
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Analysing Countermeasures
against Fault Injection Attacks

on FPGA based
Cryptographic Implementations

T.R. Haarman
B.Sc. Thesis

June 2020

Supervisors:
dr. ing. D. M. Ziener

A. Asghar, M.Sc.
dr. C. G. Zeinstra

Computer Architecture for Embedded Systems
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract
Nowadays, Field Programmable Gate Arrays (FPGAs) are used for a very
diverse range of applications, many of which are security-critical. As is of-
ten the case with security-critical systems, there are adversaries that develop
ways to acquire the protected information from the system. And while the
adversaries come up with increasingly advanced methods for succeeding in
this, the countermeasures that are developed against them have to match
or stay ahead of those attacks. On hardware, it’s possible for an adver-
sary to perform a Fault Injection Attack (FIA) which could present faulty
cipher texts at the output. With these faulty cipher texts, it’s possible to
decrypt the original key by executing a Differential Fault Analysis (DFA).
In this work, the aim is to analyse a state of the art countermeasure that
combines protection against both fault injection and side channel attacks.
First, methods to perform a successful FIA on the countermeasure are ex-
amined in a software implementation of an encryption algorithm protected
with ParTi. When a method is developed, a modified version of the EDA
toolkit DAVOS is used to perform multiple schemed FIAs on the hardware
implementation. It is presented how the secret key can be extracted, and
the rate of successful fault injections is determined.

1

Contents

Abstract 1

1 Introduction 3

2 Cryptographic Implementations 4
2.1 Round-Based AES . 4
2.2 SubBytes . 5
2.3 ShiftRows . 6
2.4 MixColumns . 6
2.5 AddRoundKey . 7

3 The ParTI Countermeasure 8
3.1 Threshold Implementations 8
3.2 Error Detection . 9
3.3 A Combined Scheme . 10

4 Differential Fault Analysis 11
4.1 Giraud attack . 11
4.2 Generalized attack on AES 12

5 Fault injection methods 13
5.1 C Emulation of ParTI . 13
5.2 Specifying the attack scheme 13
5.3 Injecting Faults with DAVOS 15
5.4 Determining fault coverage 16

6 Results 17
6.1 Fault injections to the emulation 17
6.2 Fault injections to the bitstream 18

7 Evaluation 20

8 Conclusions and Recommendations 21

Bibliography 22

A C Emulation of ParTI 24
A.1 main.c . 24
A.2 AES_Core.c . 26

B Timing Scheme ParTI 29

2

1 Introduction
Nowadays, embedded systems are becoming more and more integrated in
society. While in the beginning embedded computer systems were exclu-
sively used by a confined group of users, currently a day without interacting
with such a system seems almost impossible. FPGAs are widely used in em-
bedded systems, because they are very flexible (programmable in the field)
and efficient. Owing to their widespread use, FPGAs now find applications
in process automation and communication systems, some of them dealing
with essential and/or very personal data. If this data gets intercepted by ad-
versaries it can be used to commit crimes with unforeseeable consequences,
for example identity theft. To prevent adversaries from being able to ex-
tract valuable information from these devices, various safety measures have
been developed, both for hardware and software. AES encryption [1] is
often used to protect the data stream. But as FPGAs are often deployed
in non-confined, sometimes even public places, adversaries can monitor the
behaviour of a device and can possibly even edit encrypted data by means
of a Fault Injection Attack (FIA) to recover the used key, which enables
them to decrypt the secret data. To be prepared against this attacks, vari-
ous countermeasures have been developed, of which ParTI [2] is regarded as
the state of the art countermeasure. In this work, a modified version of the
EDA toolkit DAVOS will be used to emulate FIAs on an FPGA running an
AES implementation which is protected by ParTI. This way the probability
of a successful FIA can be determined and recommendations can be made
for improving the countermeasure.

This thesis will cover the use of cryptographic implementations on FPGAs
with a focus on Round-Based AES in Chapter 2. Then in Chapter 3 the
basic operations of ParTI against FIAs and Side Channel Attacks (SCAs)
will be explained. Next, in Chapter 4, methods for extracting an AES key
by using fault injection will be shown. In Chapter 5 the methods which
are going to be used to inject faults are presented. Then, in Chapter 6, the
vulnerabilities of the ParTI implementation on an FPGA will be determined
using the previously described methods. In Chapter 7, the used methods
are evaluated. Finally, in Chapter 8, the conclusions from this thesis are
stated and recommendations are made to improve the safety of the current
countermeasure.

3

2 Cryptographic Implementations
To encrypt secret data, various algorithms have been developed, which all
have pros and cons. For this reason, the National Institute of Standards and
Technology [3] chooses a standard for encryption, which they deem safe and
usable for most general cases where encryption is needed. At the moment
this is the Advanced Encryption Standard (AES) [1] which superseded the old
Data Encyrption Standard (DES) in May 2002. Since becoming a standard,
a variety of AES implementations have been proposed for FPGA based
systems which require encryption.

