from Section 1.3 the core problem of misaligned capacity planning. This section discussed 

the relevant capacity decisions that can be aligned, and how workforce planning (i.e. operators) 

and strategic capacity planning (i.e. machines) impact each other. Section 2.2 discusses how 

Company A currently makes these decisions. 
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2.2 CAPACITY DEMAND 
In this section, we answer the following research question. 

(Q2.2) How does Company A currently determine capacity demand? 

Company A uses four methods to determine capacity demand. Two of the methods focus on 

historical data: scheduled processing times and number of orders. The other two methods focus 

on human judgment to make assumptions about the future: long-term and short-term judgmental 

forecasts.  

2.2.1 Scheduled processing times 

The first method Company A uses to determine capacity demand is based on scheduled 

processing times. Currently, Company A uses this method to make machine procurement 

decisions. We discuss the capacity decisions in Section 2.4. 

Recall from Section 1.3 that the planning department schedules an order within two workdays of 

receiving an order, using a backward scheduling method. The schedule is a set of timeslots for 

each machine and operator that is required to fulfill the order. The schedules are stored in SAP. 

Company A obtains the historical capacity demand by summing the scheduled timeslot for each 

machine and operator. For example, Figure 2-2 shows the historical capacity demand for coating 

operators in 2018 and 2019, based on scheduled processing times. 

 

Figure 2-2. Historical capacity demand for coating pan P100. 

This method has two issues. First, future demand can deviate strongly from historical demand, 

especially on the long-term. Figure 2-2 shows significant differences between two succeeding 

years. Looking 5 to 10 years in the future, these differences are likely to be larger. This method 

does not offer ways to model expected demand changes, such as market developments or new 

products, for example. Second, scheduled processing times are available since 2018, the year that 

SAP was integrated. Therefore, this method provides little insight in long-term developments, 

such as trends or historical variance. 

2.2.2 Number of orders 

The second method Company A uses to determine capacity demand is based on the number of 

orders. Currently, Company A uses this method for workforce planning.  
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The number of orders are an alternative for scheduled processing times. They are the basis for 

workforce planning, together with short-term judgmental forecasts. The number of orders are 

obtained by counting the number of sales orders per month for all product types. These sales 

orders are stored in SAP. Figure 2-3 shows the number of orders for coating. To make capacity 

decisions, the capacity demand is calculated using a simple formula. The capacity is on average 3 

orders a day per operator. This is multiplied by the number of operators and number of days in a 

month. For example, there are 694 orders and 30 days in April 2019. Then Company A needs the 

following number of operators.  

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 =  
694 𝑜𝑟𝑑𝑒𝑟𝑠

30 𝑑𝑎𝑦𝑠 ∗  3 𝑜𝑟𝑑𝑒𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
= 7.7 

So the capacity demand for operators is 7.7 in April 2019. When Company A has more operators 

available than required, they can be assigned to training or other activities.  

 

Figure 2-3. Number of orders for coating. 

The advantage of this method over scheduled processing times is that it is directly related to 

product demand. If an additional 50 orders are expected, the planning can be adjusted 

accordingly. However, the main issue with this method is that the number of orders is a poor 

indicator of  capacity demand, because the processing times and required machines vary for 

different products. The number of orders only provides a good indication when machines are 

used for every order with a fixed processing time. That is usually not the case. Figure 2-4 shows 

the capacity demand in hours, obtained from the scheduled processing time method, and the 

number of coating orders. It is immediately clear that the number of orders is not accurate for 

this machine type. 
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Figure 2-4. Capacity demand in hours and number of orders for pan P160. 

2.2.3 Judgmental forecasts 

Company A uses two types of judgmental forecasts: short-term and long-term. Short-term 

forecasts are provided by customers for the next 6 months each quarter. Only the top 5 customers 

in terms of revenue provide these forecasts for the most frequently bought products. The 

forecasts are expressed in total seed quantity. Currently, Company A is not able to use these 

forecasts for capacity planning, because the total seed quantity does not accurately translate to 

capacity demand. To illustrate: 1,000 seeds in one order requires less processing time and 

different machines than 100 seeds in 10 orders. 

Long-term judgmental forecasts are provided by marketing and account managers. When setting 

up a new production line, marketing and account managers are asked to provide a sales 

prognosis. There is currently no formalized method on the contents of a sales prognosis and how 

it is translated to capacity demand. As discussed in Chapter 1, such capacity decisions are based 

on gut-feeling and experience, often resulting in overcapacity. 

2.3 CURRENT CAPACITY PLANNING  
In this section we answer the following research question. 

(Q2.3) How does Company A currently make capacity decisions?  

2.3.1 Strategic capacity planning  

Strategic capacity planning at Company A concerns machine procurement. The lifespan of 

machines is between 10 and 15 years, therefore the planning horizon is 10 years. Figure 2-5 

shows the process for machine procurement decisions. For each machine procurement decisions, 

a project team is created, with a senior project manager overseeing the project. The decision 

makers are the operations manager, maintenance manager, and marketing.  

The machine procurement process is initiated by a need. This need can be identified by marketing 

or maintenance. For example, the introduction of a production line for organic seeds was initiated 

by marketing, because it was market driven. The procurement of new dryers was initiated by 

maintenance, because the current dryers cause quality issues and maintenance costs are 
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increasing. When initiated by marketing, they provide a long-term judgmental forecast. When 

initiated by maintenance, the supply chain provides historical capacity demand based on 

scheduled processing times.  

The next step is for the project manager to select a number of alternatives, by asking the various 

machine builders for a quote. One of the alternatives is selected by means of a discussion with 

production teams, maintenance and the project team. The selection is based on various criteria, 

of which technical specifications and price are most important. The project team then estimates 

the number of machines required, based on the judgmental forecasts or historical capacity 

demand. Finally, the machines are purchased, manufactured, and installed. 

 

Figure 2-5. Strategic capacity planning process. 

Recall from Section 1.3 that the core problems are inaccurate capacity demand calculations, 

unreliable demand forecasts, and misaligned capacity decisions. We observe these problems in 

the process for machine procurement decisions.  

First the problem of misaligned capacity decisions. A new project team is created for each 

machine procurement decision, without overarching coordination, resulting in misaligned 

capacity decisions. For example, Company A does not consider the ways in which workforce 

flexibility can be used to increase machine capacity, thereby potentially reducing the required 

number of machines. Second, there is no way to accurately calculate the capacity demand from 

judgmental forecasts. This is especially troublesome when purchasing machines for new 

products, for which there is no historical data. Third and finally, capacity demand forecasts based 

on historical data (i.e. processing times) are unreliable. Recall from Section 2.2.1 that this data 

provides no way to include expected demand changes and there is little historical data available 

(starting 2018). Company A has no forecasting method to make use of historical data outside of 

the seasonal naïve method, where the demand forecast is the demand in the same period last 

year.  

The result is that Company A struggles with estimating how many machines they need. This 

estimate is usually inaccurate, leading to under- or overcapacity. For example, a HS-500 pan that 

cost 150,000 euros was only used for two orders each year. The revenue did not come near the 

cost. Due to their specificity, the resale value of these machines is low. 

2.3.2 Tactical capacity planning 

Tactical capacity planning concerns workforce planning at Company A. The planning horizon for 

hiring decisions is one year, while the planning horizon for flexibility measures, is one to three 
months. The demand planner is responsible for workforce planning, in collaboration with the 

operations manager. Figure 2-6 shows the workforce planning process.  
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Figure 2-6. Tactical capacity planning process. 

Company A uses the number of orders as the basis for workforce planning. Company A uses a 

seasonal naïve forecast, which means that the demand forecast for the next three months is equal 

to the demand the same month last year. The second step is to adjust the number of orders based 

on the short-term judgmental forecast. Recall from Section 2.2.3 that the forecast is in seed 

quantity, not the number of orders. The adjustment is a rough estimate, based on how the forecast 

this year deviates from last year. The third step is to calculate the number of machines and 

operators required from the number of orders. Section 2.2.2 discusses how this is calculated. The 

fourth step is to create a workforce planning. Depending on the number of operators required, 

they are assigned alternative activities, such as training.  

During peak season, the demand planner revises the capacity plan every week, based on the 

actual number of orders. These are known about two weeks ahead on average. The demand 

planner can decide to use overtime or flex-operators to address capacity issues. Figure 2-7 shows 

the workforce planning for 2018. The spikes in available capacity around week 16 are caused by 

holidays. We observe the inaccuracies discussed in Section 1.3 and Section 2.2.2: the required 

capacity is sometimes higher than available capacity. However, in practice this was not the case. 

It comes as no surprise that the demand planner is struggling with making data-driven decisions, 

he must rely on experience and gut-feeling. 

 

Figure 2-7. Required and available coating operator capacity 

The core problems identified in Section 1.3 are observed in the tactical capacity planning. Double 

shifts are part of workforce planning, but impact machine capacity, not operator capacity. 

However, machine capacity is not considered in workforce planning, therefore these decisions 
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are simply the same each year: double shifts from November till April. Thus, operator and 

machine capacity decisions are not aligned. Furthermore, the number of orders is an inaccurate 

measure. In Figure 2-7, we observe that the required operator capacity is higher than the 

available operator capacity in weeks 7 through 15. Figure 2-8 shows the required and available 

capacity for coating operators, but based on scheduled processing time, which is more accurate. 

Surprisingly, we observe that there was no overcapacity in 2018. 

 

Figure 2-8. Required and available coating operator capacity based on scheduled processing time. 

2.4 CONCLUSION 
Company A’s production processes are currently organized in a clear flow, where coating, drying, 

and priming are the most important processes. Drying and coating processes each use a variety 

of machine types, with a total of 19 machine types. The workforce planning concerns primarily 

the number of operators, flex-operators, single or double shifts, and overtime. (Q2.1)  

Company A uses scheduled processing times and the number of orders to determine the capacity 

demand. The problems with scheduled processing times are a lack of data and the inability to take 

judgmental forecasts into account. While the number of orders solves the problems, it is much 

less accurate estimate of the capacity demand than the scheduled processing times. Company A 

uses the seasonal naïve forecasting method, which is why both measures do not reflect 

uncertainty in capacity demand. Furthermore, there is currently no structured and accurate way 

to include judgmental forecasts in capacity demand calculations. (Q2.2)  

The core problem of misaligned capacity decisions is visible from the current decisions-making 

processes: each decision for machine procurement is taken without considering other machine 

procurement decisions or workforce planning. (Q2.3)  
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3 LITERATURE REVIEW 

We identified three core problems in Chapter 1: inaccurate calculation of capacity demand, 

unreliable demand forecasts, and misaligned capacity decisions. In Chapter 2, we identified the 

shortcomings of the current forecasting method and capacity planning method. The seasonal 

naïve method, based on scheduled processing times, results in a forecast that does not reflect 

uncertainty. Furthermore, it does not make use of judgmental forecasts, which potentially have a 

large impact on capacity demand.  

In this chapter, we identify the available literature on these subjects and that address these issues. 

Section 3.1 discusses the forecasting procedure, forecasting models that use historical data, 

models that use human judgment, and forecasting performance measures. Section 3.2 discusses 

frameworks for capacity planning literature and relevant strategic capacity models.  

3.1 FORECASTING 
In this section, we answer the following three research questions.  

(Q3.1) What are the top performing forecasting models from literature that 

use historical data to model uncertainty and seasonality?  

(Q3.2) What forecasting methods are available in literature that use human 

judgment? 

(Q3.2) How should forecasting performance be measured according to 

literature?  

We answer research question Q3.1 in Section 3.1.2, where we focus on forecasts based on 

historical data. In Section 3.1.3 we answer research question Q3.2, concerning forecasts based on 

human judgment. Finally, we answer research question Q3.3 in Section 3.1.4, by describing 

forecasting performance measures.  

3.1.1 Forecasting procedure 

One of the simplest forecasting procedures consists of five steps: problem definition; gathering 

data; preliminary analysis; choosing and fitting models; using and evaluating the models. 

(Hyndman & Athanasopoulos, 2018) This is a generic approach, useful in most situations. 

However, it does not take into account the specific contexts in which the forecast will be used. 

Chopra and Meindl describe a forecasting procedure for capacity planning, which is more useful 

for forecasting in the context of this research. The steps in their procedure are the following. 

(Chopra & Meindl, 2013) 

1. Understand the objective of the forecast. A good definition includes how the forecast will 

be used, who will use it, and the role of the forecast in the decision-making process.   

2. Integrate forecasting throughout the supply chain, the forecasts used should be consistent 

with each other. For example, the forecast for strategic capacity planning must be 

consistent with the forecast used for workforce planning. 

3. Identify demand characteristics. Demand can show seasonality and trends. Demand can 

also depend on external factors, such as promotional activities.  

4. Decide the level of aggregation. A higher aggregation lowers forecast error, but the level 

of aggregation must be detailed enough to make accurate decisions. For example, a 
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company can decide to use product groups, when a group of products show similar 

demand patterns or rely on the same external factors.  

5. Performance measurement. Finally, the forecast performance must be evaluated using 

measures that are relevant for the objective of the forecast. 

In Table 3-1, we show the similarities and differences between Hyndman’s and Chopra’s 

procedure. Most notably, choosing and fitting models is not an explicit step in Chopra’s procedure, 

while it should be part of the forecasting procedure according to Hyndman.  

Step Hyndman Chopra & Meindl 
1 Problem definition Understand the forecast objective 
2  Integrate forecasting throughout supply chain 
3 Preliminary analysis Identify demand characteristics 
4  Decide level of aggregation 
5 Choosing and fitting models  
6 Using and evaluating models Performance measurement 

Table 3-1. Similarities and differences between Hyndman's procedure and Chopra's procedure. 

3.1.2 Forecasting based on historical data 

3.1.2.1 Classification of forecasting methods 

There is a variety of forecasting methods that make use of historical data. Forecasting methods 

can be categorized in the following six categories. (Hyndman & Athanasopoulos, 2018) 

1. Simple methods. Most notable examples of simple methods are average, naïve, seasonal 

naïve, and drift. Average takes the mean of all historical data as forecast. Naïve sets the 

forecast to be equal to the value of the last observation. Seasonal naïve sets the forecast 

to be equal to the last observed value from the same season of the year. Finally, the drift 

method allows the forecast to increase or decrease over time. This change is the ‘drift’, 

which is the average change observed in historical data. 

2. Time series regression models. The basic idea is that the time series to forecast has a 

linear relationship with another known time series. For example, to forecast the monthly 

sales, the advertising spend can be used as a predictor.   

3. Exponential smoothing models. Forecasts are obtained through weighted averages of past 

observations. The weights are decreased exponentially as observations are further from 

the present, such that more recent observations have a higher weight. Some of the most 

well-known models are Holt’s method (Holt, 1957) to model trends, which was extended 

to become the Holt-Winter’s method (Winters, 1960) to include seasonality.  

4. ARIMA models aim to describe autocorrelations in data. Box and Jenkins popularized 

these models in 1970. Its most recent edition remains the main reference for ARIMA 

modelling. (2015)  

5. Advanced methods is a collection of methods that build on the aforementioned methods, 

while making use of recent advancements in other fields. Some examples are neural 

network models, bootstrapping and bagging, and machine learning. (Bergmeir, 2016) 

3.1.2.2 Comparing forecasting methods 

We are interested in the top performing forecasting models from literature. To separate the good 

from the bad forecasting models, the M-Competition was introduced. (Makridakis, et al., 1982) 

The fourth edition, the M4 Competition, took place in 2018. Over 250 universities and companies 

have enrolled in this competition to submit their forecasting models. The competition used 

100,000 time series to compare the forecasting performance of the models. Table 3-2 denotes the 

number of series per data frequency and domain. Company A would be the ‘Industry’ category, 
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with monthly time intervals. There are 10,017 of such time series included, making the results 

relevant for our research. 

Time interval 
between 
successive 
observations 

Micro Industry Macro Finance Demographic Other Total 

Yearly 6,538 3,716 3,903 6,519 1,088 1,236 23,000 
Quarterly 6,020 4,637 5,315 5,305 1,858 865 24,000 
Monthly 10,975 10,017 10,016 10,987 5,728 277 48,000 
Weekly 112 6 41 164 24 12 359 
Daily 1,476 422 127 1,559 10 633 4,227 
Hourly 0 0 0 0 0 414 414 
Total 25,121 18,798 19,402 24,534 8,708 3,437 100,000 

Table 3-2. Number of M4 series per data frequency and domain. (Makridakis, et al., 2020) 

Statistical benchmarks were used to compare the submitted methods. Two aspects of a forecast 

were measured: Point Forecasts (PFs) and Prediction Intervals (PIs). A PF is the best educated 

guess of the actual value, which is usually the main focus of a forecast and therefore used for the 

main ranking. PI gives an interval within which the actual value is expected with a specified 

probability. A prediction interval can be written as 

�̂�𝑇+ℎ|𝑇 ± 𝑐 ∙ �̂�ℎ 

where �̂�𝑇+ℎ|𝑇 is the point forecast and �̂�ℎ is the standard deviation of the forecast distribution. 

