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ABSTRACT

Hip fractures on the elderly are a major health care problem in society. In the clinic, it is impor-
tant to identify high-risk patients to guide the decision making with respect to the treatment of
the patient. This study presents a prediction model for 30-days mortality of elderly hip fracture
patients by following a multimodal machine learning approach. This approach fuses the image
modality with the structured modality for the prediction task. At the same time, it also addresses
the problems related to the class imbalanced dataset and the high number of missing values.
The early fusion model, developed in this study, first extracts features from the chest and hip
x-ray images by the use of convolutional neural networks. Subsequently, it combines extracted
features with structured modality and feeds into a Random Forest Classifier to finalize the pre-
diction. The proposed model outperforms a replicated version of Almelo Hip Fracture Score
(AHFS-a) with an AUC score of 0.742 vs 0.706. Finally, by the analysis of feature importances,
this study also demonstrates that chest x-ray images contain important signs related to 30-days
mortality of elderly hip fracture patients.
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1 INTRODUCTION

With changing socioeconomic conditions, the life expectancy of humans increases. Apart from
other consequences, this also results in a higher number of elderly showing up in the emergency
room with an acute hip fracture. According to [1], the estimated number of hip fractures in 1990
throughout the world was 1.26 million, this number is expected to reach 2.6 million and 4.5 million
in 2025 and 2050 respectively. These elderly hip fracture patients usually have comorbidities.
And due to their frailty and comorbidities, some of them are considered to be at the high-risk
group for mortality. It was reported that 30-days mortality rate of hip fracture patients can be up
to 13.3% [2]. With respect to the scope of this study, only the 30-days mortality rate of elderly
patients is of interest which is 8% in the dataset of this study. This rate for early mortality is in
fact requires high attention on how it is handled.

In the clinic, it is crucial to identify the high-risk patients to consider different treatment pathways
and take surgical decisions. ZGT (Ziekenhuis Groep Twente), the hospital collaborating on this
study, aims to improve the quality of care, reduce the costs involved, and inform patients and
their relatives more thoroughly by identifying high-risk patients. For this reason, a prediction
model is necessary which can determine the high-risk patients. However, the prediction mod-
els developed so far was limited to conventional techniques and did not make use of recent
technologies.

There were various studies which proposed risk/prediction models regarding the early mortality
of hip fracture patients after surgery [3–8]. All of these studies used a conventional technique,
namely logistic regression, to develop the 30-days mortality prediction/risk model. The general
set of variables that turned out to have a significant impact on 30-days mortality are age, gender,
fracture type, pre-fracture residence, pre-fracture mobility, ASA 1 score, signs of malnutrition,
comorbidities, cognitive problems. The performance of the mentioned models are evaluated
with the AUC (Area Under the ROC curve) score and ranged from AUC of 0.70 to 0.82.

The technical motivation of this study is to employ different approaches for predicting 30-days
mortality of hip fracture patients. These approaches include several categories: class imbal-
ance handling, use of different machine learning algorithms, make use of records that contained
missing values for some variables, feature extraction from x-ray images, and multimodal learn-
ing.

As the first category, a method for class imbalance handling is required. As mentioned earlier,
early mortality(positive sample) rate is 8% which makes the distribution of the classes imbal-
anced. Although this mortality rate is representative of the real life situation, it still challenges a
classifier to classify a sample as positive. Especially, when the dataset is relatively small. This
study includes only 193 positive samples which is indeed a small sample size.

Furthermore, it is aimed to make use of a wider set of variables than previous studies. How-
1American Society of Anaesthesiologists
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ever, these variables started being collected at different times in the study period. Therefore, a
significant amount of patients have lots of missing variables. In order to include these patients
in the study, their missing values should be imputed.

Due to the fact that collecting structured data is costly and requires a lot efforts during the
treatment process, it is aimed to extract features from chest and hip x-ray imaging regarding the
early mortality of the patient. The motivation behind this is that most of the patients have chest
and hip x-rays and extracted features from these imaging data could be used as comorbidity
findings alongside the structurally collected data. In this way, a multimodal methodology is
aimed to be achieved by fusing image modality and structured modality to predict the early
mortality of hip fracture patients.

Moreover, instead of using only logistic regression, other machine learning techniques and deep
learning techniques wanted to be used in the classification phase to find if they can perform
better in this task.

1.1 Problem Statement

The main goal of this project is to predict if an elderly patient will survive or decease in 30 days
after a hip fracture surgery by processing pre-operative variables. It can be acknowledged as
a binary classification problem.

1.2 Research Questions

There are 2 main research questions/problems regarding this study with multiple sub-questions.

1. To what extent, one can predict 30-days mortality of the elderly hip fracture patients after
surgery using machine learning with pre-operative variables?

(a) With respect to the class imbalanced dataset, to what extent, class imbalance han-
dling techniques are useful to preprocess the data for classification?

(b) Due to the high amount of missing values, to what extent, the missing value imputa-
tion techniques are suitable in predicting 30-days mortality of the elderly hip fracture
patients?

(c) Which machine learning algorithm performs best in the classification task?

2. As the literature suggests that multimodal machine learning showed good results in the
medical domain, it is important to question whether different modalities would contribute
to predicting 30-days mortality of elderly hip fracture patients.

(a) To what extent, one can predict 30-days mortality by using chest and hip X-ray im-
ages?

(b) Different variable groups have difficulties in the collection and extraction phases and
might be costly as well. However, if it was possible to extract these variables from
x-ray images, it would be less costly and easier. To what extent, extracted features
from x-ray images can be used to replace structurally collected variables?

(c) What is the most suitable way to fuse image modality and structured modality when
predicting 30-days mortality of the elderly hip fracture patients?
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(d) To what extent, multimodal fusion improves the prediction on 30-days mortality when
compared to prediction with only structured modality?

1.3 Research Method

This research was conducted in collaboration with ZGT (Hospital Group Twente). The dataset
used in this study included 2404 patients with an early mortality rate of 8%. The study period is
from 04-2008 to 01-2020. The author used several class imbalance techniques, missing value
imputation techniques by means of regression, machine learning algorithms including traditional
machine learning and deep learning, furthermore, different ways of multimodal(image modality
and structured modality) fusion to answer the research questions. Evaluation of the prediction
models was done with AUC scores as it is the best metric to use on imbalanced datasets.

1.4 Outline

Regarding the structure of this thesis, Chapter 2 introduces the background information about
the thesis. Chapter 3 presents the related work about predicting 30-days mortality for elderly
hip fracture patients and multimodal practices in the medical domain. Chapter 4 introduces
the terminology used by the author. Chapter 5 explains the author’s methodology. Chapter
6 describes the dataset preparation and variables used in the study. Chapter 7 focuses on
the multimodal perspective of the methodology. Chapter 8 presents experimental settings and
results. Discussion about the experiments takes place in Chapter 9 including the limitations of
the study and future work. The author concludes in Chapter 10.
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2 BACKGROUND

In this section, the author introduces the background which is useful to have a better under-
standing of this study.

2.1 Hip Fractures

Hip fractures typically happen when older people stumble or fall. It was observed that women
tend to fracture their hip more often than men and it is strongly related to the age of the per-
son [9]. It was reported that in 15% of the cases, the fracture is undisplaced and radiographic
changes may be minimal, in 1% fractures may not be visible on radiographs and further investi-
gation is needed, apart from those they can be confirmed by the plain radiographs of the hip [9].
Hip fractures can be classified as intracapsular and extracapsular, but these might be further
subdivided based on the level of fracture or existence of displacement and comminution [9].
Figure 2.1 gives a clear overview of the classification of fractures. The type of fracture is one
of the determinant factors for which surgery type should be performed and thereby it has also
considerable effect on the patient’s postoperative recovery process [10].

Figure 2.1: Classification of Hip Fractures. Fractures in the blue area are intracapsular and
those in the red and orange areas are extracapsular. (taken from [9])

Most hip fractures are treated with surgery due to the long hospital stay and bad results of
conservative approaches [9]. In general, the treatment of a hip fracture might involve multiple
disciplines such as ambulance service, the emergency room, radiology, anesthetics, orthopedic
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surgery, trauma surgery, medicine, and rehabilitation [9]. Depending on the health care system,
an orthopedic surgeon or the trauma surgeon makes the treatment plan. In the Netherlands, if a
patient is presented at the emergency department with a hip fracture and has former complaints
of the hip joint (arthrosis), the trauma surgeon asks the orthopedic surgeon if the patient needs
a total hip arthroplasty. As this study is conducted in collaboration with Ziekenhuisgroep Twente
(ZGT, Hospital Group Twente), the author will present the general treatment procedure of this
Hospital for hip fracture patients. It is called an integrated orthogeriatric treatment model and
executed by the Geriatric Traumatology Center (CvGT) at ZGT. However, not all the hip fracture
patients are treated in CvGT, due to their status, healthier patients are treated by orthopedics
surgeons. This study does not include these patients, therefore CvGT is the main focus. Figure
2.2, demonstrates the flowchart of the model in CvGT. Folbert et al. [11] describe an integrated
orthogeriatric treatment model as follows:

The aim of the introduction of the integrated orthogeriatric treatment model was to
prevent complications and loss of function by implementing a proactive approach by
means of early geriatric co-management from admission to the emergency depart-
ment (ED) by following clinical pathways and implementing a multidisciplinary ap-
proach. A nurse practitioner or physician’s assistant specialized in trauma surgery
made daily visits to the ward under the supervision of a trauma surgeon and geri-
atrician. For purposes of fall prevention, chronic medication was evaluated, osteo-
porosis status was investigated, and treatment was started if necessary. A multi-
disciplinary meeting was held twice a week to discuss the treatment goals, patient
progress, and discharge plan. The aim was to have the patients ready for discharge
within 5–7 days. Surgery follow-up appointments involved patients attending a mul-
tidisciplinary outpatient clinic where they visited a trauma surgeon, physiotherapist,
and nurse specialized in osteoporosis (”osteo-physio-trauma outpatient clinic”).

The journey of a patient from the perspective of data collection passes through multiple stages.
Firstly, when a patient arrives in the emergency room, standardized imaging and lab tests are
ordered. Standardized imaging includes pelvis and chest x-rays on the AP (Anterior-Posterior)
view. However, in some cases, doctors might request additional images of other body parts or
other views of the same parts. Subsequently, physical examination, recording of vital signals,
and electrocardiography take place. If possible, the patient is questioned about their complaint
and medical history. At the same time, the medical history of the patient is also collected by
means of letters registered in the hospital. After these, based on the collected data, a conclusion
and suggestion take place. From that point, the patient’s medical admission finishes, and they
get transferred to the clinic. All elderly patients (70 or older) which creates the study group of this
thesis, are visited by a geriatrician. If there is cardiac risk involved, a cardiologist is consulted.
In such cases, an ultrasound study of the heart takes place. Structured survey data such as
nutrition, mobility, activities of daily living, cognitive problems, comorbidities, living situations
are all collected in the clinic.
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Figure 2.2: Integrated orthogeriatric treatment model (taken from [11])

2.2 Machine Learning

Machine learning is programming computers to identify patterns in data by using algorithms and
statistical models, in order to accomplish various tasks. It is a subset of Artificial Intelligence.
Two main branches of Machine Learning are Supervised Learning and Unsupervised Learning.

2.2.1 Supervised Learning

In Supervised Learning, the goal is to predict an outcome or a phenomenon by the use of
relevant features related to that particular case. An example would be to predict if a customer
will buy a specific product using the customer’s demographics information. In order to perform
such a prediction, a model has to be developed first. Simply, the basic idea is to map feature
set X to output label Y by using a method f, Y = f(X). Once the model is fed with input tokens
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and output labels, it will optimize its mapping function and this process is called supervised
learning. In this example, customer demographics information are the feature set X and the
buying decision is the outcome label Y.

After the learning(training) is done, a model has to be validated that it gives accurate predic-
tions. This validation is done simply by predicting the outcome of cases and comparing these
predictions with the known ground truth. At this point, one would try multiple models to get the
best performance during validation. This process is called hyperparameter optimization. After
finding the best model, testing has to be performed. This process is the same as validation but
the only difference is the predicted dataset. More precisely, it has to be tested with unseen data
by the model to find its actual accuracy. The author uses the word actual here because the
performance metrics obtained in the validation phase might be biased. The reasoning for this
comes from the fact that the model which scores best on a particular validation set is chosen
but this model might perform differently on another dataset. After achieving desired results on
testing, the model is ready for deployment. It can now predict the buying decisions of customers
based on their demographics information.

2.2.1.1 Decision Tree

A decision tree aims to separate a dataset in small subsets which are created based on decision-
and leaf nodes. Decision nodes representing a test on an attribute and are followed by 2 or
more branches where each stands for a certain value of a feature. Whereas a leaf node is
representing the decision on the unknown value (label). The result is a tree structure that can
be followed according to the attributes/features and end up in a certain label that corresponds
to the target prediction. The selection of attributes for decision rules are based on impurity
measures such as Gini and Entropy. Most popular algorithms for decision trees are ID3, C4.5,
C5.0 and CART [12–14]

2.2.1.2 Random Forest

Random Forest is an ensemble algorithm. Simply it trains multiple decision trees with different
parts of the data. Then it takes the votes of those decision trees for classification and it decides
for the class of the test object based on those votes. [15]

2.2.1.3 AdaBoost Classifier

AdaBoost is an ensemble learning method. First, it fits the data on some estimators(e.g. deci-
sion trees) then, it tries to fit the data on more estimators but by giving higher importance to the
misclassified subjects. Therefore, the next generation estimators focus on more difficult cases
in terms of classification [16].