2.1 Round-Based AES
AES contains three members of the Rijndael block cipher family, namely
one with a key of 128, 192 and 256 bits. The three versions are called AES-
128, AES-192 and AES-256 which take respectively 10, 12 and 14 rounds to
execute. AES always takes the input data by blocks of 128 bits, as this is
specified in the standard, while the Rijndael cipher can also process larger
input data blocks. For explanation purposes, the focus in this thesis will be
on AES-128 (from now on referred to as AES), as it is the most compact
version.
In general, as AES has a substitution-permutation network, every round
of the algorithm consists of substitution and permutation steps which are
executed on the intermediate 128 bits ”state”. These steps give AES both
the confusion and diffusion that is necessary for a strong cryptographic algo-
rithm, according to Shannon [4]. Also, in every round, an expanded version
of the key is added to the state by a bit-wise XOR operation. There are four
steps per normal round, SubBytes, ShiftRows, MixColumns and AddRound-
Key. In the last round of AES, MixColumns is not executed. To get an
overview of the structure of the algorithm, take a look at Figure 2.1. In the
next sections, an explanation of the main steps of the AES algorithm can be
found. A more extensive technical description of the whole AES standard
can be found in [1].

Figure 2.1: Structure of AES [5]

4

2.2 SubBytes
In SubBytes, every byte from the 16 byte state is replaced by another value.
These values can be found in the S-box, that is generated by taking the
multiplicative inverse of Galois Field GF (28), which makes the S-Box very
non-linear. The function of SubBytes is to add confusion to the algorithm.
The S-box should be as non linear as possible to guarantee the most power-
ful protection against adversaries. The creators of the Rijndael cipher noted
that AES could also work with other S-boxes as long as they fulfill the crite-
ria defined in [6]. In Figure 2.2, a graphical representation of the SubBytes
operation can be seen.

Figure 2.2: A graphical representation of SubBytes [1]

5

2.3 ShiftRows
As the name already suggests, during ShiftRows the state’s values are shifted
in the rows. A cyclical left-shift is executed on the rows. For the first
row, no shift is performed, and then for the next rows the byte is shifted
respectively 1, 2 and 3 positions, while the left most (lowest) position is
shifted to the right (highest) position for every shift. By shifting around
values in their rows this step introduces diffusion to the algorithm. In Figure
2.3, a graphical representation of the ShiftRows operation can be seen.

Figure 2.3: A graphical representation of ShiftRows [1]

2.4 MixColumns
The second diffusion step is MixColumns. This operation takes every column
as a four term polynomial in the Galois Field GF (28) and multiplies it
modulo x4 + 1 with a fixed polynomial a(x) = 3x3 + x2 + x + 2. As it is
a multiplication in GF (28) it can be considered as a matrix multiplication
s′(x) = a(x)⊗ s(x), this leads to (2.1) for every column.

s′0,c
s′1,c
s′2,c
s′3,c

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

s0,c
s1,c
s2,c
s3,c

 (2.1)

A graphical representation of MixColumns can be seen in Figure 2.4.

6

Figure 2.4: A graphical representation of MixColumns [1]

2.5 AddRoundKey
The last step in each round is adding the round key to the state by means
of an XOR operation. In AES a round key schedule is generated from the
original 128-bit key by means of a key expansion, which means that for every
round a different, unique key is generated and added to the state. The key
expansion scheme performs some operations on the previous round key to
generate a new one where it also uses a specific array with round constants
rcon. A graphical representation of AddRoundKey can be seen in Figure
2.5.

Figure 2.5: A graphical representation of AddRoundKey [1]

7

3 The ParTI Countermeasure
ParTI [2] is a countermeasure that is developed to provide combined pro-
tection against Fault Injection Attacks (FIAs) and Side Channel Attacks
(SCAs). This combined protection makes it a unique solution, as most
countermeasures are just aimed at protection against one of the two types
of attacks. Often two different countermeasures cannot be combined with-
out sacrificing some level of protection of the other countermeasure. This is
especially the case when using more sophisticated FI protection schemes on
channels that are protected against SCAs, as they often require some un-
masked parity checks, which makes the device susceptible for SCAs again.
ParTI combines two extensively researched countermeasures to function to-
gether, while claiming to keep a high level of protection against both types
of attacks. The protection against SCAs is based on Threshold Implemen-
tations [7] and the protection against FIs is based on Error Detecting Codes
[8]. Those two concepts will be described in Sections 3.1 and 3.2.