The multiplier 𝑐 depends on the coverage probability. Assuming normally distributed forecast 

errors, the value of 𝑐 can be obtained from the standard normal distribution for the specified 

coverage probability. When forecasting one step ahead, the standard deviation of the forecast 

distribution is almost equal to the standard deviation of the residuals. However, as the forecast 

horizon ℎ increases, �̂�ℎ increases as well. The uncertainty becomes larger as forecasts are made 

further in the future. The main difference between confidence intervals and prediction intervals 

is that prediction intervals must account for both the uncertainty in knowing the value of the 

population mean and data scatter, so the prediction interval is always wider. (Hyndman, 2013) 

The M4 includes a second ranking for prediction intervals.  

The winner of the M4 Competition was Smyl from Uber Technologies, who mixed exponential 

smoothing methods with Recurrent Neural Networks. (2019) Another high-ranking method uses 

a combination of 7 statistical models, while using machine learning to assign weights for the 

averaging of these methods (Montero-Manso, et al., 2020). These top performing methods are a 

combination of advanced techniques and exponential smoothing, according to Hyndman’s 

aforementioned classification. 

Next up in ranking are ETS (Error, Trend, Seasonality), ARIMA (AutoRegressive Integrated 

Moving Average), and Theta. The implementation of ETS used in the competition is the state space 

approach. (Hyndman, et al., 2008) These three were the top performers in the previous M3 
competition, and were used as benchmarks in the M4 competition. ETS is based on exponential 

smoothing. ARIMA describes autocorrelation in the data. Theta is a decomposition model, which 

has been shown to be equivalent to a specific exponential smoothing model. (Hyndman & Billah, 

2003) 

An advantage of ETS and ARIMA over Theta is that these can be used to calculate prediction 

intervals. ETS has been shown to produce more accurate prediction interval than ARIMA. 

(Makridakis, et al., 2020) Prediction intervals are very useful for capacity planning. Recall from 

Chapter 2 that the main issue is that the current forecasts do not reflect uncertainty. Company A 
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is not interested in having capacity to meet the expected demand, but to have sufficient capacity 

with a higher probability. A one-tailed upper prediction interval of capacity demand specifies how 

much capacity is required to fulfill all demand with a specified probability. In Chapter 4 we 

motivate our decision to use the ETS model for our research. In the remainder of this section we 

discuss the ETS model in more detail. 

3.1.2.3 ETS state space approach 

Exponential smoothing models are the basis of the ETS state space approach. Table 3-3 shows a 

classification of exponential smoothing models, by trend and seasonality component. Gardner 

discerns two trend types: additive is a constant trend and additive damped adds a parameter that 

“dampens” the trend to a flat line some time in the future. (Gardner, 1985) He also discerns two 

seasonality types: additive is a constant seasonality component and multiplicative scales with the 

forecast level.  

Trend Component Seasonal Component  
 N (None) A (Additive) M (Multiplicative) 
N (None) (N,N) (N,A) (N,M) 
A (Additive) (A,N) (A,A) (A,M) 
Ad (Additive damped) (Ad,N) (Ad,A) (Ad,M) 

Table 3-3. A two-way classification of exponential smoothing models. (Gardner, 1985) 

Some of these models are well-known by other terms. For example, (N,N) is the simple 

exponential smoothing model, and (A,A) is the Additive Holt-Winter’s model. For each model, 

there is a set of forecast equations and smoothing equations. The state space approach introduces 

an underlying statistical model for forecasts, such that prediction intervals can be calculated, 

which involves a third component: the error. The classification in Table 3-3 is extended to include 

the error component. Errors can be additive (A) or multiplicative (M), thereby doubling the 

number of models to 18. Each model can be described by state space equations, consisting of a 

measurement equation and a set of state equations. The measurement equation describes the 

observed data. The set of state equations describe how the level, trend, and seasonality change 

over time. These state space equations exist for all 18 models.  

For all 18 models, it is assumed that the residuals are normally and independently distributed 

with mean 0 and variance σ2. Or in short: 𝑒𝑡 = 𝜀𝑡~𝑁𝐼𝐷(0, 𝜎2). The prediction interval is calculated 

using  

�̂�𝑇+ℎ|𝑇 ± 𝑐 ∙ �̂�ℎ for most models. The forecast variance formulas are known for additive models 

and several multiplicative models. For some ETS models, there are no known formulas. In these 

cases, Monte Carlo can be used to simulate future sample paths and calculate prediction intervals 

from percentiles of these sample paths. 

The ETS state space approach uses maximum likelihood methods to estimate smoothing 

parameters and initial states. The restrictions for the smoothing parameters are: 0 < α < 1; 0 < β 

< α; 0 < γ < 1 – α. The best model is the one with the highest predictive accuracy. Several measures 

of predictive accuracy exist. Maybe the most well-known are R-squared and adjusted R-squared. 

However, the ETS state space approach uses Akaike’s Information Criterion (AIC), which is based 

on maximum likelihood. AIC is defined as 

𝐴𝐼𝐶 = −2 log(𝐿) + 2𝑘 

where L is the likelihood of the model, and k is the number of parameters and initial states in the 

model. The unknown parameters are collected in a vector, for which there is a ‘prediction error 
decomposition’ of the likelihood function, which is maximized with respect to the parameter 
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vector. Further mathematical details are too extensive to discuss here, but the main idea is clear: 

maximum likelihood and AIC are used to select the model and estimate parameters. 

To conclude, the ETS state space approach is an accurate and complete forecasting method. It has 

top-performing accuracy of prediction intervals, rivaled only by Smyl’s forecasting method. 

3.1.3 Forecasting based on human judgment 

3.1.3.1 When to use judgmental forecasts 

In Chapter 2, we described how Company A creates and uses forecasts based on human judgment. 

A variety of methods are available in literature that define how such judgmental forecasts are to 

be created and used. In their review of progress in judgmental forecasting the past 25 years, 

Lawrence et al. (2006) highlight the importance and added value of human involvement in 

forecasting, especially due to knowledge people have that is not reflected in historical data. This 

contextual knowledge is defined as any information relevant to the forecasting task, other than 

the time series. (Lawrence, et al., 2006) Basic contextual knowledge can be the underlying 

meaning of time series data. For example, that an increase in sales revenue is not due to selling 

more products, but due to a price hike. More advanced domain knowledge concerns causal 

information. For example, how a year with little rain leads to lower crop yields, and thus lower 

demand for seed treatments.  

Judgmental forecasts without contextual knowledge showcase lower accuracy than statistical 

models (Carbone & Gorr, 1983) Judgmental forecasting performance is especially lower when 

estimating trends and seasonality, most notably by dampening up-and down trends.  (O'Connor, 

et al., 1997) Judgmental forecasting improves forecasts in three cases. First, when contextual 

knowledge represents a component that cannot be modelled by statistical methods, such as 

promotions and new product launches. Second, when contextual knowledge contains recent 

information not reflected in historical data. Third, when forecasters can exert control over the 

demand, such as when sales are increased through promotions or discounts to reach targets.  

3.1.3.2 Ways to create judgmental forecasts 

Judgmental forecasts can be created in various ways, which generally fall within the following 

categories. (Hyndman & Athanasopoulos, 2018)  

1. The Delphi method assumes that forecasts from a group are more accurate than from 

individuals. It aims to achieve consensus amongst experts in a structured and iterative 

way. There are five stages: assemble an expert panel; individual expert forecasts are 

collected; individual forecasts are combined and summarized; feedback is provided to the 

experts, who adjust their forecasts accordingly; final forecasts are obtained by 

aggregating the individual expert forecasts. The forecast-feedback loop is usually iterated 

several times, until sufficient consensus is reached.  (Rowe & Wright, 1999) The main 

issue with the Delphi method is that it is time intensive, requiring between 5 to 20 experts 

over several iterations. Group meetings address this issue, but the resulting forecasts are 

often optimistic and overconfident, due to group dynamics. (Buehler, et al., 2005) 

2. Forecasting by analogy is based on comparison to similar cases, such as pricing real estate. 

A structured approach similar to Delphi has been defined, using an expert panel, 

identifying as many analogies as possible, then aggregating the analogy forecasts. (Green 

& Armstrong, 2007) 

3. Scenario forecasting provides a method to move beyond point forecasts. Instead, several 
forecasts are created, each with a probability. For example, a realistic, optimistic and 

pessimistic scenario can be defined. This method is frequently used in combination with 
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stochastic optimization for capacity planning, since Eppen et al. introduced it in 1989. 

(Eppen, et al., 1989)  

4. New product forecasting is usually only based on judgmental methods, because historical 

data is unavailable. The aforementioned three methods can all be used to forecast new 

product demand. In addition, several forecasting methods have been designed specifically 

for new products. Sales force composite uses forecasts by each branch or store, which are 

then aggregated. However, such forecasts are often biased, because the user (e.g. sales 

manager) is the one generating forecasts, due to self-serving bias by generating low 

forecasts or optimistic salespeople. Instead of low-level forecasts, the executive opinion 

method relies on top-level forecasts. Often established in group meetings, the 

aforementioned bias is often a problem. Finally, customer intentions can be collected 

through surveys. However, the main problem is that intentions often deviate from actual 

purchases, depending on the industry and timing of data collection. (Randall & Wolff, 

1994) 

5. Judgmental adjustments are used when historical data is available, but external factors 

not reflected in historical data have a significant impact. Adjustments are most effective 

when there is strong evidence of the need for large adjustments. Small adjustments have 

been found to decrease accuracy, especially when forecasters read systematic patterns in 

the noise associated with a series. (O'Connor, et al., 1993) One way is to restrict 

adjustments to cases where naïve forecasts perform best, or where specific contextual 

knowledge heavily influences future demand, such as promotional activity. (Goodwin & 

Fildes, 1999) The adjustment process consists of two stages: first deciding whether a 

statistical forecast needs adjustments, then estimating the size of the required 

adjustment. Most research has focused on the first stage. There are currently no methods 

in literature that have proven to be successful for estimating the adjustment size. 

3.1.3.3 Ways to improve judgmental forecasts 

The following approaches are used to improve judgmental forecasts. (Lawrence, et al., 2006) 

1. Three types of feedback. Outcome feedback informs the forecasters of the latest 

observations. Performance feedback includes accuracy and bias of past forecasts. Task 

properties feedback provides statistical information about the task, it is usually given 

before producing the forecast. Feedback has shown to improve forecast accuracy. 

(Goodwin & Fildes, 1999) Outcome feedback is least effective, because it is hard to discern 

random errors from systematic inaccuracies. (Klayman, 1988) Task properties feedback is 

most effective, because it helps identify incorrect hypotheses of the forecaster. (Balzer, et 

al., 1989) 

2. Decomposition. Decomposition methods split tasks in smaller sub-tasks for forecasters, 

aggregating the forecasts afterwards. Decomposition does not necessarily improve 

accuracy, especially when the sub-tasks are more complex or less familiar for the 

forecaster. (Goodwin & Wright, 1993) 

3. Taking advice. Advice is most useful when it comes from independent sources, to prevent 

bias. Forecasters weigh advice depending on the reputation of the source. (Yaniv, 2004) 

4. Bootstrapping and correction. Statistical forecasting methods can be used to find 

systematic biases in judgmental forecast, then adjust the forecasts for this bias. Theil’s 

method (Theil, 1971) has shown to be effective, by regressing the historic outcomes onto 

the forecast, then using this to adjust future forecasts.  (Goodwin, 2000) 

5. Combining forecasts. Combining statistical with judgmental forecasts can be done in 

several ways. A simple combination method is to take a weighted average of the statistical 

and judgmental forecast. When combining, it is important that judgmental forecasts are 
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based on contextual knowledge (Sanders & Ritzman, 1995) and that the person who 

weighs and combines the forecast must not forecast himself, due to bias. (Harvey & 

Harries, 2004) 

To summarize, the main advantage of qualitative methods is that they do not rely solely on 

historical data, but make use of contextual data. The main disadvantages are the danger of 

overconfidence and the dependency on expertise.  

3.1.4 Forecasting performance measures 

Forecast error measurements can be classified in the following categories. (Scherbakov, et al., 

2013)  

1. Absolute forecasting errors are expressed in the same unit as the forecast, such as sales 

revenue. The main advantage it is easy to interpret the measure. 

2. Percentage-based errors are relative to the forecasted quantity. The advantage over 

absolute errors is that these measures can compare accuracy between forecasts with 

different units. 

3. Symmetric errors address the issue that negative errors are often weighed heavier than 

positive errors, or vice versa.  

4. Scaled errors scale the error relative to the error of another method. 

5. There are several other measures that cannot be placed in any of the categories above. 

Such measures are usually created for a specific purpose.  

In the absolute category, one of the simplest measures is the Mean Absolute Error (MAE). MAE is 

intuitive and easy to compute. However, it is scale-dependent, so it cannot be used to compare 

between series of different units. The Mean Percentage Error (MPE) is useful to compare bias 

between series of different units. MAE and MPE are calculated as follows, where 𝑦𝑡 is the forecast 

and 𝑥𝑡 the actual value. 

𝑀𝐴𝐸 =
∑ |𝑥𝑡 − 𝑦𝑡|𝑡

𝑛
 , 𝑀𝑃𝐸 =

1

𝑛
∑

𝑥𝑡 − 𝑦𝑡

𝑥𝑡𝑡
 

The Mean Absolute Percentage Error is one of the most widely used performance measures. 

However, it puts a heavier penalty on negative errors than on positive errors. This is addressed 

by the symmetric MAPE (sMAPE) (Makridakis, 1993). The disadvantage is that it takes on 

extreme values if the actuals are close to zero, and indefinite or infinite if zero. However, it is 

intuitive and useful for time series where all values are larger than 10. 

𝑠𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑥𝑡 − 𝑦𝑡|

(𝑥𝑡 + 𝑦𝑡)𝑡
 

To address the issues with actuals close to zero, Hyndman and Koehler (2006) introduce the 

Mean Absolute Scaled Error (MASE). This measure scales the Mean Absolute Error (MAE) of the 

evaluated forecast with the MAE of the naïve forecasting method, by dividing the two. The scaled 

error is less than one if the forecast is better than the naïve forecast, and greater than one if it is 

worse than the naïve forecast. For seasonal timeseries, the seasonal naïve forecast is used. MASE 

is calculated as follows, where m is the length of one seasonal cycle. The seasonal naïve forecast 

is 𝑥𝑡−𝑚. 

𝑀𝐴𝑆𝐸 =
𝑀𝐴𝐸 𝑜𝑓 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑀𝐴𝐸 𝑜𝑓 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑛𝑎𝑖𝑣𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
= [

∑ |𝑥𝑡 − 𝑦𝑡|𝑡

𝑛
 ] / [

∑ |𝑥𝑡 − 𝑥𝑡−𝑚|𝑡

𝑛
] 

A last interesting measure is specifically for aggregate production planning: the Cumulative 

Absolute Forecast Error (CAFE). (Ha, et al., 2018) It is the product sum of cumulative forecasting 
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error. This measure is optimized for total cost by adding weight factors for backorders and 

inventory costs. It has been tested and validated with data from the M3 competition.  

3.2 CAPACITY PLANNING 
In this section, we answer the following research questions. 

(Q3.4) What frameworks are available in literature to classify capacity 

planning models? 

(Q3.5) What capacity planning models are available in literature for 

strategic capacity planning with workforce flexibility? 

3.2.1 Classification of capacity planning models 

Capacity planning is usually divided in three levels: strategic, tactical, and operational. Table 3-4 

lists the timescale and key decision associated with each level of capacity planning. (Slack & 

Lewis, 2011) Recall from Chapter 2 that at Company A the ability to keep or fluctuate capacity 

levels (i.e. tactical level) has a large impact on how much capacity is required (i.e. strategic). In 

Chapter 4 we motivate our decision to focus on strategic capacity planning, while taking the 

impact of strategic decisions on tactical capacity planning into account. Recall from Section 1.5 

that operational capacity planning (e.g. scheduling) is out of scope.  

Level Timescale Key question 
Strategic Years-Months How much capacity do we need and where should 

it be located? 
Tactical Months-Weeks To what extend do we keep or fluctuate capacity 

levels? 
Operational Weeks-Hours-Minutes Which resources are allocated to which tasks and 

when are they loaded? 
Table 3-4. Three levels of capacity planning. (Slack & Lewis, 2011) 

Martinez-Costa et al. have created a conceptual framework for capacity planning, based on their 

review of 57 strategic capacity planning models, with a focus on the manufacturing industry. 

(2014) They highlight the challenges of long term capacity planning, because such planning aims 

to integrate traditionally isolated areas, such as new product development and technology 

selection, as well as strategic and tactical decisions. (Levis, 2004) Figure 3-1 provides an overview 

of this framework, which consists of three phases: problem definition, model design, and solution 

procedures. The output is always a capacity plan, sometimes accompanied by a financial plan or 

product development plan. This framework is useful to identify relevant capacity planning 

models, based on the decisions and factors considered, and to structure the model design 

discussed in Chapter 4. 
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Figure 3-1. A conceptual framework for strategic capacity planning. (Martínez-Costa, et al., 2014) 

3.2.1.1 Phase one – problem definition 

The problem definition phase starts with identifying external- and internal information (i.e. 

context and system characteristics). Examples of context are market characteristics and 

regulatory factors. System characteristics describe the product, process, and facilities involved. 