2.2.1.4 XGBClassifier (eXtreme Gradient Boosting Classifier

Similar to AdaBoost, XGBClassifier is an ensemble learning method that implements boosted
trees. Main motivation of this library is to allow scalability and maximize system optimization.
[17]
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2.2.1.5 Support Vector Machines

During the training, Support Vector Machines(SVMs) learn a decision boundary that maximizes
the margin between different classes. This learning is done through the use of Lagrange mul-
tipliers. Learning the parameters for the model in fact corresponds to a convex optimization
problem where any local solution is the global optimum. SVMs do not provide posterior prob-
abilities. However, they use different kernel functions (e.g. linear, polynomial, radial basis
function) to transform the data to higher-dimensional spaces to make it separable [18].

2.2.1.6 Logistic Regression

Logistic Regression calculates the conditional probability of an object belonging to a particular
class by using a sigmoid cost function. The formulation for the model is as follows where Y is
the target variable, X denotes the vector for features and w denotes the vector for weights:

Pr(Y |X = x) = σ(wx) =
1

1 + e−wx
(2.1)

There are multiple algorithms for fitting the data to a logistic regression model such as SAG,
SAGA, Liblinear [19–21].

2.2.2 Unsupervised Learning

In Unsupervised Learning, the goal is to identify unknown patterns without the use of any labeled
data. Principal component analysis, auto-encoders are examples of this learning technique in
dimensionality reduction of the feature set. Cluster analysis is also a very common usage of
unsupervised learning to categorize units with minimum human instructions such as the num-
ber of categories. In this study, unsupervised learning is applied by the use of auto-encoders,
therefore more background information on this will be in section 2.3.

2.3 Deep Learning

Deep learning is actually a subfield of machine learning where artificial neural networks are em-
ployed for various tasks such as natural language processing, computer vision, speech recog-
nition, drug discovery and genomics [22]. Training such networks, need high computational
powers and might take a long time. But during the last decade, thanks to advancements in
computers, especially in graphics cards, computational power has increased and Deep Neural
Networks has become more usable and popular. These networks have multiple layers, that is
why this type of learning is called deep. It is inspired by the form of the human brain. Deep
learning methods are rather black-box compared to traditional machine learning techniques
mentioned 2.2.1, thus their biggest disadvantage is the lack of interpretability. Deep Learning
could be used both for Supervised and Unsupervised learning.
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Figure 2.3: Illustration of a kernel applied on a 2D input in a Convolutional layer

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is one kind of Deep Learning method. It is used on
data with a grid pattern, such as images. They are designed to learn spatial-hierarchies of
features automatically, in other words, they are planned to extract features from images auto-
matically [23]. Characteristic building blocks of CNNs are convolutional layers, pooling layers,
and fully connected layers. Convolutional layers and pooling layers constitute convolutional
blocks, which are used in feature extraction. On the other hand, fully connected parts of these
networks are used for mapping extracted features to the target output. Convolutional layers are
the most important layer of CNNs as they do convolution operation which is a linear mathemat-
ical operation. There are a bunch of kernels in a convolutional layer, and all kernels are applied
to every position of the image to find the relevant features. An illustration of a kernel applied
on a 2D grid input tensor can be seen in figure 2.3. Right after this, a pooling layer is used to
summarize the process and get the most significant outcome. To have a deeper understanding
of Convolutional Neural Networks, the reader is advised to read pages 1-9 of [23].

2.3.2 Transfer Learning

Traditional Machine Learning methods works under the assumption of data used for training and
testing are drawn from the same space [24]. However, this is not always possible, especially
when doing Deep Learning due to an insufficient amount of data as training a Deep Neural
Network requires large datasets such as ImageNet which is consisted of 14 million images
from 20000 subcategories. Transfer Learning or Knowledge Transfer emerged due to the lack
of data in a domain of interest. The basic idea of Transfer Learning is to use the knowledge
gained in a particular domain on a different one. The inspiration comes from the fact that generic
features do not change on datasets from different domains, therefore neural networks that are
pre-trained on large datasets come as a convenient and effective solution for extracting features
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Figure 2.4: Example Auto-encoder Architecture (taken from [30])

on rather small datasets. Although these pre-trained networks perform well on famous datasets,
they still have to be adjusted in order to be usable on the dataset at hand. There are two
ways of adjusting this pre-trained network. The first option is a fixed feature extraction method,
where the convolutional part of the network is kept the same and the fully connected layer
(classifier) part is removed. If there is no replacement on the classifier part, it is possible to use
this option for unsupervised learning only to extract features, but this approach is not advised
when working on very specific domains such as medical imaging. The second option is a fine-
tuning method, where alongside fully connected layers, weights in the convolutional layers are
also retrained. This retraining on the convolutional part could be partly where only the deeper
layers are retrained as they carry more domain-specific information, or it could be completed,
in a way that, all the weights in the convolutional part are retrained [25]. Some examples of the
most popular pre-trained networks are DenseNet, VGG, Inception [26–28].

2.3.3 Auto-encoders

Auto-encoders are one kind of unsupervised learning technique that makes use of artificial
neural networks. The idea is to decrease the dimensionality of the feature space, in other
words, compress the data. The goal of the network is to represent the original input in fewer
dimensions. During the training part, original features are used both for input features and
output labels. And during the prediction, the output is the reconstruction of the original input
from the lowered dimensions. Auto-encoders consists of an encoding part and decoding part.
In figure 2.4, an example architecture of an auto-encoder can be seen. Encoding and decoding
parts are symmetrical with respect to the center where the encoded representation is located.
Using Auto-encoders for image data is also possible however, convolutional auto-encoders are
employed for this task. In Convolutional Auto-encoders, fully connected layers are replaced by
convolutional blocks. As convolutional layers do not ignore the 2D form of images which makes
them more suitable and practical [29].

16



Chapter 2

2.4 Multimodal Machine Learning

Humans experience things in different ways with different senses, such as seeing, hearing,
tasting, touching, and smelling. A modality implies how something happened or experienced,
and a research problem is identified as multimodal when it consists of more than one modality
in its nature [31].The multimodal machine learning concept has the goal to develop models that
can process and associate information from different modalities.

Recently in 2019, Baltrušaitis et al. introduced a new taxonomy to identify challenges of mul-
timodal machine learning [31]. These challenges are representation, translation, alignment,
fusion, and co-learning. According to their definition, representation is about “how to represent
and summarize multimodal data in a way that exploits the complementarity and redundancy”,
translation “addresses how to translate (map) data from one modality to another”, alignment con-
cerns “to identify the direct relations between (sub)elements from two or more different modal-
ities”, fusion focuses to “join information from two or more modalities to perform a prediction”
and co-learning aims “to transfer knowledge between modalities, their representation, and their
predictive models” [31].

Regarding 30-days mortality prediction, the relevant challenges are representation and fusion.
Therefore, the author will focus more on these.

2.4.1 Representation with Deep Neural Networks

In [31], it was stated that representing data in a meaningful way is of importance in multimodal
problems. There were two proposed categories for representation, namely joint and coordinated
representations [31]. Former combines each modalities’ signals in the same representation
space, whereas latter processes each modality separately and enforce similarity constraints to
put them on a “coordinated space” [31].

Joint representations could be done in three ways, by using, neural networks, probabilistic
graphical models, or sequential representations.

In deep neural networks, using the last layer or predecessor of the last layer is popular for
data representation as they carry more precise and relevant information [32]. In [31], it was
observed that in order to build a joint multimodal representation in neural networks, the first
modalities have to have their individual neural layers, then a hidden layer should bring them
to joint space. Due to the fact that neural networks require a high amount of labeled data, the
pre-training for representations could be unsupervised as autoencoders or supervised from a
related domain [31].

2.4.2 Fusion with Model Agnostic Approaches

Multimodal fusion refers to combining information from multiple modalities with the objective
of predicting an event, i.e. classification of numerical prediction [31]. It is suggested that the
fusion of multiple modalities leads to more robust predictions, captures complementary infor-
mation, and can operate when a modality is missing [31]. According to Baltrušaitis et al., fusion
is classified into two approaches, namely, model-agnostic approaches and model-based ap-
proaches [31]. The former does not depend on a particular machine learning algorithm [31]. By
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contrast, the latter is in the construction of algorithm [31].

Model-agnostic approaches have three levels of fusion, namely, early fusion, late fusion, and
their combination hybrid fusion [33]. Early fusion refers to the combination of modalities right
after the feature extraction, late fusion refers to the association of decisions coming from modal-
ities [33]. Hybrid fusion is done by combining the outputs of early and late fusion.

Model-based approaches can be split into three, Multiple Kernel Learning (MKL) methods,
graphical models, and neural networks [33].

2.5 Imbalanced Learning

Imbalanced learning is the concept where learning(machine learning) is done with imbalanced
data in terms of the classes. Generally, most of the supervised learning algorithms work under
the assumption that classes in a dataset are evenly distributed. However, this is not always the
case. This uneven distribution of classes is called a class imbalance. Class imbalance can be
in many different forms, such as 1:10, 1:100, 1:1000. On the other hand, class imbalance may
also exist in datasets with multi-classes. As this study is concerned with a binary classification
problem, the author will focus only on two-class imbalanced learning problems.

When working with imbalanced datasets, one crucial thing to realize is that using a single eval-
uation metric such as accuracy or error rate is not sufficient. Therefore, during the evaluation,
one should employ other performance metrics such as precision, specificity, ROC curve [34].
Performance evaluation metrics used in this study will be described in section 2.6.

There are various ways to deal with the class imbalance problem. The author will now describe
some of the most popular methods.

2.5.1 Random Oversampling and Undersampling

Random Oversampling is a technique where randomly selected examples from the minority
class are appended to the dataset until the desired ratio between classes is achieved. With the
same logic, Random Undersampling is selecting random examples from the majority class and
removing them from the dataset until the desired ratio is achieved.

2.5.2 Informed Undersampling with K-Nearest Neighbor Classifier

This way of dealing with class imbalance problems makes use of the K-Nearest Neighbor (KNN)
classifier when selecting samples to remove from the majority class. Zhang and Mani proposed
and evaluated a few methods using this approach [35]. NearMiss-2 was the best performing
one. The key idea of this method is to select majority class examples that are closer to all
minority class samples. It is done by selecting and removing the majority class examples with
the smallest average distance to K farthest minority class examples.
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2.5.3 The Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is an approach of oversampling. However, SMOTE does not duplicate minority class
examples. Instead, it generates synthetic data to achieve a balanced class distribution. The
generation process is as follows. Firstly, a minority class example is selected, let xi denote this
example’s features, then K nearest minority class examples to xi are collected, among these
neighbors, one of them is randomly selected, let xj denote the randomly selected neighbor
example’s features. Finally, the new synthetic data is generated by,

xnew = xi + (xi − xj)× α (2.2)

where alpha is a random number between [0,1]. This process is repeated for each minority class
example. For better understanding of this algorithm, the reader is advised to refer to section
4.2 of [36].

2.5.4 Borderline-SMOTE

Borderline-SMOTE algorithm is another oversampling technique. The motivation of this algo-
rithm is the fact that minority class examples that are closer to the borderline (i.e. majority
class examples), are harder to classify correctly, therefore giving higher importance to these
examples improve the performance of the oversampling. It works in the same way as SMOTE
but it generates synthetic examples based on the minority class examples which are on the
borderline [37]. There are two variations of this approach, namely, Borderline-SMOTE-1 and
Borderline-SMOTE-2. The main difference of the second is that it generates synthetic data also
from the majority class neighbors. For a detailed explanation of the algorithm, the reader is
advised to refer to section 3 of [37].

2.5.5 ADASYN: Adaptive synthetic sampling

ADASYN is an oversampling approach where synthetic examples are generated based on mi-
nority class examples which are harder to learn. It is similar to Borderline-SMOTE as they are
both considered as adaptive and care more about difficult examples. In the ADASYN algorithm,
a density distribution, regarding their level of difficulty in learning, is used to decide the number
of synthetic examples to be generated based on each minority class example. For a complete
explanation of this algorithm, the reader is advised to refer to ADASYN Algorithm section of [38].

2.5.6 Adjusting Class Weights

One approach to deal with class imbalance is to adjust the class weights during the learning.
Idea is to give more importance to minority class during the calculation of loss function. Machine
learning techniques used in this paper, Decision Tree, Logistic Regression, Neural Networks,
Support Vector Machines, support this technique.
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2.6 Evaluation Metrics

In this section, evaluation metrics that are relevant to this study are introduced. This is a two-
class study. Positive class are the patients who have deceased in 30-days after a hip
fracture surgery where Negative class are the patients who have survived 30-days. The
author firstly describes the important terms for the evaluation metrics.

• True Positives (TP): Correctly predicted samples which are originally positive

• True Negatives (TN): Correctly predicted samples which are originally negative

• False Positives (FP): Wrongly predicted samples which are originally negative

• False Negatives (FN): Wrongly predicted samples which are originally positive

In figure 2.5, an example of a Confusion Matrix can be seen which is a table used for represent-
ing these 4 values.

Figure 2.5: Example Confusion Matrix

Now, evaluation metrics which measure different kinds of performances, will be presented.

