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Abstract

This study aimed to develop a deep learning algorithm which is able to detect bile leakage in
laparoscopic cholecystectomy video frames. The occurrence of bile leakage during laparoscopic
cholecystectomy varies between 1.3% and 40%. Although complication rates due to bile leakage
and lost gallstones are low, they are avoidable. More research into complications could be done
if bile leakage is reported automatically, since studies showed that 13.0% till 73.8% of the bile
leakages is not reported correctly. The purpose of this study is to achieve bile leakage detection
rate that has clinical added value by having a reporting rate which is above the current 87%
reporting rate.

In total 172 patients are included which laparoscopic cholecystectomies are performed by
23 different surgeons. The videos are derived from the Cholec80 dataset and from surgeries
performed in the Meander Medical Centre. Video data is transformed to video frames and
hereby 62380 bile and no bile leakage images are included in this study. Two convolutional
neural networks and different parameters settings were used for creating an optimal bile leakage
detection algorithm.

Training of the deep learning algorithm and testing of the trained network, resulted in a
trained model which showed 83% sensitivity, 80% specificity and an AUC score of 0.91 for
the testing dataset. The colour based feature extraction dataset achieved better results when
comparing the best performing model with its no feature extraction version. However, the results
were more ambiguous when both models and multiple training sessions are compared. The most
important outcome is that this trained model currently does not have clinical added value when
compared to the standards of reporting bile leakage in surgery reports in the Netherlands.

Although results should be improved by extending the dataset and optimizing the hyperpa-
rameters, good results are achieved by this study and first insights are given into bile leakage
detection by using a deep learning algorithm.
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CHAPTER 1

Introduction

This chapter discusses the clinical background of gallbladder leakage and laparoscopic chole-
cystectomy surgery, the risks for gallbladder perforation and an overview of previous studies
into the use of artificial intelligence for laparoscopic cholecystectomy surgery. This will lead to
defining the clinical problem, research questions and the aim of this study.

1.1 Gallbladder leakage

In the Netherlands, around 25,000 gallbladders are surgically removed by cholecystectomy every
year [1]. Most common indications for surgery are symptomatic gallstones and complications
due to gallstones like cholecystitis, jaundice and pancreatitis [2]. More than 30 years after the
introduction of laparoscopic cholecystectomy (LC) by Mouret, the majority of cholecystectomies
are performed laparoscopically. Two advantages of LC are shortened recovery time after surgery
and decreased discomfort for patients [3]. Shortly after introduction of LC, increased numbers
of complications of the major bile ducts and gallbladder leakage were reported [4–6]. Although
complication rates vary between 1.3% and 40%, studies have shown that the switch to laparoscopic
surgery resulted in increased gallbladder leakage [4–8]. During the early years of LC, gallbladder
leakage was not considered as a harmful complication. After several years more and more
case reports have shown that bile leakage and lost stones resulted in formations of abscesses
and fistulas in the peritoneal cavity [5–8]. Although complication numbers after gallbladder
perforation are low, they are avoidable [4, 5, 8]. To prevent complications due to unretrieved
gallstones, it is advisable to retrieve as many gallstones as possible and wash the abdominal
cavity to remove bile [5, 6, 8]. Currently, an important issue is the non-reporting of gallbladder
leakage, the numbers vary between 13.0% and 73.8%. It is negatively influencing research to
the incidence of gallbladder leakage and its complications. Especially when considering the
combination of the wide range of non-reporting numbers and incidence numbers and the limited
amount of articles about gallbladder leakage [4, 7, 9]. Patient safety is at stake since incomplete
reports could result in delayed diagnosis of LC related complications and underestimation of
complications during research [4, 6]. Therefore, correct reporting of gallbladder leakage and
informing patients about possible complications, is advised. Aforementioned is required to gain
insight into gallbladder leakage and its consequences [5, 6, 8].

To improve reporting of gallbladder leakage, the introduction of Artificial Intelligence (AI)
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2 CHAPTER 1. INTRODUCTION

into healthcare could open up new perspectives. Combining Deep Learning (DL) and the search
for complications during laparoscopic cholecystectomy will improve patient safety and research
outcomes. The amount of gallbladder perforation during LC and postoperative complications
decreases when gallbladder perforations are automatically reported; surgeons can learn from
previous mistakes, patients are correctly informed about possible complications and study
outcomes will become more reliable.

1.2 Defining gallbladder leakage

It is important to note that there are two different situations which both could be described
by gallbladder leakage or rupture. The first one is when the gallbladder ruptures without any
surgical intervention, this is a rare complication and not part of this study. The second situation
is during LC by perforating the gallbladder by a surgical tool, which is researched in this study.
Multiple terms are used to describe this form of bile leakage, namely leakage, spillage and
gallbladder perforation. Bile spillage is when a minimal amount of bile is leaking out of the
gallbladder. When a hole is present in the gallbladder and the bile and stones are pouring out,
it is defined as perforation. Both could be described as bile/gallbladder leakage, but only the
occurrence of gallbladder perforation could cause loss of gallstones. For this research, bile spillage
and gallbladder perforation are included. It is not in the scope of this study to distinguish
between severity of gallbladder leakage.

1.3 Laparoscopic cholecystectomy

Figure 1.1: Anatomy of the gallbladder [10]

At the start of an LC procedure, the liver needs to be elevated to provide a sufficient overview
of the gallbladder and other structures (Fig. 1.2A and 1.2B). It is done by using a fan retractor
which lifts the right lobe of the liver [11]. It is important to lift the fundus of the gallbladder and
give traction to the Hartmann’s pouch to optimize visibility of the ducts and arteries (Fig. 1.1).
These steps are also shown in figure 1.2C and 1.2D. Peritoneum, which is covering the cystic
artery and cystic duct, is dissected to create a clear overview of these anatomical structures (Fig.
1.2E and 1.2F). It is essential to use a standardized method to identify the critical structures,
also known as Critical View of Safety (CVS) [12]. It means that the cystic artery and cystic
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duct should only be dissected when both are clearly visible (Fig. 1.1). Identification of these
structures and so the CVS is not always as straightforward as described. Both ducts and arteries
show considerable variation in length and junction location. Therefore, this is a critical phase
during surgery. If it is certain that the remaining structures, the cystic duct and cystic artery,
are entering the gallbladder and the prescribed 360◦view of both structures is possible, dissection
of the cystic artery and cystic duct is safe (Fig. 1.1). The last step is to completely dissect
the gallbladder from the liver bed which is already partly seen at figure 1.2F. Hereafter the
gallbladder is removed out of the abdominal cavity by using a sterile plastic bag to prevent
infections, bile leakage and lost stones [2, 11].

(a) Liver (b) Lifted liver (c) Stretching of fundus

(d) Hartmann’s pouch (e) Surgery overview (f) Dissection of peritoneum

(g) Critical view of safety (h) Clipping of duct and artery (i) Cutting of cystic artery

Figure 1.2: Different phases during laparoscopic cholecystectomy
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1.4 Risk factors for gallbladder perforation

1.4.1 High-risk surgery phases

Multiple studies have shown precarious phases during surgery with an increased risk of gallbladder
rupture. Three phases were identified, namely when traction is given to the gallbladder with
a grasper, which is occurring throughout the entire surgery. Additionally, dissection of the
gallbladder from the liver bed is a procedure with an increased risk for rupture [6]. Impetuous
dissection of the gallbladder from the liver fossa is mentioned as the most common cause of
gallbladder perforation [5, 9]. Nooghabi et al. also mention retrieving the gallbladder out of
the abdominal cavity as a high-risk procedure [6]. However, surgeons of the Meander Medical
Centre (MMC) use a retrieval bag and prevent leakages of bile and stones when removing the
gallbladder out of the abdominal cavity.

1.4.2 Difficult laparoscopic cholecystectomies

In addition to complications during difficult surgery phases, several articles describe predictive
risk factors for gallbladder rupture. Patients who are at risk for gallbladder rupture are patients
with gallbladder hydrops due to obstruction, chronic cholecystitis with thickened walls above 7mm
and patients who previously received laparoscopic surgery [13]. Nooghabi et al. also mentioned
male sex, higher weight, older patients and acute cholecystitis as risk factors. Since the study was
retrospective, peroperative risk factors are determined: the presence of adhesions, challenging
dissection of CVS, clip slippage and presence of infected bile and pigment stones [6]. Some of
these factors are correlated: previous laparoscopic surgeries and the presence of adhesions, acute
or chronic cholecystitis and infected bile. Besides the presence of (pigment) stones makes it more
likely that there is obstruction. Some of these factors; male sex, older age, acute cholecystitis,
spillage of pigment stones, number and size of stones and location of spilled stones, are also
a predictive value for developing complications due to stone spillage [14]. All complications
mentioned before are risk factors for gallbladder rupture. These partially correspond to risk
factors for a difficult laparoscopic cholecystectomy (DLC). Risk factors for a DLC are impacted
stone in a gallbladder neck, adhesions around the cystic artery and cystic duct and rupture
of the gallbladder. Some identified risk factors, also define what a DLC is, namely injury of
the cystic artery, blood loss above 50 mL and increased surgery time. When easy and difficult
surgeries are compared, these risk factors are also significantly different [15].

1.4.3 Surgical experience

In the MMC, a high volume surgery like laparoscopic cholecystectomy, is often performed by
surgical trainees and supervised by a surgeon. It is a suitable surgery to develop surgical
experience. A potential risk factor is the correlation between surgical experience and number of
complications. Two recent studies about gallbladder rupture and surgeons experience, estimated
beforehand that complications could be correlated with surgery experience. Both studies did not
find increased complication rates; only surgery time was increased [9,15]. On the other hand,
older studies found significant differences when gallbladder perforation was compared between
experienced surgeons and surgical trainees [16,17].

1.5 Artificial intelligence for LC

1.5.1 Previous Research

To improve reporting of gallbladder leakage, the introduction of Artificial Intelligence (AI) could
improve quality of healthcare. Recently more and more papers are published about AI and
laparoscopic cholecystectomy. One reason is that LC is a high volume surgery, resulting in a large
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data set. Another important reason is the availability of two extensive datasets, Cholec80 and
EndoVis, containing LC videos with annotation of surgery phase and used instruments [18,19].
Thus far, these datasets are used for benchmarking, education, keyframe extraction and predicting
the remaining surgery time. Other studies focused on combining these annotated datasets with
external cameras or creating software for automatically annotation of data [18, 20–25]. Initially,
studies focused on the improvement of results of previous studies about phase recognition and
instrument usage [20]. These two recognition tasks are beneficial for the more difficult task of
skill assessment. Benchmarking or skill assessment for surgeons has proven to increase their
level of performance [20]. It is achieved by analyzing surgery steps and tasks, instrument usage
and additional information about instrument path length, the number of hand motions, usage
time of each instrument, applied force and how smoothly movements are [20, 21]. By evaluating
these parameters, the learning process of (junior) surgeons is supported. More specifically,
it enables personalized training, surgery evaluation and creation of skill-related feedback for
(junior) surgeons [20]. Another promising subject is the study of Loukas et al. into keyframe
extraction. They managed to extract 81% of the ground truth keyframes by using their trained
network. This application is helpful for education, automatic generation of summaries for surgery
reports and it could be used as a support tool for specific training for surgery phase and task
recognition [22]. An innovative application of surgery phase information is the calculation of
the remaining surgery time. When accurate estimation is possible, the preparations for the
next surgery are more efficiently done by notifying staff automatically at the correct time.
The use of surgery rooms and medical staff are optimally planned and more patients could be
treated with the same healthcare budget and shortened waiting time [23,25]. When the use of
AI is extended to incorporation of the EHR and surgeon specific information, more accurate
estimations could be made [25]. Padoy et al. describe the use of external cameras combined with
surgery videos to extract more information about surgery phase and instrument usage. Although
new information is added about the surgeons and medical staff’s position and movement, it is
still difficult to visualize all the members and movements and prove the added value of external
cameras for patient outcome and surgery efficiently [23]. At last, a recently published article
described the advantageous approach of automatic segmentation. Usually, this manual process
is time-consuming because a medical expert manually annotates the videos. Bodenstedt et al.
developed a method that only requires a limited amount of manual segmentations. Hereafter,
similar regions in new data are detected by using a deep learning network and the probability of
correct segmentation is calculated. Only segmentations with a very low probability for accurate
annotation are verified and, if necessary, adjusted. Subsequently, all these segmentations are
added to the training set and the next iteration starts. Hereby, a minimal amount of video frames
needs manual segmentation and only the more complicated video frames will be annotated by
an expert [24].