3.1 Threshold Implementations
Differential Power Analysis (DPA) [9] is one of the most practical SCAs
in which the adversary measures the power usage of a specific part of the
FPGA, which enables the adversary to analyse the power consumption be-
haviour of the cryptographic implementation on the board. One way to
prevent successful DPA is by masking the channels on the hardware, so ef-
fectively hiding the real power consumption by randomizing it. One way to
do this is with Threshold Implementations (TIs). In this thesis the general
principle is highlighted, a more in depth coverage can be found in [10] and
[11].
A TI is essentially a masking scheme for data channels on an FPGA. It
splits the information in various shares, which are all non-complete, but
when combined in the end lead to the right output again. As large, high
power consuming processes are now split into smaller shares with a more
equal power consumption, a uniform distribution of resource usage can be
achieved, which makes SCAs like DPA more difficult.
To demonstrate the basic functioning of a TI, an example of a 4 bit inter-
mediate value can be taken. Let’s represent this value as x =< x1, ..., x4 >,
which will be represented in TI as a Boolean masked form of the order (n-1),
so as (x1, ...,xn). The original x can then be constructed by x =

⊕n
i=1 xi,

where every share is a 4 bit value on it’s own, so xi =< xi1, ..., x
i
4 >.

When implementing this on for example AES, there are linear steps (like
the ShiftRows and MixColumns functions) and non-linear steps (most im-
portantly the S-Box). For the linear steps it is easy to use them with a TI,
because of the principles of linearity allowing to replace the one value with
all smaller shares leading to this same value together. So, ShiftRows(x) =⊕n

i=1(ShiftRows(xi))

8

For the non-linear operations, it is more difficult to keep the uniformity of
the shares in place, while also preserving the bijective behaviour of the S-
Box. In [11], a complete TI for the AES S-Box can be found. Here the
S-Box operation is split in 6 stages, which are separated by registers. This
is done to keep the non-completeness property true within each stage.

3.2 Error Detection
ParTI combines the principle of Error Detecting Codes (EDCs) with Concur-
rent Error Detection (CED) [12]. EDCs can be used to detect and even cor-
rect faults that occur on an unreliable communication channel. To achieve
this it uses a generator matrix to make codewords which consists of the
original input (codeword) padded with CheckBits, which can later be used
to check the correctness of the codeword. The definitions for the EDCs that
are used in ParTI can be found in [2].
Concurrent Error Detection typically uses redundancy to detect faults dur-
ing runtime. In the simple case this just means running multiple executions
in parallel or sequential, which increases resource usage a lot. In ParTI, the
CED scheme is combined with EDCs, to be able to detect and avert more
faults. In Figure 3.1 a basic implementation of this combination can be
found. Here, it can be seen that a specific operation is being protected by
CED while generating CheckBits before and then passing this value through
a predictor of the operation. The Predictor block is performing the same
operation as the Operation block, only on the data which is coded with
CheckBits After this, there is an error check, where the output of the nor-
mal operation is coded with CheckBits and then compared with the output
of the Predictor. If the CheckBits don’t match, an error will be detected
and the Error state will be set.

Figure 3.1: A basic implementation of CED with EDCs [2]

9

3.3 A Combined Scheme
To get a safe combined scheme for SCAs and FIAs, it’s important to make
all the parts of the scheme work according to the principles of TI, also the
predictors. To keep this condition true, also the EDCs have to be included
in the TI design. A systematic linear code is used, which makes it possible
to also correct possible errors that occur.
The code of ParTI is constructed in a way that the computations of the
target algorithm (for example AES) and the predictors can be split, and
executed next to each other. This means that both outputs are calculated
completely independent from each other. The basic scheme of ParTI can
be found in Figure 3.2.

Figure 3.2: The general implementation of ParTI [2]

In Figure 3.2 it can be clearly seen that the target algorithm and pre-
dictors are executed separated from each other, with one exception, which
is the error checking part. mi is the not encoded AES state which consists
of s separate shares of bit length n. pi is the encoded version of the input
which consists of s separate shares of bit length np. The error check is the
part where intermediate states from both sides are compared, and which
indicates when it detects an error. The number of intermediate checks can
be different for each design, but it’s important to keep in mind that while
increasing the security, having more error checks also has a negative effect
on performance and area consumption on the hardware. So it is important
to find the right balance for this.

10

4 Differential Fault Analysis
Multiple methods have been developed to retrieve the original key from an
AES implementation. One of the most promising methods at the moment
is Differential Fault Analysis (DFA), where a fault is injected into a cryp-
tographic implementation to generate faulty ciphers which can be used to
restore the state of the key in a certain round and then simply retrieve the
original key using the key scheme. This method was proven to be success-
ful on an unprotected round-based AES implementation by Giraud in 2005
[13]. Later a more generalized approach was worked out by Moradi, Shal-
mani and Salmasizadeh in 2006 [14]. In the next two sections, both concepts
are reviewed.

4.1 Giraud attack
In the Giraud attack, a single bit error is inserted at the input of the 10th
round of SubBytes. By only altering it before the last round of AES, there
will be no MixColumns operation that spreads the error over multiple bytes,
the fault will just propagate to one byte, as can be seen in Figure 4.1. The
attack scheme of a Giraud attack can be found in [5]. With one bit faults,
under 50 faulty bytes (3 per byte) are necessary for retrieving the key of
AES-128 [13].