• Specificity or True Negative Rate (TNR), evaluates the proportion of actual negatives that
are correctly predicted

Specificity =
TN

FP + TN
(2.3)

• Recall or Sensitivity or True Positive Rate (TPR), evaluates the proportion of actual posi-
tives that are correctly predicted

Recall =
TP

TP + FN
(2.4)

• False Positive Rate (FPR), evaluates the proportion of actual negatives that are incorrectly
predicted

FPR =
FP

TN + FP
= 1− Specificity (2.5)

• Precision or Positive Predictive Value(PPV), evaluates the proportion of actual positives
that are predicted as positives

Precision =
TP

TP + FP
(2.6)
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• Negative Predictive Value(NPV), evaluates the proportion of actual negatives that are pre-
dicted as negatives

NPV =
TN

TN + FN
(2.7)

• F1-score evaluates the balance between precision and recall

F1-score = 2 ∗ Precision ∗Recall

Precision+Recall
(2.8)

• Accuracy, evaluates the proportion of all correctly predicted samples regardless of their
class

Accuracy =
TP + TN

TP + TN + FP + FN
(2.9)

• Receiver Operating Characteristic (ROC) curve is a graph where TPR is plotted against
FPR. Area Under the ROC Curve (AUC), shows the capability of the model in distinguish-
ing classes in binary classification problems. Analyzing this curve gives a better under-
standing of the trade-off between specificity and sensitivity According to [39], AUC be-
tween 0.7 and 0.8 is considered as acceptable discrimination, AUC between 0.8 and 0.9
is considered as excellent, AUC above 0.9 is considered as outstanding. An illustration
of ROC-AUC can be seen in figure 2.6

Figure 2.6: Example ROC Curve

• Hosmer–Lemeshow (HL) is a goodness-of-fit test for logistic regression. A significant
result (eg. <0.05) indicates that there is a lack of fit in the model [40]. HL test statistic is
given by:

=
G∑

g=1

(
(O1g − E1g)

2

E1g
+

(O0g − E0g)
2

E0g

)

=
G∑

g=1

(
(O1g − E1g)

2

Ngπg
+

(Ng −O1g − (Ng − E1g))
2

Ng(1− πg)

=
G∑

g=1

(O1g − E1g)
2

Ngπg(1− πg)

(2.10)
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Where O1g, E1g, O0g, E0g, Ng, and πg denote respectively the observed class = 1 events,
expected class = 1 events, observed class = 0 events, expected class = 0 events, total
observations, predicted risk for the gth risk decile group, and G is the number of groups
[41]. For a deeper understanding of this test statistic, reader is advised to read [40].

There is of course a trade-off between some of the mentioned metrics such as precision and
recall. Evaluation metrics and how they are used in this study will be elaborated in the method-
ology. AUC and HL test statistic is important to understand the mentioned results in chapter 3,
Related Work.

2.7 Missing Value Imputation

Almost all datasets contain missing values. Handling these missing values is an important part
of preprocessing in data science projects. In this section, the author will introduce different types
of missing data, and various techniques used to handle them in this study.

One common way to distinguish missing data is regarding its randomness. There are 3 classes
in this differentiation [42].

• Missing Completely at Random (MCAR), when the reason for the missingness is not re-
lated to anything within the dataset.

• Missing not at Random (MNAR), when the reason for the missingness is related to the
variable itself.

• Missing at Random (MAR), when the reason for the missingness is not related to the
variable itself but on other observed data.

Moreover, the amount of missing values of a variable or amount of missing values a unit has is
also an important aspect during this process.

Techniques used to handle missing values in this study are listed as follows:

• Listwise deletion(complete case analysis), deleting a unit from the dataset if one or more
variables of that unit are missing.

• Mean, mode, median imputation, filling missing values with mean, mode(most frequent
value), and median of the variables respectively. It is very easy to implement, however, it
leads to bias as all missing values of a variable are filled with a fixed value.

• Iterative Imputation: Multivariate imputation by Chained Equations (MICE), a technique
for imputing missing values by mapping each variable with missing values as a function
of other variables iteratively [43], i.e. training a regression model to predict the missing
variable by using other variables.
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3 RELATED WORK

3.1 30-days Mortality Prediction on Elderly Hip Fracture Patients

There have been many studies to find predictors for mortality after hip fracture. As comorbidities
have a big influence in healthcare, they also do in hip fractures, therefore, finding relevant
comorbidities to early mortality is important for accurate predictions. Furthermore, there have
been various studies in order to predict the risk of early mortality of hip fracture patients before
the operations, in those studies, usually, the end goal is to come up with a risk model to score
the patients. In almost all of the studies, in order to make the model understandable and easier
to use, coefficients of the regression models are transformed into risk scores. In this section,
the findings and methodologies of these studies will be reviewed.

In [44], research is conducted to determine the risk factors of 30-day mortality of orthogeriatric
trauma patients. Hip fracture patients are included in this group. It was found that increased age,
male sex, decreased hemoglobin levels, living in an institutional care facility and a decreased
Body Mass Index (BMI) are independent risk factors for 30-day mortality. In [4], it was concluded
that advanced age, low BMI, and high Charlson Comorbidity Index (CCI) are independently
related to postoperative 30-day mortality after a hip fracture surgery but admission glucose
concentration has no association.

In [3], the association of case-mix (age, gender, fracture type, pre-fracture residence, pre-
fracture mobility, ASA scores) and management (time from fracture to surgery, time from ad-
mission to surgery, the grade of surgical and anaesthetic staff undertaking the procedure and
anaesthetic technique) variables to 30 and 120-day mortality after hip fracture surgery were
studied. From the multivariate logistic regression analysis, it was concluded that all the case-
mix variables have a strong association with post-operative early mortality [3]. By contrast, it
was found that management variables have no significant contribution to the post-operative
early mortality except the grade of anaesthetist [3].

Maxwell et al. [5] aimed to predict 30-day mortality in hip fracture patients having surgery, it was
found that advanced age, male sex, having more than 2 comorbidities, having mini-mental test
score less than or equal to 6 (out of 10), admission haemoglobin concentration (≤10 g dl−1),
living in an institution, and presence of malignant disease are independent predictors of early
mortality. These variables then used in logistic regression to constitute the Nottingham Hip Frac-
ture Score (NHFS) which measures the risk of mortality. It was shown that NHFS(Nottingham
Hip Fracture Score) had AUC of 0.719 [5]. The NHFS was validated externally [45] but in [46],
it was taken to one step further and got validated with national data set and recalibrated. This
recalibration improved the fit of predicted and observed rates of mortality to a p-value of 0.23
which was previously smaller than 0.0001(Hosmer–Lemeshow statistic).

Almelo Hip Fracture Score (AHFS) was developed, validated, and compared with an adjusted
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version of NHFS (NHFS-a) [6]. Results showed that AHFS had an AUC 0.82 whereas NHFS-
a had 0.72. Both models showed no lack of fit between observed and predicted values (p >
0.05, Hosmer-Lemeshow test). AHFS was also calculated with a multivariate logistic regres-
sion model [6]. Besides the variables used in NHFS-a; ASA score, Parker Mobility Score (PMS),
the Dutch Hospital Safety Management Frailty score (VMS) Physical limitations, and VMS Mal-
nutrition were also included in the AHFS model [6].

The Hip fracture Estimator of Mortality Amsterdam (HEMA) was developed as a risk predic-
tion model for 30-day mortality after hip fracture surgery [7]. Logistic regression analysis was
used to detect relevant variables to compute the risk [7]. The analysis ended up by finding 9
relevant factors affecting early mortality, namely, age ≥85 years, in-hospital fracture, signs of
malnutrition, myocardial infarction, congestive heart failure, current pneumonia, renal failure,
malignancy, and serum urea >9 mmol/L [7]. Corresponding 9 variables were used to constitute
the final model [7]. The AUC was 0.81 and 0.79 in the development cohort and validation cohort
respectively, the Hosmer–Lemeshow test showed no lack of fit in both cohorts (p>0.05) [7].

In [8], Brabant Hip Fracture Score (BHFS-30) was developed to predict the risk of early mortality
after hip fracture surgery and internally validated. By the use of manual backward multivari-
able logistic regression, it was found that age, gender, living in an institution, admission serum
haemoglobin, respiratory disease, diabetes, and malignancy are independent predictors of risk
in early mortality [8]. However, in BHFS-365, which is the risk score for mortality in 1 year,
risk factors included cognitive frailty and renal insufficiency [21]. BHFS-30 showed acceptable
discrimination with an area under the ROC curve of 0.71 after the internal validation and the
Hosmer–Lemeshow test indicated no lack of fit (p>0.05) [8].

In [47], it was aimed to define the factors affecting in-hospital and 1-year mortality after hip
fracture, moreover, using these factors a model was built to identify the in-hospital and 1-year
mortality risk of patients. By entering all the variables using a multivariable backward selection
procedure for logistic regression (p<0.05 for retention in the model), independent determinants
were found; older age, male sex, long-term care residence, chronic obstructive pulmonary dis-
ease (COPD), pneumonia, ischemic heart disease, previous myocardial infarction, any cardiac
arrhythmia, congestive heart failure, malignancy, malnutrition, any electrolyte disorder, renal
failure [47]. The interaction between variables was tested however none achieved statistical
significance [47]. In-hospital and 1-year mortality predictions used the same variables with the
same adjusted odds, meaning that factors affecting each of them are essentially the same [47].
Predictions for in-hospital mortality achieved AUC of 0.83 on training and 0.82 on the validation
set, without showing any lack of fit according to Hosmer-Lemeshow statistic. In addition to that,
predictions for 1-year mortality achieved AUC of 0.75 on training and 0.74 on the validation
set [47].

Apart from these risk scores particularly dedicated to predicting the risk of hip fracture patients,
there have been studies to come up with more generic risk scores which are also applicable
to hip fracture patients as well as other relevant patients. These are The Charlson Comorbid-
ity Index (CCI), a model to predict the risk based on classification of comorbid conditions [48],
Orthopaedic Physiologic and Operative Severity Score for the enUmeration of Mortality and
Morbidity (O-POSSUM), a model to predict the risk in orthopaedic surgery [49], Estimation of
Physiologic Ability and Surgical Stress (E-PASS), a model that predicts the post-operative mor-
tality risk, comprised of a preoperative risk score, a surgical stress score, and a comprehensive
risk score [50], the Surgical Outcome Risk Tool (SORT), a model to predict the risk of 30-day
mortality after non-cardiac surgeries [51].

In [45], evaluation of the 30-day mortality prediction models (CCI, O-POSSUM, E-PASS, a risk
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model by Jiang et al. [47], NHFS, a model by Holt et al. [3]) was done. All models except the
O-POSSUM reached acceptable discrimination (AUC > 0.70). It is reported that the best AUC
(0.78) belongs to the risk model by Jiang et al. [47]. Models who are specifically designed for
hip fracture cases (model by Jiang et al. [2], NHFS, model by Holt et al. [3]) showed a significant
lack of fit according to Hosmer–Lemeshow statistic. Marufu et al. evaluated SORT in [46], it
was found that SORT had AUC of 0.70 with a significant lack of fit despite the recalibration.

Overview of the results of studies on 30-days mortality of elderly hip fracture patients including
the results of this thesis could be found in table 3.1

Study Technique Used Number of Features Used AUC Score
NHFS [5] Logistic Regression 7 0.719
AHFS [6] Logistic Regression >10 0.82
HEMA [7] Logistic Regression 9 0.79

BHFS-30 [8] Logistic Regression 7 0.71
This thesis CNN1, Random Forest Clas-

sifier, Early Fusion, Random
Over Sampling, Iterative Im-
putation of missing values
with KNeighbors Regressor

>100(including image modality) 0.742

Table 3.1: Overview of the results of studies on 30-days mortality of elderly hip fracture patients

3.2 Applications of Multimodality on Medical Domain

Suk et al. tried to diagnose Alzheimer’s disease with a multimodal approach using deep learn-
ing [52]. The fusion of multimodal information from Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) data was done by a novel method they proposed using
multimodal DBM (Deep Boltzmann Machines) [52]. This method outperformed competing meth-
ods in terms of accuracy [52]. Moreover, they further investigated the trained model visually and
found that their method can hierarchically expose the latent patterns in MRI and PET [52].

In 2005, Kenneth et al. fused ECG, blood pressure, saturated oxygen content and respiratory
data in order to improve clinical diagnosis of patients in cardiac care units, they concluded that
better results can be achieved with the novel fusion system they proposed [53]. Moreover,
Bramon et al. proposed and evaluated an information-theoretic approach for multimodal data
fusion, it was found that their approach showed promising results on medical data sets [54].
Nunes et al. [55] developed a multimodal approach that integrates a dual path convolutional
neural network (CNN) processing images with a bidirectional RNN processing text. Experiments
showed promising results for the multimodal processing of radiology data [55]. Pre-training with
large datasets improved the AUC 10% on average [55].

1Convolutional Neural Networks
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4 TERMINOLOGY

As this research is concerned with the application of machine learning to the health care domain,
there might be some overlapping terminologies amongst these disciplines or other terminologies
that are not clear for readers coming from backgrounds of either of the domains. For this reason,
in this section, the author would like to describe some of the terminology used in the rest of this
thesis to clarify what is exactly meant by particular terms.

4.1 Modality

In section 2.4, Multimodal Machine Learning has been described. It was mentioned that a
modality implies how something happened or experienced. In this research, the term ”modality”
is used to differentiate the data in a way that humans process it to understand. To be more
precise, regarding hip fractures, present modalities are identified as follows:

• Structured modality, which includes only data that are structured such as survey ques-
tions, lab tests, emergency room measurements, medication usage. In this modality, for
a particular variable, the question is always the same, and answers might be numerical
with some range or nominal with a fixed amount of categories.

• Image modality, which includes thorax (chest) and pelvis (hip) x-ray images of the pa-
tients. In exceptional cases, there are also other imaging involved such as computational
tomography (CT).

• Text modality (natural language), which includes letters from nurses, surgeons, radiolo-
gists where they tell about their observations and findings for patients in an unstructured
or semi-structured form.

• Signal modality, which includes only electrocardiograms (ECG).

Although the author has listed 4 modalities involved with hip fractures patients, the scope of
this thesis does not cover the study of all of them. Further information on this will be given in
chapter 6.

4.2 Source of Data

As its name suggests, the source of data is concerned with where the data is coming from.
This could be an alternative to ”modality” for grouping variables, maybe a more detailed ver-
sion. For example in the modality section, it was mentioned that Structured Data consists of
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multiple sets of variables, such as survey questions, lab tests, emergency room measurements.
One can obviously see that source of variables concerning lab tests and emergency room mea-
surements are different as one of them is recorded by the lab and the other by the emergency
room. However, this is not always straightforward. Especially, when a particular question can
be answered in different ways. A very important example is the comorbidities of the patient.
There are multiple sources to find comorbidities of a patient. Going through old letters written
by doctors or nurses is the first option. Looking at financial hospital records of the patient is
the second option. When the doctors apply a treatment, they have to enter relevant financial
codes in the patient’s file for declaration purposes to the insurance. The final option to learn
the comorbidities of the patient is simply by surveying the patient or their family and keeping
structured records of it. It can be seen that, as the source changes, modality might also change
which makes the extraction of a variable more challenging.