1.5.2 Research group Meander Medical Centre and Verb Surgical

In the MMC, different studies into AI and surgery are performed. The first project, the
identification of five anatomical structures; ureter, tendon, artery, white line of Toldt and colon,
was completed in August 2018. The next project aimed to remove video frames from surgery
videos which contain personal information, most importantly, frames that contain medical staff.
Verb Surgical, a collaboration between J&J and Google, is interested in this project, which is
still ongoing. During multiple conversations, it was decided that a project about bile leakage
during LC surgery would fit in their aim of creating a preoperative risk analysis for each patient,
being able to estimate the remaining surgery time and offer benchmarking for surgeons. Another
ongoing project is about identification of the Nervus Vagus. During anti-reflux surgery, the
Nervus Vagus is injured in around 20 % of the patients. The goal of this study is to identify
the nerve during surgery and support the surgeon in preventing collateral damage. Recently,
a study about phase recognition during totally extra-peritoneal (TEP) repair started. Earlier
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studies into phase recognition for LC surgery were used for this benchmark project. The goal
is to give surgical trainees insight into their surgical skills. Since this operation includes many
different steps, guidance during surgery and feedback per phase after a surgery, could be helpful.
Eventually, the goal is to assist surgical trainees in learning to operate more systematically and
focus training on specific phases which could be done faster.

1.5.3 Benchmarking

Although research is done into skill assessment, the development of a surgery robot by Verb
surgical and their interest in AI opens up new perspectives. Besides improvement of skill
assessment algorithms, there is a need for objective classification of the level of complexity of a
surgery. As mentioned before, the definition of a DLC surgery is related to the health condition
of the patient and the complications that occur during surgery. When it is possible to define what
an easy, moderate and difficult LC surgery is, it is possible to determine if surgery times and
number of complications are increased compared to other colleagues. Otherwise, increased mean
surgery time and number of complications due to a lot of difficult patients, could incorrectly
mark a surgeon as too slow or even incompetent. Combining the objective level of complexity of
a surgery, surgery time, complications like gallbladder leakage and skill assessment, will result in
fair benchmarking of surgeons and eventually improve healthcare.

1.6 Research questions and aims

1.6.1 Clinical problem

Although studies confirmed that gallbladder perforation could result in severe complications
and they stated that it should be reported correctly, surgeons still do not consistently mention
gallbladder leakage in surgical reports. Hereby, it is not possible to conduct a comprehensive
study on the incidence of complications related to gallbladder rupture. Information about risk
factors for gallbladder leakage is available. It is defined how surgeries could be classified as an
easy, a moderate or a difficult LC. Besides, the possible effect of surgical experience is researched.
Nevertheless, to confirm and combine these findings more reliable data is needed. To improve
patient safety before, during and after an LC, more feedback and information should be collected.

1.6.2 Aim

The aim of this study is to detect bile leakage in videos of laparoscopic cholecystectomy
surgeries. When the created deep learning network is outperforming the manual reporting
of gallbladder leakage, the result is clinically relevant. Only then, the network is suitable for
automatic reporting of gallbladder leakage in surgery reports and research into gallbladder
complications will become more reliable. The ultimate goal for gallbladder surgery is that
reliable preoperative risk assessment for each LC patient is done automatically before the
surgical procedure by using previous mentioned high-risk factors. Besides, complications are
detected during surgery and are reported automatically. Both surgeon and surgical trainees
can learn from a gallbladder perforation, because data of perforation is annotated correctly
and therefore available. Additionally, benchmarking, so comparing skills between surgeons, is
possible and personalized training sessions will improve skill and speed during specific phases
and procedures. Still most importantly, quality of care is improved when complications during
laparoscopic cholecystectomies are reported correctly and patients are informed about possible
postoperative complications.

The aim of this study, the identification of gallbladder leakage by using a deep learning
network, will be a small contribution to this ultimate goal of improving quality of care for
patients who receive a laparoscopic cholecystectomy.
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1.6.3 Research questions

1. To what extent is it possible to detect bile leakage in laparoscopic cholecystectomy videos
by using a deep learning algorithm?

2. What is the clinical added value of the deep learning network when comparing its bile
leakage detection rate to the reporting rate of bile leakage in surgery reports?

3. How does the use of colour based feature extraction contribute to the gallbladder leakage
detection rates in laparoscopic cholecystectomy video frames?

Primary objective: To detect gallbladder leakage post-operatively in laparoscopic cholecys-
tectomy video frames by using a deep learning algorithm.

Secondary objective: To create an algorithm with a detection accuracy that has more clinical
added value in comparison with current standards of bile leakage reporting in surgery reports,
based on literature studies. Besides, a parameter study is performed to improve results and
understanding of deep learning algorithms.

1.7 Outline of this study

During this study, five elements were carried out to create a working algorithm for laparoscopic
cholecystectomy videos. At first, a parameter study is done to decide which network is suitable
and which hyperparameters should be used and how they should be tuned. A second part of the
study consists of creating an LC dataset with gallbladder leakage images out of the previous
mentioned Cholec80 dataset. This enabled performing binary classification on a gallbladder
leakage dataset. During this study phase, more information was obtained about tuning of
hyperparameters and how to evaluate the model. The fourth element, colour based feature
extraction, was performed on this dataset to decide if results of a deep learning network could be
enhanced. At last, data was collected in the MMC to enable evaluation of previous performed
network training and a larger dataset was created with Meander data and the Cholec80 dataset.
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CHAPTER 2

Technical Background

In this chapter a brief introduction is given into deep learning and convolutional neural network
architecture. Additionally, hyperparameters that were used during this study are explained. The
third section of this chapter describes how network optimization could be performed. Hereafter,
it is discussed how evaluation of deep learning networks could be performed. This chapter
concludes with the introduction of feature extraction. This is used to reduce specific information
in parts of laparoscopic cholecystectomy images and accentuate other elements in these images.

2.1 Convolutional neural network

A Convolutional Neural Network (CNN) is a specific type of deep learning network which
is suitable for analyzing images. Three basic elements create such a network, which are:
convolutional layers, pooling layers and fully-connected layers (Fig. 2.1).

Figure 2.1: A convolutional neural network [26]

2.1.1 Convolutional layers

Convolutional layers are multiple neurons which operate as filters for the pixels of an image
(input). The width of a network is determined by the amount of neurons or nodes in a layer and
the depth of a network by the amount of layers. If a filter of size 5x5 moves with a step size

9
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(stride) of one, the output (feature map) dimensions are downsized with four pixels. The input
is processed by activation of neurons while moving the filter with specific weight over an image.
The idea of a CNN is that there are a lot of these filters, 32 in first layer of Fig. 2.1, and each
one of them is filtering another element because they have different weights. Hereby, different
properties are detected for each image [27].

Activation

Figure 2.2: A network neuron

As described in previous paragraph, activation of a neuron is needed to process the input
information. Inputs and bias are weighted and summed and an activation function will have a
threshold which determines if the neuron is activated (Fig. 2.2).

Figure 2.3: The sigmoid and ReLu function [28]

Nowadays, the two most used activation functions for binary problems are the rectified
linear activation unit (ReLU) function and the sigmoid activation function at the end of a
neural network. The ReLU activation function is based on the most simple activation function,
namely a linear activation function. Since deep learning is often performed on complex data,
the activation function not only needs to be adequate for this data, but also should be simple to
enable less complex calculations. The ReLU is combining the linear activation function, but
prevents that input below zero can activate the neuron and creates converging of the network
towards zero (Fig. 2.3). This is important, because a neuron should not be activated if the
weighed inputs will not contribute in the prediction of an outcome [27,29]. Considering that the
outcome value of a sigmoid function is between 0 and 1, probability predictions at the end of
a network is often done by using this function. The last fully connected layer consists of one
neuron with a sigmoid activation function. Hereby, outcomes for a binary classification problem
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could be predicted with a cutoff value of 0.5. All values below 0 are assigned to one class and
value of 0.5 and higher are assigned to the other class [27].

2.1.2 Pooling layers

The pooling layer is used to downsize the filters and thus lower the resolution and prevent
overfitting. Otherwise, filters are created which are too specifically fitting the images. Besides,
pooling layers provide feature maps which are more suitable for context recognition instead of
detailed feature recognition.

Figure 2.4: Max pooling

An often used pooling layer is maxpooling. It is a filter of size 2x2 which moves over each
feature map with a stride of two. Only the highest pixel value of four pixels is kept. Hereby
each feature map is reduced to one fourth (Fig. 2.4). It helps to prevent overfitting and less
detailed feature maps are created for context recognition [27].

2.1.3 Flatten

The flatten layer is needed if data consist of multidimensional information. The use of a CNN
enables working with colour images and this data is three dimensional since each pixel of
these images has three colour channels (red, green, blue). A flatten layer transforms the three
dimensional data into one dimensional data. For example, a None by 3 by 16 input is transformed
to None by 48. A flatten layer allows the use of the fully connected layers as next layer in a
network and this layer is needed to obtain predictions as output [30].

2.1.4 Fully connected layers

At the end of a network, fully connected layers are needed to combine information obtained
in previous layers. These last layers of a network will predict what each image contains. In
python language this is called a Dense layer. The activation functions that are used are the
ReLU activation function and the sigmoid activation function in the last layer to have a final
result between 0 and 1, which is useful for making predictions [27].

2.2 Network hyperparameters

When implementing a network, there are many options for the settings, also called hyperparam-
eters. Network hyperparameters define the network structure, while optimizer hyperparameters
will determine how training of a network will be done. Network hyperparameters are the number
of layers and units in each layer, the use of dropout, the network weight initialization and the
activation function which is explained before. Training hyperparameters are batch size, number
of epochs, optimizers, loss functions, learning rates, momentum and learning rate decay [27,31].
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There are several goals that needs to be considered when creating a network: convergence,
precision, robustness and the general performance of a network. An ideal network converges
quickly to optimal hyperparameter settings. Large precision results in outcomes that are close
to the reference outcome. Optimal robustness will create a trained network which generalizable
to other LC datasets. It is difficult to create a perfectly performing network, so even for a well
performing network, hyperparameters should be chosen carefully [32].

2.2.1 Epoch and batch size

Running through the entire training dataset once is called an epoch. The majority of datasets
are too large to run at once, and running one by one makes it difficult to create a stable training
of the network due to noise. Therefore, large datasets are divided into smaller parts called
batches. To train a network, iterations of epochs are done tens and sometimes hundreds of
times. [27]. It is important that the batch size is chosen carefully. A larger batch size means
faster training, since one epoch is only a few batches and learning process is faster. But one
needs to take into account that this means that when images are used, an image batch is loaded
at once. There is a computational limitation for the GPU of a computer. On the other hand,
when a batch size is too small it could induce overfitting of the model, since filters are trained
too specifically when more feedback is given during training. Therefore a trade off needs to be
found between a large batch size, but small enough to be loaded at once. Lastly, an important
criteria for the batch size is that it needs to be a power of two to meet the memory requirements.
In this way, calculations are done most efficiently [27,33,34].

2.2.2 Gradient descent optimization

To improve training results, the training output is compared to the reference outcome by using a
gradient descent optimization algorithm. After training of a batch, the error between predicted
output and reference output is calculated. The weights of each filter are updated based on the
contribution of those filters to the error. This is called backpropagation. Updating is done
by partial derivative computations to calculate the contribution of each layer to the error and
hereafter use this outcome to calculate contribution to the error of the previous layer and so
on. The purpose of this updating is to minimize the error by adjusting the weights of filters
and find optimal parameters for a model. Updating of parameters could be done after running
the entire dataset (batch gradient descent) or one-by-one (stochastic gradient descent). The
earlier mentioned batch size, also called mini-batch, can help to train a large dataset faster.
More importantly, a more precise model is created and results will improve. Efficient updating is
achieved when using mini-batch gradient descent which updates the model after each mini-batch.
Hereby, the advantage of batch gradient descent is used, namely stable updating with accurate
prediction of the error. On the other hand, by using a batch-size closer to one, the advantage
of stochastic gradient descent is used and efficient calculation is done with less computational
power. [27,34–36].

2.2.3 Loss function

The prediction of the error for updating by mini-batch gradient descent is done by an error
function, also called loss function. For binary classification of gallbladder leakage, the binary
cross entropy loss function is the most common choice. The loss is a maximum likelihood
estimate expressed by the loss function. This function calculates the mean difference between
predicted output and reference output, for which an optimal outcome is zero. So, an optimal
situation is when the loss calculation becomes zero or close to zero. Thus, when a maximum
likelihood estimate is performed, updating the weights by using the loss function is done to
find model weights for which the predicted output is most resembling the reference class. This
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method is called binary cross entropy, because the difference between predicted output and
reference output is expressed in bits. [37, 38].