We discussed the context and system characteristics in Chapter 1 and Chapter 2. Second, the 

decisions to make and factors to consider must be described. Finally, these inputs are used to 

define the problem, which states the goals and conditions of the model. The following decisions 

are most common in research concerning strategic capacity planning. (Martínez-Costa, et al., 

2014)  

1. Capacity size. The expansion, reduction, and replacement of capacity size are usually the 

most important decision. Most models only consider expansion, but recent developments, 

such as shorter life cycles, have increased interest in reduction. Replacement is especially 

relevant when physical deterioration has a high impact on capacity, due to inefficiencies, 

breakdowns, or high operation costs. By considering replacement and expansion 

simultaneously, scale advantages can be obtained. (Chand, et al., 2000) 

2. Location. For multi-site capacity planning problems, location is crucial. There are usually 

two options for capacity expansion: either with or without new site installation. Then, the 

main goal is to optimize the transportation costs versus capacity expansion costs. (Chen, 

et al., 2013) 
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3. Allocation. When a company has resources that can produce multiple products, the model 

must allocate resources to products and determine capacity of which resource to expand. 

For multi-site problems, product quantities must be allocated to production sites as well.  

4. Technology selection. When there are alternative technologies available, which can be 

switched between sites, it is beneficial to jointly optimize the capacity expansion and 

capacity configuration (i.e. technology mix). (Karabuk & Wu, 2003) 

5. New product development. When new products require either the modification of 

existing or introduction of new resources, it is beneficial to jointly optimize the product 

portfolio and capacity. (Levis & Papageorgiou, 2004) 

Strategic capacity planning and tactical decisions can be closely related. When that is the case, the 

impact of strategic decisions on tactical decisions should be taken into account. Note that the 

tactical decisions itself are made at a later stage, but these can be anticipated in strategic capacity 

planning. The following are two common examples of this interaction. 

1. Inventory and backlogging. In sectors where inventory is built up to deal with demand 

fluctuations, capacity and inventory can be considered substitutes. Joint optimization can 

result in significant cost savings. (Bradley & Glynn, 2002) Backlogging can be included as 

well, however this issue is covered in one paper only. (Wang, et al., 2007) 

2. Workforce planning. Usually tactical workforce planning options are cheaper than 

strategic capacity expansion. Workforce flexibility can be used to deal with seasonal 

demand, for example through one or more shifts, thereby reducing the need for 

equipment acquisition. To exploit the impact of these tactical options, they must be 

anticipated in the strategic capacity planning. (Bihlmaier, et al., 2009) 

Once the decisions are defined, the factors to consider must be identified. In practice, there can 

be other relevant factors than the ones listed below. These must be identified for each situation. 

1. Uncertainty. Demand uncertainty is most commonly included in strategic capacity plans, 

due to uncertainty in long-term demand. Other sources of uncertainty can be: capacity, 

throughput, technology evolution, government policies, and prices. Uncertainty is usually 

modelled by defining a number of scenarios, which are optimized using stochastic models. 

These are often two-stage models, where first-stage decisions are typically capacity 

levels. In the second-stage, recourse actions are taken after uncertainty is realized, such 

as outsourcing. Models cannot include all source of uncertainty and all possible scenarios, 

so assumptions must be made carefully. (Rastogi, et al., 2011) 

2. Economies of scale. In some industries, such as electrical power, economies of scale are of 

major importance. To incorporate these, concave or fixed-charge cost functions are used 

in literature. (Ahmed & Sahinidis, 2003)  

3. Lead-times and set-up times. In case of short product life cycles, long investment lead-

times are important to consider for the timing of capacity expansion. Set-up times are 

relevant when they impact manufacturing efficiency. (Rajasekharan & Peters, 2000)  

The decisions to make and factors to consider has been used to categorize strategic capacity 

planning models. (Martínez-Costa, et al., 2014) It is especially useful to identify similar models 

and gaps in research. In Chapter 4 we use this categorization to select models that serve as a basis 

for our model design. 

3.2.1.2 Phase two – model design 

Based on the problem description, a model can be designed. At the most basic level, three types 

of models can be distinguished: analytical approaches, simulation approaches, and hybrid 

approaches that combine analytical and simulation approaches. Models based on fuzzy set theory 
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also exist, but are uncommon. (Peidro, et al., 2009) Alternatively, by specifying the type of 

analytical approach, the model types can be categorized as follows. (Geng & Jiang, 2009)  

1. A static capacity model is widely used in practice, due to its ease of use. It is often 

implemented in Excel. Capacity is calculated using simple formulas, such as the one below. 

Such methods However, this measure is highly aggregated, thus the method lacks 

accuracy.  

𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑝𝑟𝑜𝑐𝑢𝑟𝑒𝑑 =  
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑡𝑜 𝑚𝑒𝑒𝑡 𝑑𝑒𝑚𝑎𝑛𝑑

𝑜𝑛𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
− 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 

2. Simulation-based methods are used to optimize capacity levels by evaluating 

performance for certain capacity levels. That way, capacity uncertainty can be modelled. 

The accuracy of a simulation model depends on the assumptions and estimates related to 

arrival distributions and processing time. Detailed and reliable data is required to build 

an accurate simulation model.  

3. Queueing models are an alternative for simulation methods to evaluate performance. 

They require less data than simulation, but are often mathematically complex models. 

4. Linear programming (LP) is simple and can be optimized, but it does not include capacity 

uncertainty. Deterministic LP models are not robust regarding both capacity and demand 

uncertainty. 

5. Stochastic programming does consider demand uncertainty. However, these models can 

be difficult to optimize, depending on the problem size. The accuracy of scenarios and 

associated probabilities is crucial in stochastic models. 

Note that this categorization does not include the hybrid approach mentioned by Peidro et al. 

Mathematical programming methods are by far the most common in literature. (Martínez-Costa, 

et al., 2014)  We hypothesize that this is due to the aggregated nature of strategic capacity 

planning, while simulation models require more detailed information. However, simulation 

models are indispensable when capacity uncertainty plays a major role. 

3.2.1.3 Phase three – solution procedures 

Based on the model design, a solution procedure can be chosen. Static capacity models do not 

require a solution procedure, only a simple Excel formula. 

Simulation-based methods can use a neighborhood search heuristic to determine capacity levels 

in a trial-and-error way, for example. Simulation is used to evaluate performance for each 

capacity configuration generated by the neighborhood search heuristic. Another possible 

procedure is the Genetic Algorithm. Queueing models can use similar trial-and-error procedures, 

except that they usually require less resources, so more trials can be evaluated in the same 

computation time.  

Deterministic linear programming models can often be solved analytically or with an algorithm. 

Coin-or CLP is an academic and frequently used open source solver. Commercial alternatives are 

AIMMS, Gurobi and GAMS, for example. Stochastic programming models require more advanced 

procedures. Coin-or SMI is an open source solver for these types of models. Commercial 

alternatives are again provided by AIMMS and GAMS.  

3.2.2 Strategic capacity planning models with workforce planning 

We motivate our model selection decision in Chapter 4. For now, recall from Chapter 2 that 

strategic capacity planning and workforce planning are strongly related at Company A.  

Therefore, we discuss the strategic capacity planning models that anticipate workforce planning 

in this section. 
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From the total of 57 mathematical programming models (Martínez-Costa, et al., 2014), only two 

papers consider workforce planning. Both papers are applied to the automotive industry, which 

is a capital intensive industry where workforce planning is strongly related to capacity. 

Furthermore, demand uncertainty and product lifecycles play an important role in capacity 

decisions in this industry. 

Fleischmann’s model (Fleischmann, et al., 2006) concerns strategic investments in three 

departments: body assembly, paint shop, and final assembly. Fleischmann does not use a 

stochastic model for demand uncertainty, because they “could make no serious assumptions 

about the probability distribution of the future demand of new products over a 12-year planning 

horizon.” Instead, Fleischmann uses flexibility reserves and demand scenarios to compare 

different strategies. 

Flexibility reserves are modelled by defining a disposable capacity level, which is the maximal 

capacity minus a flexibility reserve (Figure 3-2). Note that workforce planning is simply modelled 

as overtime. Demand scenarios are compared for three capacity strategies: a reference strategy, 

by restricting capacity decisions to the current strategy, and two improved strategies. Improved 

strategies are obtained by removing some restrictions to capacity decisions, based on expert 

opinions. The three strategies are optimized for each demand scenario. These results are used by 

the company to make the final capacity decisions. 

 

Figure 3-2. Capacity levels in Fleischmann's model. (Fleischmann, et al., 2006) 

Bihlmaier’s model (Bihlmaier, et al., 2009) concerns strategic flexibility and capacity planning in 

production networks. Bihlmaier models workforce planning in a more comprehensive way than 

Fleischmann’s model, which only considers overtime. To do this, Bihlmaier uses shift models. 

Each shift model has three parameters: available capacity, number of employees required, and a 

cost factor. For each time period, a binary decision variable indicates which shift model is 

deployed. The shift model costs are added in the objective function. The following constraints are 

defined for the shift model. 

1. Select a shift model with sufficient available capacity to fulfil demand.  

2. Ensure that only one shift model is selected in each time period. 

3. Ensure that a shift model can only be selected if there are sufficient employees. 

4. Determine how many employees must be hired or dismissed. 

To model demand uncertainty, Bihlmaier uses a two-stage stochastic model with recourse. This 

method is used in most strategic capacity models that consider demand uncertainty. (Martínez-

Costa, et al., 2014) 
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3.3 CONCLUSION 
The top performing forecasting models from literature were hybrid methods, using a 

combination of statistical methods and neural networks. The runners up were more traditional 

methods: ARIMA and ETS. To reflect uncertainty, some models are able to generate prediction 

intervals for a certain coverage probability. (Q3.1) 

The forecasting methods that use human judgment are often highly structured, involving multiple 

forecasts, to address the errors in human judgment. The main advantage and use of human 

judgment is when external factors not reflected in historical data have a major impact or when 

historical data is not available. Judgmental methods are used to generate point forecasts, for 

scenarios, new products, or adjusting statistical forecasts. It is important to use one or more ways 

to improve judgmental forecasts, of which the most successful are task properties feedback and 

Theil’s method. (Q3.2) 

Several measures are available to assess forecasting performance. Scherbakov identified the 

advantages of the various types of measures. Absolute measures are intuitive, while percentage-

based measures are useful to compare different series. Scaled errors improves on percentage-

based measures by allowing for low values. (Q3.3) 

To classify capacity planning models, several useful frameworks are available. Slack and Lewis 

provide insight in the differences between strategic, tactical, and operational capacity planning. 

Martínez-Costa et al. provide insight in the range of decisions and factors that can be considered 

in strategic capacity planning. Geng and Jiang provide insight in the types of models that are used, 

which are usually mathematical programming models, but also simulation-based models. (Q3.4) 

There are only two strategic capacity planning models available to anticipate workforce planning: 

Bihlmaier et al. and Fleischmann et al. Anticipating workforce planning is most useful for capital-

intensive companies. Bihlmaier et al. model workforce planning through shift models. (Q3.5) 
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4 MODEL DESIGN 

The research goal is to create a machine- and operator capacity plan that deals with seasonal and 

uncertain demand in a cost-efficient way. In Chapter 1, we identified three core problems: 

inaccurate calculation of required and available capacity; unreliable demand forecasts; capacity 

decisions are misaligned. In Chapter 2, we further discussed how the currently used methods lead 

to the core problems. In our model design we improve on the weaknesses of the current methods 

identified in Chapter 2, such that we can address the core problems identified in Chapter 1. 

Additionally, Chapter 2 provides information on the current production process and planning 

method, which we use to model the reality accurately, such that our model can be used in practice. 

In Chapter 3, we identified relevant literature, from which we select models to (partially) use in 

our model. In this chapter we answer the following research questions. 

(Q4.1) How can the capacity demand be calculated more accurately? 

(Q4.2) How can the forecasting models from literature be applied to 

Company A? 

(Q4.3) How can the capacity planning models from literature be applied to 

Company A? 

In Section 4.1 we provide an overview of the model and motivate our design decisions. In Section 

4.2, we describe the steps of the capacity planning model in more detail by providing small 

examples. In Section 4.3 and 4.5 we  explain the calculation model and optimization model, which 

are used in various steps of our complete model. 

4.1 MODEL OVERVIEW AND MOTIVATION 
Figure 4-1 visualizes the model design, which consists of seven steps. Our model consists of two 

parts: first generate capacity demand scenarios (steps 1 through 5), then determine the capacity 

plan that satisfies capacity demand at the lowest cost for each scenario (step 6 and 7). Recall from 

Chapter 2 that capacity demand is the processing time, measured in monthly hours per machine- 

and operator type, required to satisfy product demand. The steps of our model are the following. 

1. Calculate historical capacity demand from sales orders 

2. Forecast future capacity demand scenarios from historical capacity demand  

3. Create judgmental sales forecasts 

4. Calculate adjusted capacity demand from judgmental sales forecasts, for which the same 

model part is used as step 1. 

5. Forecast adjusted capacity demand scenarios, for which the same model part is used as 

step 2. 

6. Determine optimal capacity strategy for each scenario using a MIP model 

7. Evaluate each capacity strategy for various scenarios 

The planning horizon for our strategic capacity model is ten years in periods of one month. 

Section 4.1.6 motivates this decision. Recall from Chapter 1 and 2 that we decide to forecast 

capacity demand instead of product demand, because there is too little data to forecast the 

number of orders and seed quantity of each product type reliably. This information is needed to 

accurately calculate capacity demand. Therefore, Step 1 is to calculate historical capacity demand, 

which we use to forecast future capacity demand in Step 2.  
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Figure 4-1. Overview of the capacity planning model. 

4.1.1 Step 1: Calculate historical capacity demand 

The first step is to calculate historical capacity demand, using sales orders and production data 

as input. We decide to use sales orders instead of Company A’s current methods (i.e. scheduled 

processing times and number of orders, Section 2.2) for four reasons. First, sales order data is 

available since 2015, while scheduled processing times since 2018. These three years of 
additional data will result in more accurate forecasts. Second, this calculation method is more 

accurate than the number of orders, thereby addressing the first core problem of inaccurate 

capacity demand calculations. Third, this method enables the use of judgmental forecasts, which 

is discussed in step 3 and 4. Finally, this method enables Company A to retrospectively consider 

changes in the production process. When Company A introduces a new machine, the model is able 

to calculate the historical capacity demand as if this new machine would have been used instead 
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of the old one. By updating the production data, the changed process is automatically considered 

in the calculation model.  

We assume that the production data from SAP is up-to-date. Company A uses the production 

data for various critical business processes, such as scheduling. Company A has strict updating 

policies when changes are made to products or processes. Therefore, we can make this 

assumption. We also assume that scheduled processing times in SAP are consistent with actual 

processing times. Variations in processing times carefully controlled, because deviations 

endanger product quality. Furthermore, the schedules have been proven to be realistic over the 

past years. Therefore, we can also safely make this assumption. 

Recall from Chapter 1 that piecewise linear transformations cannot be used to accurately 

calculate capacity demand. Instead, we design a calculation model that considers all relevant 

variables to calculate historical capacity demand from sales orders. We do not use a model from 

literature, because the calculations are company-specific.  

4.1.2 Step 2: Forecast capacity demand scenarios 
The second step is to generate capacity demand forecasts, using historical capacity demand as 

input. The main issue with the current seasonal naïve forecasting method is that it does not reflect 

uncertainty. Recall from Chapter 3 that the most commonly used method to include demand 

uncertainty is through demand scenarios with probabilities, based on data and human judgment, 

which are input for a stochastic optimization model. (Martínez-Costa, et al., 2014) However, 

Company A is not able to make such assumptions about the probability distribution of future 

demand through scenarios. Furthermore, they desire to compare capacity strategy alternatives, 

such that a trade-off can be made between certainty (of having sufficient capacity) and costs. For 

these reasons, we design a new method to include demand uncertainty. 

We decide to use one-tailed upper prediction intervals (PI) as capacity demand scenarios. Each 

scenario corresponds with a coverage probability of the prediction interval. For example, a one-

tailed upper PI with a coverage probability of 70% means that there is a 70% probability that the 

actual capacity demand will be less than the PI. This is the type of certainty that Company A is 

looking for, the coverage probability is an intuitive measure for capacity planning. We assume 

forecast errors are normally distributed when calculating prediction intervals. 

We select a model based on our literature review in Section 3.1. We decide to use the ETS 

forecasting model, instead of the currently used seasonal naïve forecast, to further address the 

second core problem of unreliable demand forecasts. We choose ETS over the slightly better 

performing hybrid forecasting methods, because the underlying exponential smoothing models 

are widely proven in practice. We choose ETS over ARIMA because ETS generates more accurate 

prediction intervals. We do not use the Theta method, as it is not able to generate prediction 

intervals. (Makridakis, et al., 2020) 

The uncertainty can become unrealistically large due to being far in the future. To address this 

issue, we decide to keep the forecast variance constant after the third year, such that the scenarios 

remain realistic. We choose three years, because Company A wants to purchase machines of one 

type at most once every three years, due to economies of scale. Therefore, the uncertainty within 

three years must be considered. We recommend that Company A uses the capacity planning 

model each year to reevaluate the capacity plan based on the most recent data, to make 

adjustments where needed. 
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4.1.3 Step 3: Create judgmental sales forecasts 

The third step is to create judgmental sales forecasts, based on the sales prognoses provided by 

sales, marketing and customers. Recall from Chapter 2 that judgmental forecasts can currently 

not be accurately translated to capacity demand, which contributes to the core problem of 

unreliable demand forecasts. To address this issue, we design two methods to include judgmental 

forecasts: adjustment factors and future orders. These methods are implemented through step 3, 

4 and 5. 