4.3 Subject of Data

The subject of data describes what concept, discipline, or body part/organ a variable is related
to. It is another dimension of grouping variables. To make it more clear, the author would like
to give the example of lab tests. There are about 18 lab tests employed in the evaluation of
a patient. However, different lab tests are concerned with answering questions about different
subjects such as liver, kidney, infection. More examples could be given on survey questions
which could have subjects such as nutrition, mobility, cognitive problems.

4.4 Parameters and Hyperparameters

In machine learning tasks there are two types of parameters involved. The first type of parameter
is the one that is learned and adapted by the model during the training phase. As an example,
weights of a neural network or decision nodes of a decision tree are falling under this type, they
are learned from data and in the rest of the thesis, they will be called by the term ”parameter”.
The second type will be called ”hyperparameter”. Hyperparameters are determined and fixed
before the training of the machine learning model has started. For example, how many layers
and neurons will a neural network have, or what is the maximum depth a decision tree can grow,
how many estimators a random forest model can have, these types of questions are answered
and hyperparameters are set before the training begins.

4.5 Train, Validation and Test sets

This section describes the three sets used in machine learning when building a model. Train,
validation, and test terms could be used in different meanings in different domains therefore,
the author finds it necessary to mention how they are used in this study.

The train set is used to initially train a machine learning model. The validation set is used to
validate and select the machine learning model, imputation technique, variables used, gener-
ally all the hyperparameters involved in the methodology. The test set is used to estimate and
evaluate how the model will perform in real-life. This set must include only the samples which
are not seen by the model. The main reason for having a validation set beside the test set is,
not to overfit on test data. Basically, during the training, parameters are learned, and during the
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validation, hyperparameters, which perform better are identified. Once the hyperparameters
are validated, one can use both train and validation set to train their machine learning models
and evaluate them on the test set. One should note that the performance on the test set de-
pends significantly on the split especially with relatively smaller datasets. Furthermore, it is very
important to have a test set that is representative of the real-life application of the model.
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5 METHODOLOGY

In this chapter, the author will describe the methodology used in this research. The diagram in
figure 5.1 can be reviewed to have general understanding of stages in the methodology.

Figure 5.1: Diagram illustrating the stages in the methodology.

5.1 Extract Dataset

The first main stage of the methodology is to extract the dataset from the hospital database sys-
tems. This stage was the one which took the longest time. In this part, a dataset was received
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from the hospital, it was analyzed and problems related to it was reported to the hospital, this
process repeated iteratively to achieve the most complete dataset one can obtain in the given
time. Regarding image modality dataset, two deep learning models, one for chest x-rays and
one for hip x-rays, had to be developed for image selection as there are more than one im-
ages attached to each patients file which are not always correctly labeled. Further details on
model development for image selection could be found in appendix A. After doing pre-selection
with the built deep learning models, patients who do not have desired imaging were reviewed
manually and corrected if it was possible. In the end of this analysis, patients who had missing
imaging either on chest part or hip part were excluded from the study.

5.2 Preprocessing

Details of the integration with the dataset of [56] and other preprocessing steps are described
in section 6.2.

5.3 Experimenting

The general execution of the experiments was done in a sequential way so that, insights from
one set of experiments were used to shape the next generation of experiments. At the end of
the experimenting stage, the best model based on the validation set was identified and results
on the test set were reported. The multimodal approach adopted during experimenting which
constitutes the technical contribution is explained in Chapter 7.

5.4 Evaluation

The main performance evaluation metric was selected as Area Under the Curve (AUC). Higher
this metric becomes, a model can perform better discrimination between two classes. Descrip-
tions of related performance metrics can be found in section 2.6. Although metrics such as
precision, recall, specificity are of importance, they are not used to evaluate the results of ex-
periments. Because one can change the decision threshold of a model and have completely
different results for these metrics with the exact same model. Adjustment of the decision thresh-
old is left out for the future users of the model.
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6 DATASET PREPARATION

The study period used in this dataset is between 01-04-2008 and 31-01-2020. All the patients
who are 70 years or older and have admitted to the Emergency Room (ER) with an acute
hip fracture were included. The selection is based on diagnostic treatment code (DBC) which
is ’218 Femur, proximal (+collum)’. Patients with a femur fracture, periprosthetic fracture, or
pathological fracture were excluded. Patients who had total hip arthroplasty or deceased before
the surgery were excluded. Furthermore, patients without thorax or hip/pelvis x-rays were also
excluded. With all inclusion and exclusion filters, the complete dataset ended up with 2404
patients. The distribution of the patients according to years including class categories can be
seen in fig 6.1. In total, the dataset includes 2211 patients who have survived 30 days after
hip fracture surgery and 193 patients who have deceased within 30 days after the operation.
Meaning that the 30-days postoperative mortality rate (positive sample rate) of this dataset is
8%.

Figure 6.1: Patient Distribution in Years with Class Categories
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Variables used in the dataset are extracted from different data sources of the hospital. The differ-
ent data sources can be listed as follows: Laboratory including lab tests, Emergency Room(ER)
including physical exam results and vital signals, clinic including most of the structured data, di-
agnostic treatment codes (DBC) including comorbidities, radiology including x-ray images and
dataset of [56]. As mentioned in section 4.1, there are 4 modalities involved in the data of
hip fracture patients, however, the scope of this study covers structured modality and image
modality. Structured modality and image modality were retrieved by the database systems of
Ziekenhuis Groep Twente (ZGT, Hospital Group Twente). Text modality which contains a lot
of useful information had not been processed. However, a study that had overlapping patients
with this study, was conducted in 2018 by Nijmeijer et al. at ZGT [56]. During the genera-
tion of the dataset of that study, text modality was processed by researchers and converted to
structured data manually without any automation tool. Therefore, with the goal of improving the
quality of the current dataset, some of the variables of [56] were mapped to the variables of
the current dataset for overlapping patients as they point to the same information. However,
this information could be missing in some cases in the dataset of this study, thus [56] used to
complement these missing parts to some extent with the appropriate mapping of values. This
improvement was required due to the fact that different variables were started being collected
in the structured form in different periods, resulting in a dataset with a significant amount of
missing values. The best way to handle missing values is not to have missing values as much
as possible. By the integration of the dataset of [56], the missing value rate was decreased
on average by 30%. Details of this integration and other preprocessing steps are explained in
section 6.2. In figure 6.2 and 6.3, missing value identification heatmaps can be seen before
and after the integration with the dataset of [56] respectively. A yellow line indicates that the
corresponding variable in the vertical axis is missing for the patient in the horizontal axis. The
pattern of different collection start dates also becomes obvious on these figures as the patients
are sorted according to admission dates.

With respect to image data, there are two series of images, namely pelvis x-rays and chest
x-rays. However, in some cases instead of the complete pelvis, an x-ray of only one hip exists
due to the specific order of the doctors but these are also treated as pelvis x-rays in this study.
Moreover, usually, there are more than one view for each series besides the AP (Anterior-
Posterior) view, such as lateral, axial, lauenstein views. However, the quality of views except
for AP drops significantly due to the effort required by imaging position, especially when the
patient is in strong pain. For this reason, all imaging used in the study is AP views.

Variables used in the dataset and their subjects are presented in tables 6.1,6.2. These two
tables do not indicate any grouping, they were just split into two, due to the high number of
variables.

6.1 Small Dataset

Due to the fact that a very high amount of missing values depend on the date, the dataset
was shrunk by deleting patients who had admitted before a particular date. To be precise, 01-
04-2012 was selected as the date to exclude patients admitted before which resulted in 1654
samples. This date was selected based on the data collection start dates. This dataset will
be called as small dataset in the rest of the thesis. Although the main dataset used during
experiments was the complete dataset, the important stages of the experiments were repeated
on the small dataset. This can be considered as a missing value imputation technique and it
is very similar to listwise deletion (complete case analysis) as explained in section 2.7. The
similarity to listwise deletion comes from the fact that all the patients before a particular date
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miss most of the variables. The reader is encouraged to review the missing value illustration
in figure 6.3 to have a better understanding of the conceptual similarity of this application with
listwise deletion. For example, if one deletes all patients who had admitted before 2012, the
proportion of missing values in the dataset would drop drastically.

Figure 6.2: Missing value identification heatmap before integrating the dataset of [56], yellow
lines indicate missing values
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Figure 6.3: Missing value identification heatmap after integrating the dataset of [56], yellow lines
indicate missing values
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Variable Subject Source
Age Demographics Clinic

Gender Demographics Clinic
HB Blood Lab
HT Blood Lab

BLGR Blood Lab
IRAI Blood Lab
CRP Infection Lab

LEUC Infection Lab
THR Coagulation Lab
ALKF Liver Lab
GGT Liver Lab
ASAT Liver Lab
ALAT Liver Lab
LDH1 Liver Lab
UREU Kidney Lab
KREA Kidney Lab
GFRM Kidney Lab

NA Electrolytes Lab
XKA Electrolytes Lab

GLUCGLUC Glucose Lab
Bloodthinners Medication Clinic & [56]

Prone to under-nutrition Nutrition Clinic
Unintentional loss of weight Nutrition Clinic

Decreased appetite Nutrition Clinic
Drink or tube feeding Nutrition Clinic

SNAQ1Score Nutrition Clinic
Binary SNAQ Score Nutrition ER2& [56]

ASA3Score Assessment Clinic& [56]
Fall risk Falling Clinic

Fall happened in last 6 months Falling Clinic& [56]
Help with self-care last 24hrs Activities of Daily Living Clinic
Incontinence material used Activities of Daily Living Clinic& [56]

Help with transfer from bed to chair Activities of Daily Living Clinic& [56]
Help with shower Activities of Daily Living Clinic& [56]
Help to dress up Activities of Daily Living Clinic& [56]

Help with going to the toilet Activities of Daily Living Clinic& [56]
Help with eating food Activities of Daily Living Clinic& [56]

KATZ ADL4Score Activities of Daily Living Clinic& [56]
Prone to delirium Cognitive Problems Clinic
Memory Problems Cognitive Problems Clinic

Previous confusional state Cognitive Problems Clinic

Table 6.1: Variables used in this study (part 1)

1Short Nutritional Assesment Questionnaire
2Emergency Room
3American Society of Anesthesiologists Physical Status Classification
4Katz Index of Independence in Activities of Daily Living (ADL)
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Variable Subject Source
Fracture laterality Fracture Clinic& [56]

Fracture type Fracture Clinic& [56]
Type of therapy Operation Material Clinic& [56]

Pre-fracture living situation Residence Clinic& [56]
A02(drugs for acid related disorders) Medication Clinic

A10(drugs uses in diabetes) Medication Clinic
B01(antithrombotic agents) Medication Clinic

B02(antihemorrhagics) Medication Clinic
B03(antianemic preparations) Medication Clinic

C01(cardiac therapy) Medication Clinic
C03(diuretics) Medication Clinic

C07(beta blocking agents) Medication Clinic
C08(calcium channel blockers) Medication Clinic

C09(agents acting on the renin–angiotensin system) Medication Clinic
C10(lipid modifying agents) Medication Clinic
L04(immunosuppressants) Medication Clinic

M01(anti-inflammatory and antirheumatic products) Medication Clinic
N05(psycholeptics) Medication Clinic

R03(drugs for obstructive airway diseases) Medication Clinic
Myocardial infarction Comorbidities DBC5

Congestive heart failure Comorbidities DBC
Peripheral vascular disease Comorbidities DBC

Cerebrovascular disease Comorbidities DBC
Dementia Comorbidities DBC

Chronic pulmonary disease Comorbidities DBC
Rheumatologic disease Comorbidities DBC

Peptic ulcer disease Comorbidities DBC
Mild liver disease Comorbidities DBC

Diabetes Comorbidities DBC
Diabetes with chronic complications Comorbidities DBC
Cerebrovascular event(Hemiplegia) Comorbidities DBC
Moderate to severe renal disease Comorbidities DBC

Cancer6 Comorbidities DBC
Leukemia Comorbidities DBC

Lymphoma Comorbidities DBC
Moderate or severe liver disease Comorbidities DBC

Respiration Parameter Vital signals ER
Blood pressure systolic Cardiology ECG System

Width of QRS complex in ECG Cardiology ECG System
Heart axis orientation in ECG Cardiology ECG System

Heart rate Cardiology ECG system&ER
Thorax(chest x-ray) (image modality) Chest Radiology

Pelvis/Hip x-ray (image modality) Hip Radiology

Table 6.2: Variables used in this study (part 2)

5Diagnostic treatment code
6Discrimination of cancer with or without metastasis is not possible with this variable
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6.2 Preprocessing

In this section, the author will explain the details of the integration with the dataset of [56]
and other preprocessing steps. The motivation behind the integration was that there were two
datasets pointing to same information in different ways and sometimes in one dataset that in-
formation is missing. Therefore dataset of [56] used to complement missing parts.

6.2.1 Categorical Variables

All the categorical variables re-coded by one-hot encoding, meaning that, a new binary variable
was created for each category of a variable. In case of missing values, all of the binary variables
generated for this variable are encoded as 0.

6.2.2 Null Values in Lab Tests

Null values in lab tests come in different forms. There are ‘null’, ‘-volgt-‘, ‘<memo>’, ’Zie op.’,
’STHEM’ and ‘===’ values. The ‘null’ values are simply not available. However, for ‘-volgt-‘ and
‘<memo>’, there is a different story behind. The former means that, the corresponding test has
been done but the result was not available and to be followed by that time, meaning that, doctors
who call for the decisions do not always wait for all test results to become available for urgent
cases. The latter means that, the corresponding test has been done, but there is something
wrong with the results, and a person can read about what is wrong if they go into details of that
test. A second iteration of extraction from the database was done by ZGT to reduce the number
of special null cases such as ’-volgt-’. This reduced number of such cases however, remaining
‘-volgt-‘, ‘<memo>’, ‘===’, ’Zie op.’, ’STHEM’ values are treated as regular ’null’ values.