2.2.4 Weight initialization

Weight initialization is useful to prevent vanishing or exploding gradients. Backpropagation by
the partial derivatives will be more unstable if each derivative of the layers is large, complexity
of the weight update calculations increase and gradient is larger after each layer. Hereby the
training is slowing down, since weight updating is taking more time. When derivatives are too
small, the gradient is small and gets smaller after each layer and converge towards zero. This
will slow down learning, since updating weights is only done by very small steps and it will
take more time to find an optimum for the weights. [39]. Initializing all weights with the same
value, creates filters with roughly the same property, which will limit optimal learning. By
random initialization of the weights which are not too small or large, the learning process will
be improved. For a ReLU activation function, an often used weight initialization method is the
He Normal or He Uniform initialization [40].

2.2.5 Optimizers

An optimizer uses backpropagation, but other parameters are needed to improve optimization.
For most optimizers, these other parameters are momentum, learning rate and learning rate
decay. All available optimizers combine these parameters in different ways and will perform
differently.

Momentum

Momentum is used to move the gradient vector in the correct direction and decreases oscillations.
This is achieved by using the vector of the previous updates whereas most recent gradient
updates are more important than older vectors. When updates proceeds in the same direction
to a minimum or maximum, the use of momentum will accelerate this process. This is achieved,
because the direction of the vector of the most recent updates are in the same direction and
added to the current vector. Fluctuations of the gradient are reduced, since a more average
gradient vector is used by combining current vector with previous vectors. Small changes in
direction are prevented and a more smooth curve of the learning process is accomplished. Hereby,
the optimization process is improved [40].

Learning rate

A learning rate is needed to determine how much the current weight of a filter changes by the
loss calculations. When choosing a large value for learning rate, the weights can change rapidly
which could create an unstable learning process or less suitable weights. Contrarily, smaller
learning rates could result in more accurate adjusting of the weights, but a very slow learning
process. [27, 41]

Learning rate decay

Learning rate decay is added to a network to combine positive fast converging with a large
learning rate and the more precise tuning with a smaller learning rate. The network will learn
fast at the beginning of training and when learning proceeds, only fine-tuning is allowed, so
adjustments to weights are limited. This will speed up the process of finding suitable weights
and creating a suitable model. This decay is done by using a learning rate schedule which
changes the learning rate based on time, amount of epochs or the current performance during
training [27,41].
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Adaptive Moment Estimation

The Adaptive Moment Estimation (Adam) is the most used optimizer for neural networks at this
moment. It is a combination of RMSprop and momentum and provided by Kingma et al. [42].
RMSprop is an optimizer which divides the learning rate, η, by a squared decaying average of
the previous gradients. This learning rate decay is accomplished by using variable β2 which is
getting smaller during training. Therefore, the learning rate will be larger at the beginning and
smaller at the end of training, which will slow down training. Momentum is added by variable
β1 to accelerate the weight update in the right direction. The update equation of Adam is given
in Eq. 2.1 [42]. θ is the weight update parameter, ε is a small value which prevents that η is
divided by zero. mt is defined in Eq. 2.2 and vt in Eq. 2.3. These equations show how Adam is
updated by parameters β1 and β2 [39, 40,42].

θt = θt−1 −
η · m̂t

(
√
v̂t + ε)

(2.1)

mt = β1 ·mt−1 + (1− β1) · gt (2.2)

vt = β2 · vt−1 + (1− β2) · g2t (2.3)

Bias correction is performed for the possibility that moment estimates move towards zero if β
gets close to one (Eq. 2.4 and Eq. 2.5) [42]. For bias correction, the mt and vt are divided by
(1− βt). That is why the m̂t and v̂t are mentioned in Eq. 2.1 instead of the earlier defined mt

and vt [42, 43].

m̂t =
mt

(1− βt1)
(2.4)

v̂t =
vt

(1− βt2)
(2.5)

2.3 Network optimization

2.3.1 Model complexity

Multiple layers and more neurons create a deeper and wider network. This enables solving of
more complex data. When creating and testing a network, it is important to notice whether
training results are converging to lower loss and higher accuracy. When overfitting occurs, perfect
results on training data are achieved but too many neurons are used. As a result, every neuron
learns only a small piece of the data and achieve high accuracy on the training set, but it is
not flexible enough to interpret new data. On the other hand, when a network is too complex
for a dataset, too many layers are used. Not enough information is present in the dataset to
accurately train all neurons by the training examples.

2.3.2 Using validation and test set

When training a network, the data will be divided in three different groups, namely a training,
validation and test set. The training set is used to train a network. After training a mini-batch,
the validation set is used to check how the network is performing and how parameters should
be updated. After training of a network, a test set is used, which is a new dataset, to check
how the final network is performing on new data. After training, accuracy and loss are stored,
multiple graphs are created of the training session and settings of the created algorithm are
also stored. By using the validation set, it is tested how well the network is training. If only a
training set is used, overfitting can occur since adjustments to the weights of the network will be
done based on training data itself. When creating a validation set, a disadvantage is that a part
of the data is not used for training of a network. Since annotated data is costly, you want to
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reduce the validation set as much as possible, but still obtain optimal feedback during training.
An often described distribution is 80% of the data for the training set, 10% validation set and
10% for testing. set [33].

2.3.3 Performance evaluation during training

To monitor the progress in network training, loss and accuracy of the training and validation set
are useful parameters. The loss function is the sum of errors during one training iteration of
a mini-batch. The accuracy shows the rate of correctly identified reference outcomes. When
training a network, these parameters could be monitored to quit a training when accuracy
and loss are not improving anymore. This is called early stopping. It is a useful addition to a
network, since time is saved and unnecessary calculations are prevented [33,44]. Besides, model
checkpoint could be used to save the weights of the model. To avoid accumulation of files, only
the best model is saved during training. Hereby, it is possible to reload the network weights and
use this for testing of the final model by using test data. Besides, when an error occurs, loss of
valuable training time is prevented [27].

2.3.4 Dropouts

Another clever tool in deep learning is the addition of dropouts which reduces overfitting of
the model. This procedure leaves out one or multiple neurons during an iteration. Hereby, the
weight updates will not be applied to these neurons and connected neurons in previous layers.
During training, each layer and neuron tends to specialize in specific feature detection. By
leaving neurons out for one training iteration, other neurons need to anticipate which results in
less specialized neurons and hereby prevent overfitting [27,35].

2.3.5 Batch normalization

Batch normalization is useful because of the internal covariate shift. Ioffe et al. formulate this
as followed: “We define internal covariate shift as the change in the distribution of network
activations due to the change in network parameters during training” [45]. This occurs during
backpropagation after each batch, by which the weights of a neuron and the contribution of
inputs to each layer changes. These changes are more difficult to predict when a neural network
has more layers. After each layer, it becomes more difficult to predict the contribution of the
following layer. Hereby, weights could become very large or small after multiple epochs. To
simplify backpropagation, batch normalization is applied. Each input is standardized in order
that the mean is zero and standard deviation is one. It will create smaller weight changes, while
nonlinear relations between layers remain and the effect is that a more predictable network for
backpropagation is created. One advantage is that a larger learning rate could be used and
hereby network convergence is going faster. This will speed up training, since significant less
epochs are needed. Another advantage of batch normalization is that less dropout is needed
and weight initialization is less important, since batch normalization prevents exploding or
vanishing of the gradient. Consequently, less dropout means that more data could be used
during training [45–47].

2.3.6 Data augmentation

If images in one dataset show similarities or only a small dataset is available, data augmentation
is a suitable solution. Images of the training dataset are adjusted to create a more diverse
dataset, but these adjusted images are still representative for the initial purpose. A few examples
of adjustments that could be made are: rotation, flipping, brightness adjustments, zooming and
whitening [27]. It has to be considered that not all data augmentation techniques are useful
for training of a specific dataset. In case of LC videos, 180 degree flips of video images during
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surgery are rarely seen, since videos are made by keeping the horizon as stable as possible. This
needs to be considered when implementing data augmentation [48].

2.4 Evaluation of the model

2.4.1 Plots

The evaluation of the model results into a Receiver Operating Characteristics (ROC) curve, an
Area Under the receiver operating Characteristic (AUC) value, a confusion matrix, and accuracy
and loss plots. The accuracy and loss plots will help to observe training progression and evaluate
how training is performed. The ROC curve shows how classification is performed with different
trade-offs between sensitivity and 1 - specificity [49]. The AUC value shows the probability that
an image is classified correctly. If the AUC value is between 0.70 and 0.80, it is an acceptable
outcome, between 0.80 and 0.90 is good and higher than 0.90 is an outstanding result. For
clinical use, an AUC value above 95% is preferred [50]. The confusion matrix is a table with the
true positives and negatives and false positives and negatives. Besides, previous mentioned plots
the sensitivity, specificity and specificity of each model are calculated [49].

(a) Accuracy (b) Loss (c) Confusion matrix (d) ROC curve

Figure 2.5: Model evaluation plots

2.4.2 Accuracy and loss

Trade-off for optimalization

When comparing the accuracy and loss of models, it is important to realize why it is impossible
to create a perfect model. When loss calculation is done by binary cross entropy, it is a balance
between incorrect assumptions of the model, so an imperfect model, and by learning information
of the dataset too well. This overfitting will occur when training continues for too long, because
it is impossible to have a complete dataset which takes all anatomical variations of patients into
account. The balance between both is a trade-off, so it is not possible to reach optimal values
of zero for both. Less mistakes by the model, requires longer training. While less overfitting
demands shorter training of the dataset [36]. When accuracy and loss values are obtained after
training, the size of this trade-off between a well trained model and overfitting will determine
how the model is performing.
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Relative uncertainty of loss and accuracy calculations

Although low loss and high accuracy and no overfitting could indicate that the model is performing
well, an important note is that machine and deep learning accuracy calculations will always
have an uncertainty. Calculations can be done to estimate the minimal dataset size to achieve a
specific accuracy when taking a relative uncertainty into account [33]. Van der Heijden et al.
describe Eq. 2.9 that estimate the needed dataset size when this relative uncertainty level γ is
included [33]. Since Ê is the the estimated error rate, the writers combine Eq. 2.6, 2.7 and 2.8
and assume that Ê is close to the true error rate E. When combining the uncertainty of E and
σÊ , γ is fixed as combination of the uncertainty of both [33].

Ê =
nerror
Ntest

(2.6)

σÊ =

√
(1− E)E

Ntest
(2.7)

γ =
σÊ
E

(2.8)

Ntest =
1− E
γ2E

(2.9)

By choosing a fixed γ and using the error rate, it could be determined what dataset size is
desirable. Another method how it could be used is to calculate the uncertainty of test outcomes
when dataset size and a specific error rate is known [33]. To conclude: the earlier mentioned
trade-off and relative uncertainty should both be taken into account when comparing prediction
outcomes of a model. The outcome will always be based on statistics. One of the reason why
implementation of deep learning into clinic is difficult, is because a deep learning model is a
statistical model and outcomes will never be perfect or 100% certain.

2.5 Colour based feature extraction

Image data contain a lot of information, since an image of 100x100 already contains 10.000 pixel
values. When humans look at a picture, often only a small part of the images is relevant. When
training a network, the same efficiency could be achieved by leaving out irrelevant image data
and decrease unnecessary calculations. One method to do so, is feature extraction (FE). When
FE is performed for data which contain two classes, best results could be achieved when the
difference between two classes is substantial and less noise is present. This difference between
two classes is expressed by the inter/intra class distance. The inter class distance represent the
distance between two classes in the feature space, while intra class represents distance within one
class. In Fig. 2.6 four classes are shown, but these inter and intra class distance principles are
the same. Since colour images contain three features, namely a blue, green and red channel, FE
these could be used to find colour differences between two classes. When colour based feature
extraction (CBFE) is used on colour images, the optimal linear combination of color channels is
found.
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Figure 2.6: Inter/Intra class distance [33]

To find this optimal combination, which is distinguishing most accurately between two
classes, intra-class whitening is applied (Fig. 2.6). Intra-class whitening normalizes the data
within a class whereby the mean of the samples is centered in zero and standard deviation is
one. Hereafter inter-class decorrelation is performed. It means that colour differences between
classes are exaggerated and the optimal combination is searched for which leakage and no leakage
images differ the most (Fig. 2.7).