Adjustment factors are the expected percentage changes from historical demand for specific 

customers, products, or a combination thereof. Fleischmann et al. (2006) use a similar method, 

by increasing demand with a percentage for the optimistic scenario. Recall from Section 3.1 that 

these adjustment factors should only be used for exceptions caused by external factors that are 

not reflected in historical data. Recall from Section 3.1 that judgmental forecasts are especially 

important when historical data is not available. For Company A, this is the case for new product 

demand that requires new machinery. Demand for new products can be expressed as future 

orders.  

Information for both adjustment factors and future orders can be obtained through discussion 

with sales, marketing, and customers. The accuracy of such judgmental forecasts is crucial. 

Currently, Company A solely uses outcome feedback to improve accuracy of this information. 

However, we recommend Company A to use task properties feedback, which literature has 

proven to be the most effective (Section 3.1).  

4.1.4 Step 4: Calculate adjusted capacity demand 

The fourth step is to calculate adjusted capacity demand, using sales orders and adjustment 

factors as input. The calculation model is the same one used in step 2. The capacity demand for 

specific customers and products is multiplied by the respective adjustment factors and summed 

to obtain the adjusted capacity demand. By doing this, we assume a percentage change in capacity 

demand for judgmental adjustments. However, a demand decrease can result in either smaller 

orders or fewer orders. Both impact capacity demand differently. This is a simplification that 

must be considered by decision makers when using adjustment factors. The calculation model is 

also used to separately calculate future capacity demand by using future sales orders as input.  

4.1.5 Step 5: Forecast adjusted capacity demand scenarios 

The fifth step is to generate adjusted capacity demand scenarios, using the adjusted capacity 

demand as input. There are two differences with Step 2. First, the model uses adjusted capacity 

demand as input, which is output of step 4. Second, the model adds the future capacity demand 

from step 2 to the capacity demand forecasts, to obtain the adjusted capacity demand scenarios.  

4.1.6 Step 6: Determine optimal capacity strategies 
The sixth step is to determine the optimal capacity strategy given a set of parameters (i.e. input). 

The most important parameters are capacity demand, available capacity, and cost parameters. 

Most parameters are based on historical data and actuals, and therefore accurate. We apply a 

sensitivity analysis for the uncertain parameters in Chapter 5. 

We decide to use a mathematical programming model for strategic capacity planning. 

Alternatively, simulation-based models are sometimes used for strategic capacity planning. 

Simulation models are especially important when there is capacity uncertainty, such as variable 

processing times. (Geng & Jiang, 2009) At Company A, processing times are stable, because the 

processes are predictable. Processing times are prescribed by R&D and closely monitored to 

achieve consistent quality. Therefore, there is no need to create a detailed simulation model. 

Furthermore, we would have to make assumptions about the arrival distribution of over 100 
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different products, which is difficult due to the lack of data and underlying variables. For example, 

the weather conditions impact each crop in a different way.  

4.1.6.1 Anticipating workforce planning 

To address the core problem of misaligned capacity decisions, we decide to anticipate tactical 

decisions (i.e. workforce planning) in our optimization model for strategic capacity decisions. 

Recall from Chapter 2 that the workforce planning and machine capacity are related. For example, 

double shifts effectively double machine capacity. In literature, only two strategic capacity models 

consider workforce planning. (Martínez-Costa, et al., 2014) First, Bihlmaier et al. (2009) consider 

workforce planning in a two-stage stochastic model, by using shift models. Second, Fleischmann 

et al. (2006) consider workforce planning in a deterministic model, by using overtime decisions. 

Their research is the main foundation for our mathematical programming model.  

Recall from Section 3.2 that Bihlmaier et al. model workforce planning using shift models, while 

Fleischmann et al. use overtime. To model workforce planning, we use the number of operators 

and flexibility measures such as flex-operators, single or double shifts, and overtime.  

4.1.6.2 Including demand uncertainty 

Our mathematical programming must deal with demand uncertainty. To do this, Bihlmaier et al. 
define demand scenarios, each with a quantity and probability. They use a two-stage stochastic 

model to optimize the capacity plan for these demand scenarios. Fleischmann et al. state that they 

can make no reasonable assumption about the probability distribution of the future demand of 

products over a 12-year horizon. Therefore, they use a simple scenario technique by defining the 

expected scenario and a scenario with increased demand (i.e. 30% increase). They use a discrete 

model to optimize the capacity plan for the expected scenario. They fix the product allocation 

decisions and optimizes the capacity plan for the increased demand scenario.  

To model demand uncertainty, we use the capacity demand scenarios generated in step 2, where 

each scenario corresponds to a coverage probability. The optimization model generates the most 

cost-efficient decisions such that the available capacity is sufficient to meet the capacity demand 

scenario. The output of this step is an optimal capacity strategy for each scenario.  

Note that a scenario with 70% coverage probability means that the actual capacity demand will 

be at most equal to this level, but is most likely less. Therefore, it would be incorrect to optimize 

the strategic and tactical capacity decisions for this scenario. Instead, we optimize the strategic 
and tactical capacity decisions for the point forecast (i.e. most likely scenario), and set a constraint 

that the maximum capacity including workforce flexibility must be sufficient to deal with the 

capacity demand scenario. Company A is not interested in a capacity strategy with a coverage 

probability lower than 30%, because it is their business strategy to be a reliable and flexible 

partner for their customers. 

4.1.6.3 Planning horizon and period 

Fleischmann et al. consider a 12-year planning horizon, which is used by BMW, the company on 

which the paper focuses. Bihlmaier et al. state that the planning horizon should cover at least two 

product life cycles, because they deal with product succession, for which demand overlaps. 

Therefore, they use a planning horizon of 14 years, as the product life cycle of cars is 5 to 7 years. 

For Company A, product life cycles are not as important. Innovations revolve around formulation 

or machine settings. For a new coating, the formulation of the coating powder changes, but the 

same coating pan can be used. Therefore, we use machine life cycles to determine the planning 

horizon. At Company A, machines are replaced after about 10 years. Therefore, we decide to use 

a planning horizon of 10 years.  
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Bihlmaier et al. use periods of one year to reduce the problem size, as it is a multi-site problem, 

including transportation and product allocation. Fleischmann et al. also use one-year periods. 

However, both papers focus on the car industry, where the production rate is relatively smooth 

throughout the year, to increase efficiency. Recall from Chapter 1 that at Company A, and the 

agriculture industry in general, production leveling is limited. Treatments for most crops are 

limited to a small time window, in which Company A must provide sufficient capacity. Therefore, 

we decide to use periods of one month. The problem size of our model is sufficiently small to use 

monthly periods over 10 years, because it is a single-site problem. 

4.1.7 Step 7: Evaluate capacity strategies 

In step 7, we assess how the capacity strategies from step 6 perform in different scenarios. Based 

on this performance, management can decide between a more expensive and save strategy with 

a higher coverage probability, or a cheaper strategy. We use the optimization model used in step 

6, but we fix the strategic decisions and optimize for the tactical decisions only. That way, we can 

evaluate how a capacity strategy performs on a tactical level in various scenarios. This method of 

comparing alternative capacity strategies is similar to Fleischmann et al., except they relax 

constraints to obtain alternative capacity strategies.  

4.2 MODEL DESCRIPTION 

4.2.1 Step 1: Calculate historical capacity demand 

The first step is to calculate the historical capacity demand from historical sales orders. We 

measure historical capacity demand per month and for each machine- and operator type. Table 

4-1 shows an example of a sales order, which data is retrieved from SAP. Note that seed quantity 

is given in thousands (t). The model also uses production data from SAP, which consists of ten 

different data exports, including the bill of materials and processing times.  

Customer Treatment Requested delivery date Seed quantity (t) 

SeedCompany Split pill 3.5 let 20-08-19 505 
Table 4-1. Example of sales order data as input for the first step of the model. 

To calculate historical capacity demand, the model first uses the bill of materials to find all sub-

processes that are part of the treatment. Then, for each sub-process, the sales orders are 

separated into multiple process orders, to deal with the maximum seed quantity constraints of 

each process. For each process order, the required resources and processing times are obtained. 

Finally, these processing times are summed by requested delivery date, to obtain the historical 

capacity demand for each resource type. We explain this calculation in detail in Section 4.3.  

The output of the first step is the historical capacity demand. Table 4-2 shows this output, for the 

example of input in Table 4-1.  

Resource Month Processing time (h) 

Coating operators 01-08-19 2.5 

Coating pan P100 01-08-19 2.5 
Table 4-2. Example of historical capacity demand as output for the first step and input for the second step. 

4.2.2 Step 2: Forecast capacity demand scenarios 

The second step is to forecast various capacity demand scenarios, based on the historical capacity 

demand calculated in the previous step (Table 4-2). We use the ETS forecasting model, as 

discussed in Section 4.1, to generate scenarios.  
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The first step of ETS is to select a model type from the Error, Trend, Seasonality taxonomy.  The 

model with the lowest AIC (Akaike’s Information Criterion) is selected. Next, the model 

parameters are estimated using a likelihood function for the vector of the unknown model 

parameters, based on one-step-ahead prediction distributions. After selecting the model and 

estimating the model parameters, the point forecasts are calculated for the planning horizon. 

Finally, the forecast variance and prediction intervals are calculated, based on the coverage 

probability. The coverage probability for each scenario is provided as input (example in Table 

4-3). The output of the forecasting model are the capacity demand scenarios: the forecasted 

monthly hours per machine- and operator type that are required to satisfy demand (example in 

Table 4-4). 

Recall from Section 4.1 that each scenario corresponds to a coverage probability. Table 4-3 shows 

the four scenarios we use. These coverage probabilities are intuitive and meaningful for Company 

A. A company can decide to use different coverage probabilities, depending on the risks they are 

willing to take and the options they have to deal with capacity shortages.  

Scenario Coverage probability 

Pessimistic 30% 

Realistic 50% 

Optimistic 70% 

Very optimistic 90% 
Table 4-3. Coverage probabilities for each capacity demand scenario as input for the second step. 

Table 4-4 shows the scenarios for April 2020 for coating operators and coating pan P100. The 

complete forecast covers the entire planning horizon and all machine- and operator types. Recall 

from Section 4.1 that we keep the forecast variance constant after the third year. 

Resource Month 30 50 70 90 

Coating operators 01-01-20 1380.43 1481.74 1583.05 1729.33 

Coating pan P100 01-01-20 1048.32 1114.53 1180.75 1276.35 
Table 4-4. Example of capacity demand scenarios for one month. 

4.2.3 Step 3: Create judgmental sales forecasts 

Recall from Section 4.1 that we design two ways to include judgmental forecasts: adjustment 

factors and future sales orders. The long-term sales prognosis is provided by sales and marketing, 

which is the starting point for discussion. The adjustment factors are determined in discussion 

with sales, marketing and supply chain. The adjustment factors can be specified for each product-

customer combination, but also for an entire product-range. Table 4-5 shows an example of 

adjustment factors, where the demand for treatment Split pill 3.5 let of SeedCompany is expected 

to halve. In this example, the demand for Therm 3 tom is expected to increase by 20%.  

Customer Treatment Adjustment factor 

SeedCompany Split pill 3.5 let 0.5 

All Therm 3 tom 1.2 
Table 4-5. Example of adjustment factor provided by company experts. 

Recall from Section 4.1 that future sales orders are useful when there is no historical demand 

available, such as for new products. These future sales orders are provided by sales and 

marketing, based on customer intentions. Table 4-6 shows an example of future sales orders. In 

this example, Company A expects 20 large orders (average seed quantity of 500,000) and 40 small 

orders (average seed quantity of 100,000) in the first month of January 2020. Company experts, 

such as account managers, must provide this information for the 10-year planning horizon. Such 
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new product demand forecasts are usually rough estimates, but they do provide insight in the 

impact on capacity demand. 

Treatment Requested delivery date Seed quantity t Frequency 

Split Let New 01-01-20 500 20 

Split Let New 01-01-20 100 40 
Table 4-6. Example of judgmental sales forecast as input for the third step. 

4.2.4 Step 4: Calculate adjusted capacity demand 

The adjustment factor and future sales orders are both used in a different way to calculate 

adjusted capacity demand. For adjustment factors, the same calculation model from Step 1 is 

used, but an extra step is added. Before summing capacity demand, the following formula is 

applied, where the judgmental factor is 1 if no adjustments are made.  

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 = ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 ∗  𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 

For future sales orders, we provide them as input for the same calculation model from Step 1 

instead of historical sales orders. To do this, we duplicate the future sales orders into individual 

sales orders, based on the frequency. The result is the capacity demand for future months, which 

we add to the forecast in Step 5. 

4.2.5 Step 5: Forecast adjusted capacity demand scenarios 

In this step, the same model used in Step 2 is used, except that the input is the adjusted capacity 

demand from Step 4. The same coverage probabilities are used to generate the respective 

scenarios. After forecasting the scenarios, the future capacity demand calculated from future sales 

orders (Step 4) is added to the forecasts.  

4.2.6 Step 6: Determine optimal capacity strategies 

The sixth step is to determine the optimal capacity plan for each capacity demand scenario. We 

designed a MIP model that jointly optimizes the strategic and tactical decisions. The most 

important parameters for the MIP model are the capacity demand (scenario), available capacity 

parameters, and cost parameters. We discuss this MIP model in detail in Section 4.4. Recall from 

Section 4.1 that we decide to optimize the strategic and tactical decisions for the realistic scenario 

(50%), while the maximum capacity including workforce flexibility must be sufficient to satisfy 

either the realistic (50%), optimistic (70%), or very optimistic (90%) scenario. As the coverage 

probability increases, the resulting capacity strategy will be safer (a higher probability of having 

sufficient capacity) but more expensive. 

We define the following formulas to calculate available capacity for machines and operators. The 

Operating Equipment Effectiveness (OEE) is often used for capacity planning, which is a 

multiplication of the availability, performance, and quality. The availability (or uptime) is the 

percentage of scheduled time that the resource is available to operate. The performance is the 
speed at which an operation runs compared to the designed speed. The quality is the percentage 

of products that are processed correctly the first time round, so without rework or scrap. These 

concepts can be applied to operators as well.  

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑡𝑦𝑝𝑒 𝑖

= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 ∗ 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑤𝑜𝑟𝑘𝑑𝑎𝑦𝑠 ∗  𝑑𝑎𝑖𝑙𝑦 ℎ𝑜𝑢𝑟𝑠 ∗ 𝑂𝐸𝐸 

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡𝑦𝑝𝑒 𝑗

= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 ∗ 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑤𝑜𝑟𝑘𝑑𝑎𝑦𝑠 ∗ 𝑑𝑎𝑖𝑙𝑦 ℎ𝑜𝑢𝑟𝑠 ∗ 𝑂𝐸𝐸 

The output of this step is the optimal strategic capacity plan for each scenario. Table 4-7 shows 

an example of this output for one machine type and one month. It tells us that the optimal strategy 
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for the realistic scenario (50%) is to have 11 coating pan P100 available, and to purchase 1 coating 

pan P100 in January 2020.  

Resource Month Scenario Max capacity (h) Number of machines Purchased 

Coating pan P100 01-01-20 50% 1100 11 1 

Coating pan P100 01-01-20 70% 1200 12 2 

Coating pan P100 01-01-20 90% 1400 14 4 
Table 4-7. Example of output of fourth step for one resource and one month. 

4.2.7 Step 7: Evaluate capacity strategies 

The seventh and final step is to evaluate the strategic capacity plans determined in the Step 6. To 

do this, we fix the strategic decisions and optimize the tactical decisions, while changing the 

capacity demand scenario. If the problem is infeasible, the capacity strategy is not able to satisfy 

the capacity demand of the scenario. This can be the case when the strategy is optimized for a 

scenario with a lower coverage probability. If the problem is feasible, the result is a tactical 

capacity plan that is able to fulfill the capacity demand, given the strategic capacity plan. 

4.3 CAPACITY DEMAND CALCULATION MODEL 
In this section, we answer the following research question.  

(Q4.1) How can the capacity demand be calculated more accurately?  

Recall from Section 4.1 and 4.2 that the calculation model is used in steps 1 and 4 of our model. 

Figure 4-2 visualizes the steps of this calculation model. Note that this description is simplified 

for the sake of brevity, we focus on the most important steps. We store the input and output in 

Excel. The calculation model is implemented in R. 

 

Figure 4-2. Overview of the calculation model. 

4.3.1 Step 1: From sales order to process order 

Recall from Section 4.2 that the input is a list of the historical sales orders. The calculation model 

also uses the bill of materials from the production data, which states the processes that must be 

performed for each product. For each sales order, the bill of materials is used to generate the list 

of processes to perform. The result is a list of process orders. Table 4-8 and Table 4-9 show an 

example of one sales order and the resulting two process orders. 