6.2.3 Non-numeric Lab results

Most of the lab tests are continuous variables. They have specific ranges which indicate that
patient is normal if the result lies in that range. For example, the lab test called ‘CRP’, which
is related to infection. This test is considered to be abnormal if the result is higher than 10. In
this feature, there are values of ‘<1’ which indicates that the test results in a value smaller than
1. But in order to process this as a numeric variable, a transformation had to be made. To this
end, following transformations was applied:

• In variable CRP, values of ‘<1’ are replaced by a uniform distribution between 0.5 and 1

• In variable ALAT, values of ‘<5’ are replaced by a uniform distribution between 1 and 5

• In variable GRFM, values of ‘>90’ are replaced by a uniform distribution between 90 and
100
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6.2.4 Lab Tests - BLGR & IRAI (Blood Group)

The lab test called as BLGR which is the blood group test was recoded as a binary variable,
indicating only if the blood group is ”O” or ”not O”, this puts blood groups of A, B and AB in the
category ”not”. On the other hand, lab test ’IRAI’ was recoded in a way that it indicates if the
blood group is positive or not positive, i.e. all other values than positive, including missings, are
treated as not positive. These recodings took place with the supervision of clinical supervisors
from ZGT.

6.2.5 Pre-fracture Living Situation

Pre-fracture Living Situation is one of the variables where 2 sources were used to end-up with a
variable with less missing values. These sources are collected data in clinical pathway and the
dataset used in [56]. However, categories used in these two sources differ from each other and
a mapping had to be done in order to merge two sources. To this end, categories of the dataset
of [56], used as default categories, and categories of dataset from clinic was mapped to these
with the clinical supervision of ZGT. By the merge of two sources, missing rate of Pre-fracture
Living Situation dropped from 39% to 24%.

Categories(values) of pre-fracture living situation variable in clinic (dataset of this study):

A. zelfstandig

B. zelfstandig met (dagelijkse/ADL) hulp

C. alleenwonend

D. verpleeghuis

E. meerpersoonshuishouden

F. verzorgingshuis

G. bejaardentehuis

H. verpleeghuis revalidatie

I. woonzorgcentrum

J. anders, nl.

K. kleinschalig wonen twentsche zorg-
centra

L. appartement of flatwoning

M. PG afdeling in verpleeghuis

Categories(values) of pre-fracture living situation variable in the dataset of [56]:

1. zelfstandig

2. zelfstandig met hulp

3. verzorgingshuis

4. verpleeghuis

5. anders bepaald
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Categories in the dataset of [56] used as the main categories. Values for variable pre-fracture
living situation in the dataset of this study are replaced according to mapping below. Categories
which are not possible to map: C, E, L. These were re-coded as ’null’ and handled during
missing value imputation phase.

A. → 1

B. → 2

C. → null

D. → 4

E. → null

F. → 3

G. → 3

H. → 4

I. → 3

J. → 5

K. → 4

L. → null

M. → 4

6.2.6 ASA and SNAQ Scores

ASA (American Society of Anaesthesiologists) score is one of the variables where 2 sources
were used to end-up with a variable with less missing values. No mapping was required during
the merge of two sources. Distribution of two sources were checked before merging and no
difference was observed. By merging, missing rate of ASA score dropped from 9% to %5.
On the other hand, the same process was not applied to SNAQ (Short Nutritional Assessment
Questionnaire) score due to the fact that distribution of two datasets differ from each other.
Instead of that, another version of SNAQ score, namely Binary SNAQ, was merged from two
sources as an alternative of SNAQ score. Both SNAQ Score and Binary SNAQ score were used
during modelling. SNAQ Scores which are greater than 5 are considered as invalid values and
consequently treated as null.

6.2.7 Variables with subject of Activities of Daily Living

In order to decrease the amount of missing values in variables concerning activities of daily
living, a merge with the dataset of [56] took place. Thus, Barthel Index of Daily Activies are
used to fill missings of KATZ Index of Independence in Activities of Daily Living. Mapping used
during the merge is listed below. Finally KATZ ADL score was recalculated after the merge
which resulted a drop in missing rate from 35% to 16%.

• barthel_toileting_preop → hulp_bij_toiletgang

• barthel_transfer_bed_chair_preop → hulp_bij_transfer_bed_stoel

• barthel_bathing_preop → hulp_bij_douchen

• barthel_dress_preop → hulp_bij_aankleden

• barthel_faeces_preop → gebr_incontinentie_mat

• barthel_urinary_preop → gebr_incontinentie_mat
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6.2.8 Bloodthinners

Usage of Bloodthinners data was being collected in 3 categories:

A. ja, heb ze door gebruikt (yes, I continued using them)

B. ja, gestopt vlgs afspraak (yes, I stopped according to the appointment)

C. nee, gebruik geen bloedverdunners (no, I do not use blood thinners)

Firstly, these categories were recoded into a binary variable where 1 = A,B and 0 = C. After-
wards, variable ’bl_trost_bloodthinners’ from the dataset of [56] was used to fill the missings.
Although distribution of two sources were slightly different, the merge was still applied because
of the fact missing values occur in earlier times of the study period and the interpretation was
that usage of bloodthinners increased slightly in years.

6.2.9 Fracture Type and Surgery Type

Initially, fracture types were recoded with the supervision of ZGT. Then missing values for the
fracture type were filled by the variable ’type_heupfractuur’ from the dataset of [56] as they point
to the same information. This resulted a drop in missing rate from 55% to 25%. Recoding of
fracture types are as follows:

• trochantere femur fractuur AO-A2 → pertrochantaire fractures

• trochantere femur fractuur AO-A3 → pertrochantaire fractures

• trochantere femur fractuur AO-A1 → pertrochantaire fractures

• mediale collum fractuur gedisloceerd → mediale collumfracturen

• mediale collum fractuur niet gedisloceerd → mediale collumfracturen

• subtrochantere femurfractuur → subtrochantaire femur

• unspecified → null

Similarly to fracture type, type of surgery was recoded first and then merged with the variable
’type_of_surgery’ from the dataset of [56]. Missing rate on surgery type dropped from 55% to
16%. Recoding was done as follows:

• glijdende heupschroef (DHS) → Internal fixation for femoral neck fracture

• hemiarthroplastiek heup (Kop-Hals Prothese) → Endoprosthesis for femoral neck fracture

• intra medullaire pen heup (PFNA) → Internal fixation intertrochanteric and subtrochanteric
femur fracture

• gecanuleerde schroef heup → Internal fixation for femoral neck fracture

• overige → Other
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6.2.10 Emergency Room Measurements

Emergency room measurements that were used in the study are ’NIBP’(Non-Invasive Blood
Pressure), ’RESP’(Respiration Parameter),’KOSNAQ’(Binary SNAQ), ’PR’(Pulse Rate). Al-
though each of the measurements are done usually more than once, only the first measurement
was extracted from the Emergency Room Report. PR was used to fill missings of Heart Fre-
quency which is measured by ECG. Binary SNAQ was merged with dataset of [56] as mentioned
in section 6.2.6.
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7 MULTIMODALITY

In this chapter, the author emphasizes the technical contribution of this study. This is done
by explaining and illustrating the designs regarding multimodality. As this study includes both
image modality and structured modality, some of the experiments were executed with only im-
age modality, some of them were performed with only structured modality, and on later stages,
some of the experiments fused these modalities in various ways to predict 30-days mortality.
The general outline of the experiments is illustrated in diagram 7.1. In figure 7.1, small numbers
below the ”Model Validation” boxes refer to the corresponding figures explaining the designs of
the models in that validation phase.

Figure 7.1: Diagram illustrating the outline of the experiments. Small numbers below the ”Model
Validation” boxes refer to the corresponding figures explaining the designs of the models in that
validation phase.
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As the model training for different modalities is done separately, the dataset used during the
training, validation, and testing was fixed in the first place. This is due to the fact that, once
the output of a model with one modality is used on the training of other modality, there could
be information leaks if the train, validation, and test sets are not fixed. This is also one of
the main reasons why the cross-validation technique is not employed in most of the study as
cross-validation mixes the train and validation sets on each fold.

7.1 Image Modality

This is the main part where the author employed deep learning with the help of transfer learning.
The goal at this stage was first to extract features affecting 30-days mortality from the chest and
hip x-rays and then also predict 30-day mortality by the use of extracted features. To this end,
training at this stage was done with 30-days mortality labels of the patients. 4 convolutional
neural network models that were pre-trained on ImageNet (dataset with 14 million images) were
selected. These models were then trained with chest and hip x-rays separately. In order to
achieve the best model, transfer learning was used in two ways; partial training and full training.
Full training refers to train all the weights of a neural network whereas partial training refers to
freezing some of the layers and training the weights of remaining(deeper) layers of the model.
Once, the author validated models for both image series, these models(a model for chest x-
rays and a model for hip x-rays) then tried to be improved by training simultaneously, which
means that predecessor of the last layer of these models are concatenated horizontally in the
end and backpropagation during the training was applied to both models from the same loss
function at the same time. In other words, a bigger model was created which consists of both
of the validated models and processes two image series for each patient. Figures 7.2 and 7.3
illustrates the architectures of experiments with image modality. In all the experiments with deep
learning part, the class imbalance problem was tackled by the use of adjusted class weights. By
that, the effect of positive samples and negative samples to the loss function was re-balanced as
if they have the same sample size. Calculation of class weights for negative and positive class
are given in equations 7.1 and 7.2 respectively. ”neg”, ”pos”, ”total” denote number of negative
samples, number of positive samples and number of total samples respectively. Furthermore,
initial bias is added to the last layer output which is useful for initial convergence in imbalanced
datasets, calculation of initial bias is given in equation 7.3.

NegativeClassWeight =
1

neg
× total

2
(7.1)

PositiveClassWeight =
1

pos
× total

2
(7.2)

InitialBias = ln (
pos

neg
) (7.3)

An unsupervised learning technique, auto-encoders, were also tried to extract features from
image modality, however, due to low potential, they were discarded in this study. Details on this
could be found in appendix B.
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Figure 7.2: Diagram illustrating the architecture of an experiment with single image series

Figure 7.3: Diagram illustrating the architecture of an experiment where both of the image series
are used

7.2 Structured Modality

Due to the extremely lower computation times, a higher number of experiments were undertaken
with structured modality. These experiments were done as hyperparameter search. Due to the
fact that, there are so many hyperparameters to optimize, this stage was split into sub-stages.
First sub-stage was concerned on finding the most suitable:

• Missing value imputation technique

• Class imbalance handling technique

• Machine learning algorithm (classifier)

In order to prevent any information leakage, imputation techniques applied to different splits(train,
validation, test) separately. For example, let’s assume that the age of a patient is missing and
for the sake of simplicity, let’s assume that, the technique used to fill this value is the mean
age of patients. If this patient was in the training set then, it would be filled by the mean age of
patients in the training set and vice versa.
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The second sub-stage was concerned about finding best hyperparameters on the missing value
imputation technique. The third sub-stage was performed to optimize the hyperparameters of
the classifier. The third sub-stage is the only part where cross-validation was applied to avoid
overfitting. In later stages, cross-validated hyperparameters were used in training with initially
fixed train, validation and test splits in order to avoid information leakage.

7.3 Multimodal Fusion

After validating unimodal predictors separately, next is to fuse multiple modalities into one
model. This was done in several ways. Two model-agnostic approaches and one model-based
approach were employed for this task. Model-agnostic approaches include early fusion and late
fusion. Whereas the model-based approach is use of neural networks.

• Early Fusion: It is also logical to think of it as representation learning with respect to 30-
days mortality, in this method, neuron outputs of an inner layer are gathered after the
feature extraction and transferred to structured modality in order to use in the traditional
machine learning algorithm. In this way, these neuron outputs are treated as structured
findings related to mortality from image modality. As fully connected part of the networks
is relatively smaller, the chosen inner layer(Dense_1 in table 8.22) is the one that is the
predecessor of the output layer. Figure 7.4 and 7.5, illustrates the architecture for early
fusion experiments.

• Late Fusion: In general, late fusion is done by combining decision outputs of unimodal
predictors, however, in this research, it is done by using the output of the last layer from
image modality in traditional machine learning algorithms alongside structured modality.
Basically, the only difference with early fusion is that, instead of the inner layer(Dense_2
in table 8.22) output from image modality’s predictors, the last layers’ outputs(Output in
table 8.22) are taken as a representation of findings related to 30-days mortality. Figure
7.6 and 7.7, illustrates the architecture for late fusion experiments.

• Multimodal Fusion with Neural Networks: In this method of multimodal fusion, structured
modality is also fed into the neural network where image modality had been training. Sim-
ilar to early fusion, right after the feature extraction part(convolutional parts of neural net-
works) ends, structured modality is merged with extracted features (Dense_2 in table 8.22)
horizontally and then used in the rest of the neural network which is the part with only fully
connected layers. One can think of this fully connected part as a classifier part of the
neural network. If the training was not done simultaneously, then there would have been
no difference with the early fusion method except the classifier used is a neural network
instead of a traditional machine learning algorithm such as a decision tree or logistic re-
gression. However, the training is done simultaneously for all of the parts of the network,
meaning that, backpropagation from the loss function is done, when the model receives
image modality and structured modality at the same time. Figure 7.8 and 7.9, illustrates
the architecture for multimodal fusion experiments with neural networks.
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Figure 7.4: Diagram illustrating the early fusion where deep learning models for different image
series are trained separately(independently)
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Figure 7.5: Diagram illustrating the early fusion where deep learning models for different image
series are trained simultaneously
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Figure 7.6: Diagram illustrating the late fusion where deep learning models for different image
series are trained separately(independently)
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Figure 7.7: Diagram illustrating the late fusion where deep learning models for different image
series are trained simultaneously

Figure 7.8: Diagram illustrating the architecture of multimodal fusion with neural network where
only a single image series is used in an experiment
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Figure 7.9: Diagram illustrating the architecture of multimodal fusion with neural network where
both of the image series are used in an experiment
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8 EXPERIMENTAL SETTINGS AND RESULTS

In this chapter, the author will explain the experiment settings and obtained results on each
stage of experiments. Train, validation and test sets are split with 50%, 25% and 25% ratios
respectively.