Figure 2.7: Decorrelation [33]

In the left images of Fig. 2.7 it is seen that after decorrelation and whitening, the x-axis
is more valuable for classification of four classes compared to the y-axis. When three of these
diagrams are created for colour images with two classes, one combination of two features will
result in a highest inter class variability and the third feature should be nullified. [33]. Thus,
inter/intra class decorrelations could be used to determine which two RGB values contain
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valuable information for classification. By doing so, a transformation matrix could be created
which transforms other images into a decorrelated and whitened version. This may help to
increased classification rate.
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CHAPTER 3

Methods

3.1 Data Preparation

3.1.1 Explanations of different datasets

Figure 3.1: Flow chart of creating the datasets. Exclusion criteria abbreviations are No Visible Leakage
(NVL), Limited Time (LT) and Poor Quality (PQ). The letter n is an abbreviation for number of frames

21
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Five different steps were taken to create three datasets (Fig. 3.1). The first dataset was the
collection dataset and this only included downloading of videos. During the selection step, videos
were excluded. For the Meander dataset, limited time (LT) and poor quality (PQ) resulted
in exclusion of videos. The third dataset (transform to image) was created after exclusion of
unsuitable images. In the ’final datasets’ step, three final datasets were created. In the last step,
the Cholec80 and Meander1 dataset were merged to create one large training and validation
set. The Meander2 dataset is used for testing after training the Merged dataset. In total, 62380
video frames of 172 patients are included in these three datasets.

3.1.2 Study population

The study population consists of two groups of patients. One dataset, the Cholec80 dataset,
comprises 80 videos of laparoscopic cholecystectomy surgeries performed by 13 surgeons and
this dataset is compiled by Twinanda et al. [18]. The second dataset, the Meander dataset,
consists of 507 patients who underwent laparoscopic cholecystectomy surgery in the MMC
between 01-01-2018 and 31-12-2019. These surgeries are performed by 15 different surgeons. By
combining the Cholec80 and a part of the Meander dataset, a large dataset is created of LC
surgeries. Due to lack of time, not all videos were included for this study, but data was stored
to contribute to research in the future. The LC videos of 120 Meander patients and 52 Cholec80
patients are included, which are performed by 23 surgeons.

3.1.3 Collecting the video data

The Cholec80 dataset is provided by a research group of Nicolas Padoy, professor at the University
of Strasbourg, and contains 80 LC videos and additional tool and surgery phase annotations.
By filling in a request form, this data could be obtained. Only the 80 videos were used for this
study [18].

Permission of the board of the MMC for collection of patient data was received after a
research protocol was submitted and approved by the research committee (Appendix A). The
Meander data was collected by using a form with dates of LC surgeries. By using the surgery
planning, 1035 patients could be identified and their Electronic Health Record (EHR) was
checked for existence of an LC video. These videos, which are made during surgery by using
the laparoscopic camera, are downloaded from the EHR. For 507 patients, an LC video was
available and therefore 507 videos were downloaded (Fig. 3.1).

3.1.4 Selection of videos for dataset

Initially, the LC dataset consisted of only Cholec80 videos. First training results of the Cholec80
dataset were not sufficient and therefore all videos were checked for visibility of gallbladder
leakage. Hereafter, the Cholec80 dataset consisted of 52 videos (Fig. 3.1, transform to image
lane). This review process of the dataset resulted in three exclusion criteria. Not all video frames
with leakage should be included, a small amount of bile was too difficult and image quality
should be sufficient. Besides, the python script is not able to split the video into a short video if
there is less than 20 seconds in between start and end time. Therefore, visible leakage for less
than 20 seconds was excluded. The inclusion criteria are based on the availability of videos and
to define a time frame for inclusion of a suitable amount of surgeries.
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Inclusion criteria:

• Videos of laparoscopic cholecystectomy

• Underwent surgery between 01-01-2018 and 31-12-2019 (Meander data)

Exclusion criteria:

• If gallbladder leakage occurs, but is difficult to identify

• If image quality is too low

• When video is too short (<20 seconds) or contains no valuable information

Selecting and annotating videos is time consuming. Therefore only 120 videos of the 507 videos
of the Meander dataset were included in the Meander1 (M1) and Meander2 (M2) dataset. After
the M1 dataset was created, the 433 remaining videos were used to created the M2 dataset.
Seven videos were excluded during the selection process because of poor quality of the video
(PQ), gallbladder leakage was not visible enough (NVL), the video was too short, the period of
bile leakage was too short to create useful frames, only a small part of surgery was visible or the
video did not contains surgery footage. 380 videos were excluded because of limited available
time (LT). So the Meander database still comprises 380 videos which are not used for training,
validation or testing (Fig. 3.1, selection lane).

3.1.5 Transform videos to image dataset

To create a training set, annotation of images is needed. By noting the timestamps of the first
and last video frame with gallbladder leakage, suitable video frames can be selected. For the No
Leakage (NoL) dataset, the timestamps are selected based on the surgery phase. Shortly before
surgery starts is defined as the start time. When the gallbladder is dissected of the liver bed or
the gallbladder is in the retrieval bag, this is assigned as the end time.

A script is used which creates short videos of the previous determined timestamps and
subsequently splits these videos into images. For the Cholec80 Leakage (L) videos the parameter
number of frames per second (fps) is 25. For the NoL videos, the frame rate was adapted in
such a way that every video was transformed in approximately 690 video frames, which created
a dataset of the same size as the leakage dataset. This is necessary to create a balanced dataset.
Hereby, two different groups of images are created. One folder with bile leakage and one without
bile leakage.

The M1 dataset and M2 dataset are created with an almost identical script as used for the
Cholec80 dataset. The important difference is that Meander videos did not have the same fps.
Therefore, the fps parameter is calculated per video and this is used to calculate the number of
frames per short video and a suitable frame rate for extracting the images from the videos. Since
these datasets are used as prediction datasets, a lot of resembling images due to a higher frame
rate, would not give other results. For the M1 dataset and M2 dataset, five frames per second
were included in the dataset. The maximum number of frames per video needs to be calculated,
because the frame selection did not stop if the input ’end time’ is not exactly synchronized with
the time of the last frame of each video. For the NoL dataset an additional calculation was done
to determine the optimal frame rate by taking the total time of the extracted shorter videos and
create the frames with the same fps for each video. Hereby, a more comprehensive dataset is
made, since short videos contribute less images to the dataset. So it is prevented that a lot of
similar images of a short video are introduced into the Meander NoL datasets.
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3.1.6 Selection of video frames

When video frames are created, all images should be checked. If the bile leakage was disguised
by tools, tissue or surgical smoke, the frame was excluded. When defining gallbladder leakage,
the definitions of spilling and perforation are used. At the start of spillage of bile, small amounts
of bile are hardly visible. Besides, image quality could be low or lighting insufficient, which
necessitate exclusion of these video frames.

Selection of the Cholec80 frames

Initially, the LC dataset consisted of the 80 Cholec80 videos which resulted in 73664 video frames
(36252 L, 37412 NoL). The previous described checking of images for visibility of bile leakage,
was carried out, but too difficult images were included. This means that little bile was visible,
but the frames were still included into the dataset. As a consequence, first training results of
the Cholec80 dataset were not acceptable and all videos were checked again for visibility of
gallbladder leakage. Hereafter, 39536 frames (18594 L, 20942 NoL) remained in the Cholec80
dataset (Fig. 3.1). These frames are from 52 patients (22 L, 30 NoL).

Selection of the Meander1 dataset

Since the Cholec80 dataset was corrected after a first training, the Meander dataset is created
based on the selection criteria that were used during the correction of the Cholec8o dataset.
These are the same for video inclusion and exclusion. After splitting the videos into frames, the
L dataset included 7468 images. After checking the images, 6301 frames remained. Hereafter,
the NoL dataset was created by using the previous described calculations and therefore this
dataset also contains 6301 video frames (Fig. 3.1). After checking the images, 70 patients were
included (22 L, 48 NoL).

Selection of the Meander2 dataset

The M2 dataset is created with the same method as the M1 dataset. After splitting the videos
into frames, the L dataset includes 6319 images. After checking the images, 6005 frames remained.
Hereafter, the NoL dataset was created by using the previous described calculations and therefore
this dataset also contains 6005 video frames (Fig. 3.1). 50 patients are included in the M1
dataset (25 L, 25 NoL).

3.1.7 Merged dataset

The Merged dataset was created by combining the Cholec80 dataset and the M1 dataset. The
M2 dataset will be used as test set. 1768 images were excluded to create two balanced datasets
for leakage and no leakage for the Merged training dataset (39932 frames) and validation dataset
(10438 frames). 122 patients are included (44 L, 78 NoL).

3.2 Parameter study

3.2.1 Dataset

To start training a network, a standard dataset was chosen with images of cats and dogs to
investigate how different parameters did influence the accuracy and loss during training of a
model. This training dataset contained 8000 images (4000 cats, 4000 dogs) and the test set
contained 2000 images (1000 cats, 1000 dogs).
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3.2.2 Network architecture of Model 4 and used hardware

Table 3.1: Network architecture of Model 4

Type Filters Size / Stride Dropout Output

Convolutional layer 32 3x3 64 x 64 x 32
Batch normalization 64 x 64 x 32
Dropout 0.2 64 x 64 x 32
Convolutional layer 64 3x3 64 x 64 x 64
Max Pooling 2x2/2 32 x 32 x 64
Batch normalization 32 x 32 x 64
Convolutional layer 64 3x3 32 x 32 x 64
Batch normalization 32 x 32 x 64
Dropout 0.2 32 x 32 x 64
Convolutional layer 128 3x3 32 x 32 x 128
Max Pooling 2x2/2 16 x 16 x 128
Batch normalization 16 x 16 x 128
Flatten None, 32768
Dropout 0.2 None, 32768

Type Units Dropout Output
Dense 256 None, 256
Batch normalization None, 256
Dropout 0.2 None, 256
Dense 128 None, 128
Batch normalization None, 128
Dropout 0.2 None, 128
Dense 1 None, 1

Four different models were used to study the influence of different model architectures. Table
3.1 shows the model that was used for final parameter testing. Other models contained less
convolutional layers, no batch normalization or no dropout. A windows 10 pc with an NVidea
GPU was used for training and testing of the models. Python was used with a deep learning
environment which contained all packages that are needed to run the deep learning scripts, like
Keras and Tensorflow [51,52].

3.2.3 Network parameters

The following parameters were tested during training: batch size, optimizers, early stopping
with different patience values and data augmentation methods.

3.2.4 Evaluation of the study

A script is created which automatically stores the training and validation information that is
obtained after training. The following parameters were stored: accuracy and loss of highest
accuracy and lowest loss, for both training and validation set. Additionally, number of epochs for
both highest accuracy and lowest loss, batch-size, patience which is used for early stopping, the
optimizers and data augmentation options are stored. At last, the file location of the accuracy
plots, the loss plots and the best weights of the model, were stored in the excel file.

The accuracy and loss of both training and validation were monitored during training. This
information was plotted in two graphs which shows how training of the model is executed.
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3.3 Laparoscopic cholecystectomy dataset

3.3.1 Network architecture

Two models are used during training with the LC dataset, namely Model 3 and Model 4. Model
4 was already used during training with the parameter study dataset. Its network architecture
is showed in Table 3.1. The network architecture of Model 3 is showed in Table 3.2.

Table 3.2: Network architecture of Model 3

Type Filters Size / Stride Dropout Output

Convolutional layer 32 3x3 64 x 64 x 32
Batch normalization 64 x 64 x 32
Dropout 0.2 64 x 64 x 32
Convolutional layer 32 3x3 64 x 64 x 32
Max Pooling 2x2/2 32 x 32 x 32
Batch normalization 32 x 32 x 32
Convolutional layer 64 3x3 32 x 32 x 64
Batch normalization 32 x 32 x 64
Dropout 0.2 32 x 32 x 64
Convolutional layer 64 3x3 32 x 32 x 64
Max Pooling 2x2/2 16 x 16 x 64
Batch normalization 16 x 16 x 64
Convolutional layer 128 3x3 16 x 16 x 128
Batch normalization 16 x 16 x 128
Dropout 0.2 16 x 16 x 128
Convolutional layer 128 3x3 16 x 16 x 128
Max Pooling 2x2/2 8 x 8 x 128
Batch normalization 8 x 8 x 128
Flatten None, 8192
Dropout 0.2 None, 8192

Type Units Dropout Output
Dense 1024 None, 1024
Batch normalization None, 1024
Dropout 0.2 None, 1024
Dense 512 None, 512
Batch normalization None, 512
Dropout 0.2 None, 512
Dense 1 None, 1

3.3.2 Network parameters

The parameters that are tuned during this part of the study are: Adjustments to the Adam
optimizer and the batch size. Other parameters were only incidentally trained at the beginning.
The batch sizes are 256, 512 and 1024. For the Adam optimizer, the combinations are listed in
Table 3.3 for which the last row is showing the default Adam settings.