Figure 4.1: The propagation of a fault inserted before the 10th round of
SubBytes [5]

11

4.2 Generalized attack on AES
To be able to retrieve the original key from a situation when inserting multi-
ple bit faults, a more general attack at the input of the 9th round of SubBytes
is possible [14]. One of the proposed attacks in this work can deal with 1,
2 or 3 bytes containing one or more bit errors in one word at the input of
the 9th round of SubBytes, which makes it possible to retrieve the original
key with just 6 faulty ciphers. The great advantage of this kind of attack is
that it is more general and able to deal with multiple flipped bits in a byte.
A detailed scheme of this attack can be found in [5] and in Figure 4.2, the
propagation of a fault induced in a single byte at the input of the 9th round
of SubBytes can be seen.

Figure 4.2: The propagation of a fault inserted before the 9th round of
SubBytes [5]

12

5 Fault injection methods
Multiple steps need to be taken to get a good understanding of the response
of ParTI to fault injections and to set up an attack scheme to check ParTIs
fault correction and detection capabilities on hardware. First, a C emulation
is made for efficient realization of many situations. Then a method to inject
faults on hardware bitstreams during runtime has to be used and the error
detection rates have to be determined.

5.1 C Emulation of ParTI
The first stage in testing the fault tolerance of ParTI is done by programming
a C emulation of it. A C emulation is used because in a language like C it
is very easy to make the functioning and structure of ParTI visible. Besides
that it is more time efficient than testing out various options on a hardware
design program, as they take a lot of time for the various code generation
steps in contrast to the quick compilation speed of a regular C code.
The application was set up to resemble the structure of the original hardware
implementation as much as possible. An overview of the structure of a
regular round as implemented in the C application can be seen in Figure
5.1. In the figure, the CEC functions are the predictors of the operations
they are named after, they work with the encoded version of the input,
which contain the CheckBits. In the correction stage it can be seen that
both flows are combined to check for errors by using CheckBits. When an
error is detected, this function attempts to correct faults, and if that is
not possible it will set the outputs to undefined. The different stages are
controlled by the AES() function, which is designed to replicate the AES
Core functionality as in the VHDL version of ParTI as much as possible.
The C code can be found in Appendix A.

To determine the success of an attack, the AES() function returns a
flag to indicate if there was an error detected during the runtime. Also the
correctness of the output is checked, and if the output is not correct, it is
checked if the error was detected. If the error was detected it would mean on
the hardware implementation that the output would have been undefined,
so not usable for an adversary. If the the output is incorrect and the error
was not detected, it means that the adversary was able to change the output
and could be able to crack the cipher.
From the acquired results, the expectations for the fault percentages are
presented and can later be used to compare with the results on hardware.

5.2 Specifying the attack scheme
To perform a successful attack, a scheme has to be set up which takes into
account properties of ParTI while combining them with the prerequisites
for the type of attack that is chosen. This attack scheme is based on the

13

Figure 5.1: A regular round with ParTI implemented in C

attacker model that ParTI is based on, which for example says that the
adversary can only inject faults in the data path and not in the control flow
[2].
Furthermore, the faults have to be injected at a specific time and location.
These are dependent on the type of attack that is used. It is known that
the Concurrent Error Correction (CEC) in ParTI can successfully avert all
faults with a multiplicity 1 (one bit error), hence, the Giraud attack for
single bit errors will not be suitable. The generalized DFA attack working
with one faulty byte at the input of the 9th round of SubBytes can be used
though, as faults with a multiplicity of 2 or higher will affect the cipher
output.
To summarize, faults with a multiplicity of 2 or higher have to be inserted
in a single byte at the input of the 9th round of SubBytes, which will result
in 4 faulty bytes at the output cipher which can then be used to recover
the original key using the generalized DFA method specified in [14]. The
adversary is assumed to be able to inject faults with a multiplicity higher
than 1, which are uniformly distributed over one specified region at a specific
time instance.

14

5.3 Injecting Faults with DAVOS
To inject faults into the bitstream on an FPGA, the Electronic Design Au-
tomation (EDA) toolkit DAVOS can be used. This toolkit was in principle
developed for dependability assessment, verification, optimization and selec-
tion of hardware models [15]. It is built up from separate custom modules
for different steps in the process. One of the modules is the fault injection
module (FFI), which is originally meant for dependability testing, but can
also be used to emulate fault injection attacks by altering the bitstream.
In [5], DAVOS is used to insert single bit faults, which ParTI should be
able to correct in any case as mentioned in [2]. So to be able to achieve
successful fault propagation on a ParTI implementation, DAVOS should be
configured in a way that it can insert multiple bit faults in one clock cycle.
Besides this, a relevant attack scheme as specified in Section 5.2 should be
implemented in DAVOS and needs to have a similar setup as the one that
was used in the C emulation, to be able to compare the results.
The configuration of the test setup and the faults that will be injected is set
up in an XML test configuration file and in the Python code of the fault in-
jection tool. Here, it can be specified, amongst others, on which clock cycle
an attack has to be executed, how much faults are inserted, in which kind
of logic those errors are inserted, what is the type of fault that is emulated.
To be able to inject multiple faults in one clock cycle, the fault multiplicity
has to be set. The fault multiplicity is defined as the number of faults per
experiment over the number of gates in the circuit [16]. For example, when
an injection with multiplicity 2 in a buffer of 128 bits (16 bytes) is executed,
there will be 2 random bits altered over the whole buffer.