Customer Treatment Requested delivery date Seed quantity (t) 

SeedCompany Split pill 3.5 let 20-08-19 505 
Table 4-8. Example of a historical sales order. 
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Customer Treatment Requested delivery date Seed quantity t Process order 

SeedCompany Split pill 3.5 let 20-08-19 505 Coating 3.5 let 

SeedCompany Split pill 3.5 let 20-08-19 505 Drying 3.5 let 
Table 4-9. Example of process orders for the sales order example. 

4.3.2 Step 2: Determine process order version 

In the second step the model determines which version of the process must be used, for each 

process order in step one (Table 4-9). Company A has resources with varying seed capacity 

ranges for each process. The simplest example is the coating process, for which Company A has 

coating pans with varying diameters. A larger coating pan is able to process larger seed quantities. 

To deal with this, Company A has defined separate versions of each process. Each version 

corresponds to a seed quantity range. For the coating process, there is a version with a small 

coating pan and a version with a large coating pan, each with predefined seed quantity ranges. 

These versions with seed quantity ranges are obtained from production data.  

For the example in Table 4-9, Table 4-10 shows the output: the process order versions. Note that 

the coating process order is split in two process orders, because the maximum seed quantity is 

300. This is not necessary for the drying process order, because the maximum seed quantity is 

sufficiently large. Company A always splits the seed quantity into equal batches, to ensure a 

uniform output.  

Customer Treatment Requested delivery date Seed quantity Process order Version 

SeedCompany Split pill 3.5 let 20-08-19 252.5 Coating 3.5 let 100-300 

SeedCompany Split pill 3.5 let 20-08-19 252.5 Coating 3.5 let 100-300 

SeedCompany Split pill 3.5 let 20-08-19 505 Drying 3.5 let 400-1000 
Table 4-10. Example of process orders with version. 

4.3.3 Step 3: From process orders to processing times 

The third step is to generate a list of resources and processing times for each process order. The 

production task list from production data is input. The production task list contains the resources 

and processing times required for each process order and version. Starting with input from Table 

4-10, Table 4-11 shows the output of this step.  

Requested delivery date Seed quantity Process order Version Resource Time h 

20-08-19 252.5 Coating 3.5 let 100-300 Operator coa 2.5 

20-08-19 252.5 Coating 3.5 let 100-300 Coating pan L 2.5 

20-08-19 252.5 Coating 3.5 let 100-300 Operator coa 2.5 

20-08-19 252.5 Coating 3.5 let 100-300 Coating pan L 2.5 

20-08-19 505 Drying 3.5 let 400-1000 Operator dry 0.15 

20-08-19 505 Drying 3.5 let 400-1000 Dryer L 6 
Table 4-11. Example of production tasks for process orders and versions. 

4.3.4 Step 4: Sum processing times 

The fourth step is to sum the processing time of the production tasks by resource and month to 

obtain the historical capacity demand. Thereby, the demand is aggregated for all customers and 

products. Recall from Section 4.1 that we aggregate to forecast the capacity demand more 

accurately; there is insufficient data otherwise. Also recall from Section 4.1 that we aggregate per 

month to include seasonality and workforce planning. We use the requested delivery date to 

aggregate per month. By doing that, we assume that the processing takes place in the month of 

the requested delivery date. For example, if the requested delivery date is 02-08-19, the order is 
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likely to be processed in July instead of August, while we assume the order is processed in August. 

We discuss this simplification in Chapter 5. 

Starting with input from Table 4-11, Table 4-12 shows the resulting historical capacity demand. 

When starting with all sales orders as input instead, we obtain a meaningful historical capacity 

demand with seasonal patterns. The complete results are discussed in Chapter 5. 

Requested delivery date Resource Time h 

01-08-19 Operator coa 5 

01-08-19 Coating pan L 5 

01-08-19 Operator dry 0.15 

01-08-19 Dryer L 6 
Table 4-12. Example of historical capacity demand. 

4.3.5 Step 5: Calculate adjusted processing times 

Recall from Section 4.2 that to calculate adjusted capacity demand, we add a step to the 

calculation model.  The input is adjustment factors, which is simply a multiplier for the processing 

time for specific products, customers, or a combination thereof. The output has the same format 

as Table 4-11, except with adjusted processing time, depending on the adjustment factors. For 

example, Table 4-13 shows the processing times if the adjustment factor is 2 for SeedCompany.  

Requested delivery date Seed quantity Process order Version Resource Time h 

20-08-19 252.5 Coating 3.5 let 100-300 Operator coa 5 

20-08-19 252.5 Coating 3.5 let 100-300 Coating pan L 5 

20-08-19 252.5 Coating 3.5 let 100-300 Operator coa 5 

20-08-19 252.5 Coating 3.5 let 100-300 Coating pan L 5 

20-08-19 505 Drying 3.5 let 400-1000 Operator dry .3 

20-08-19 505 Drying 3.5 let 400-1000 Dryer L 12 
Table 4-13. Example of production tasks for process orders and versions, after adjustment factor calculation. 

After applying the adjustment factors, the same summation from Step 4 is applied to obtain the 

monthly capacity demand. 

4.4 STRATEGIC CAPACITY PLANNING MODEL 
In this section, we answer the following research question.  

(Q4.3) How can the capacity planning model from literature be applied to 
Company A?  

4.4.1 Strategic capacity planning with workforce planning and demand uncertainty 

The purpose of our MIP model is to determine the capacity plan that satisfies demand at the 

lowest cost, while considering demand uncertainty. Recall from Section 4.1 that we use the 

models from Bihlmaier et al. (2009) and Fleischmann et al. (2006) as basis for our MIP model. 

Both models are unique in considering workforce planning in their strategic capacity plan. Recall 

from Section 4.1 that we anticipate tactical workforce planning in our strategic capacity plan, 

because the workforce planning decisions impact the machine capacity. To find an optimal 

strategic capacity plan, a trade-off be made between purchasing more machines or increasing 

workforce flexibility, for example. Our MIP model is a simplified version of Bihlmaier’s multi-site 
model, because we deal with a single-site problem. We do not consider product allocation nor 

transportation problems.  
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Bihlmaier extends his strategic capacity planning model by integrating workforce planning 

through shift models. He defines a shift model as an amount of available capacity for which a 

number of employees is required. In our model, we break the shift model down into regular time, 

flexible time, overtime, and number of shifts. Each scales with the number of employees. Regular 

time is always available. Overtime and the number of shifts are both a binary monthly decision. 

One or two shifts. With or without overtime.  

Bihlmaier extends his model by defining demand scenarios with a certain probability and finds 

the optimal capacity plan through stochastic optimization. Recall from Section 4.1 that we use 

scenarios based on coverage probability to generate capacity strategy alternatives. 

4.4.2 Indices, parameters and decision variables 

Let 𝑖 ∈ 𝐼 be the machine types, which are operated by operator types 𝑗 ∈ 𝐽. The planning horizon 

consists of months 𝑡 ∈ 𝑇.  

Symbol Definition 
𝑖 ∈ 𝐼 Set of machine types 
𝑗 ∈ 𝐽 Set of operator  types 
𝑡 ∈ 𝑇 Set of months in planning horizon 

Table 4-14. List of indices 

The cost-related parameters are listed in Table 4-15. All other parameters are listed in Table 

4-16. The capacity demand of machines and operators (𝑐𝑖𝑡
𝑚, 𝑐𝑗𝑡

𝑜 ) is the capacity demand scenario, 

which is the 50% scenario when generating capacity strategies. Recall from Section 4.1 that to 

generate capacity strategies, we add a constraint that the maximum machine capacity including 

workforce flexibility should be equal to a peak scenario (𝑝𝑖𝑡). The reason is that the trade-off 

between machine capacity and workforce planning is made based on realistic demand, while 

having a higher maximum capacity to deal with extremes. The peak scenario represents these 

extremes, and has a coverage probability at least as high as the realistic scenario (50%).  

Symbol Definition Unit 

𝑐𝑚𝑖 Maintenance cost of machine i Euros per month 

𝑐𝑝𝑖  Procurement cost of machine i Euros 

𝑐𝑤𝑗 Wage in regular shift of operator j Euros per month 

𝑐ℎ𝑗 Hiring cost of operator j Euros 

𝑐𝑙𝑗 Leaving cost of operator j Euros 

𝑐𝑡𝑗 Training cost of (flex-)operator j Euros 

𝑐𝑑𝑗  Deployment cost of flex-operator j Euros per month 

𝑐𝑜𝑗 Overtime cost, as multiplier for the wage in regular shift % of wage 

𝑐𝑠𝑗 Double shift cost, as multiplier for the wage in regular shift % of wage 
Table 4-15. List of cost parameters. 

Symbol Definition Unit 

𝑐𝑖𝑡
𝑚 Capacity demand for machine i in month t Hours 

𝑐𝑗𝑡
𝑜  Capacity demand for operator j in month t Hours 

𝑝𝑖𝑡  Peak capacity demand for machine i in month t Hours 
𝑑𝑡

𝑤 Number of workdays in month t Days per month 

𝑑𝑡
𝑠 Number of Saturdays in month t Days per month 

𝑒𝑖
𝑚 Overall equipment effectiveness of machine i  % 

𝑒𝑗
𝑜 Overall equipment effectiveness of operator j % 

ℎ𝑖
𝑚 Daily number of hours available for machine i Hours per day 
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ℎ𝑗
𝑜 Daily number of hours available for operator j Hours per day 

𝑎𝑗 Fraction of operators available of type j (e.g. not sick) % 

𝑥𝑦𝑖𝑗  1 if operator j is required for machine i to operate, 0 if not Binary 

m Arbitrary large number  
Table 4-16. List of miscellaneous parameters. 

The strategic capacity decisions concern machines. Capacity is increased by purchasing new 

machines (𝑃𝑖𝑡), which results in a number of available machines (𝑋𝑖𝑡). Capacity replacement is not 

included explicitly. However, capacity replacement can be modeled by setting the number of 

machines at time 0 (𝑋𝑗,𝑡=0) at 0. Reducing the number of machines is only interesting if 

maintenance cost is high, or machines can be sold, which is not the case for Company A.  

The tactical capacity decisions concern operators. Capacity is increased through hiring (𝐻𝑗𝑡) 

regular operators (𝑌𝑗𝑡) and training (𝑇𝑗𝑡) flex operators (𝐹𝑗𝑡). Flex operators can be deployed for 

a fraction of a month (𝐷𝑗𝑡), which is why this is the only decisions variable that is a positive real 

number. Operators can leave (𝐿𝑗𝑡) for various reasons, such as pension, moving to another 

department or leaving to work for a competitor.  

The strategic and tactical capacity decisions are integrated using overtime (𝑂𝑗𝑡) and shifts (𝑆𝑗𝑡). 

When an operator type works in double shifts, the capacity of the machines operated by this 

operator type is effectively doubled, at the expense of an increase in wages by the factor  

𝑐𝑠𝑗. The reason is that by using double shifts (which are non-overlapping), the machines can be 

used for 15 hours instead of 7.5 hours each day. When an operator type works overtime, the 

capacity of machines operated by this operator type increases by 12% on average. The reason is 

that in overtime, each operator works for an additional 5 hours on Saturdays, which results in an 

average time increase of 12% per month. This usually only happens in case of emergencies, which 

is on average one month each year, due to peak demand. 

Symbol Definition Unit 
𝑋𝑖𝑡 Number of machines of type i available in month t Integer 
𝑃𝑖𝑡 Number of machines of type i purchased in month t Integer 
𝑌𝑗𝑡 Number of operators of type j available in month t FTE 

𝐻𝑗𝑡 Number of operators of type j hired in month t FTE 

𝐿𝑗𝑡 Number of operators of type j leaving in month t FTE 

𝐹𝑗𝑡 Number of flex-operators of type j available in month t FTE 

𝐷𝑗𝑡 Number of flex-operators of type j deployed in month t FTE 

𝑇𝑗𝑡 Number of flex-operators of type j trained in month t FTE 

𝑂𝑗𝑡 0 for no overtime; 1 for overtime for operator type j in month t Binary 

𝑆𝑗𝑡 0 for regular shift and 1 for double shift for operator j in month t  Binary 

𝑍𝑗𝑡  Wage factor. 𝑌𝑗𝑡 if regular shift; (1 + 𝑐𝑠𝑗) ∗ 𝑌𝑗𝑡  if double shift; 

 (1 + 𝑐𝑜𝑗) ∗ 𝑌𝑗𝑡  if overtime; (1 + 𝑐𝑠𝑗 + 𝑐𝑜𝑗) ∗ 𝑌𝑗𝑡  if double shift and 

overtime 

Double 

Table 4-17. List of decision variables. 

4.4.3 Objective and constraints 

The MILP model that determines the optimal capacity plan is shown below. The objective 

minimizes the costs associated with the capacity plan, which are: machine maintenance cost, cost 

of purchasing machines, shift- and overtime-dependent wages, deployment of flex-operators, cost 

of hiring and training new operators, and the training of flex-operators. 
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𝑚𝑖𝑛 ∑ ∑ 𝑐𝑚𝑖 ∙ 𝑋𝑖𝑡

𝑡𝑖

+ ∑ ∑ 𝑐𝑝𝑖 ∙ 𝑃𝑖𝑡

𝑡𝑖

+ ∑ ∑ 𝑐𝑤𝑗

𝑡

∙ 𝑍𝑗𝑡

𝑗

+ ∑ ∑ 𝑐𝑑𝑗 ∙ 𝐷𝑗𝑡

𝑡𝑗

+ ∑ ∑(𝑐ℎ𝑗 + 𝑐𝑡𝑗) ∙ 𝐻𝑗𝑡

𝑡𝑗

+ ∑ ∑ 𝑐𝑙𝑗 ∙ 𝐿𝑗𝑡

𝑡𝑗

+ ∑ ∑ 𝑐𝑡𝑗 ∙ 𝑇𝑗𝑡

𝑡𝑗

 

subject to 

1) 𝑋𝑖𝑡 ∙ 𝑑𝑡
𝑤 ∙ ℎ𝑖

𝑚 ∙ 𝑒𝑖
𝑚 ≥ 𝑐𝑖𝑡

𝑚 − ∑ 𝑚 ∙ (𝑆𝑗𝑡 + 𝑂𝑗𝑡) ∙ 𝑥𝑦𝑖𝑗𝑗   ∀ 𝑖, 𝑡 

2) 2 ∙ 𝑋𝑖𝑡 ∙ 𝑑𝑡
𝑤 ∙ ℎ𝑖

𝑚 ∙ 𝑒𝑖
𝑚 ≥ 𝑐𝑖𝑡

𝑚 −  ∑ 𝑚 ∙ 𝑂𝑗𝑡 ∙ 𝑥𝑦𝑖𝑗𝑗  ∀ 𝑖, 𝑡 

3) 𝑋𝑖𝑡 ∙ 𝑑𝑡
𝑤 ∙ ℎ𝑖

𝑚 ∙ 𝑒𝑖
𝑚 + 0.12 ∙ 𝑋𝑖𝑡 ∙ 𝑑𝑡

𝑠 ∙ ℎ𝑖
𝑚 ∙ 𝑒𝑖

𝑚 ≥ 𝑐𝑖𝑡
𝑚 − ∑ 𝑚 ∙ 𝑆𝑗𝑡 ∙ 𝑥𝑦𝑖𝑗𝑗   ∀ 𝑖, 𝑡 

4) 2 ∙ 𝑋𝑖𝑡 ∙ 𝑑𝑡
𝑤 ∙ ℎ𝑖

𝑚 ∙ 𝑒𝑖
𝑚 + 0.12 ∙ 𝑋𝑖𝑡 ∙ 𝑑𝑡

𝑠 ∙ ℎ𝑖
𝑚 ∙ 𝑒𝑖

𝑚 ≥ 𝑝𝑖𝑡   ∀ 𝑖, 𝑡 

5) (𝑌𝑗𝑡 + 𝐷𝑗𝑡) ∙ 𝑑𝑡
𝑤 ∙ ℎ𝑗

𝑦
∙ 𝑒𝑗

𝑦
≥ 𝑐𝑗𝑡

𝑦
− 𝑚 ∙ 𝑂𝑗𝑡   ∀ 𝑗, 𝑡 

6) (𝑌𝑗𝑡 + 𝐷𝑗𝑡) ∙ 𝑑𝑡
𝑤 ∙ ℎ𝑗

𝑦
∙ 𝑒𝑗

𝑦
∙ 𝑎𝑗 + 0.12 ∙ 𝑌𝑗𝑡 ∙ 𝑑𝑡

𝑠 ∙ ℎ𝑗
𝑦

∙ 𝑒𝑗
𝑦

∙ 𝑎𝑗 ≥ 𝑐𝑗𝑡
𝑦

  ∀ 𝑗, 𝑡 

7) 𝑍𝑗𝑡 ≥ 𝑌𝑗𝑡   ∀ 𝑗, 𝑡 

8) 𝑍𝑗𝑡 ≥ (1 + 𝑐𝑠𝑗) ∙ 𝑌𝑗𝑡 − 𝑚 ∙ (1 − 𝑆𝑗𝑡)  ∀ 𝑗, 𝑡 

9) 𝑍𝑗𝑡 ≥ (1 + 𝑐𝑜𝑗) ∙ 𝑌𝑗𝑡 − 𝑚 ∙ (1 − 𝑂𝑗𝑡)  ∀ 𝑗, 𝑡 

10) 𝑍𝑗𝑡 ≥ (1 + 𝑐𝑠𝑗 + 𝑐𝑜𝑗) ∙ 𝑌𝑗𝑡 − 𝑚 ∙ (2 − 𝑆𝑗𝑡 − 𝑂𝑗𝑡)  ∀ 𝑗, 𝑡 

11) 𝑋𝑖𝑡 + 𝑋𝑖,𝑡−1 − 𝑃𝑖,𝑡 = 0   ∀ 𝑖, 𝑡 

12) 𝑌𝑗𝑡 + 𝑌𝑗,𝑡−1 − 𝐻𝑗𝑡 + 𝐿𝑗𝑡 = 0  ∀ 𝑗, 𝑡 

13) 𝐹𝑗𝑡 + 𝐹𝑗,𝑡−1 − 𝑇𝑗𝑡 = 0  ∀ 𝑗, 𝑡 

14) 𝐷𝑗𝑡 ≤ 𝐹𝑗𝑡  ∀ 𝑗, 𝑡 

15) 𝑋𝑖𝑡 , 𝑃𝑖𝑡 , 𝑌𝑗𝑡 , 𝐻𝑗𝑡 , 𝐿𝑗𝑡 , 𝐹𝑗𝑡 , 𝑇𝑗𝑡 , 𝑍𝑗𝑡  ∈ ℕ0  

16) 𝐷𝑗𝑡 ∈ ℝ≥0 

17) 𝑂𝑗𝑡 , 𝑆𝑗𝑡 ∈ {0, 1} 

Constraints 1, 2, 3 and 4 together ensure available machine capacity is sufficient to fulfill the 

required machine capacity. To obtain the available capacity, the number of machines is 

multiplied by the workdays in a month, the hours available per day, and the machine OEE. 