3.4. COLOUR BASED FEATURE EXTRACTION 27

Table 3.3: Tested Adam variations

α β1 β2 ε

0.01 0.9 0.999 1E-08
0.01 0.9 0.999 1E-01
0.01 0.9 0.999 1E-03
0.01 0.9 0.999 1E-04
0.1 0.9 0.999 1E-08
0.1 0.95 0.99 1E-08
0.2 0.9 0.999 1E-08
0.001 0.9 0.999 1E-08

3.3.3 Evaluation of the model

The training of the LC dataset is monitored by the previous mentioned accuracy and loss graphs.
After testing of the Meander dataset, a confusion matrix and ROC curve are created to evaluate
the performance of the trained model. Besides, outcomes of training are automatically stored in
an excel sheet. In section 2.4 the used evaluation graphs are shown in Fig. 2.5.

3.4 Colour based feature extraction

Colour based feature extraction is done by using four Matlab scripts. Three of which are provided
by F. van der Heijden of the University of Twente. 26 gallbladder leakage images of 22 different
patients of the Cholec80 dataset were used to determine the optimized inter and intra class
distance.

3.4.1 Region of interest selection

The first script was created to draw a region of interest (ROI) in each of the 26 gallbladder
leakage images. Hereby, pixel values are selected that contain bile, while the outside of the ROI
could be used as NoL pixels. After drawing an ROI, a binary mask is created which is used to
collect the pixel values of the bile leakage region. By creating the complement of the mask, the
outer region of the ROI can be used to obtain the pixel values of the NoL pixels. Hereafter, the
RGB pixel values of each image are stored in two matrices.

3.4.2 Colour based feature extraction scripts

The first CBFE script of F. van der Heijden, creates a balanced dataset, two arrays are created
with the same number of randomly selected pixels. The second script calculates the mean of the
pixel values and creates covariance matrices. Intra-class whitening and inter-class decorrelation
are applied to these matrices. Hereafter, one feature is chosen. By transforming the images by
the feature which has the optimal linear combinations, bile leakage in the image could be more
noticeable. The last script uses the calculated transformation for the highest inter class distance
to transform all the images of the dataset. A threshold of 0.5 is applied to the selected feature to
partly filter pixels which are assigned as gallbladder leakage to create less false positive feature 1
pixels. Feature 1 is applied to the red channel of the image. Hereafter, two datasets could be
used: the dataset with normal pixel values and a dataset with transformed pixel values.

3.4.3 Training and evaluation of the model

After CBFE, training of the network will be done with the same networks, a selection of the
most suitable parameters of the LC dataset study and the same evaluation methods.
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CHAPTER 4

Results

This chapter shows the outcomes of this study. As first the outcomes of the dataset preparation
are presented. Hereafter, outcomes of the parameter study and the binary classification study
with the LC dataset are displayed. The outcomes of the study with the feature extraction images
are presented hereafter. At last, training results per patient are displayed for several testing
results and the M1 and M2 datasets are compared.

4.1 Dataset preparation

4.1.1 Selection based on image quality

The LC dataset consists of 122 patients who underwent a laparoscopic cholecystectomy. In this
dataset 52138 images are included. Selection of the video frames was done by previous described
selection criteria. Resulting consecutive images show how inclusion and exclusion is done based
on these selection criteria. In Fig. 4.1 two consecutive frames show the appearance of surgical
smoke which is created by surgical diathermy.

(a) Included (b) Excluded

Figure 4.1: Surgical smoke

29
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(a) Included (b) Excluded

Figure 4.2: Changed lighting

(a) Included (b) Excluded

Figure 4.3: Region disguised by tool

In Fig. 4.2 and 4.3 the left images (A) display a normal screen which is mostly seen during
surgery. The right consecutive images (B) are darker and Fig. 4.3B mainly shows the trocar
that is used to guide and stabilize surgical tools into the abdominal cavity.

4.1.2 Diversity of the dataset

(a) (b)

(c) (d)

Figure 4.4: Bile leakage
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When selecting bile leakage images, a diverse dataset is presented (Fig. 4.4). In image A, bile
leakage is present combined with blood. Image B shows white bile and a gallstone. Dark green
bile is seen in image C, while D is showing yellow-greenish bile.

(a) (b)

(c) (d)

Figure 4.5: No bile leakage

A collection of NoL images is presented in Fig. 4.5. This figure shows straightforward LC
images. Yellow fatty structures are seen in image A, B and C, while a more bloody sight is given
in D. In B, the surgical diathermy tool is used to resect the gallbladder of the liver bed. The
dried out tissue due to surgical diathermy, is more yellow compared to surrounding white, dark
red or pink tissue.

(a) (b)

(c) (d)

Figure 4.6: Gallstones

Gallstones could be present when gallbladder leakage occurs (Fig. 4.4B). Images 4.6A till C,
show a case of gallbladder rupture which primarily consists of lost gallstones. In images A and



32 CHAPTER 4. RESULTS

B more brown coloured stones are seen, while C and D show yellowish/goldish stones.

4.2 Effect of different parameters

4.2.1 Parameter study

(a) (b)

Figure 4.7: Model and optimizer comparisons

The models 2a and 4a are compared in Fig. 4.7A. Model 4a shows lower loss and higher accuracy.
When optimizers are plotted in a box plot graph, optimizer Adam was showing the highest
accuracy and lowest loss (Fig 4.7B). In two other graphs (Appendix B.1), the mean accuracy
and loss are shown of four different models, for which model 2a and model 4a are showing the
highest accuracy and loss (Table B.1). To display the effect of running for more epochs, the
models 2a and 4a are plotted against number of epochs. The accuracy and loss tends to improve
when the model is trained for more epochs.

4.2.2 Cholec80 dataset hyperparameters

(a)

Figure 4.8: Three different Adam optimizers.
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The three most used optimizer settings for Adam during training of the LC models are displayed
in figure 4.8. Additionally, the settings of the captions of this figure are showed in table 4.1.
The settings Beta and LR show higher mean accuracy and lower mean loss compared to setting
Adam E.

Table 4.1: Tested Adam settings

α β1 β2 ε

E 0.01 0.9 0.999 1E-04
Beta 0.1 0.95 0.99 1E-08
LR 0.01 0.9 0.999 1E-08

4.3 Binary classification of laparoscopic cholecystectomy images

4.3.1 Evaluation of trained models by using the M1 dataset

It is seen that the training of LC models is not very stable, a typical example is shown in the
accuracy (A) and loss plot (B) of Fig. 4.9. The testing results of best performing model 3 and 4
during training on Cholec80 data are shown in the confusion matrix and ROC curve (Fig. B.3
and 4.9). These models had highest accuracy and/or lowest loss for the validation set during
training. Measures of testing results of two training sessions per model are summarized in Table
4.2. Model 3b and 4b are the models which performed second best during training (Appendix
B.2).

(a) Accuracy during training (b) Loss during training

(c) Confusion matrix (d) ROC curve

Figure 4.9: Best training model 4
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Table 4.2: Testing results for the M1 dataset after training model 3, 3b, 4 and 4b.

Measures Model 3 Model 3b Model 4 Model 4b

Sensitivity 0.1968 0.4017 0.3460 0.1739

Specificity 0.9838 0.8876 0.9630 0.9598
Precision 0.9240 0.7814 0.9034 0.8125
AUC 0.73 0.76 0.76 0.65

(a) Confusion matrix (b) ROC curve

Figure 4.10: Second best model 3

4.3.2 Evaluation of training of the Merged dataset by using the M2 dataset

Model 3 and 4 are trained with the Merged dataset and the M2 dataset is used as test set. The
confusion matrix and ROC curve are shown in Fig. 4.11 and B.4. Measures of testing model 3
and 4 are summarized in Table 4.3. The highest AUC value of 0.91 is obtained by using Model
3. The accuracy and loss plots are added for Model 3 and they show improvement of training
until epoch 30 (Fig. 4.11).

Table 4.3: Testing with M2 dataset after training Model 3 and Model 4 with Merged dataset

Measures Model 3 Model 4

Sensitivity 0.8250 0.8355
Specificity 0.7997 0.6893
Precision 0.8046 0.7289
AUC 0.91 0.87
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(a) Accuracy during training (b) Loss during training

(c) Confusion matrix (d) ROC curve

Figure 4.11: Testing with M2 dataset after training Model 3 with Merged dataset

4.4 Colour based feature extraction

(a) No bile leakage (b) Bile leakage

Figure 4.12: Masked leakage images for CBFE

For 26 bile leakage images of 17 patients, a CBFE masked images is created to calculate the
highest inter/ intra class distance and create a transformation matrix. One example of a masked
image with bile leakage and the surrounding pixels for no bile leakage is shown in Fig. 4.12.



36 CHAPTER 4. RESULTS

Figure 4.13: Colour based feature extraction

Figure 4.14: Colour based feature extraction

Two examples of these calculations show that feature 1 shows highlighted bile (Fig. 4.13
and 4.14). The bright yellow/orange areas are shown at the places of bile, while surrounding
tissue without any bile is less or not highlighted. Feature 2 does not contain any information
and feature 3 vaguely shows a surgery tool (Fig. 4.13) and the contours of the gallbladder (Fig.
4.14). For feature 1, the sensitivity and specificity per pixel for the 26 leakage/no leakage masks
were 75% and 70%, respectively.
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When feature 1 information is applied to the red channel of an image, surrounding tissue
is still visible (Fig. 4.15A). When the blue channel or green channel is replaced by feature 1,
surrounding tissue is not visible (Fig. 4.15A and 4.15B).

(a) Red channel (b) Green channel (c) Blue channel

Figure 4.15: Feature 1 applied to red (A), green (B) and blue (C) channel of an image

Feature 1 transformation is applied to image 4.16A and replaces the red channel of the
images (Fig 4.16B). Image 4.16C is created after applying a threshold of 0.5 and replacing the
red channel of image 4.16A by a thresholded feature 1.

(a) normal (b) feature 1 (c) f1-segmentation

Figure 4.16: Normal bile leakage image (A), image after feature 1 transformation (B) and image after
transformation with a threshold of 0.5 and higher for feature 1 (C)

(a) (b)

(c) (d)

Figure 4.17: Transformation of the NoL dataset (A,C) to images transformed by thresholded feature 1
(B,D)

Previous images illustrate how transformation of the Cholec80 images is carried out. Most
of the NoL dataset images did not contain highlighted areas caused by thresholded feature 1
(Fig. 4.17D). The images only show a blue version of the LC image. In Fig. 4.17B the tool and
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some surrounding tissue is highlighted by the feature 1 transformation. This is seen as pink or
orange pixels.

(a) (b)

(c) (d)

Figure 4.18: Leakage images of the Cholec80 dataset before and after CBFE

The L images of the Cholec80 dataset are shown before and after transformation by thresh-
olded feature 1 (Fig. 4.18). Image 4.18A contains more distinguishable bile leakage and fresh
red blood, compared to 4.18C which also shows some clotted blood. The thresholded feature 1
components in image 4.18B and 4.18D do not completely cover the bile leakage which is seen at
the 4.18A and 4.18C

4.4.1 Evaluation of model 3 and 4 with CBFE M1 dataset

The transformed image M1 dataset has the same size as the previous used LC datasets. Training
and validation of model 3 with CBFE Cholec80 images resulted in accuracy and loss plot (Fig.
4.19). Testing of the trained model by using the CBFE transformed M1 dataset resulted in three
confusion matrices and ROC curves (Fig. 4.19, B.6 and B.5). Model 3 has the highest AUC
value for these three training sessions, namely 0.80.

Table 4.4: Testing model training of CBFE M1 dataset for model 3, 3b and 4

Measures Model 3 Model 3b Model 4

Sensitivity 0.5137 0.4658 0.4480
Specificity 0.9013 0.8946 0.8334
Precision 0.8388 0.8155 0.7289
AUC 0.80 0.71 0.71
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(a) Accuracy during training (b) Loss during training

(c) Confusion matrix (d) ROC curve

Figure 4.19: Best training and testing results for CBFE images with model 3

4.4.2 Evaluation of the training of the CBFE Merged dataset by the M2
dataset

Training of Model 3 and 4 with the CBFE Merged dataset is evaluated by using the M2 dataset
and resulted in two confusion matrices and ROC curves and loss and accuracy plots (Fig. 4.20
and B.7). Statistical measures of testing the models are shown in 4.5. Almost 83% of the leakage
images and 80% of the no leakage images are correctly identified by the trained model 4 which
leaded to an AUC value of 0.91.