8.1 Structured Modality Experiments

8.1.1 Structured Stage 1

Initial experiments had started with structured modality. The first goal was to identify which ma-
chine learning algorithm, missing value imputation technique and class imbalance technique are
more suitable in this context. To this end, number of candidates have been tried out. The evalu-
ation of these candidates are done based on their performance on the validation set. Therefore,
all the scores reported in this chapter will be validation scores unless stated otherwise.

Candidate machine learning algorithms:

• AdaBoost Classifier

• Support Vector Machine Classifier with Linear Kernel (LinearSVC)

• Logistic Regression

• Random Forest Classifier

• eXtreme Gradient Boosting Classifier (XGBClassifier)

Candidate class imbalance techniques:

• ADASYN

• Borderline SMOTE

• NearMiss-2

• Random Over Sampler

• Random Under Sampler

• SMOTE

• Adjusting Class weights
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• None (as baseline)

For missing value imputation, a function, Iterative Imputer, from sklearn library is used. It starts
with filling all missings with the mean value. Afterwards, with a machine learning algorithm cho-
sen by the user, it imputates missing values based on correlation with other variables iteratively.
On the other hand, mean strategy was also used where missing values are filled with the mean
value of that variable. This was done in order to have benchmark as it is the simplest imputation
technique. To prevent information leak, it is important that this procedure is done after the train,
validation and test sets are split.

Candidate machine learning algorithms used for missing value imputation:

• Bayesian Ridge

• Decision Tree Regressor

• Extra Trees Regressor

• KNeighbors Regressor

• Filling with Mean value

With canditates for different task listed above, a grid-search was executed. Meaning that, all of
the possible combinations of candidates have been tried out which results in 5×8×5 = 200 runs.
It must be noted that, at this stage, all of the algorithms are tried out with their default hyper-
parameters except following pre-selected hyperparameters for particular functions described in
table 8.1.

Function Name Hyperparameter Name Chosen Value
IterativeImputer maximum number of iterations 20

DecisionTreeRegressor maximum features
√
n_features

KNeighborsRegressor number of neighbors 20

Logistic Regression solver liblinear
Logistic Regression maximum number of iterations 10000

LinearSVC loss function hinge
NearMiss version 2
AdaBoostClassifier base estimator Decision Tree Classifier
AdaBoostClassifier number of estimators 100

ExtraTreesRegressor number of estimators 20

Table 8.1: Pre-selected hyperparameters for experiments, remaining hyperparameters were left
as default

This stage was run to eliminate the candidates which show poor performance. In table 8.2,
summarized results for candidate class imbalance techniques can be observed. Based on
these results, it was decided to eliminate NearMiss-2 and Adjusted Class weights techniques
for structured modality as they have significant lower results on AUC score. Table 8.3 summa-
rizes the results for missing value imputation algorithms. It was observed that filling with mean
values and DecisionTreeRegressor performed relatively worse. Moreover, although remaining
algorithms do not result in big differences in terms of AUC scores, ExtraTreesRegressor has
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extremely higher computation times and therefore it was also eliminated. Table 8.4 summa-
rizes the results for classification algorithms. Based on the results, Logistic Regression and
AdaBoost classifier were eliminated due to weaker performance.

Class Imbalance Handling Technique Max AUC Average AUC Count of Runs
RandomUnderSampler 0.762 0.689 25
RandomOverSampler 0.762 0.677 25
SMOTE 0.762 0.681 25
None 0.754 0.680 25
ADASYN 0.752 0.675 25
BorderlineSMOTE 0.752 0.680 25
Adjusted class weights 0.738 0.653 25
NearMiss-2 0.609 0.518 25

Table 8.2: Summary of Results for Class Imbalance Techniques - Part1

Algorithm for Missing Value Imputation Max AUC Average AUC Count of Runs
KNeighborsRegressor 0.762 0.667 40
BayesianRidge 0.762 0.654 40
DecisionTreeRegressor 0.75 0.64 40
ExtraTreesRegressor 0.752 0.651 40
Filling with Mean value 0.742 0.649 40

Table 8.3: Summary of Results for Missing Value Imputation Techniques - Part1

Algorithm Used in Classification Max AUC Average AUC Count of Runs
RandomForestClassifier 0.762 0.7 40
LinearSVC 0.762 0.685 40
XGBClassifier 0.752 0.68 40
LogisticRegression 0.706 0.669 40
AdaBoostClassifier 0.631 0.536 40

Table 8.4: Summary of Results for Machine Learning Techniques used for classification - Part1

As techniques and algorithms which are not eliminated have very close results to each other,
a second round of experiments were run to confirm which candidate is most suitable in their
category. Regarding, classifiers, there were 3 algorithms remaining which had average AUC
between 0.7 and 0.68. With respect to class imbalance handling, there were 6 techniques re-
maining which had average AUC between 0.67 and 0.69. Finally, there were 3 missing value
imputation techniques left with average AUC range of 0.65-0.67. This resulted in 6× 3× 3 = 54
runs. This time the evaluation was done in a sequential way. First, classification techniques
were evaluated and the best performing one was selected. Afterwards, missing value imputa-
tion techniques were evaluated according to their performance with selected classifier and lastly,
class imbalance handling method was evaluated according to their performance with selected
classifier and missing value imputation method. According to results in table 8.5, Random For-
est Classifier was selected as the most suitable machine learning algorithm for the classification
task regarding the structured modality. In table 8.6, performance results for algorithms used in
missing value imputation with the Random Forest Classifier are presented. According to the
results, it was found that KNeighborsRegressor is the best candidate for this task. And lastly in
table 8.7, although there were no big differences between different candidates, it can be seen

53



Chapter 8

that SMOTE and RandomOverSampler has the highest score. However, due to the fact that
Random Over Sampling is relatively more straight forward than SMOTE, RandomOverSampler
was chosen as the most suitable candidate in this category.

Algorithm Used in Classification Max AUC Average AUC Count of Runs
RandomForestClassifier 0.761 0.732 18
XGBClassifier 0.756 0.725 18
LinearSVC 0.74 0.699 18

Table 8.5: Summary of Results for Machine Learning Techniques used for classification - Part2

Algorithm for Missing Value Imputation Max AUC Average AUC Count of Runs
KNeighborsRegressor 0.761 0.7486 6
DecisionTreeRegressor 0.755 0.732 6
BayesianRidge 0.723 0.7164 6

Table 8.6: Results for Missing Value Imputation Techniques with Random Forest Classifier -
Part2

Class Imbalance Handling Technique Max AUC Average AUC Count of Runs
RandomOverSampler 0.761 0.761 1
SMOTE 0.761 0.761 1
ADASYN 0.756 0.756 1
BorderlineSMOTE 0.751 0.751 1
None 0.748 0.748 1
RandomUnderSampler 0.714 0.714 1

Table 8.7: Results for Class Imbalance Techniques with Random Forest as Classifier and
KNeighbors Regressor as missing value imputation algorithm - Part2

After finding out the best combination. This model was evaluated on the test set as an educated
baseline model. It was found that AUC on test set is 0.7 which is 0.06 lower than the validation
AUC. In order to find out why this is happening, two attempts, listed below, were tried out by
adjusting validation and test splits.

• Switching validation and test set: Experiments executed till now were repeated to find the
best model on the new validation set. It was observed that average AUC of all experi-
ments is 0.678 on the new validation set which was 0.719 on the original validation set.
Furthermore, the new best model which is consisted of RandomForestClassifier, KNeigh-
borsRegressor and BorderlineSMOTE techniques, had 0.727 AUC on the new validation
set and 0.751 on the new test set.

• Reshuffling dataset and generate splits again: Again, experiments were repeated as in
the previous item. Best model this time was consisted of LinearSVC as classifier, Rando-
mOverSampling as class imbalance technique and BayesianRidge as algorithm used in
missing value imputation. This model had validation AUC of 0.749 and test AUC of 0.711.
Average AUC on all experiments on the new validation set was 0.698.

It must be noted that Validation and Test sets were adjusted only for this part and original sets
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were retrieved after this was over. In table 8.8 and 8.9, summarized results of this part can be
found.

To conclude this stage, RandomForestClassifier was chosen as the classifier, KNeighborsRe-
gressor was chosen as the algorithm used for missing value imputation and Random Over
Sampling technique was chosen to deal with the class imbalance problem. The original valida-
tion set is relatively easier to predict. On the contrary, samples in the original test set are more
difficult to predict. This is important to know for a fair evaluation of test results as the test scores
depend highly on the test splits.

Splits Max AUC Average AUC
Original 0.761 0.719
Validation and Test switched 0.727 0.678
Reshuffled Dataset 0.749 0.698

Table 8.8: Overview of the validation results of the investigation why test score is significantly
lower than validation score

Splits Val AUC Test AUC
Original 0.761 0.7
Validation and Test switched 0.727 0.751
Reshuffled Dataset 0.749 0.711

Table 8.9: Best model results from each attempt on investigating why test score is significantly
lower than validation score

8.1.2 Structured Stage 2

In order to achieve better results with selected algorithms, it is usually useful to optimize the
hyperparameters. This stage is concerned particularly with finding the best hyperparameters
for the algorithm used in missing value imputation, namely, KNeighborsRegressor and iterative
imputer function. In this context, There are two main hyperparameters to investigate:

• Maximumnumber of iterations, i.e. how many times the whole dataset has to be iterated
to impute missing variables unless it is converged

• The value for K, i.e how many neighbor samples to use when calculating the missing
variable for a sample

Till this stage, all the experiments were run with 20 maximum number iterations. However, the
general situation was that, a convergence warning was received at the time when maximum
number of iterations was reached, indicating that the stopping criteria was not yet below the
tolerated rate. Tolerance was the default value which is 0.001. In order to overcome the conver-
gence issue, an attempt to increase the maximum number of iterations was tried out. However,
as in table 8.10 it decreased the AUC score from 0.761 to 0.731 and still the function could not
converge. Therefore it was decided to keep the maximum number of iterations for the iterative
imputer as 20. By the time of this project is executed, IterativeImputer function of sklearn library
is still experimental, convergence problem might be due to this phase and might be mitigated in
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the future versions. Regarding the k value of the KNeighborsRegressor, table 8.11 shows that
best value was found as 10 neighbors.

Max Number of Iterations Max AUC Average AUC Count of Runs
20 0.761 0.76 5
30 0.731 0.729 5

Table 8.10: Results regarding the search for maximum number of iterations of Iterative Imputer
function

Number of Neighbors Max AUC Average AUC Count of Runs
10 0.788 0.770 5
20 0.761 0.749 5
5 0.757 0.749 5

Table 8.11: Results regarding the search for number of neighbors of KNeighborsRegressor
function

8.1.3 Structured Stage 3

In this stage, a grid-search was executed to find optimized hyperparameters for the Random
Forest Classifier. Initially this search was validated on the validation set. However, this resulted
in models that are extremely overfitting the validation set and showing drastically worse results
on the test set. The reason for overfitting was that the model which has the highest validation
AUC score has hyperparameters such that they work well with the validation set’s specific data
distribution but not really generalizable.

The author will first present the grid-search experiments which are validated with validation set
in section 8.1.3.1 and then cross-validated experiments will be in section 8.1.3.2. The format of
this stage is that, hyperparameter candidates which are given to grid-search and best hyperpa-
rameters are shown in the tables where the best score is noted in the caption of the tables.

8.1.3.1 Normal Validation Part

On each search, insights from the previous search were used to create candidates. In the
end of each grid search, winners were used to narrow down the search range. Basically, the
author created new arbitrary candidates which are closer to the winner of the previous search.
This allowed to make a more detailed search in more relevant range without increasing the
computation time significantly. By this way, a smarter search was achieved. At the point, where
AUC score does not increase anymore, 4th grid-search to be precise, experiments stopped and
model was tested on the test set. The model which had 0.803 AUC on the validation set, scored
0.67 AUC on the test set which is even worse than the educated baseline model which was built
in Structured Stage 1. Therefore, it was decided to switch to cross validation to have a model
which has a better generalizability.
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Grid-Search - 1 - Best Model AUC 0.784

Hyperparameter Candidates Best Value
Number of trees 100, 200, 300, 400, 500,

1000, 1500
100

Criterion Gini, Entropy Gini
Maximum depth of trees 1, 3, 5, 7, 9, 10, 20, 30, 40, 50

,60 ,70, 80, No limit
10

Minimum samples required to
be a leaf

4, 8, 12, 16 8

Minimum samples required to
split a node

4, 8, 12, 16 16

Maximum number of features
to consider when splitting

√
n_features,

log2(n_features), No limit
log2(n_features)

Maximum leaf nodes 10, 30, 50, 70, 90, No limit No limit
Enable bootstrap True, False False

Table 8.12: Hyperparameters optimization grid-search-1

Grid-Search - 2 - Best Model AUC 0.79

Hyperparameter Candidates Best Value
Number of trees 50, 100, 150, 200, 250, 300,

350, 400, 450
50

Criterion Gini, Entropy Gini
Maximum depth of trees 10, 12, 14, 16, 18 10
Minimum samples required to
be a leaf

2, 4 ,6, 8 2

Minimum samples required to
split a node

12, 16 12

Maximum number of features
to consider when splitting

log2(n_features) log2(n_features)

Maximum leaf nodes 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85,
90, 95, No limit

60

Enable bootstrap True, False False

Table 8.13: Hyperparameters optimization grid-search-2
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Grid-Search - 3 - Best Model AUC 0.803

Hyperparameter Candidates Best Value
Number of trees 10, 20, 30, 40, 50, 60, 70, 80,

90
50

Criterion Gini Gini
Maximum depth of trees 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 12
Minimum samples required to
be a leaf

1, 2, 3, 4 4

Minimum samples required to
split a node

12, 24, 36 24

Maximum number of features
to consider when splitting

log2(n_features) log2(n_features)

Maximum leaf nodes 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85,
90, 95, No limit

No limit

Enable bootstrap True, False True

Table 8.14: Hyperparameters optimization grid-search-3

Grid-Search - 4 - Best Model AUC 0.803

Hyperparameter Candidates Best Value
Number of trees 50, 55, 60, 65, 70, 75, 80 60
Criterion Gini Gini
Maximum depth of trees 10, 11, 12, 13, 14 12
Minimum samples required to
be a leaf

2, 3, 4, 5, 6, 7 4

Minimum samples required to
split a node

20, 22, 24, 26, 28 24

Maximum number of features
to consider when splitting

log2(n_features) log2(n_features)

Maximum leaf nodes 10, 20, 30, 40, 50, 60, 70, 80,
90, No limit

No limit

Enable bootstrap True, False True

Table 8.15: Hyperparameters optimization grid-search-4

8.1.3.2 Cross-Validation Part

In this part of the experiments, train and validation sets were merged together. Then, they were
feed into 5-fold stratified cross-validation, resulting in 5 different splits of training and validation
sets. An important detail of this part is that, on each split, missing value imputation for training
and validation set and random over sampling for training set had to be applied.