Constraint 1 reflects the machine capacity when the operator who operates the machine, 

denoted by 𝑥𝑦𝑖𝑗 , has regular shifts. It is unconstrained when this operator has double shifts or 

uses overtime. Constraint 2 reflects the machine capacity when the operator has double shifts, 

which is double the normal capacity. Constraint 3 reflects the machine capacity when the 

operator works overtime, which is 0.12 times the daily capacity, multiplied by the number of 

Saturdays. Constraint 4 reflects the machine capacity when the operators work both double 

shifts and overtime, which is the maximum capacity. For constraint 4, the peak capacity scenario 

is used instead, because the maximum capacity must be able to deal with the peaks in demand. 

Constraint 5 and 6 ensure available operator capacity is sufficient to fulfill the required operator 

capacity. The number of regular and flexible operators is multiplied by the workdays in a 

month, the hours available per day, operator OEE, and the fraction of operators who are 

available (e.g. not sick or on leave). Constraint 5 reflects the operator capacity in case of no 

overtime, which is unconstrained when overtime is used. Constraint 6 reflects the operator 

capacity when they work overtime. 

Constraints 7, 8, 9, 10 reflect the wages for regular shifts, double shifts, overtime, or both double 

shifts and overtime, respectively. In case of regular shifts, 𝑍𝑗𝑡is equal to the number of operators 

(𝑌𝑗𝑡), because 𝑍𝑗𝑡  is minimized in the objective function. In case of double shift, 𝑍𝑗𝑡  is equal to the 

number of operators, multiplied by the cost factor for double shifts (1 + 𝑐𝑠𝑗). In case of 

overtime, 𝑍𝑗𝑡  is equal to the number of operators, multiplied by the cost factor for overtime 
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(1 + 𝑐𝑜𝑗). In case of overtime and double shifts, 𝑍𝑗𝑡  is equal to the number of operators, 

multiplied by the cost factor for double shifts and overtime (1 + 𝑐𝑠𝑗 + 𝑐𝑜𝑗). 

Constraint 11 is a balance equation for the number of machines, considering machine 

procurement. Constraint 12 is a balance equation for the regular operators, considering hiring 

and leaving. Constraint 13 is a balance equation for flex-operators, considering training.  

Constraint 14 limits the deployed flex-operators to the number of flex-operators available. 

When flex-operators are not deployed, they work at their regular function within the company.  

Constraint 15, 16, and 17 define the decision variables, either non-negative integers, non-

negative real numbers, or binary.  

Note that we do not consider lead-time in our  model. Company A expressed their preference for 

not considering lead-times, because it simplifies the interpretation of the model. Decision 

makers can simply calculate back in time to decide when they need to start the hiring or 

purchasing process.  

The capacity optimization model has been implemented in Excel, using the OpenSolver plugin 

with the CBC solver engine. This plugin and solver engine is part of the academic COIN-OR open 

source library for operations research.  

4.5 DISAGGREGATING CAPACITY DEMAND 
We assume that Company A is able to smooth capacity demand in each month, such that a capacity 

plan with monthly periods is sufficiently detailed. While deviations are expected on a weekly 

level, due to customer requested due dates, these deviations must not be too large. If this 

assumption does not hold, the capacity plan can be feasible on a monthly level, while being 

infeasible on a weekly level. In that case, the capacity plan is not very useful in practice. 

To validate the assumption, we disaggregate the demand forecast from months to weeks, while 

simulating the variance as observed in historical data. By comparing the disaggregated demand 

forecast to the available capacity, the result is the number of weeks with sufficient capacity in a 

year. We choose a year because it covers an entire season. Our method consists of the following 

steps. Figure 1-1 visualizes this method.  

1. The first step is to deseasonalize the historical capacity demand, using the seasonal 

factors as calculated by the forecasting model. Variance between weeks within each 

month is of interest, not variance caused by seasonality.  

2. The second step is to calculate the standard deviation of weekly capacity demand. This 

is calculated from deseasonalized historical capacity demand that is grouped by week.  

3. The third step is to split the monthly point forecasts evenly into weeks, such that we 

obtain a weekly forecasts. 

4. The fourth step is to calculate the weekly available capacity, based on the capacity 

decisions and parameters from our capacity planning model.  

5. The fifth step is to generate a random number from the standard normal distribution. 

6. This random number is multiplied by the standard deviation from Step 2 to obtain a 

deviation for each week. Note that by doing this we assume normally distributed errors. 

7. The deviation is added to the weekly forecasts from Step 3 to obtain a weekly forecast 

with a random component, based on variance in historical data. 

8. The final step is to calculate the fraction of weeks in which there is sufficient capacity, by 

comparing the available capacity from Step 4 to the weekly forecast from Step 7.  
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Because there is a random component, we decide to do multiple replications of Steps 5 through 

8. The number of replications is discussed in Chapter 5. To compare the disaggregated (weekly) 

to the aggregated (monthly) capacity demand, we follow the same method for months instead of 

weeks. The results are discussed in Chapter 5. 

 

Figure 4-3. Method to disaggregate capacity demand forecast. 

4.6 CONCLUSION 
In this Chapter, we designed a capacity planning model that addresses the three core problems 

identified in Chapter 1. We calculate capacity demand more accurately, by using historical sales 

orders and production data. (Q4.1) We generate more accurate capacity demand forecasts, by 

starting with historical capacity demand. We use ETS to model seasonality and uncertainty, 

through prediction intervals. (Q4.2) Continuing with these capacity demand forecast scenarios, 

we determine a set of optimal capacity plans, considering both strategic decisions and workforce 
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planning. These capacity plans enable company management to make the trade-off between 

uncertainty and capacity costs, thereby dealing with demand uncertainty. (Q4.3)  

The model contributes to theory in three ways. First, for companies where it is more complex to 

calculate capacity requirements from product demand, our model provides a much more accurate 

solution. A highly custom calculation can be created to calculate capacity demand, instead of using 

product demand in the capacity optimization model. Second, we have designed two ways to use 

judgmental forecasts with statistical forecasts. It results in more accurate forecasts in cases where 

contextual information, such as legislation and new products, heavily impacts future demand. 

Finally, we have designed a more intuitive way to include demand uncertainty. We use prediction 

intervals to determine how much capacity is needed to be able to fulfill demand with a specific 

certainty.   
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5 MODEL RESULTS 

We formulated the main research question in Chapter 1 as follows: how can machine- and 

operator capacity planning deal with seasonal and variable demand to improve on-time delivery 

in a cost-efficient way? We answer that question in this chapter. Based on the current situation 

analysis (Chapter 2), and the models from literature (Chapter 3), we designed the model in 

Chapter 4. Recall from Section 4.1 that the model consists of the following steps. 

1. Calculate historical capacity demand from sales orders 

2. Forecast future capacity demand scenarios from historical capacity demand  

3. Create judgmental sales forecasts 

4. Calculate adjusted capacity demand from judgmental sales forecasts 

5. Forecast adjusted capacity demand scenarios  

6. Determine optimal capacity strategy for each scenario using a MIP model 

7. Evaluate each capacity strategy for various scenarios 

Section 5.1 discusses the results and validation of the first two steps; the calculation and 

forecasting of capacity demand. Section 5.2 discusses Step 6; the optimal capacity strategies for 

each scenario. Section 5.3 discusses the impact of judgmental forecasts through adjusted capacity 

demand scenarios, the results of Step 3 through 5. Section 5.4 discusses Step 7; evaluating each 

capacity strategy. Finally, in Section 5.5, a sensitivity analysis of the model is performed. 

5.1 MODEL VALIDATION 
The optimization model described in Chapter 4 determines the optimal capacity strategy based 

on a set of parameters and decisions. This capacity strategy is only as good as the formulation of 

the model and the accuracy of the input parameters. The model formulation is described in 

Chapter 4. The most important input parameters for a capacity plan are the capacity demand and 

available capacity. We assess the accuracy of capacity demand in this section by answering the 

following research questions. Section 5.5 assesses the accuracy of the available capacity 

parameters, by performing a sensitivity analysis of the parameters subject to uncertainty and 

change. 

(Q5.1) How accurate can our model calculate capacity demand? 

(Q5.2) How accurate can our model forecast capacity demand? 

5.1.1 Historical capacity demand calculation 

The first step of our model is to calculate historical capacity demand from sales orders, using 

production data. To validate the accuracy of this calculation, we compare the calculated capacity 

demand with the actuals. The realized processing times are stored in SAP for each machine type, 

starting February 2018. We sum the processing times per month and machine to compare them 

with the calculated capacity demand. We choose to focus this section on dryer C0414, coating pan 

P100, and coating operators, because these are the top 3 when it comes to the amount of costs 

and capacity demand.  

Figure 5-1, Figure 5-2, and Figure 5-3 show the calculated and actual capacity demand for coating 

operators, coating pan P100, and dryer C0414, respectively. We expect that the actuals are 

smoother than the calculated values, because we sum capacity demand by requested delivery 

date, while Company A is able to smooth demand between weeks. However, we do not expect a 

large effect, as Company A is not able to smooth over longer periods, such as several months, 

because demand is tied to a timing window of about two to three weeks. We observe this 
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smoothing effect in Figure 5-1 between November 2018 and February 2019. In Figure 5-2, this 

effect is visible around May 2019. Finally, in Figure 5-3 we see smoothing in November and 

December 2018.  

 

Figure 5-1. Calculated vs actual capacity requirements of coating operators. 

 

Figure 5-2. Calculated vs actual capacity requirements of coating pan P100. 
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Figure 5-3. Calculated vs actual capacity requirements of dryer C0414. 

To evaluate the accuracy of our calculated capacity demand, we use performance measures that 

are usually used for forecasting. To do this, we define the error as the actual values minus the 

calculated values. We use three performance measures from Chapter 3, the literature review. We 

use the Mean Absolute Error to measure the mean error in hours, which helps to understand the 

accuracy from a practical point of view. We use the  symmetric Mean Absolute Percentage Error 

to compare the accuracy between resources. And lastly, we use the Mean Percentage Error to 

assess the bias. We do not use the Mean Absolute Scaled error, because it makes no sense to scale 

the calculation error to the naïve forecast error. 

Table 5-1 shows the performance measures for coating operators, coating pans P100 and dryers 

C0414. The MPE indicates a small bias; the calculation overestimates the capacity demand by 1% 

to 2.2% on average. We expect that the reason lies with scheduling. In SAP, there are hard limits 

on maximum seed quantities, while in practice these are not as strict. Therefore, the planners split 

sales orders in fewer process orders, by violating the maximum seed quantity limit. The bias will 

probably not have a significant impact on the capacity strategies, because 2% of the 14 dryers 

currently available is only 0.28 machine. Company A has less machines of each other type. 

MAE is highest for dryer C0414, with 182 hours. The available monthly capacity for one dryer is 

about 120 machine hours, so the error is about one and a machine month. The sMAPE for coating 

opeators and pan P100 is lower than dryer C0414. The errors are not the same for the same 

month between years, which is consistent with the small bias. For example, while the demand for 

dryer C0414 is calculated too high in November 2018, it is calculated too low in November 2018. 

Therefore, because we have data starting in 2015, we expect that the error will be averaged 

between the years, resulting in a lower forecast error. This is discussed in Section 5.1.2.  

Performance measure Coating 
operator  

Pan P100 Dryer C0414 

Mean Percentage Error (MPE) -0.022 -0.010 -0.019 

Mean Absolute Error (MAE) in hours 137 83 182 

Symmetric Mean Absolute Percentage Error (sMAPE) 0.048 0.038 0.072 
Table 5-1. Performance measures for calculated vs actual capacity requirements. 

The current calculation method measures capacity demand in number of orders, which is used to 

determine the capacity plan relative to previous year. If there are more orders, more operators 
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and workforce flexibility is required, and vice versa. The advantage of our calculation method is 

that we measure capacity demand in hours, which can be used to determine a capacity plan 

directly and more accurately, instead of relative to previous year. Figure 5-4 shows the number 

of orders as compared to the calculated and actual capacity demand for dryer C0414, with the 

number of orders on the secondary axis. We observe that the number of orders is a much more 

inaccurate method to determine capacity demand than our calculation model that uses sales 

orders and prdouction data. In addition to improved accuracy, the advantages of our calculation 

method over the current method are as follows.  

1. We measure capacity demand in hours instead of number of orders. Hours can directly be 

translated to number of machines and operators. 

2. By calculating from sales orders, we have data starting from February 2015, instead of 

February 2018, resulting in more accurate forecasts.  

3. We can calculate capacity demand for judgmental forecasts. For example, by forecasting 

the number and seed quantity of future orders for a new product or a new machine type. 

 

Figure 5-4. Number of orders compared to the calculated and actual capacity demand for pan P160. 

5.1.2 Capacity demand forecast 

The second step in our model is to forecast capacity demand, based on historical capacity demand, 

using the ETS forecasting model. To validate the forecasts, we compare the point forecast to the 

actuals. We need at least four seasonal cycles to generate accurate seasonal forecasts. Since we 

have data available since 2015, we only have 2019 to evaluate forecasts. As more data comes 

available, Company A should update the performance evaluation of the forecasts. 

Figure 5-5, Figure 5-6 and Figure 5-7 show the forecasted and actual capacity requirements for 

coating operators, coating pan P100, and dryer C0414, respectively. We observe the largest over-

forecast in March 2019, which is not a surprise, as demand was lower than expected that month. 

The number of orders was about 15% lower in March 2019 than in March 2018. The reason is 

that in 2018 there were severe quality issues with one crop, effectively halving demand for that 

product in 2019. P100 is an exception; it does not show an over-forecast in March 2019. This 

specific crop is processed on a different coating pan type, so that is in line with expectations. 
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Figure 5-5. Point forecast and actual capacity demand for coating operators. 

 

Figure 5-6. Point forecast and actual capacity demand for pan P100. 

 

Figure 5-7. Point forecast and actual capacity demand for dryer C0414. 
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To calculate the performance measures, we define forecast error as the actual values minus the 

forecasted capacity demand. Table 5-2 shows the performance measures. The Mean Percentage 

Error shows a negative bias, which is over-forecasting. The bias is much higher for coating 

operators and dryer C0414, which is explained by the low demand in March 2019 that we 

previously discussed. Taking this outlier into account, the mean percentage error is about -5% 

for coating operators and  -4% for dryers. This is less than half of one operator and dryer in terms 

of capacity, which is an acceptable bias for Company A. This bias should be re-evaluated as more 

data becomes available. 

The mean absolute error of coating operators is almost equal to one operator, which has a 

capacity of about 130 hours per month. The mean absolute error for pan P100 is about two-third 

of one machine (i.e. 150 hours) and for dryer C0414 it equals nearly one and a half machine (i.e. 

120 hours). Even though the mean absolute error is inflated because of low demand in March 

2019, the error is still substantial. When looking at the symmetric mean percentage error, we see 

that the forecast accuracy is similar for coating operators and pan P100, while dryer C0414 is 

worse by two percent.  

The mean absolute scaled error is below 1 for each resource, which means that the forecasting 

method performs better than the seasonal naïve forecast. The forecast for coating operators 

shows the most improvement, it is twice as accurate as the seasonal naïve forecast. 