Table 4.5: Test outcomes of the CBFE Merged dataset

Measures Model 3 Model 4

Sensitivity 0.5047 0.8290
Specificity 0.9504 0.8048
Precision 0.9119 0.8094
AUC 0.84 0.91
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(a) Accuracy during training (b) Loss during training

(c) Confusion matrix (d) ROC curve

Figure 4.20: Testing of trained model 4 with CBFE merged dataset

4.5 Comparison between M1 and M2 dataset

4.5.1 Comparison of test results of first and second Meander dataset

The trained models which are previously used to create Table 4.2 are used for model evaluation
by the M2 dataset which resulted in Table 4.6. The results of testing with the M2 data show
increased sensitivity, specificity, precision and AUC values when compared to testing with the
M2 dataset.

Table 4.6: Testing of best and second best training of Model 3 and 4 by using CBFE M2 dataset

Measures Model 3 Model 3b Model 4 Model 4b

Sensitivity 0.4654 0.6306 0.6208 0.4380
Specificity 0.9947 0.9157 0.9386 0.9659
Precision 0.9887 0.8821 0.9099 0.9277
AUC 0.81 0.81 0.86 0.68

The results of training model 3 and 4 with CBFE images and testing with the earlier
mentioned results of the M1 dataset, are compared to outcomes of testing with the M2 dataset
(Table 4.7). For Model 3 all measures increased, except specificity, while all measures improved
for Model 4 when the M2 dataset is used.
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Table 4.7: Testing of CBFE trained models with M1 and M2 datasets

Measures Model 3 M1 Model 3 M2 Model 4 M1 Model 4 M2

Sensitivity 0,5137 0,6724 0,4480 0,6531
Specificity 0,9013 0,8873 0,8334 0,8966
Precision 0,8388 0,8564 0,7289 0,8633
AUC 0.80 0.81 0.71 0.81

4.5.2 Correctly identified frames per patient

The percentage of correctly identified frames of the M2 dataset by using four trained models,
are plotted for each surgery video (Fig 4.21 and 4.22). These figures show that this percentage
of identification is fluctuating per video and per model. The blue line is showing the mean
percentage of identification by these four models. For five leakage videos, the mean identification
percentage for the video frames is below 50%. For the no leakage videos this was only the case
for two videos. In two of the leakage videos the mean percentage of identification were 10%
and 12%. The other five badly identified leakage and no leakage videos, show mean percentages
above 42%. On average, 72% of the leakage M2 dataset was correctly identified by the four
models and 80% of the no leakage frames.

Figure 4.21: Identification rate per leakage video
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Figure 4.22: Identification rate per no leakage video



CHAPTER 5

Discussion

This chapter discusses the outcomes of the result section, namely the data preparation, parameter
study, binary classification with the LC dataset, the colour based feature extraction results
and comparison between the M1 and M2 datasets. At first, a brief summary of results will be
given to shortly answer the research questions. Hereafter, the main results will be explained.
Subsequently, the study procedure will be discussed and areas for improvement will be given
in the limitation section. Lastly, recommendations will be done for future research and future
perspective on AI and LC will be given.

5.1 Summary of results

5.1.1 Research questions and aim

The first research question was composed to determine to what extent it is possible to detect bile
leakage in laparoscopic cholecystectomy videos by using a deep learning algorithm. If detection
was possible it was important to determine if this bile leakage detection algorithm has clinical
added value when compared to the current reporting rate of bile leakage in surgical reports. At
last it was investigated if the use of feature extraction for a laparoscopic cholecystectomy dataset
could contribute to the gallbladder leakage detection rates.

5.1.2 Summary of results

Data preparation was executed successfully. Although manual selection was needed to create
correct leakage datasets, an extensive LC dataset was created which consists of 62380 images of
172 patients. These laparoscopic cholecystectomies are performed by 23 different surgeons. The
parameter study led to the selection of a best performing model and more insight was obtained
in tuning parameters. The most successful binary classification was performed by using the
Merged dataset for training and validation and the M2 dataset for testing of the trained model.
Best results are obtained by using the trained model 4 with CBFE images. For the M2 dataset
a sensitivity of 83% and specificity of 80% are achieved with an AUC score of 0.91. Although
the CBFE method created a dataset which achieved better results compared to the non-CBFE
images, it was ambiguous when both Models and multiple training sessions are compared. The
trained Model 3 and 4 show different results when the CBFE images are used.

43
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This study provides first insights in automatic bile leakage detection. The best results of
correct classification of bile leakage are close to the 87% reporting rate of bile leakage in surgery
reports of a Dutch study [7]. Since the Merged dataset showed better results compared to the
smaller Cholec80 dataset, it could be expected that a clinical applicable algorithm is within
reach if the current dataset is extended.

5.2 Explanation of results

5.2.1 Data preparation

As expected, compiling of the dataset was partly done by manual selection of the images. The
need of manual selection is substantiated by the fact that two consecutive frames could contain
one good quality image and one image which needs to be excluded (Fig. 4.1, 4.2 and 4.3).

The diversity of the dataset was pointed out by four figures of bile leakage, no bile leakage
and gallstones (Fig. 4.4, 4.5 and 4.6). These twelve images show that this dataset contains
different colours of bile (white to dark green), gallstones of different colours are present, colour
of surrounding (fatty) tissue and amount of blood. Although the created LC dataset already
contained images of 172 patients, the diversity of the data demands extension of the current
dataset with more patients. Especially, patients with less common colours of gallstones (dark
green) and bile (white).

5.2.2 Effect of different parameters

Based on the results of the parameter study, Model 4a, later used as Model 4 during the binary
study, and the Adam optimizer are chosen as network architecture and optimizer (Figure 4.7).
At first it was thought that the longer trained models showed improved training results, but the
addition of early stopping helped to stop training if results did not improve for several epochs
(Table B.1). Therefore, if a model is trained for more epochs it means that the model is more
trainable compared to models that are trained for less epochs.

During training with the Cholec80 dataset it was considered to use a slightly deeper and
wider network architecture since the data was more complex. Therefore, the previous used Model
4 and the more complex Model 3 are used for the binary classification of LC data (Table 3.2 and
3.1). For both models, the LR Adam settings with a learning rate of 0.01, and the Beta settings
with a learning rate of 0.1, β1 of 0.95, β2 of 0.99 and ε of 1E-04 showed best performances.

Grid search and K-fold cross validation

Initially, it was planned to search for an optimized batch size, Adam setting, data augmentation
option and dropout setting. A start was made for training and testing with for example the
earlier described different Adam settings (Table 3.3). The use of multiple parameter tests at
once is highly preferred for this type of parameter testing, since training takes a long time if
each parameter and combination with other parameters is trained individually.

In python the Scikit-learn software enables training of data for several parameters at once [53].
The term grid search is used, since a grid of different parameters and their settings could be
made. Hereby, all combinations of parameters and settings are tested. However, K-fold cross
validation is necessary when using the grid search. This method splits up the dataset in smaller
sets, for example ten sets, and combines nine of them for a training set and one for a validation
set. The advantage is that testing of parameters could be done ten times with the ten different
sets as validation dataset. Hereby, optimal use of valuable patient data is achieved [33].

When medical data is used, these splits should be made per patient. Especially for the LC
datasets, variation between images of one patient are low. When using images of one patient for
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training and validation, biased results are obtained. The Scikit-software enables designation per
patient to a group, called Group K-fold cross validation [53,54].

When searching for examples for large image datasets per patient, only manually created
groups were found. Since the dataset of this research consists of a large group of patients with a
lot of images, no suitable method was found to create groups per individual patient and the use
of Grid search and K-fold cross validation was not possible. Therefore, not all parameters were
tested extensively. If results were insufficient for a few training sessions, another setting was
tested. For the Adam settings, five of eight options were used four times or less and therefore
not suitable for setting analysis. Thus, not using Grid search and K-fold cross validation caused
lack of supporting information to choose the most optimal network and parameter settings. As
a result, the study became more an exploratory type of study than initially planned.

5.2.3 Testing of model training on M1 dataset

Testing of the models on LC data, resulted in more unstable training then expected. More data,
smaller batch size and lower learning rate for Adam, could improve stability of training but
no results of these adjustments were seen. As mentioned before, sometimes small number of
epochs are used for training when early stopping is applied. If a model runs for more epochs,
accuracy and loss plots look more stable, because these fluctuations seem smaller when more
epochs are presented in a plot. Besides, the large variations between patients could also cause
large fluctuation in the accuracy and loss during training.

Although the ROC curves that are obtained during testing with the M1 dataset, all show
AUC values of 0.65 and higher, sensitivity is an important measure for suitability of the trained
models for bile leakage detection. Both Model 3b and 4 show AUC values of 0.76. When choosing
one of these models, Model 3b is preferred for leakage detection, since this model shows higher
sensitivity compared to Model 4. However, the acceptable AUC value is mainly achieved by high
identification scores for the no leakage data, as seen by high specificity values. Therefore, these
models are not useful for clinical practice. The most logical explanation for the high specificity
for all testing results is that the patient group for the NoL dataset is more diverse, since more
patients are included. Besides most videos were included almost entirely by using only one frame
every few seconds, which creates more diverse images of different surgery phases.

5.2.4 Testing of the Merged dataset on M2 dataset

The extension of the Cholec80 dataset with the M1 dataset resulted in improved testing results
for Model 3 and 4. When comparing testing outcomes with the smaller Cholec80 dataset, it is
seen that specificity decreased for both models when the large dataset was used, while sensitivity
significantly increased. Since, two different training and testing datasets are used, the difference
in sensitivity and specificity could be explained by how difficult the testing sets are, which is
explained in section 5.2.8.

When comparing the measures with clinical practice, the reporting rate of bile leakage for a
Dutch study was 87%. When looking at the results of Model 3, the 82.5% sensitivity is close to
the Dutch reporting rate. When looking at international numbers which are all lower than the
Dutch 87%, these sensitivity results are definitely promising [7].

5.2.5 Colour based feature extraction transformation of datasets

The applied method for creating masked images, was an easy method to obtain specific leakage
and no leakage pixel values. The resulting images of feature 1, 2 and 3 showed that the
identification of gallbladder leakage could be done by using feature 1 (Fig. 4.13 and 4.14). When
applying feature 1 transformation to different colour channels, it was easy to decide that the
feature 1 would replace the red channel (Fig. 4.15). This is a logical outcome when looking at
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both bile and no bile images, since both will contain a lot of red colour and more contribution of
green and blue is expected for bile leakage images.

Although the calculated specificity and sensitivity of feature 1 for all pixels of the 26 images
was quite high without any training, this was only achieved for the 26 images that were used.
When looking at the eight images of Fig. 4.13 and 4.14 , it is already visible that darker green
bile was less pronounced compared to more yellow bile. It was expected that adding a threshold
to feature 1, could reduce false positives for gallbladder leakage. When looking at one of the
26 feature extraction images (Fig. 4.16), it looks like a successful method for identification of
gallbladder leakage. Since this feature 1 transformation was based on only leakage images, no
tests were done for how it would look like when applied to NoL images. Unfortunately, figure
4.17 and 4.18 show that a surgical tool could also be assigned as gallbladder leakage. In addition,
while looking at the leakage image, more identified pixel values were expected, but only some
bile leakage is highlighted. The identification of a feature for CBFE probably could have been
more useful when a more diverse leakage dataset and NoL images are used, but this was not
available and considered at the time when feature extraction was done.

5.2.6 Testing of CBFE trained model 3 and 4 by using the M1 dataset

When evaluating the training of Model 3 and 4 with CBFE Cholec80 images, some measurements
did improve compared to the normal video frames. Figure 4.19 showed the best results. The
most salient element of the results is that identification of leakage improved for all three models
when compared to the testing of no-CBFE M1 images. Since specificity decreased, it substantiate
the idea that CBFE is mainly an advantage for leakage images.

5.2.7 Testing of CBFE Merged dataset trained models by using the M2
dataset

When comparing the Merged dataset and CBFE Merged dataset results, Model 4 mainly showed
increased results, while the statistical measures for Model 3 primarily decreased. For all trained
and tested models, training with the CBFE Merged dataset resulted in the best trained model for
laparoscopic cholecystectomy data with 82.9% sensitivity, 80.5% specificity, 80.9% precision and
an AUC value of 0.91. However, when looking at the specificity value of Model 3 for the CBFE
Merged data and other trained models mentioned previously, it could be seen that specificity
values of Model 4 are relatively low. One explanation is that some models will specialize for
leakage data during training while others are more specialized for no leakage data. For this
study, a high sensitivity is preferred, since the aim is to identify bile leakage.