The hardware that is used in this thesis to perform the fault injection ex-
periments with DAVOS is the ZedBoard [17], which is equipped with an
xc7z020 device.

15

5.4 Determining fault coverage
To determine the fault coverage rate of ParTI for different fault multiplici-
ties, assuming the faulty bits are distributed uniformly, the minimal number
of fault injection experiments that have to be executed to theoretically per-
form all possible injections is equal to the number of combinations

(
N
k

)
. Here

N corresponds to the number of bits in the targeted logic and k corresponds
to the fault multiplicity. This would mean that the number of experiments
needed to get an indication of all possible outcomes climbs rapidly with a
rising multiplicity and/or block size, as can be seen in Table 5.1.

N\k 1 2 3 4
128 128 8,128 341,376 10,668,000
192 192 18,336 1,161,280 54,870,480
256 256 32,640 2,763,520 174,792,640

Table 5.1: Number of experiments needed for various block sizes and fault
multiplicities

However, there is a limited number of faulty values required per byte
to successfully retrieve the original key when performing a generalized DFA
attack. So not all theoretical combinations have to be inserted to the system
to be able to perform a successful DFA.

16

6 Results
In this section, the results of fault injection on round-based AES protected
by the ParTI countermeasure can be found. First, predictions for the fault
coverage rate are made with the C emulation. Next, the results for fault
injection on the ZedBoard using DAVOS are shown.

6.1 Fault injections to the emulation
First, to test the functioning of the emulation the claim that all single bit
flips are corrected is tested by inserting one bit errors in every possible round
input of SubBytes, which indeed leads to only correct outputs. As described
in Section 5.2, a generalized DFA attack is deemed a suitable method for
potentially retrieving the original key from round-based AES protected by
ParTI. The attack is first performed in the emulator to get an indication of
the propagation of faults. For every injection, just 2 bits are flipped within
one byte at the input of the 9th round of SubBytes. This is done to meet
the minimum of a multiplicity of 2 that is necessary for a fault to propagate
to the output and for the DFA results to be interpreted easily.
In Table 6.1, the results from this injection on the emulation can be found
for all possible combinations of two flipped bits within one byte at the input
of the 9th round of SubBytes, according to the code in Appendix A. It is
important to realize that this just indicates the effectiveness of very biased
attacks which are focused on one byte within the input.

N experiments 448 100%
Correct Outputs 280 62.5%
Detected Errors 90 20.1%

Undetected Errors 78 17.4%

Table 6.1: 2 bit fault injections at the input of 9th round SubBytes of the
emulation

The results from Table 6.1 show that just 17.4% of the injected faults
propagate to the output, even when targeting single bytes in a very biased
attack. When an error is detected, on hardware it would mean that the
output values would become undefined, which renders these outputs not
useful for a DFA attack.

17

6.2 Fault injections to the bitstream
Now the DAVOS fault injection tool is used to insert faults into the bitstream
on the ZedBoard FPGA target, the xc7z020 device. Again, as in Section 6.1,
first attacks with a multiplicity of one are executed, at the input of every
SubBytes round. Also on the hardware this leads to only correct outputs.
A big difference between the emulation and the fault injection on hardware
is the bias of the attack. In emulation it was very easy to specify an exact
position for injecting a fault. With the hardware injection, just the register
in which the fault has to be inserted can be specified.
This means that even with a fault multiplicity of 2, a lot of times there
will just be one faulty bit per byte, which will mean that the output is not
affected. When choosing a multiplicity of 3, the chances that 2 bits are
flipped within one byte are higher, while it is still not possible for multiple
bytes to be changed, as that would require 4 flipped bytes (2 in one byte
and 2 in another). For the correct timing of an injection, a timing sheet of
the VHDL implementation of the finite state machine of round-based AES
protected with ParTI has been made, which can be found in Appendix B.
The settings that are used for the fault injection are summarized in Table
6.2.

Injection Round 9th
Injection Time 210 [ns]

Fault Multiplicity 3
Attack Scope SubBytes Buffer

Number of injections 1028

Table 6.2: Settings for the DAVOS fault injection tool

Running this experiment with the settings from Table 6.2 gives 64 faults
that propagate to the output, for 1028 injections, which yields an fault
percentage of 6.23% for an attack with a multiplicity of 3.
From the acquired faulty ciphers, 2 have to be selected per word to perform
a generalized DFA attack. The method proposed in [5] is now used to find
the 4 input words of the tenth round of SubBytes (I) and then the 10th
round key can be found per word using the correct cipher output C and I,
according to equation 6.1.