Performance measure Coating operator Pan P100 Dryer C0414 

Mean Percentage Error (MPE) -0.075 -0.018 -0.084 

Mean Absolute Error (MAE) 123 96 166 

Symmetric Mean Percentage Error (sMAPE) 0.044 0.045 0.064 

Mean Absolute Scaled Error (MASE) 0.49 0.69 0.65 
Table 5-2. Forecast performance measures for ETS forecasts of capacity requirements. 

We conclude that the forecast is a large improvement over the current seasonal naïve forecast. 

However, we must remain aware that the mean absolute error equals around one operator or 

machine when interpreting the capacity strategies in the next sections. 

The result of the second step is not just a point forecast, but a set of capacity demand scenarios. 

Recall from Chapter 4 that a capacity demand scenario is the one-tailed upper prediction interval 

for a coverage probability. We name each scenario by this coverage probability. We define four 

scenarios: 30, 50, 70, and 90. Note that scenario 50 is equal to the point forecast, because we 

assume a standard normal distribution. Figure 5-8, Figure 5-9, and Figure 5-10 show the four 

scenarios for coating operators, pan P100 and dryer C0414, respectively. 

In addition to scenarios based on historical capacity demand only, we generate adjusted scenarios 

based on both historical data and judgmental forecasts in the third and fourth step of our model. 

We refer to these adjusted scenarios as 30-A, 50-A, 70-A, and 90-A. We discuss the adjusted 

scenarios in Section 5.3. 
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Figure 5-8. Capacity demand scenarios for coating operators. 

 

Figure 5-9. Capacity demand scenarios for pan P100. 

 

Figure 5-10. Capacity demand scenarios for dryer C0414. 
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5.2 CAPACITY STRATEGIES FOR VARIOUS SCENARIOS 
We discussed the capacity demand scenarios in Section 5.1. In this section, we use these scenarios 

to generate capacity strategies and answer the following research question. 

(Q5.3) How does the capacity strategy from our model compare to the 

current capacity plan?  

5.2.1 Generating the capacity strategies 

We discussed the results of the first two model steps, the capacity demand scenarios, in Section 

5.1. Section 5.3 discusses the results of Step 3, 4, and 5. Step 6 is to determine the optimal capacity 

strategy for various scenarios. We define the capacity strategy as a set of machine procurement 

decisions, because these are the strategic capacity decisions for Company A. Recall from Section 

4.5 that we obtain a capacity strategy by optimizing the capacity plan for two scenarios 

simultaneously: the realistic scenario (50%) and a peak scenario. We optimize the capacity plan 

for the realistic scenario, while we increase the capacity demand to the peak scenario for the 

maximum machine capacity constraint. That way, the number of machines is sufficient to deal 

with capacity demand peaks through workforce flexibility measures only.  

We use three peak scenarios, with coverage probabilities of 50, 70, and 90. Company A is not 

interested in a strategy with a confidence lower than 50%, because it is their business strategy to 

be a reliable and flexible partner for their customers. In the remainder of this thesis, we refer to 

each capacity strategy by the coverage probability of the peak scenario (e.g. Strategy 70 is 

generated with Scenario 70 as peak scenario). To summarize, the process for generating the 

capacity strategies is visualized in Figure 5-11. Note that the order in generating capacity plans is 

not relevant. The input is a set of capacity scenarios. The output is a set of capacity strategies, 

which we obtain by running the optimization model. 

 

Figure 5-11. Generate capacity strategies for three peak scenarios. 

Recall from Chapter 2 that Company A’s interest is the replacement of dryers and coating pans. 

Dryers will be replaced in the coming 3 years and coating pans in the coming 6 years. To make 

the trade-off between workforce flexibility and machine procurement, replacement of both 

dryers and pans must be considered simultaneously. Recall from Section 4.5 that we model 

replacement by setting the initial number of machines at 0 for the machine types that need to be 

replaced. We obtain three capacity strategies, the machine procurement decisions, by following 

the process in Figure 5-11.  To compare these strategies with the current situation and answer 

the research sub-question, we define the ‘current’ strategy, where we purchase the same number 

of machines as currently in use.  

5.2.2 Comparing capacity levels 

Figure 5-12 shows the capacity strategies that we obtain from running our optimization model. 

To compare the strategies, we show the number of machines purchased for each machine type. 

We observe that the current number of machines is equal to or higher than the number of 
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machines purchased in Strategy 90. Therefore, the current strategy already provides sufficient 

capacity with at least 90% certainty. Recall from the problem cluster in Chapter 1 that we 

hypothesized that Company A experiences decreased delivery performance during peak season 

due to a lack of capacity. While that may still be the case on an operational (i.e. weekly or daily) 

level, we have shown that this is not the case on a tactical (i.e. monthly) level. More specifically, 

even though a 90% confidence still leaves 10% chance of undercapacity (in case the available 

capacity is equal to the capacity demand scenario), undercapacity is not a structural problem on 

a tactical level.  

Takeaway 1 

With current capacity levels, capacity shortage is not a structural problem 

on a monthly level. 

The hypothesis that decreased delivery performance is caused by capacity shortage was based 

on interviews with Company A’s management as well as the production team. Unfortunately, the 

data was not sufficient to verify this claim. Moreover, we cannot simply discard their experiences 

and opinions as invalid. Instead, we think that capacity shortages are on an operational level. 

Company A uses the backward scheduling method, based on customer requested date. An order 

is scheduled within two days of receiving it, no matter how far the requested date lies in the 

future. Schedules are barely changed, except in case of an emergency by a simple swapping of 

orders. The reason is that moving the schedule is a time-intensive task. Note that for some 

products, the time between processing steps must be at most a few minutes. The result is that 

there are no sequential timeslots available between processing steps, while there are free 

timeslots for both processes at different times. Such issues occur frequently, but cannot be 

addressed, because the schedule can barely be changed. In the meanwhile, there is sufficient 

capacity on an aggregated level. We suggest a future research direction for Company A that 

addresses this issue in Chapter 6, on the subject of scheduling. 

From Figure 5-12, we also observe that there is currently an overcapacity, even at the 90% 

coverage probability, of four coating pans: P055, P060, P100, and P160. Apparently, Company A 

can achieve the same capacity certainty with less costs by purchasing less machines than 

currently available. Recall from Chapter 2 that the reason for introducing double shifts was a 

shortage of dryers. The coating pans have been purchased with regular shifts in mind. By 

optimizing machine procurement decisions and workforce planning simultaneously, we find that 

Company A is able to achieve the same capacity certainty with lower costs, by purchasing less 

dryers and using more double shifts (i.e. workforce flexibility). To confirm this conclusion, we 

optimize the strategic capacity plan for Strategy 90 (which is closest to the current strategy) while 
fixing the workforce planning to the default plan for double shifts. We find that the number of 

P060 increases from one to two and the number of P100 increases from 6 to 8, showing that we 

indeed are able to save on procurement costs by jointly optimizing procurement decisions with 

workforce flexibility.  

Takeaway 2 

Company A is able to save costs by jointly optimizing workforce flexibility 

and machine procurement decisions. They can reduce the number of 

coating pans by using more double shifts. 
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Figure 5-12. Number of machines purchased per type for various scenarios. 

Figure 5-13, Figure 5-14, and Figure 5-15 shows the capacity demand and available capacity for 

capacity strategy 50, 70, and 90, respectively. The information is shown for each month, the 

months on the axis are not completely shown due to the limited space. We observe a larger 

capacity reserve for capacity strategies with a higher coverage probability, because the number 

of machines increase. We also observe strong demand seasonality and no trend. Company A 

expects a downward trend in the future, but currently demand has been stable, so the results are 

consistent with expectations. Demand increases to a peak 2080 hours in March from a low 777 

hours in August. Capacity strategy 50 has a 50% chance to result in undercapacity when the 

maximum available capacity is equal to Scenario 50. This is the case in March for dryers C0414, 

therefore it is not in line with Company A’s business strategy to be a reliable and flexible partner. 

Instead, we suggest Company A to use either strategy 70 or strategy 90. We discuss capacity costs 

in Section 5.2.3. 

Takeaway 3 

We suggest that Company A does not use strategy 50, because it too often 

results in capacity shortages. Instead they should use strategy 70 or 90. 

The peak in March at 2080 hours is significantly higher than capacity demand in other months, 

with February at 1585 hours and April at 1466 hours as second and third. This makes a strong 

case for demand smoothing. Recall from Chapter 1 that demand smoothing is difficult for 

Company A, because of time windows for specific crops. However, we suggest Company A to 

further investigate this opportunity, as the model provides more information about the timing 

and potential financial benefits of demand smoothing. Furthermore, demand smoothing between 

a few weeks at the end of February and start of April may already make a big difference. We 

discuss this future research direction in Chapter 6.  
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Figure 5-13. Capacity demand and available capacity for capacity strategy 50. 

 

Figure 5-14. Capacity demand and available capacity for capacity strategy 70. 

 

Figure 5-15. Capacity demand and available capacity for capacity strategy 90. 
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In Figure 5-14 and Figure 5-15 we observe large downward spikes in available capacity, which 

are not visible in Figure 5-13. These are downward spikes are the use of single shifts, while double 

shifts are used in all other months. Recall from Chapter 2 that double shifts effectively double 

machine capacity. Capacity strategy 50 requires the use of double shifts in each month, while the 

other strategies use single shifts in months with low capacity demand. The latter is possible 

because the number of machines is higher for capacity strategy 70 and 90. We discuss the cost 

implications of this interaction in Section 5.2.3. For now, we conclude that it is more cost-efficient 

to use workforce flexibility (double shifts) instead of purchasing more machines in general. 

Takeaway 4 

It is more cost-efficient to use double shifts than to purchase more machines 

to satisfy capacity demand.  

5.2.3 Comparing costs 

Capacity strategies with a higher coverage probability are more expensive, which we observe in 

Figure 5-16. As the coverage probability increases, the one-tailed prediction interval of capacity 

demand increases at an increasing rate. Therefore, we expect that each additional percent of 

confidence comes at an increasing cost. However, because machine purchases are an integer 

decision, the costs increase in jumps. Coincidentally, the increase from strategy 50 to strategy 70 

is 423k euros, while the increase from strategy 70 to strategy 90 is 383k euros. We also generated 

results for strategy 95, which saw an 247k cost increase. The latter confirms our expectation that 

costs increase at an increasing rate for higher coverage probabilities.  

Takeaway 5 

Cost increases in jumps with an increasing coverage probability. Costs 

increase at an increasing rate for higher coverage probabilities. 

 

Figure 5-16. Total costs per capacity strategy. 

A cost increase of less than 4% to move from 50% to 70% confidence does not seem very large. 

The reason lies with the trade-off between strategic decisions and workforce flexibility. We 

compare the costs for the strategic decisions (i.e. procurement and maintenance) with the costs 

for workforce in Figure 5-17. We observe that the increase in procurement and maintenance costs 
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is partially offset by a decrease in workforce costs. This decrease is due to requiring less 

workforce flexibility measures, such as double shifts and overtime, because there are more 

machines available.  

Takeaway 6 
Increasing the coverage probability for the capacity strategy is relatively 

inexpensive, because increases in machine procurement are partially offset 

by decreases in workforce flexibility costs. 

 

Figure 5-17. Costs for strategic decisions and workforce planning between capacity strategies. 

5.3 IMPACT OF JUDGMENTAL ADJUSTMENTS 
In this section, we explore how the capacity strategies change when considering judgmental sales 

forecasts. The adjustment factors are the result of an interview with a senior account manager 

and a market analyst. Recall from Chapter 4 that these adjustment factors are a multiplier for the 

historical capacity demand for a certain product and/or customer. In general, Company A expects 

a 10% demand decrease in Enkhuizen for the four largest customers, due to two reasons. First, 

customers are decentralizing their seed processing operations. Second, customers are pursuing 

vertical integration, moving towards in-house production. Medium and small customers do not 

have the resources and scale to do this, so demand for these customers is expected to remain the 

same.  

We denote an adjusted scenario, and the respective capacity strategy, with a coverage probability 

of 50 as “50-A”, for example. Figure 5-18 shows the impact of judgmental adjustments. We 

observe that a 10% reduction for the top four customers impacts each machine and month 

differently. For example, the demand for April for dryer C0414 is reduced by only 3.8%, while the 

demand for the same dryer for May is reduced by 9.2%.  

Takeaway 7 

The impact of judgmental adjustments on capacity demand varies for each 

machine and month. 
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Figure 5-18. Impact of judgmental forecasts on capacity demand scenarios. 

To generate capacity strategies, we follow the same approach as in Section 5.2, using the same 

coverage probabilities, except that we use adjusted scenarios. The capacity strategies (i.e. set of 

machine procurement decisions) based on adjusted scenarios are identical to those in Figure 

5-12. We observe that there are no changes to the capacity strategies. The reason is because the 

impact of the judgmental forecasts is not large enough to require a change in the capacity strategy. 

In case of more drastic judgmental forecasts (e.g. adjustment factors further from one), the 

strategies are likely to change.  

Takeaway 8 

The optimal capacity strategy for each coverage probability do not change 

when using adjusted scenarios, based on judgmental sales forecasts.  

Recall from Chapter 4 that we designed a second way to include judgmental forecasts, by means 

of future sales orders. The purpose of this method is to determine the impact of new products. 

Company A has launched a new organic product range in January 2020. They purchased one dryer 

and coating pan specifically for these organic products. However, it is too early to provide sales 

forecasts for this product range, because customers are currently doing test runs with Company 

A. According to the senior account manager, this method will be very useful next year, once the 

testing has finished and commercial orders will arrive.  

5.4 COMPARE CAPACITY STRATEGIES  
In this section, we evaluate the capacity strategies discussed in Section 5.2 and Section 5.3. This 

is the sixth and final step of the model.  To do this, we fix the machine procurement decisions 

according to the capacity strategy and optimize the workforce planning for the pessimistic (30%), 

realistic (50%), and optimistic (70%) scenario. We do this for each capacity strategy alternative, 

corresponding to the coverage probabilities 50%, 70% and 90%. 

Figure 5-19 shows the costs of each capacity strategy, where we group the three capacity 

strategies (50, 70, 90) per scenario, such that we can identify the differences between the capacity 

strategies for each scenario. As expected, the capacity strategy with a lower coverage probability 

is always less expensive than with a higher coverage probability. Machine procurement cost is 

always higher than workforce measures such as double shifts.  
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Takeaway 9 
Capacity costs decrease for scenarios with lower coverage probability, 

because less workforce flexibility is required to satisfy demand. 

 

Figure 5-19. Total costs of each capacity strategy in each scenario. 

The most important takeaway from this is that there is little flexibility for optimal capacity 

strategies, because all workforce flexibility is already used to reduce the procurement costs. 

Strategy 50 is infeasible in scenario 70, which is why there is no data displayed in the graph for 

this instance. Therefore, it is important for Company A to go for a strategy with sufficient 

certainty.  

Takeaway 10 

Flexibility is low for optimal strategies, as it is optimal to use as much 

workforce flexibility as possible to reduce machine procurement cost. 

5.5 SENSITIVITY ANALYSIS 
In this section, we answer the following research question. 

(Q 5.3) What is the sensitivity of the model regarding parameters subject to 
uncertainty or change? 

Our model for strategic capacity planning is only valid when the input parameters are accurate. 

Section 5.1 verified the accuracy of the capacity demand scenarios. There are two parameters that 

are subject to uncertainty and change: machine lifespan and maximum Overall Equipment 

Effectiveness (OEE). We perform a sensitivity analysis on these two parameters. 

The machine lifespan is at least 10 years. Once a machine has been used for 10 years, Company A 

must make the decision to either continue with maintenance or purchase a new machine. 

Maintenance costs increase significantly past 10 years, because around that time, the more 

expensive components must be replaced. We do not take this increase in maintenance cost into 
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account in this model, because Company A is not able to make an estimate for new machines on 

the maintenance cost curve over the years. Instead, we test the sensitivity of the capacity 

strategies to an increased lifespan. The current machines are pushed to a maximum lifespan of 

16 years, so we test the sensitivity with 16 years. An increase in lifespan can also be modeled as 

a decrease in procurement costs, while keeping the planning horizon constant. We adjust the 

machine procurement costs by a factor of 0.625 (10 year lifespan /16 year lifespan = 0.625). We 

obtain capacity strategies by following the same steps as in Section 5.2.  

As lifespan increases, the cost per year of use becomes lower, which makes machine capacity 

relatively less expensive. Therefore, we expect either an increase or no change in the number of 

machines purchased within one machine lifespan. It might be more cost-efficient to use less 

workforce flexibility and more machine capacity. Figure 5-20 shows the resulting capacity 

strategies. When we compare these strategies with the original capacity strategies (Section 5.2), 

we see one additional machine procured of coating pan P060 and P100 for strategies 70 and 90. 

Capacity strategy 50 does not change. The longer lifespan does not impact C0414, because its 

procurement costs outweigh the costs of workforce flexibility.  

Takeaway 9 

As machine lifespan increases, the number of machines for lower coverage 

probabilities increases only for P100, such that less double shifts are 

required. Strategy for level 90 does not change.  

 

Figure 5-20. Capacity strategies with a longer lifespan (or: lower procurement cost). 