5.2.8 Comparison of M1 and M2 dataset

Comparison between testing outcomes

For the interpretations of previous results, it is important to notice that two testing datasets are
used, namely M1 and M2. Since, M1 was added to the Cholec80 dataset to create the Merged
dataset, a new testing set was made. However, results of testing are inevitably influenced when
using two different datasets. Therefore, Cholec80 results and Merged results should not be
compared.

To substantiate this, trained models which are used in chapter 4.3.1 and 4.4 are also validated
with the M2 dataset. The results for the Cholec80 dataset show that all sensitivity and three
of four AUC values increased significantly, while specificity and two of four precision values
decreased (Table 4.6). The differences between no leakage data for the M1 and M2 could
have caused the decrease in specificity which was seen for the Merged dataset testing. When
comparing the outcomes of the CBFE Cholec80 dataset, seven of eight statistical measures
increased when the M2 dataset was used.
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Although extensive evaluation of the differences between the two datasets was not possible
because of limited time, these findings already show that it is important to use a large and
diverse testing dataset if an algorithm is used for clinical practice. Previous results still show
that the best result of Model 4 with CBFE Merged dataset is an excellent achievement, but also
point out that different results are obtained when two different datasets are used.

Testing outcomes per patient

Additional to conclusions about using two different datasets, some information per patient was
also plotted in two figures (Fig. 4.21 and 4.22). When creating a generalizable dataset, these
graphs show that some patient data is more difficult to identify compared to other patients.
Especially two patients showed low mean percentages of identification. When extending the
dataset, this is important information since similar difficult patient data should be added to the
training and validation dataset to create a more generalizable trained model.

5.3 Limitations of the study

5.3.1 Parameter choices

As mentioned previously, the choice for specific parameters was not statistically substantiated
since grid search and K-fold cross validation are not used. Additionally, an image size of 64x64
pixels was chosen at the start of this study, based on the settings of the script for the parameter
study. Initially, a larger image size was used when starting training with the Cholec80 dataset.
Since, this dataset contains more and larger images compared to the parameter study, the GPU
of the computer reached its limit and one simple solution was to downsize the images. Hereby,
information in the images was reduced, the original size was 854x480, and it would have been
useful to investigate if larger images would have resulted in higher bile leakage detection rates.
Lastly, an often used strategy is to use a (pre-trained) well known network architecture like a
VGG-16, Inception or ResNet network [55]. It would have saved time since network architecture
choices were not necessary and training results could have been compared to other articles.

5.3.2 Dataset preparations

The component of this research which consisted of the most difficult choices, was the creation
of the dataset. At first, manual selection of the images took a lot of time and is sensitive to
human errors. Although, this was expected, the python script that was used for creating the
short videos and transforming these to images based on start and end time, was not precise
enough. This was caused by fluctuating fps and the fact that the rounded start time did not
always match with the corresponding frame times in the video. Hereby, more or less frames were
excluded than planned and more manual checking was needed.

The time consuming process of creating a database and the limited amount of patients, was
one of the reasons why initially no test set was created for testing at the start of the binary
classification. Besides, data should be presented differently for testing and this took more time
to figure it out. Some parameter choices would have been more easy if more information was
present about the performance of the network on new data.

The most difficult consideration when making the dataset, was the balance between number
of patients and number of frames per patient. When the Cholec80 dataset was created all 25
fps were used for the leakage dataset, since the goal was to create a large dataset. For the NoL
dataset around 690 frames were created per patient and for this dataset more patients were
included compared to the leakage dataset. When the M1 dataset was made, still more NoL
patients were included, but the total time of NoL videos was used to calculate a frame rate.
Hereby, a short NoL video contributed less frames compared to longer videos, which created a
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more diverse dataset. For the M2 dataset even number of patients and the more balanced frame
selection method for the NoL dataset was used. A more diverse and balanced dataset would
have been made, if more consideration had gone into creating the dataset.

Lastly, the earlier mentioned differences between the M1 and M2 datasets show that the
testing datasets are not generalizable and that more and more diverse data is needed to create a
useful test set.

5.4 Recommendations for future research

5.4.1 K-fold cross validation and grid search

Future research into the application of deep learning for laparoscopic cholecystectomy could
be done to improve and extend this study. At first, the implementation of group K-fold cross
validation and grid search, will give more insights into optimal parameters settings. Besides all
videos are used optimally, since validation and training is done with all surgery videos, compared
to a fixed training and validation dataset. Eventually, this will result into a more comprehensive
trained model.

5.4.2 Extension of the LC videos

More laparoscopic cholecystectomy videos are available in the Meander Medical Centre. 380 LC
videos are not used, but are downloaded and stored at the deep learning computer. Therefore,
extending of the dataset is relatively easy, but will improve reliability of the trained model.

5.4.3 More parameters

During this research, not only bile leakage, but gallstones were included as well. As mentioned
earlier in the introduction, the presence of gallstones during a LC is a predictive value for
extended surgery time and classifying the surgery as a difficult LC [15]. Besides, it is a risk
factor for developing postoperative complications [5–8]. Therefore detecting gallstones could be
a useful additional feature, besides detecting of bile leakage. The presence of gallstones during
surgery could be reported in the surgery report. As a result, complications due to gallstones
could be noticed more easily.

In the introduction, the high-risk surgery phases and the risk factors for a difficult LC are
mentioned. All this information could one-by-one be included into a general report for preopera-
tive risk assessment, classification of difficulty of the surgery and postoperative assessment of its
complications.

5.4.4 Using videos instead of images

During this study only video frames are used. When gallbladder leakage occurs, several
consecutive frames will contain bile and/or gallstones. By only using frames, this information is
lost. A Long Short-Term Memory (LSTM) network was developed by Hochreiter et al. in the
late nineties. The main idea of the network is that it contains cell blocks which have multiple
memory cells. These cells can decide if the input should be stored or left out. By using this
network, important long term information is stored and temporary changes of input value do
not immediately disturb weights [27,56]. When applied to the LC videos, it could make it easier
to detect leakage in a video and splitting of videos into frames is not necessary which saves time.
Besides, using consecutive frames resembles the real world and could eventually enable the use
of a classification tool during surgery.
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5.5 Clinical applicability and future perspective

When putting the results of this study into a clinical perspective, three main thoughts should
be taken into account. At first, at this point there is no clinical added value for the trained
network as long as the sensitivity measure is below the 87% reporting rate in Dutch surgery
reports [7]. Especially, since the earlier mentioned relative uncertainty also needs to be taken
into account [33].

However, when looking at the results from a scientific perspective, the first results of bile
leakage detection could be considered as a promising and interesting first step. Extending the
dataset and optimizing hyperparameter settings will eventually result in higher detection rates,
which will hopefully create an algorithm with clinical added value.

At last, the developing of AI and application of AI for healthcare purposes is promising
and will continue to develop at fast pace. It is a matter of time until EHR information is
checked by trained algorithms which enables that preoperative risk assessment is done and
surgery complications are reported automatically. Nevertheless, at this moment surgery is an
art practiced by surgeons. Only when a large amount of surgery videos are watched, one could
see the frustration of a surgeon or clumsiness of a surgical trainee shortly before bile leakage
occurs and these human errors are difficult to describe in a few parameters.
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CHAPTER 6

Conclusion

This study aimed to develop a deep learning algorithm which is able to detect bile leakage in
laparoscopic cholecystectomy video frames. It can be concluded that it is possible to detect
bile leakage by using a deep learning algorithm. The use of colour based feature extraction
partly resulted in a better performing classification algorithm. However, more research is needed
to substantiate the use of CBFE for bile leakage detection in LC videos. Although no clinical
added value can be obtained based on the results of this study, the algorithm, datasets and
parameter settings can be improved and may provide clinically relevant results in the future. At
first it is important to extent the dataset and choose the best strategy for creating a dataset
beforehand, since several options could be chosen for splitting the surgery videos. Additionally,
it is likely that the use of grid search and K-fold cross validation will help to improve training of
a model and will show increased bile leakage detection rates. When bile leakage detection will
eventually be used in clinical practice, this study will be a small contribution to the ultimate
goal of improving quality of care for patients who receive a laparoscopic cholecystectomy.
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APPENDIXA

Research proposal

A research proposal was written to obtain permission for collection of patient data, namely LC
videos. The original research proposal is added as a pdf file at the next page of this document.
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1 Introduction

1.1 Clinical Background

In the Netherlands, around 25,000 gallbladders are surgically removed by cholecystectomy every
year [1]. Most common indications for surgery are symptomatic gallstones and complications due
to gallstones like cholecystitis, jaundice and pancreatitis [2]. Shortly after the introduction of
laparoscopic cholecystectomy (LC) by Mouret, it appeared that there was an increased number of
complications of the major bile ducts and gallbladder leakage [3–5]. Although complication rates
and classification vary between 1.3 and 40 %, studies showed that the switch to laparoscopic surgery
resulted in increased gallbladder leakage [3–7]. During the early years of LC, gallbladder leakage
was not considered as a harmful complication. After several years more and more case reports
showed that bile leakage and lost stones resulted in formations of abscesses and fistulas in the
peritoneal cavity [4–7]. Although complication numbers after gallbladder perforation are low, it is
avoidable [3, 4, 7]. At the moment, an important issue is poorly reporting of gallbladder leakage,
which negatively influences research to the incidence of gallbladder leakage and its complications
[3, 6, 8]. Patient safety is at stake since incomplete reports could result in delayed diagnosis of LC
related complications and underestimation of complications during research [3,5]. Therefore, correct
reporting of gallbladder leakage and, as necessary, informing patients about possible complications,
is advised. Aforementioned is required to gain insight into gallbladder leakage and its consequences
[4, 5, 7].

1.2 Previous research on gallbladder leakage

Multiple studies researched precarious phases during surgery with an increased risk of gallbladder
rupture. Three phases were identified, namely when traction is given to the gallbladder with a
grasper, which is occurring throughout the entire surgery. Additionally, dissection of the gallbladder
from the liver bed is a specific procedure with an increased risk for rupture [5]. Impetuous dissection
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of the gallbladder from the liver fossa is mentioned as the most common cause of gallbladder
perforation [4, 8].

In addition to complications during difficult surgery phases, several articles describe predictive
risk factors for gallbladder rupture. Patients who are at risk of gallbladder rupture are patients with
gallbladder hydrops due to obstruction, chronic cholecystitis with thickened walls above 7mm and
patients who received laparoscopic surgery previously [9]. Nooghabi et al. also mentioned male sex,
higher weight, older patients and acute cholecystitis. Since the study is retrospective, peroperative
risk factors are determined: the presence of adhesions, challenging dissection of CVS, clip slippage
and presence of infected bile and pigment stones [5]. Some of these factors are correlated: previous
laparoscopic surgeries and the presence of adhesion, acute or chronic cholecystitis and infected bile.
Besides the presence of (pigment) stones makes it more likely that there is obstruction. Some of
these factors; male sex, older age, acute cholecystitis, spillage of pigment stones, number and size
of stones and location of spilled stones, are also a predictive value for developing complications due
to stone spillage [10].

All complications mentioned before are risk factors for gallbladder rupture. These partially
correspond to risk factors for a difficult laparoscopic cholecystectomy (DLC). Risk factors for a
DLC are impacted stones in gallbladder neck, adhesions around the cystic artery and cystic duct
and rupture of the gallbladder. Some identified risk factors, also define what a DLC is, namely
injury of the cystic artery, blood loss above 50 mL and surgery time. These are also significantly
different if easy and difficult surgeries are compared [11].

Another potential risk factor which could be interesting is the correlation between a surgeon’s
experience and complication rate. Two recent studies about gallbladder rupture and surgeons expe-
rience estimated beforehand that complications could be correlated with surgery experience. Both
studies did not find any increased complication rate; only surgery time was increased [8,11]. On the
other hand, older studies found significant differences when gallbladder perforation was compared
between experienced surgeons and surgical trainees [12,13].

2 Clinical problem

Although studies confirmed that gallbladder perforation could result in severe complications and
they stated that it should be reported correctly, surgeons still do not always mention gallbladder
leakage in surgical reports. Hereby, it is not possible to conduct a comprehensive study on the inci-
dence of complications related to gallbladder rupture. Information about risk factors for gallbladder
leakage, distinguishing between easy and difficult LC and the possible effect of surgical experience
is available, but more reliable data to confirm these findings is not present. To improve patient
safety before, during and after an LC, more feedback and information is needed.