K100,13,10,7 = SubBytes(I)⊕ C0,13,10,7 (6.1)

In Table 6.3 it is shown how the results of the fault injection are used to
recover the original AES key, which is all zeros in this test case. The plain
text that is used for encryption is {80 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00}. D1 and D2 represent the faulty cipher bytes that are used to
retrieve I as the input of the 10th round of SubBytes.

18

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C 3A D7 8E 72 6C 1E C0 2B 7E BF E9 2B 23 D9 EC 34
D1 2D 14 26 AD 72 23 AF CF 74 BB BB 90 26 AB 8F 49
D2 D4 EB 31 3A 95 36 FE A7 0A F7 D2 5C 3B 75 49 40
I E6 B9 9A A2 48 76 BA AE 8D F0 B5 C0 5D B9 94 DB

K10 B4 EF 5B CB 3E 92 E2 11 23 E9 51 CF 6F 8F 18 8E
K 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Table 6.3: Successful recovering the AES key with generalized DFA from 8
faulty ciphers

19

7 Evaluation
As can be seen in the previous section, DAVOS was used to insert faults
with a multiplicity higher than 1 to a protected round-based AES imple-
mentation. This makes it possible to emulate advanced adversaries who are
in possession of equipment to insert multiple faults in the same clock cycle
on a specific area.
Currently it is just possible for DAVOS to target e.g. a whole register,
which means that the faults will still be uniformly distributed over this reg-
ister. When targeting a system which is protected with a countermeasure
like ParTI, this means that a high number of injections is necessary to get
enough faulty cipher outputs. As adversaries are becoming more capable of
setting up biased attacks, it would be a possible improvement to give the
user more control over the bias of an emulated attack in DAVOS. This would
greatly reduce the number of necessary injections while greatly extending
the amount of possible fault injection attacks. A flexible range together with
the configurable multiplicity would make it possible to emulate a very wide
range of adversaries, from basic till very advanced.

It remains very important to realize that all the current attacks on ParTI
have been performed while knowing the exact layout of the system. This
could be very difficult for an adversary to know in practice, because of the
Threshold Implementations which make identifying a specific area on the
hardware particularly hard.

20

8 Conclusions and Recommendations
In this thesis, the resistance against fault injection attacks of a state of the
art countermeasure, ParTI, has been analysed. This was done both in a
software environment programmed in C and directly to the bitstream of an
FPGA. For targeting the bitstream a module of the DAVOS toolkit was
used, which is customized to perform FIAs.
Multiple types of attacks have been performed on the round-based AES pro-
tected by ParTI. First, attacks with a multiplicity of 1 on different rounds of
AES confirmed the statement made in [2] that ParTI is capable of averting
any single bit error which is injected in the data stream. Next, emulating
fault injections with a higher multiplicity proved that when the adversary is
capable of performing highly biased attacks, where at least 2 bits are altered
within one data byte, faults will propagate to the output.
Then using a generalized DFA method which is able to deal with multi bit
faults it was shown that the original key can be extracted from an imple-
mentation of round-based AES protected by the ParTI countermeasure.

Over all, it has been shown that, when an adversary is advanced enough
to inject multiple faults in a specified area in one clock cycle and has a good
knowledge of the layout of the implementation on the FPGA, it is possible
to extract the original key. For now, this seems possible only in the lab in
a very controlled environment. But as the technology that is available to
adversaries is getting more and more advanced, it is of great importance
to research possibilities to make countermeasures more resistant to higher
multiplicity faults.
DAVOS as a fault injection platform can also be improved to give users
more control of the bias of their emulated attacks, while also making the
tool more user friendly.

21

Bibliography
[1] M. J. Dworkin, “Advanced encryption standard (AES),” National

Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep.,
nov 2001. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.197.pdf

[2] T. Schneider, A. Moradi, and T. Güneysu, “ParTI - Towards combined
hardware countermeasures against side-channel and fault-injection at-
tacks,” in Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 2016.

[3] “National institute of standards and technology.” [Online]. Available:
https://www.nist.gov/

[4] C. E. Shannon, “Communication Theory of Secrecy Systems*,” Bell
System Technical Journal, vol. 28, no. 4, pp. 708–710, oct 1949.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6769090

[5] E. Van der Ploeg, “Developing a Platform to Emulate Fault Injection
Attacks on Cryptographic Implementations,” Ph.D. dissertation, Uni-
versity of Twente, 2020.

[6] J. Daemen and V. Rijmen, “The Rijndael Block Cipher: AES Pro-
posal,” in Nist, 2003.

[7] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 2006.

[8] F. MacWilliams and N. Sloane, The Theory of Error Correcting Codes.
New York: North- Holland Mathematical Library. North-Holland Pub-
lishing Co., 1977.

[9] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Lec-
ture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 1999.

[10] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “Higher-
order threshold implementations,” in Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2014.