The next parameter in our sensitivity analysis is maximum OEE. The maximum OEE is the only 

parameter in calculating available capacity that is subject to variability and change. We 

determined the maximum OEE based on monthly processing times over the past two years. We 

found that the maximum OEE is different every year, most likely depending on the variety in 

product demand. Furthermore, maximum OEE can change through improvement efforts. Several 

lean projects have improved OEE in the past. We test for both an OEE increase and decrease of 

10%. This covers the variability observed the past two years. 
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As OEE increases, we expect a decrease in machine procurement, because less machines are 

required to do the same work.  

Figure 5-22 shows the capacity strategies with higher OEE, and Figure 5-21 shows the changes of 

these compared to the default capacity strategies. We observe a decrease for dryer C0414 for each 

strategy. With a higher OEE, less dryers are required to do produce the same output. There is one 

exception, for coating pan P100 with strategy 90. Because Company A already needs a certain 

number of pan P100 to deal with peak demand at a 90 coverage probability, it is cost-efficient to 

increase the number of pans even more, such that Company A can meet capacity demand with 

less double shifts. 

Takeaway 10 
An increase in OEE generally leads to a reduction in the number of 

machines. However, at a 90 coverage probability, it is cost-efficient to 

purchase more P100’s, to be able to work with less double shifts. 
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Figure 5-21. Changes in capacity strategies with higher OEE. 

Figure 5-22. Capacity strategies with higher OEE. 

As OEE decreases, we expect an increase in machine procurement, because more machines are 

required to do the same work. Figure 5-24 shows the capacity strategies with higher OEE and 

Figure 5-23 shows the changes of these compared to the default capacity strategies. We indeed 

observe an increase for dryer C0414, P060 and P100. Some machine types do not require an 

increase, because they had sufficient overcapacity in the default strategies. This happens because 

machine capacity increases in integer steps. Most notably, additional coating pan P100 does not 

have to be purchased in strategy 70, while this is the case for strategy 50 and 90. Six P100’s is 

sufficient to fulfill demand in scenario 70 even with reduced OEE. Strategy 50 has sufficient 

P100’s for scenario 70 as well (i.e. 6), so the reason that it was infeasible is the number of dryers. 

Takeaway 11 

A decrease in OEE leads to an increase in the required number of machines, 
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except when there is sufficient overcapacity, because machine capacity 

increases stepwise.  

 

Figure 5-23. Changes in capacity strategies with lower OEE. 

 

Figure 5-24. Capacity strategies with lower OEE. 

5.6 DISAGGREGATING CAPACITY DEMAND 
Section 4.1 describes a method to verify our assumption that capacity demand is sufficiently 

smooth within each month. If this assumption does not hold, the capacity plan that results from 

the model results in more capacity shortages than indicated by the coverage probability. We apply 

the method to the two most critical machines in terms of variability and quantity: dryers C0414 
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and coating pan P100. Figure 5-25 and Figure 5-26 show the average percentage of months and 

weeks with sufficient capacity, which are obtained by replicating the method 100 times. We 

choose 100 replications, because the average number of weeks does not change significantly (< 

0.1 number of weeks) after 100 replications. 

 

Figure 5-25. Average percentage of months with sufficient capacity. 

 

Figure 5-26. Average percentage of weeks with sufficient capacity. 

Note that strategy 70 and 90 and equal for coating pan P100, therefore the percentage does not 

change. As expected, we observe an increase in the average number of weeks with sufficient 

capacity with an increasing coverage probability of each strategy. The percentage of weeks with 

sufficient capacity is much higher than the coverage probability of each capacity strategy. This is 

expected, because the capacity demand (based on the coverage probability) is a constraint for the 

available capacity. If the available capacity is exactly equal to the capacity demand, we expect that 

the percentage of weeks is close to the coverage probability. However, because the available 

capacity must satisfy peak demand, there is overcapacity in non-peak months. This overcapacity 

is a buffer against variability beyond the coverage probability, resulting in a higher percentage of 

weeks with sufficient capacity.  

We observe that the average percentage is generally higher for weeks than for months, which 

means that disaggregation actually improves capacity coverage. Therefore, our assumption that 

demand is sufficiently smooth within each month holds.  

We observe that the impact of a lower coverage probability is much higher for P100 than for 

C0414. The reason is that there is only one peak month for C0414, while there are four peak 
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months for P100. Therefore, there is less overcapacity of P100 to absorb weekly variability. This 

highlights the issue of strategic capacity planning in case of highly seasonal demand. Many 

machines are required to deal with peak demand, while these are not needed during the rest of 

the year. 
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6 CONCLUSION 

6.1 CONCLUSION 
The main research question of this research is as follows. 

How can machine- and operator capacity planning deal with seasonal and 

variable demand to improve on-time delivery in a cost-efficient way? 

To answer this research question, we have addressed three underlying core problems. The first 

core problem is that the current method to calculate capacity demand is inaccurate, it only 

considers the number of orders. We have designed a calculation model that is able to determine 

the monthly capacity demand for each machine type. Calculating per machine type is especially 

important, because seasonal patterns are different for each machine, due to crop seasonality. 

Many machines are only used for specific crops. We have shown that our calculation model is 

more accurate than the current method. Furthermore, our calculation model uses sales orders as 

input, so that we can calculate future capacity demand from judgmental sales forecasts. 

The second core problem is that demand forecasts are unreliable, because Company A uses a 

seasonal naïve forecasting method, which does not reflect demand uncertainty. We have designed 

a forecasting method that is able to reflect demand uncertainty through prediction intervals, 

based on historical data from the past five years. To further improve the forecast reliability, we 

have designed a method to include judgmental forecasts. This methods involves adjustment 

factors and future sales orders, which are translated to capacity demand using our calculation 

model. 

The third core problem is that Company A’s capacity plan is misaligned; capacity decisions are 

taken individually, resulting in cost inefficiencies. We have designed an optimization model that 

is able to determine the optimal capacity plan for both machine- and operator decisions, given a 

set of input parameters. We have shown that the resulting capacity plan can achieve the same 

level of capacity feasibility as the current capacity plan, while saving costs. 

The question was how Company A can improve on-time delivery. We have shown that Company 

A has sufficient capacity at a tactical (i.e. monthly) and strategic level to satisfy capacity demand 

with a 90% certainty. Therefore, we do not need to increase capacity levels compared to the 

current situation to improve on-time delivery. Instead, we suggest Company A to improve their 

scheduling methods to make more efficient use of the available capacity, which we discuss in 

Section 6.3. Using our model and its results, Company A can achieve the same delivery 

performance while being more cost-efficient. The model results show that Company A can reduce 

their total costs by reducing machine procurement and increasing the use of workforce flexibility.  

The machine- and operator capacity planning can deal with seasonal demand by using double 

shifts during mid-season and peak-season, while using single shifts during low-season (August 

and September) to save costs. Regarding the strategic decisions, the number of machines 

procured are sufficient to deal with demand peaks, while using double shifts, at the desired 

coverage probability. If Company A is able to smooth these demand peaks, the number of 

machines can be further reduced. The machine- and operator capacity planning can deal with 

variable demand by using a higher coverage probability for the capacity strategy. We recommend 

a coverage probability of at least 70%, while 90% would be even better to deal with variable 

demand. Of course, that comes at a cost. 
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Possibly even more important is that Company A is able to use this model on a yearly basis to 

reevaluate their strategic and tactical capacity plan, as new information comes available. The 

model is able to use not only the most recent sales and production data, but also the latest 

judgmental sales forecasts to determine the optimal strategic and tactical capacity plan. The 

model enables Company A to make a trade-off between costs and delivery performance, by 

varying the coverage probability of the capacity demand scenarios. 

6.2 CONTRIBUTIONS TO THEORY 
Our forecasting method is primarily based on Hyndman’s state space approach (2008) and our 

optimization model is primarily based on the strategic capacity optimization model by Bihlmaier 

et al. (2009) We made three contributions to theory. 

6.2.1 Transforming product demand to capacity demand 

Piecewise linear transformations are commonly used in capacity optimization models to 

determine capacity demand from product demand forecasts. For Company A, this method results 

in inaccurate capacity demand forecasts, and thus an inaccurate capacity plan. We designed a 

method to address this problem. First, we calculate the historical capacity demand from historical 

product demand, using a highly customized calculation model. Second, we forecast the capacity 

demand, instead of the product demand. Finally, we take this capacity demand forecast as input 

for the capacity optimization model. 

We suggest future research to formulate a more generic base calculation model, that can be used 

for other companies. Future research can identify the ways in which capacity demand has a 

nonlinear relation with product demand. Company A’s case of seed quantity is only one example. 

6.2.2 Adjusted capacity demand forecasts 

In literature, demand scenarios are often defined as a demand quantity and probability, based on 

which the capacity strategy is optimized using a stochastic model. For Company A however, 

capacity demand does not increase linearly with demand quantity. A larger demand quantity in 

few large orders results in less capacity demand than a lower demand quantity in many small 

orders. Not only that, but the machines used can be totally different. We designed two methods 

to deal with this: adjustment factors and future sales orders. 

The first method uses adjustment factors that can be applied to either specific customers, 

products or a combination thereof. We multiply the historical capacity demand for the respective 

customers and/or products by this adjustment factor, before generating forecasts. This method 

allows Company A to take external effects into account, such as the largest customers moving 

towards in-house production and the banning of agrochemicals used in seed treatments.  

The second method uses sales order forecasts (i.e. number and size of orders for a product) to 

calculate the capacity demand. These sales order forecasts are especially useful for products 

where history is not representative for the future, such as new products. It allows Company A to 

determine in advance how much capacity they need to deal with future demand for their organic 

treatments.  

6.2.3 Using prediction intervals to reflect demand uncertainty 

To deal with demand uncertainty in capacity planning, there are two widely used methods in 

literature. One is simulation modeling and the other is stochastic optimization. We designed a 

new method that requires less input data than simulation modeling and remains accurate when 

the production process undergoes changes.  
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We use one-tailed upper prediction intervals as capacity demand scenarios. It tells us that the 

true capacity demand will be lower than the prediction interval with a certain probability. 

Compared to a confidence interval, the prediction interval must account for both the uncertainty 

in knowing the value of the mean and the data scatter, so it will always be wider than the 

confidence interval. These prediction intervals provide a simple and intuitive way to find 

alternative capacity strategies, such that management can decide on the trade-off between costs 

and certainty. 

However, the interpretation of the resulting capacity strategy is more difficult than coverage 

probabilities from simulation models. Statistically speaking, the probability is for each machine 

in each month, so not for the entire capacity plan. Furthermore, we use the prediction interval as 

a capacity constraint, Often the available capacity will be higher than the capacity demand, 

therefore having a higher certainty.  

We suggest future research to evaluate the statistical implications of using prediction intervals 

for capacity demand scenarios in a capacity optimization model. 

6.3 RECOMMENDATIONS FOR PRACTICE 
We structure our recommendations in three parts. First, the results of our model for the strategic 

and tactical capacity plan. Second, the implementation and use of our model. Third, further 

research that Company A can pursue. 

6.3.1 Strategic and tactical capacity plan 

When it comes to capacity strategy, we suggest that Company A stays at their current level of 90% 

certainty, while being more cost-efficient. That way on-time delivery will not decrease, because 

the probability of no capacity shortage remains the same. We suggest not to reduce the certainty 

to 70%, because the cost decrease is only 3.2% (i.e. 383,000 over 10 years) in the expected 

scenario. Furthermore, high delivery reliability is in line with Company A’s business strategy. The 

cost increase is relatively low for a higher coverage probability, because increases in procurement 

costs are offset by decreases in workforce costs.  

Company A can increase cost-OEE by working with more double shifts, and use overtime 

incidentally to deal with peaks. To be specific, our model results suggest to use double shifts in all 

months except August and September, while currently Company A uses double shifts during 

seven months. Using more of this workforce flexibility allows Company A to purchase less 

machines. More specifically, when purchasing new coating pans, Company A can reduce the 

number of coating pans P055 by two, P060 by one, P100 by four, and P160 by one. Our model 

suggests to keep the same number of dryers to satisfy demand with 90% certainty each month.  

6.3.2 Model implementation and use 
The implementation of our model has been designed for practical use. We have created a simple 

Excel dashboard from which all models can be run using the click of a button. Furthermore, the 

basic parameters can be changed on this dashboard. More advanced adjustments can be made in 

the optimization Excel file. Interactions with external tools, such as the calculation and 

forecasting model in R, have been automated. Both documentation and training has been 

provided to ensure Company A will be able to use the model in the future independently.  

6.3.3 Further research opportunities 

Recall from Chapter 5 that we have shown there is sufficient capacity on a strategic and tactical 

level. The cause for decreased on-time delivery performance during winter is probably a 

scheduling issue. Company A currently uses backward scheduling, working back from the 
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requested delivery date. Each order is scheduled as soon as it is released and the schedule cannot 

be changed afterwards. It is no surprise that this inflexible scheduling method leads to delivery 

issues. There are methods available to improve scheduling, such as the shifting bottleneck 

heuristic. Recall from Chapter 1 that we did not choose to improve the scheduling method for two 

reasons. First, because Company A must use SAP to plan orders, so the implementation of a better 

scheduling method can be difficult. Second and most important, Company A first wanted to have 

insight in their strategic and tactical capacity plan before diving in on an operational level. Now 

that we have provided insight in their strategic and tactical capacity plan, we suggest Company A 

to take the next step.  

A second research opportunity is demand smoothing. Recall from Chapter 1 that we did not 

consider this method, because there is a small time window for orders due to crop seasonality. 

However, the results in Chapter 5 show that smoothing over just a few weeks around March can 

be extremely beneficial to reduce the number of C0414 dryers required. Our model also shows 

the potential cost savings that can be realized by demand smoothing. These can be used to 

incentivize customers to shift their demand by a few weeks, which might make customers 

surprisingly flexible.  
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8 APPENDIX: MODEL IMPLEMENTATION CHOICES 

To implement the designed model, the right software tools must be chosen. This choice is critical 

for both the ability to implement the model as designed, as well as for the integration in Company 

A. In this section, the decision criteria for the choice and the decisions for each model part are 

discussed. 

8.1.1 Decision criteria 
To decide between the available tools for each model part, the following criteria are used, in order 

of descending importance.  

1. Completeness: the ability to implement all components and complexities of the model. 

2. Ease of use: the ease by which the components and complexities of the model can be 

implemented in both time to implement and difficulty to learn. 

3. Availability: the availability of the tool, documentation, and people that can work with 

it. A higher availability helps with implementation as well as integration in Company A. 

For example, open source has a higher availability than most commercial software. 

4. Visibility: the ability to view and interact with the model and its inputs and outputs. For 

example, a Graphical User Interface and debugging tools.  

5. Performance: the time needed for the tool to generate outputs from inputs.  

Each criteria can be scored as either poor, sufficient, or good. Poor means a tool does not meet 

minimum requirements for this model. Sufficient means a tool meets the minimum requirements. 

Good means a tool provides additional benefits above the minimum requirements.  

8.1.2 Transformation from sales data to capacity requirements 
The most widely used tool for transformation is Excel. However, due to the data size and 

complexity of data transformation, Excel is not practical. ETL tools are commonly used for these 

type of data transformation tasks. ETL is the process of taking data from a source system 

(Extract), converting into the desired format (Transform), and stored in a data warehouse (Load). 

Pentaho Kettle is a widely used and open source ETL tool. Disadvantage is that this is made for 

transformation of databases, thus is less flexible in available functions. A third option is to use a 

more generic language, such as R or Python. These high-level and open source programming 

languages have many packages that help with data transformation. Tidyverse in R is the most 

widely used package for data transformation, offering a wide range of high performance tools. 

The table below summarizes the scores, from which can be concluded that Tidyverse in R is the 

best tool to use. 

 

Figure 8-1. Decision matrix for transformation model. 

8.1.3 Forecasting capacity requirements 

Basic forecasts can be produced in Excel using VBA, however these need to be built from the 

ground up and the calculation times are quite long. In literature, forecasting models are most 

commonly implemented in R. Some exceptions are C++, Matlab, and Python. C++ is low-level, 

therefore the most difficult to implement. The main advantage of R is that it is purpose-built for 

data analysis and statistics, with many package available that enable an easier implementation of 



 

86 
 

forecasting methods. The most well-known are forecast and fable, of which the first is more 

complete and the second is more modern, as it integrates better with Tidyverse. However, since 

completeness is crucial in this research, the forecast package is chosen. 

 

Figure 8-2. Decision matrix for forecasting model. 

8.1.4 Optimization of capacity planning 

Mathematical programming and optimization can be implemented in a variety of software and 

languages. Algebraic modeling languages have been created that describe and solve complex and 

large scale optimization problems. Most commonly used languages are AIMMS, AMPL, and GAMS. 

The disadvantage is that these are commercial software. Another option is to use a more generic 

language that has built-in packages for optimization problems, such as R and Python. COIN-OR, a 

scientific organization that provides open source computational tools, created Symphony, for 

which packages are available for R and Python. Disadvantage of these packages is a poor visibility 

of the model itself; the entire model is one large matrix. OpenSolver, also from COIN-OR, is an 

add-in for Excel, which is visible and easy to use. Disadvantage is performance. Since this MILP 

model is not very large, performance is sufficient. Thus, OpenSolver is chosen. 

 

Figure 8-3. Decision matrix for optimization model. 

 