3 Artificial intelligence for LC

To improve reporting of gallbladder leakage, the introduction of Artificial Intelligence (AI) into
health care could open new perspectives. Recently more and more papers are published about AI
and laparoscopic cholecystectomy. One reason is the large number of surgeries that are performed
every year, resulting in a large data set. Another important reason is the availability of two exten-
sive datasets, Cholec80 and EndoVis, containing LC videos with annotation of surgery phase and
instrument usage [14,15]. Thus far, these datasets are used for benchmarking, education, keyframe
extraction and predicting the remaining surgery time. Other studies focused on combining these
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annotated datasets with external cameras or creating software for more automatically annotation
of data [14,16–21].

Initially, studies focused on the improvement of results of previous phase recognition and in-
strument usage studies [16]. These two recognition tasks are beneficial for the more difficult task of
skill assessment. Benchmarking or skill assessment for surgeons has proven to increase their level of
performance [16]. It is achieved by analyzing surgery steps and tasks, instrument usage and addi-
tional information about instrument path length, the number of hand motions, usage time of each
instrument, applied force and how smoothly movements are [16, 17]. By evaluating these parame-
ters, the learning process of (junior) surgeons is supported. More specifically, it enables personalized
training, surgery evaluation and creation of skill-related feedback for (junior) surgeons [16].

Another promising subject is the study of Loukas et al. into keyframe extraction. They managed
to extract 81% of the ground truth keyframes by using their trained network. This application is
helpful for education, for automatic generation of summaries for surgery reports and it could be
used as support for specific training for surgery phase and task recognition [18].

An innovative application of surgery phase information is the calculation of the remaining surgery
time. When accurate estimation is possible, the preparations for the next surgery are done more
efficiently by notifying staff automatically at the correct time. The use of surgery rooms and medical
staff are optimally planned and more patients could be treated with the same health care budget
and shortened waiting time [19, 21]. When the use of AI is extended to incorporation of medical
record and surgeon specific information, even more accurate estimations could be made [21].

Padoy et al. describe the use of external cameras combined with surgery videos to extract more
information about surgery phase en instrument usage. Although new information is added about
the surgeon and medical staff their position and movement, it is still difficult to visualize all the
members and movements and prove the added value of external cameras for patient outcome and
surgery efficiency [19].

3.1 Benchmarking

Although research is done into skill assessment, the development of the surgery robot by Verb
surgical and their interest in AI, opens new perspectives. Besides improvement of skill assessment
algorithms, there is a need for objective classification of the level of complexity of a surgery. As
mentioned before, the definition of a difficult LC surgery is related to the health condition of the
patient and the complications that occur during surgery. When it is possible to define what an easy,
moderate and difficult LC surgery is, it is possible to determine if surgery times and number of
complications are increased compared to other colleagues. Otherwise, increased mean surgery time
and number of complications due to a lot of difficult surgeries, could incorrectly mark a surgeon as
too slow or even incompetent. Combining the objective level of complexity of a surgery, surgery
time, complications like gallbladder leakage and skill assessment, will result in fair benchmarking of
surgeons and eventually improve health care.

3.2 Research group Meander Medical Centre and Verb surgical

In the Meander Medical Centre, different projects about AI and surgery are done. The first project,
the identification of five anatomical structures; ureter, tendon, artery, white line of Toldt and colon,
was completed in August 2018. The next project aimed to remove video frames from surgery
videos which contain personal information, most importantly, frames that contain medical staff.
Verb surgical, a collaboration between J&J and Google, is interested in this project, which is still
ongoing. During multiple conversations, it was decided that this study about bile leakage during
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LC surgery would fit in their aim of creating a preoperative risk analysis for each patient, being
able to estimate the remaining surgery time and offer benchmarking for surgeons. Another ongoing
project is about identification of the Nervus Vagus. During anti-reflux surgery, the Nervus Vagus
is injured in around 20 % of the patients. The goal of this study is to identify the nerve during
surgery and support the surgeon in preventing collateral damage.

4 Aim

The aim of this study is to detect bile leakage in videos of laparoscopic cholecystectomy surgeries.
When the created deep learning network is outperforming the manually reporting of gallbladder
leakage, the result is clinically relevant. Only then, the network is suitable for automatic reporting
of gallbladder leakage in surgery reports and research into gallbladder complications will become
more reliable. The ultimate goal for gallbladder surgery is that reliable preoperative risk assessment
for each LC patient is done automatically before the surgical procedure by using previous mentioned
high-risk factors. Besides, complications are detected during surgery and are reported automati-
cally. Both surgeon and surgical trainees can learn from a gallbladder perforation, because data
of perforation is annotated correctly and therefore available. Additionally, benchmarking, so com-
paring skills between surgeons, is possible and personalized training sessions will improve skill and
speed during specific phases and procedures. However most importantly, quality of care is improved
when complications during laparoscopic cholecystectomies are reported correctly and patients are
informed about possible postoperative complications. The aim of this study, the identification of
gallbladder leakage by using a deep learning network, will be a small contribution to this ultimate
goal of improving quality of care for patients who receive a laparoscopic cholecystectomy.

5 Research questions

1. To what extent is it possible to detect bile leakage in laparoscopic cholecystectomy videos?

2. What is the clinical added value of the created network when comparing the performance in
bile leakage detection with the reported bile leakage in literature?

Primary objective: To detect gallbladder leakage post-operative in laparoscopic cholecystectomy
videos by using deep learning algorithms

Secondary objective: To create an algorithm with a detection accuracy that has more clinical
added value in comparison with current standards, based on literature studies. Besides, an extensive
parameter study is performed to improve results and understanding of deep learning algorithms.

6 Study population

The study population is a group of patients who underwent laparoscopic cholecystectomy surgery
between 01-01-2018 and 31-12-2019. Only the videos which are made during surgery by using
the laparoscopic camera, are obtained from the EPD. Because the current set of 70 videos is not
sufficient for creating an accurate self-learning network, an additional 120 videos are needed. Hereby
a dataset is created with surgeries performed by a diverse group of surgeons and enough anatomical
variations between patients. Selecting and annotating videos is time consuming, therefore only 120
video’s are included, since annotating will take a month. If collecting data is more time consuming

4



than initially thought, only 80 videos will be included. To create a balanced dataset, 60 videos
contain gallbladder leakage and 60 videos do not contain gallbladder leakage.

Inclusion criteria :

• Only videos of laparoscopic cholecystectomy

• Underwent surgery between 01-01-2018 and 31-12-2019

Exclusion criteria:

• If gallbladder leakage occurs but is difficult to identify

• If less then 60 gallbladder leakage videos are collected, only the same amount of normal
laparoscopic cholecystectomy videos are included.

7 Methods

7.1 Study parameters

7.1.1 Primary endpoint

The primary endpoint is the accuracy and loss of the binary classification algorithm for gallbladder
leakage detection.

7.1.2 Secondary endpoints

Secondary endpoints are results of a parameter study which is needed to optimize the outcomes of
the primary endpoint. Besides, outcomes of literature study are compared to the primary endpoint
to decide if there is any clinical value for the created algorithm.

7.1.3 Other study parameters

Another parameter that is included for this research is the presence of gallstones in LC videos.
As mentioned earlier, the presence of gallstones in LC videos is a predictive value for extended
surgery time and difficult LC and for developing post-operative complications. Therefore detecting
gallstones is a useful additional feature, besides detecting of bile leakage. Another study parameter
is the dataset size. The primary endpoint will be used to determine if the dataset size is sufficient
after adding 120 additional videos.

7.2 Study procedures

7.2.1 Collecting the video data

There is no interference or change to interventions. Data is collected retrospective. The recorded
LC videos are obtained by retrieving these videos out of the electronic health record if it meets
the inclusion criteria. It is done by the treating physician, namely surgeon, assistant or a person
who, commissioned by a surgeon, is assigned as part of the treatment team. They are transferred
to a deep learning desktop which is situated in the meeting room of the surgeons of the Meander
Medical Centre. This desktop is secured with a password and the room could only be accessed
when a person owns a Meander access card. Although videos are automatically anonymized if
downloaded, an algorithm which is designed for excluding frames which contain members of the
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treatment team or the patient, is used to ensure the whole video is anonymous. These new videos
which do not contain personal information, is saved at the computer. Other frames are deleted.

7.3 Creating a deep learning dataset

To create a training set, annotation of images is needed. This is done by annotating the first and
last video frame with gallbladder leakage. Hereafter, a script will be used which split the images
and save them in different folders. Hereby two different groups are created, one folder with bile
leakage and one without bile leakage. It is important to note that there are multiple terms used to
describe bile leakage, namely leakage, spillage and gallbladder perforation. Bile spillage is when a
minimal amount of bile is leaking out of the gallbladder. When a hole is present in the gallbladder
and the bile is pouring out, it is defined as perforation. Both could be described as bile leakage.
One major difference is that the occurrence of gallbladder perforation could cause loss of gallstones.
For this research, bile spillage and gallbladder perforation are included. Lost stones could be added
as a fourth class in this project.

7.4 Training a network

A Convolutional Neural Network (CNN) is a specific type of deep learning network which is suitable
for analyzing images. The frames will be divided in three groups, namely a training, validation and
test set. These three groups are needed to train the network, validate if it is learning correctly
and hereafter use the test set to see how the network is reacting to new images. After training,
accuracy and loss are stored, multiple graphs are created of the training session and settings of the
created algorithm are stored. If fewer LC videos with gallbladder leakage are available then needed,
image augmentation is a suitable solution to increase the dataset size. In advance, it is difficult
to determine the required size of the dataset. Therefore, the accuracy and loss graphs are used to
determine if the learning curve is flattening with the available dataset size. If not, more data is
required. When a larger dataset is available, it is possible to compare the results of different dataset
sizes. This could also indicate if the current dataset size is sufficient.

8 Privacy and WMO

For the usage of data that is stored in the hospital patient record systems apply some strict reg-
ulations and laws. Two of them consider the use of medical data and privacy; Wet medisch-
wetenschappelijk onderzoek met mensen (WMO) and the Algemene verordening gegevensbescherming
(AVG or the English version: GDPR) The WMO states if ethical approval is needed by the METC
(medical ethical review committee). This is the case if both rules apply to the study:[19] 1) Er
sprake is van medisch-wetenschappelijk onderzoek. English: It concerns medical, scientific research
2) Personen worden onderworpen aan handelingen of aan hen wordt een bepaalde gedragswijze
opgelegd. English: The patients/participants are subject to procedures or are required to follow
rules of behaviour. Only the first rule applies to our study, based on that our study is not WMO
plichtig. 1) Informed concent/Privacy: By dutch law (AVG) a persoonsgegevens/personal data is:
All personal data from an identified or identifiable natural person. It is considered as information
directly about someone or can be traced back to someone. [20] The data is fully anonymised (not
pseude anonymised) and thereby it is not a persoonsgegeven. Because no persoonsgegevens/personal
data is used, the data can/is legally allowed to be collected without informed consent of the patients.
In our conclusion for this study, no approval is needed from the METC, and anonymous video data
can be used if the created protocol is followed and no informed consent is needed. Besides the LC
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videos, no additional information is stored which could link this videos to the patient. When M.H.
Gerkema is graduated and leaving the hospital, the password of the deep learning desktop is known
to prof. dr. I.A.M.J. Broeders.
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APPENDIXB

Result section

B.1 Parameter study
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Figure B.1: Epochs vs. accuracy and loss
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Table B.1: Four models for parameter study

Binary model mean-loss mean-acc epochs

1a 0,5127 0,8029 23,25
2a 0,3459 0,8599 58,5
3a 0,4378 0,8339 53
4a 0,2575 0,8960 61

B.2 Binary classification

B.2.1 Evaluation of trained models by using the M1 dataset

(a) Confusion matrix (b) ROC curve

Figure B.2: Second best model 4

(a) Confusion matrix (b) ROC curve

Figure B.3: Best training model 3
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B.2.2 Merged dataset

(a) Confusion matrix (b) ROC curve

Figure B.4: Testing with M2 dataset after training model 4 with Merged dataset

B.3 Colour based feature extraction

B.3.1 Evaluation of training model 3 and 4 by testing with the CBFE M1
dataset

(a) Accuracy during training (b) Loss during training

(c) Confusion matrix (d) ROC curve

Figure B.5: Second best training of model 3 with CBFE images and testing with transformed M1
dataset
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(a) Confusion matrix (b) ROC curve

Figure B.6: Best training and testing results for CBFE images with model 4

B.3.2 Evaluation of training of the CBFE Merged dataset by using the M2
dataset

(a) Confusion matrix (b) ROC curve

Figure B.7: Testing results of trained model 3 with CBFE merged dataset
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