The cross-validated hyperparameter search was run twice. Firstly, on the complete dataset
then on the small dataset (mentioned in section 6.1). According to the results of this section,
small dataset can achieve better AUC scores. Best hyperparameters for each dataset obtained
in this stage will be used in the remainder of the thesis.
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Cross-Validated Grid-Search on the complete dataset, average AUC achieved in this
stage by the optimized hyperparameters is 0.755 which was 0.7 before the optimization

Hyperparameter Candidates Best Value
Number of trees 10, 20, 30, 40, 50, 60, 70, 80,

90, 200, 300, 500
70

Criterion Gini Gini
Maximum depth of trees 5, 6, 7, 8 ,9, 10, 11, 12, 13, 14 12
Minimum samples required to
be a leaf

2, 3, 4, 5, 6, 7 6

Minimum samples required to
split a node

12, 24, 36 24

Maximum number of features
to consider when splitting

log2(n_features) log2(n_features)

Maximum leaf nodes 20, 40, 60, 80, No limit No limit
Enable bootstrap True, False False

Table 8.16: Cross-Validated Hyperparameters optimization with Grid-Search on the Complete
Dataset

Split 0 Validation AUC 0.77
Split 1 Validation AUC 0.672
Split 2 Validation AUC 0.792
Split 3 Validation AUC 0.738
Split 4 Validation AUC 0.802
Standard Deviation AUC 0.047
Mean AUC 0.755
Mean AUC Before Optimization 0.7

Table 8.17: Results of Best Model from Cross-Validated Hyperparameters optimization with
Grid-Search on the Complete Dataset
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Cross-Validated-Grid-Search on the Small Dataset - Best Model Average AUC 0.788, Av-
erage AUC before optimization 0.766

Hyperparameter Candidates Best Value
Number of trees 10, 20, 30, 40, 50, 60, 70, 80,

90, 200, 300, 500
300

Criterion Gini Gini
Maximum depth of trees 5, 6, 7, 8 ,9, 10, 11, 12, 13, 14 13
Minimum samples required to
be a leaf

2, 3, 4, 5, 6, 7 4

Minimum samples required to
split a node

12, 24, 36 12

Maximum number of features
to consider when splitting

log2(n_features) log2(n_features)

Maximum leaf nodes 20, 40, 60, 80, No limit 80
Enable bootstrap True, False True

Table 8.18: Cross-Validated Hyperparameters optimization with Grid-Search on the Small
Dataset

Split 0 Validation AUC 0.742
Split 1 Validation AUC 0.813
Split 2 Validation AUC 0.807
Split 3 Validation AUC 0.723
Split 4 Validation AUC 0.856
Standard Deviation AUC 0.049
Mean AUC 0.788
Mean AUC Before Optimization 0.766

Table 8.19: Results of Best Model from Cross-Validated Hyperparameters optimization with
Grid-Search on the Small Dataset

8.2 Image Modality

As explained in section 7.1, experiments with only image modality have two types. First type
uses single image series and second type uses both of the image series. Image modality ex-
periments started with the first type. Then, based on the results, second type of experiments
were executed. First type of experiments were executed to find best feature extraction method
for each series. All the experiments in image modality were done with deep learning models.
X-ray images used in Chest and Hip series are AP views. All the experiments were done with
30-days mortality labels. Before explaining different candidate models, the author will first give
the general settings and hyperparameters used in all deep learning experiments and data aug-
mentation settings for image data generation in table 8.20 and 8.21 respectively.
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Setting/Hyperparameter Value
Number of Epochs 100
Loss Function Binary Cross Entropy
Optimizer Adam
Learning Rate 0.001
Monitored Value for Early Stopping Validation AUC
Patience for Early Stopping 20
Batch Size 20
Minimum delta required for improvement 0.0001
Monitored Value for Reducing Learning Rate Validation AUC
Patience for Reducing Learning Rate 5
Factor by which the learning rate will be reduced 0.05
Weight for class 0(negative) 0.54
Weight for class 1(positive) 6.29

Table 8.20: Settings/Hyperparameters used in all Deep learning experiments

Data Augmentation Setting Value
Rotation Range 20
Width Shift Range 0.2
Height Shift Range 0.2
Shear Range 0.2
Zoom Range 0.2
Channel Shift Range 10
Horizontal Flip True
Vertical Flip True
Fill mode Nearest
Interpolation(also applies to validation & test) Bicubic

Table 8.21: Data augmentation settings used in all Deep learning experiments for image data
generation during training phase

In the scope of this study, 4 pre-trained convolutional neural network models on imagenet were
included as candidates for feature extraction task from image modality. These models are
DenseNet169 [26], ResNet152 [57], InceptionV3 [28], Xception [58]. These pre-trained models
were obtained from Keras library. They come with an optional fully connected layer as the last
layer however this is not useful for our task as the fully connected layer is used for classifying
imagenet objects. Consequently this optional part was not retrieved. Instead of that, after the
convolutional part ends on each model, 3 new fully connected layers are attached as the clas-
sifier part of the network. These 3 layers are shown in table 8.22. Hyperparameters which are
not mentioned here, used as default from Keras library (e.g., kernel initializer = glorot uniform).
During the training phase, there were two approaches followed regarding fine tuning the trans-
fer learning model, namely, full training and partial training. In full training, all of the layers of
a network is trained, in partial training, some of the convolutional part is freezed and remain-
ing part of the network is trained. This is motivated by the fact that early convolutional layers
capture more generic information where deeper convolutional layers have more context related
specific information. To this end, each model was analyzed based on their size and architecture.
Information of which layers of pre-trained models were frozen can be found in table 8.23, The
column ”Partial Training Start Layer” refers to the split point of network, layers before this layer
are frozen during partial training and layers after it are trainable. Mentioned blocks in column
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”Trained Block Correspondence” refer to the blocks defined by pre-trained model developers.

Layer Name Number of Neurons Activation Function Bias Initializer
Dense_1 1024 Relu zeros
Dense_2 16 Relu zeros
Output 1 Sigmoid -2.45

Table 8.22: Fully Connected Layers which are added after the convolutional part of pre-trained
models

Model Name Total Number of
Layers

Partial Training Start
Layer

Trained Block
Correspondence

DenseNet169 596 369 Last Convolutional
Block

ResNet152 516 483 Last Convolutional
Block

InceptionV3 312 249 Last 2 Convolutional
Blocks

Xception 133 116 Last 2 Convolutional
Blocks

Table 8.23: Information on layers of pre-trained models

8.2.1 Single Image Series

As experimental settings for image modality are now described, the author will present the
results of the experiments with chest x-ray images and hip x-ray images in tables 8.24 and 8.25
respectively. It can be clearly seen that, Xception model with full training achieved the highest
AUC of 0.701 on chest x-ray images where ResNet152 model with partial training performed
best on hip x-ray images with 0.606 AUC.

Model Name Training Mode AUC Score
DenseNet169 Full 0.669
InceptionV3 Full 0.547
ResNet152 Full 0.5
Xception Full 0.701

DenseNet169 Partial 0.5
InceptionV3 Partial 0.5
ResNet152 Partial 0.631
Xception Partial 0.5

Table 8.24: Experiment results with Chest x-ray images
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Model Name Training Mode AUC Score
DenseNet169 Full 0.588
InceptionV3 Full 0.57
ResNet152 Full 0.5
Xception Full 0.562

DenseNet169 Partial 0.5
InceptionV3 Partial 0.498
ResNet152 Partial 0.606
Xception Partial 0.532

Table 8.25: Experiment results with Hip x-ray images

After this stage, the best model on each image series tried to be improved further by training
again with different methods. These different methods include dropout layers, regularizers and
continuation. Experiment results including these methods are illustrated in table 8.26 for chest
x-ray images and table 8.27 for hip x-ray images. The model for chest could not be improved
more, however, AUC of hip model improved slightly from 0.606 to 614.

• Dropout Layers: In the classifier part, a dropout layer with a rate of 0.25, added after
Dense_1 and Dense_2 layers.

• Regularizers: In the classifier part, L2 regularizers with a regularization rate of 0.001,
added on Dense_1 and Dense_2 layers.

• Continuation: Continued training from the weights which achieved highest AUC on the
task.

Model Name Training Mode Methods Used AUC Score
Xception Full Continuation 0.693
Xception Full Dropout 0.612
Xception Full Dropout&Regularizer 0.522

Xception Full Dropout& Regularizer&
Continuation 0.641

Table 8.26: Experiment results with improvement methods on Chest x-ray images

Model Name Training Mode Methods Used AUC Score
ResNet152 Partial Continuation 0.614
ResNet152 Partial Dropout 0.568
ResNet152 Partial Dropout& Regularizer 0.5

ResNet152 Partial Dropout& Regularizer&
Continuation 0.585

Table 8.27: Experiment results with improvement methods on Hip x-ray images

As the last experiment with single image series, models that are identified as best for their
correspondings tasks trained again with Small Dataset in order to allow multimodal experiments
also with Small Dataset. Xception model with full training achieved 0.642 AUC on chest series.
On the other hand, ResNet152 model with partial training achieved 0.632 AUC on hip series.
No further improvement was tried out on this stage.
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8.2.2 Dual Image Series

Architectures of experiments with dual image series based heavily on the results of experiments
with single image series. Therefore, Xception with full training is used for the feature extrac-
tion part of chest series and ResNet152 with partial training used for the feature extraction of
hip series. The difference was that backpropagation was done simultaneously for both of the
feature extractors from the same loss function. Concatenation of two models were done on
”Dense_2” layer of each single image series models as shown in fig 7.3. Then, the same out-
put layer with a sigmoid function added in the end. As in the single image series experiments,
similar improvement methods applied here. Regarding the continuation method, weights were
retrieved from the best models of single image series experiments to corresponding feature ex-
tractors. Results of experiments with dual image series are represented in table 8.28. None of
the experiments succeded to outperform the Xception model which is using only chest series.

Models Used Training Mode Methods Used AUC Score
Xception & ResNet152 Full & Partial - 0.633
Xception & ResNet152 Full & Partial Continuation 0.669
Xception & ResNet152 Full & Partial Dropout & Continuation 0.697

Xception & ResNet152 Full & Partial Dropout& Regularizer&
Continuation 0.596

Table 8.28: Experiment results with both image series (chest & hip)

8.3 Multimodality

In multimodal experiments, there are early fusion, late fusion and neural network approaches.
These approaches also have subdivisions where image series are trained separately and simul-
taneously. There are also experiments that use only single image series from image modality.
The architectures of these approaches are illustrated in figures from 7.4 to 7.9. Early fusion
and late fusion are model agnostic approaches, therefore, extracted features are merged with
structured modality to create the new structured modality. Missing value imputation (iterative
imputation with KNeighborsRegressor) and class imbalance handling (random over sampling)
techniques were applied to the new structured modality and then finally fed into the model which
performed best in structured modality section, namely, Random Forest Classifier. As the last
experiments of structured modality, optimized hyperparameters were found for the Random
Forest model with cross validation. Same hyperparameters were used again on multimodal
experiments however this time validation was done with original validation set. Model-agnostic
experiments run 5 times with varying seed values for the random number generation. By that, it
was aimed to add randomization to experiments as it was not possible to do cross validation at
this stage. Results for model agnostic approaches are in table 8.29. Eventhough, early fusion
with separate feature extraction has the best performance, it was observed that, some of the
neuron outputs used as findings from image modality are 0 for all of the patients. This could be
a sign for further improvement opportunity of the model however, that will not be in the scope
of this thesis.
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Multimodal learning
approach Feature Extraction Max AUC Average AUC Count of Runs

Only Structured
Modality - 0.775 0.751 5

Late Fusion Separate 0.775 0.761 5
Early Fusion Separate 0.811 0.801 5
Late Fusion Simultaneous 0.794 0.774 5
Early Fusion Simultaneous 0.783 0.775 5

Table 8.29: Multimodal experiment results with model agnostic approaches. Separate and si-
multaneous feature extraction refers to the training style of image modality as defined in section
7.1

A model based approach, namely, multimodal fusion with neural networks was also tried out for
this task. Structured modality as an input layer was concatenated to Dense_2 layers of feature
extractors as shown in figures 7.9 and 7.8. However, a couple more fully connected layers
were attached after the concatenation. Information on layers after the concatenation layer can
be found in table 8.30. As deep learning is once again employed, improvement methods from
section 8.2 were used again. This was done mainly due to the fact that an overfitting pattern
was observed, meaning that, training AUC was much higher than validation AUC. Experiment
results of multimodal fusion with neural networks can be seen in table 8.31. It appears to be
that multimodal fusion with neural network approach cannot outperform early fusion technique
in this study. All experiments presented in this table used both structured modality and image
modality. If ”Models Used” column has Xception, this means, chest series were used from image
modality, if it has ResNet152 then, hip series were used. If it has both of them, then both of the
image series were used in the model. For the models who does not use continuation method,
imagenet weights were used again as a starting point.