[11] T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov, and S. Nikova, “Higher-
order threshold implementation of the AES S-box,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2016.

22

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://www.nist.gov/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6769090
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6769090

[12] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis of
concurrent error detection against differential fault analysis,” Journal
of Cryptographic Engineering, 2015.

[13] C. Giraud, “DFA on AES,” in Lecture Notes in Computer Science, 2005.

[14] A. Moradi, M. T. Shalmani, and M. Salmasizadeh, “A generalized
method of differential fault attack against AES cryptosystem,” in Lec-
ture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2006.

[15] I. Tuzov, D. De Andres, and J. C. Ruiz, “DAVOS: EDA toolkit for de-
pendability assessment, verification, optimisation and selection of hard-
ware models,” in Proceedings - 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2018, 2018.

[16] M. Karpovsky, K. J. Kulikowski, and A. Taubin, “Differential fault
analysis attack resistant architectures for the advanced encryption stan-
dard,” in IFIP Advances in Information and Communication Technol-
ogy, 2004.

[17] “ZedBoard.” [Online]. Available: http://zedboard.org/product/
zedboard

23

http://zedboard.org/product/zedboard
http://zedboard.org/product/zedboard

A C Emulation of ParTI
In this Appendix, the main part of C based ParTI emulation can be found,
the complete source code can be found at: https://drive.google.com/
drive/folders/1oaqpsupHZb8ydFuJHrmpITOokKIuDwm2?usp=sharing

A.1 main.c

1 #include "AES_Core.h"
2

3 static uint8_t plaintext[4][4] = {
4 {0x80, 0x00, 0x00, 0x00},
5 {0x00, 0x00, 0x00, 0x00},
6 {0x00, 0x00, 0x00, 0x00},
7 {0x00, 0x00, 0x00, 0x00}
8 };
9

10 static uint8_t ciphertext_check[4][4] = {
11 {0x3a, 0x6c, 0x7e, 0x23},
12 {0xd7, 0x1e, 0xbf, 0xd9},
13 {0x8e, 0xc0, 0xe9, 0xec},
14 {0x72, 0x2b, 0x2b, 0x34}
15 };
16

17 int main()
18 {
19 int num_correct = 0;
20 int num_wrong_detected = 0;
21 int num_wrong_undetected = 0;
22

23 //inserting 2 bits in the 9th round in every possible way for
every byte.

24 for(int error_round = 9; error_round <= 9; error_round++)
25 {
26 printf("error round: %d\n", error_round);
27 for(int error_row = 0; error_row <= 3; error_row++)
28 {
29 printf("error row: %d\n", error_row);
30 for(int error_col = 0; error_col <= 3; error_col++)
31 {
32 printf("error column: %d\n", error_col);
33 for(int error_bit = 0; error_bit <= 7; error_bit++)
34 {
35 printf("first error bit: %d\n", error_bit);
36 for(int error_bitdist = 1; error_bitdist <= (7 -

error_bit); error_bitdist++)
37 {
38 uint8_t outputAES[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
39 uint8_t outputCEC[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
40 bool fault = 0;
41 bool detected = 0;

24

https://drive.google.com/drive/folders/1oaqpsupHZb8ydFuJHrmpITOokKIuDwm2?usp=sharing
https://drive.google.com/drive/folders/1oaqpsupHZb8ydFuJHrmpITOokKIuDwm2?usp=sharing

42

43 //run a complete sequence of ParTI protected AES
44 detected = AES(plaintext , outputAES , outputCEC ,

error_round , error_col , error_row , error_bit , error_bitdist);
45

46 //checking the correctness of the output
47 for(int i = 0; i <= 3; i++)
48 {
49 for(int j = 0; j <= 3; j++)
50 {
51 printf("%x ", outputAES[j][i]);
52 if(outputAES[i][j] != ciphertext_check[i][j])
53 {
54 fault = 1;
55 }
56 }
57 }
58

59 //determine the type of output
60 if(fault == 1 && detected == 1)
61 {
62 printf("Output error detected!\n");
63 num_wrong_detected++;
64 }
65 else if (fault == 1 && detected == 0)
66 {
67 printf("Output error not detected!\n");
68 num_wrong_undetected++;
69 }
70 else
71 {
72 printf("Output correct!\n");
73 num_correct++;
74 }
75 }
76 }
77 }
78 }
79 }
80

81 printf("Correct: %d\nIncorrect(detected): %d\nIncorrect(
undetected): %d\n", num_correct , num_wrong_detected ,
num_wrong_undetected);

82 }

25

A.2 AES_Core.c

1 #include "AES_Core.h"
2

3 bool AES(uint8_t input[4][4], uint8_t outputAES[4][4], uint8_t
outputCEC[4][4], int error_round , int error_col , int error_row
, int error_bit , int error_bitdist)

4 {
5 //setting buffers for AES
6 uint8_t outputSB_AES[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
7 uint8_t outputSR_AES[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
8 uint8_t outputSR_AES_cor[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
9 uint8_t outputMC_AES[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
10 uint8_t outputAK_AES[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
11 uint8_t outputAK_AES_cor[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
12

13 //setting buffers for CEC
14 uint8_t input_enc[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
15 uint8_t round_key[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
16 uint8_t outputSB_CEC[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
17 uint8_t outputSR_CEC[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
18 uint8_t outputSR_CEC_cor[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
19 uint8_t outputMC_CEC[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
20 uint8_t outputAK_CEC[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
21 uint8_t outputAK_CEC_cor[4][4] =

{{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
22

23 bool reset = 1;
24 bool detected = 0;
25

26 //AES Initial step
27 AddRoundKey(input , outputAK_AES , round_key);
28

29 //CEC Initial step
30 StateEncoder(input , input_enc);
31 CECAddRoundKey(input_enc , outputAK_CEC , round_key);
32

33 for(int i = 1; i <=10; i++)
34 {
35 //check if it's the first round

26

36 if(i != 1)
37 {
38 reset = 0;
39 }
40

41 //in the error round , insert a 2 bit error as specified in the
input arguments

42 if(i == error_round)
43 {
44 bool bin_in[8] = {0,0,0,0,0,0,0,0};
45 HexToBin(outputAK_AES[error_col][error_row], bin_in);
46 bin_in[error_bit] = !bin_in[error_bit];
47 if((error_bit + error_bitdist) <= 7)
48 {
49 bin_in[error_bit + error_bitdist] = !bin_in[error_bit +

error_bitdist];
50 }
51 else
52 {
53 bin_in[error_bit + error_bitdist - 8] = !bin_in[error_bit

+ error_bitdist - 8];
54 }
55

56 outputAK_AES[error_col][error_row] = BinToHex(bin_in);
57 }
58

59 //run the EDC for the input of SubBytes
60 detected = Correction(outputAK_AES , outputAK_CEC ,

outputAK_AES_cor , outputAK_CEC_cor , reset);
61

62 //run SubBytes
63 SubBytes(outputAK_AES_cor , outputSB_AES);
64 CECSubBytes(outputAK_CEC_cor , outputSB_CEC);
65

66 //run ShiftRows
67 ShiftRows(outputSB_AES , outputSR_AES);
68 CECShiftRows(outputSB_CEC , outputSR_CEC);
69

70 //run the EDC for the input of MixColumns
71 detected = Correction(outputSR_AES , outputSR_CEC ,

outputSR_AES_cor , outputSR_CEC_cor , 0);
72

73 //determine if it's the last round
74 if(i < 10)
75 {
76 //run MixColumns
77 MixColumns(outputSR_AES_cor , outputMC_AES);
78 CECMixColumns(outputSR_CEC_cor , outputMC_CEC);
79

80 //run AddRoundKey
81 AddRoundKey(outputMC_AES , outputAK_AES , round_key);
82 CECAddRoundKey(outputMC_CEC , outputAK_CEC , round_key);
83 }
84 else

27

85 {
86 //run AddRoundKey
87 AddRoundKey(outputSR_AES_cor , outputAES , round_key);
88 CECAddRoundKey(outputSR_CEC_cor , outputCEC , round_key);
89 }
90 }
91

92 //return 1 if there was an error detected , 0 if not
93 return detected;
94 }

28

B Timing Scheme ParTI
The table below is showing the timing scheme of the finite state machine
and the round counter of the VHDL implementation of round-based AES
protected by ParTI.

Time [ns] State Round Counter
10 S_INPUT
20 S_INPUT2
30 S_INIT
40 S_WAIT
50 S_ROUND 1
60 S_WAIT
70 S_ROUND 2
80 S_WAIT
90 S_ROUND 3
100 S_WAIT
110 S_ROUND 4
120 S_WAIT
130 S_ROUND 5
140 S_WAIT
150 S_ROUND 6
160 S_WAIT
170 S_ROUND 7
180 S_WAIT
190 S_ROUND 8
200 S_WAIT
210 S_LAST 9
220 S_OUTPUT
230 S_OUTPUT2 10
240 S_DONE DATA_READY
250 S_RESET DATA_READY

Table B.1: Timing scheme of ParTI

29

	Abstract
	Introduction
	Cryptographic Implementations
	Round-Based AES
	SubBytes
	ShiftRows
	MixColumns
	AddRoundKey

	The ParTI Countermeasure
	Threshold Implementations
	Error Detection
	A Combined Scheme

	Differential Fault Analysis
	Giraud attack
	Generalized attack on AES

	Fault injection methods
	C Emulation of ParTI
	Specifying the attack scheme
	Injecting Faults with DAVOS
	Determining fault coverage

	Results
	Fault injections to the emulation
	Fault injections to the bitstream

	Evaluation
	Conclusions and Recommendations
	Bibliography
	C Emulation of ParTI
	main.c
	AES_Core.c

	Timing Scheme ParTI