Layer Name Number of Neurons Activation Function Bias Initializer
Dense_3 64 Relu zeros
Dense_4 32 Relu zeros
Dense_5 16 Relu zeros
Dense_6 8 Relu zeros
Output 1 Sigmoid -2.45

Table 8.30: Information on layers after the concatenation of structured modality and image
modality

Models Used Training Mode Methods Used AUC Score
Xception(Chest) & ResNet152(Hip) Full & Partial - 0.689
Xception(Chest) & ResNet152(Hip) Full & Partial Continuation 0.735
Xception(Chest) & ResNet152(Hip) Full & Partial Dropout & Continuation 0.576

Xception(Chest) & ResNet152(Hip) Full & Partial Dropout& Regularizer&
Continuation 0.599

ResNet152(Hip) Partial - 0.727
Xception(Chest) Full - 0.756

Table 8.31: Experiment results of multimodal fusion with neural networks. All experiments used
structured modality beside the image series mentioned on each row.

65



Chapter 8

8.4 Testing

Since validation phase of models had been completed. There was no point of keeping a sepa-
rate validation set. Early fusion was validated as the best technique to fuse multiple modalities.
From this point only, RandomForestClassifier will be trained and therefore there was no ne-
cessity for an early stopping set either. Therefore, the train set was redefined for this section
as:

trainnew = trainold + validationold (8.1)

Validated models from the previous stage were trained on these new train sets for both for
the complete dataset and small dataset and their performance on the test sets is presented in
table 8.32. Almelo Hip Fracture Score (AFHS), as a previous successful study with the same
research question, was also used in order to have a benchmark. It has been reported that
AHFS reached 0.82 AUC in [6]. However, due to the lack of some variables used in AHFS, the
same version could not be replicated on the dataset of this study. Therefore, it will be called as
AHFS-a(adjusted version). Variables used in this adjusted version are as follows: Age, Gender,
CCI score, Prone to delirium, memory problems, KATZ ADL Score, ASA score, Pre-fracture
living situation, Pre-fracture mobility, Cancer, HB, Prone to under-nutrition, Unintentional loss
of weight, Decreased appetite, Drink or tube feeding, SNAQ Score. Furthermore, no class
imbalance handling was applied to the AHFS-a model and missing value imputation is done by
filling with mean values of the variables. The classifier used in AHFS-a is the Logistic regression
method from sklearn library, with solver ”sag” and without any penalty for regularization.

Model Dataset AUC Score
Early Fusion Complete 0.742

AHFS-a Complete 0.706
Early Fusion Small 0.769

AHFS-a Small 0.729

Table 8.32: Test results of complete dataset and small dataset benchmarking with AHFS-a

Early fusion on complete dataset is considered to be the main product of this study. Therefore,
the author will now describe this model further. Other performance metrics than AUC with the
default decision threshold which is 0.5, are represented in table 8.33. Reader is advised to
review section 2.6 to get an understanding of the mentioned metrics. These scores are all
subject to change once the decision threshold is adjusted. One can do that by taking the ROC
curve as reference which is shown in figure 8.1. Although deciding on decision threshold part
was left out for the users of the model in real life, the author would like to show an example how
model reacts to different decision thresholds. To this end, the author sets the decision threshold
to 0.276 based on the ROC curve in figure 8.1. Results with the adjusted threshold are shown
in table 8.34.

Metric Value
Recall score 0.0408

Precision score 0.222
Specificity score 0.987

F1 score 0.069
Accuracy score 0.911

Area under the roc curve (AUC) 0.742

Table 8.33: Performance metrics with default decision threshold 0.5
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Figure 8.1: ROC curve of the main model, early fusion on complete dataset

Metric Value
Recall score 0.49

Precision score 0.18
Specificity score 0.804

F1 score 0.264
Accuracy score 0.778

Area under the roc curve (AUC) 0.742

Table 8.34: Performance metrics with adjusted decision threshold 0.276

Moreover, the most important 20 features according to the main model are shown in the rep-
resented in figure 8.2 and the complete feature importance information can be found in tables
8.35,8.36 and 8.37. Variables called ”chest finding” and ”hip finding” refer to the extracted fea-
tures from corresponding x-rays. Feature importances were calculated by the feature impor-
tance function of RandomForestClassifier, which measures features’ contribution in decreasing
the impurity.
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Figure 8.2: Top 20 Most Important Features of the main model
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Feature Importance
chest finding 14 0.057
chest finding 13 0.05
chest finding 15 0.043
Katz ADL Score 0.034
chest finding 11 0.033
Specific Lab Test(CRP) 0.024
Heart Rate 0.023
Specific Lab Test(UREU) 0.023
Blood pressure systolic 0.022
Specific Lab Test(GFRM) 0.019
hip finding 4 0.019
Specific Lab Test(KREA) 0.019
Specific Lab Test(THR) 0.018
ASA Score 0.018
Specific Lab Test(ALKF) 0.018
Specific Lab Test(HB) 0.017
Specific Lab Test(ASAT) 0.017
Specific Lab Test(HT) 0.016
Age 0.016
Help with showering 0.016
SNAQ Score 0.016
Width of QRS complex in ECG 0.016
Specific Lab Test(LDH1) 0.016
Help to dress 0.015
Blood pressure diagstolic 0.015
Specific Lab Test(GLUCGLUC) 0.014
Help with transfer from bed to chair 0.014
Help with self-care last 24 hours 0.014
Heart axis orientation in ECG 0.014
Specific Lab Test(XKA) 0.013
Specific Lab Test(LEUC) 0.013
Specific Lab Test(NA) 0.013
hip finding 12 0.013
Specific Lab Test(ALAT) 0.012
Specific Lab Test(GGT) 0.012
Respiration Parameter 0.012
CCI Score 0.012
Memory Problems 0.011
Medications(C07) 0.011
Medications(N05) 0.011
Prone to Delirium 0.011
hip finding 10 0.011
Fracture laterality is right 0.01
Unintentional loss of weight 0.01
Previous confusional state 0.01

Table 8.35: Complete table of feature importances according to the main model(Part 1).
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Help with going to toilet 0.009
Incontinence Material Used 0.008
Medications(C03) 0.008
Medications(B01) 0.007
Prone to under-nutrition 0.007
Specific Lab Test(BLGR) is 0 0.007
fall risk 0.007
Use of Bloodthinners 0.007
pre-fracture living situation - nursing care home 0.006
Medications(C10) 0.006
Medications(C09) 0.006
Medications(M01) 0.006
Medications(A10) 0.005
Decreased appetite 0.005
Gender Male 0.005
Medications(B02) 0.004
Medications(R03) 0.004
pre-fracture living situation - independent 0.004
Binary SNAQ Score 0.004
Medications(C08) 0.004
Gender Female 0.004
Medications(A02) 0.004
Help with eating 0.004
pre-fracture mobility - mobile without tools 0.003
Medications(C01) 0.003
CCI Comorbidities (CHF) 0.003
drink or tube feeding 0.003
Fracture Type - mediale collumfracturen 0.003
Fall in last 6 months 0.003
Medications(B03) 0.003
Type of Surgery - Internal fixation intertrochanteric
and subtrochanteric femur fracture

0.002

Fracture Type - pertrochantaire fractures 0.002
pre-fracture living situation - independent with help 0.002
CCI Comorbidities (MSRD) 0.002
pre-fracture living situation - retirement home 0.002
CCI Comorbidities (DIACC) 0.002
CCI Comorbidities (CVD) 0.002
CCI Comorbidities (CVE) 0.002
chest finding 7 0.002
Type of Surgery - Internal fixation for femoral neck
fracture

0.002

Type of Surgery - Endoprosthesis for femoral neck
fracture

0.002

pre-fracture mobility - mobile outdoor with 1 tool 0.001
Medications(L04) 0.001
CCI Comorbidities (DEM) 0.001
pre-fracture mobility - mobile outdoor with 2 tools or
frame(e.g. rollator)

0.001

Table 8.36: Complete table of feature importances according to the main model(Part 2).
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CCI Comorbidities (CAN) 0.001
CCI Comorbidities (RD) 0.001
pre-fracture mobility - mobile indoor, never out without
help

0.001

Type of Surgery - Other 0.001
CCI Comorbidities (CPD) 0.001
CCI Comorbidities (MI) 0
hip finding 2 0
CCI Comorbidities (PVD) 0
CCI Comorbidities (DIA) 0
CCI Comorbidities (MLD) 0
pre-fracture mobility - no functional mobility 0
Specific Lab Test(IRAI) is positive 0
Fracture Type - subtrochantaire femur 0
CCI Comorbidities (PUD) 0
CCI Comorbidities (LEU) 0
CCI Comorbidities (LYM) 0
CCI Comorbidities (MSLD) 0
pre-fracture living situation - others 0
chest finding 0 0
chest finding 1 0
chest finding 2 0
chest finding 3 0
chest finding 4 0
chest finding 5 0
chest finding 6 0
chest finding 8 0
chest finding 9 0
chest finding 10 0
chest finding 12 0
hip finding 0 0
hip finding 1 0
hip finding 3 0
hip finding 5 0
hip finding 6 0
hip finding 7 0
hip finding 8 0
hip finding 9 0
hip finding 11 0
hip finding 13 0
hip finding 14 0
hip finding 15 0

Table 8.37: Complete table of feature importances according to the main model(Part 3).
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9 DISCUSSION, FUTURE WORK AND LIMITATIONS

9.1 Discussion and Future Work

In this section, the author will discuss the results gathered in the experimenting stage. This part
will go with the same chronological order of experiments but provide a more general overview
of results and their interpretation. Future work is integrated into the discussion of relevant parts.

9.1.1 Selection of Classifier, Class Imbalance, and Missing Value Imputation Technique

Although the first and second stages of structured modality experiments did not use cross-
validation, they were run multiple times. The decisions were made based on average outcomes.
This helped with not choosing a technique that has a really high score in one experiment just by
luck. As the traditional machine learning algorithm for the classification task, Random Forest
Classifier was chosen as it achieved the highest average validation AUC 0.761. As the func-
tion to use in iterative imputation, KNeighborsRegressor was found to be the most convenient
technique with the highest average validation AUC 0.749. In general, the improvement by class
imbalance techniques are not much higher than no handling. Therefore, it might also be accept-
able to not apply any technique to handle the class imbalance. Even though different sampling
techniques had similar average results, Random Over Sampling was chosen to deal with class
imbalance due to its higher compatibility with the Random Forest Classifier as it achieved the
best validation AUC 0.761. Moreover, this class imbalance handling technique, by its nature, is
simpler to implement.

9.1.2 Investigation of the Test Set

After the discovery of the best combination of techniques regarding, missing value imputation,
class imbalance handling, and classification, the model was applied on the test set as an ed-
ucated baseline model and it was observed that AUC dropped to 0.7 which was 0.761 on the
validation set. This decline was further investigated with two attempts, including switching vali-
dation and test sets, and reshuffling dataset and generating new train, validation, and test splits.
This investigation showed that the original validation set is much easier to predict than the orig-
inal test set. Moreover, this particular test set is in fact quite difficult to predict in general. This
finding will be mentioned later in this chapter while discussing the final test results. To conclude,
changing the test set can result in different outcomes as test results are highly dependent on
the test set. Generally, this could be avoided by running with multiple test sets and average
the results to decrease the error. However, this was not possible in the due to architecture of
this study. The model training for different modalities is done separately. Once the output of a
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model with one modality is used on the training of other modality which is the case during Early
Fusion, there could be information leaks if the test set is not fixed.

9.1.3 Optimizing Hyperparameters

Before going through the third stage of structured modality experiments, one should note that
there were two datasets used in this study. The first dataset(2404 samples) is in fact the com-
plete dataset with all patients throughout the study period. The second dataset(1654 samples),
which is called as the small dataset, includes patients only after 01-04-2012, thus resulting in a
dataset with much less missing values. Therefore, the test sets of these two datasets are differ-
ent than each other. It should be acknowledged that test results depend highly on the split. Most
of the validation experiments were undertaken with the complete dataset. The second dataset,
however, used only after validating most of the techniques in the methodology except hyperpa-
rameter optimization of the classifier. This was due to the fact that different hyperparameters
might optimize a model which is fed with fewer data. On the third stage of structured modality
experiments, a couple of grid-searches took place to optimize the hyperparameters of the Ran-
dom Forest Classifier. Grid-search experiments were first validated on the normal validation set
however, after applying the validated model on the test set, it was found that hyperparameter
optimization overfits the validation set because AUC on the test was 0.67 whereas it was 0.80 on
validation set which is an unacceptable decrease. Therefore, the last grid-search was repeated
with cross-validation in order to avoid overfitting on the validation set. Cross-validation results
were evaluated based on their average AUC scores. The best model achieved Average AUC of
0.755. For the sake of benchmarking, the model before the hyperparameter optimization was
cross-validated as well, it could achieve Average AUC of 0.70. This showed that hyperparam-
eter optimization improved the AUC remarkably by 0.055. Subsequently, the cross-validated
grid-search was applied to the small dataset as well. The mean AUC score before optimizing
hyperparameters was 0.766, after the grid-search, the mean AUC score increased to 0.788.
It should be noted that cross-validated grid-search improved both models although resulting
optimized hyperparameters for two datasets were different. One of the biggest difference in
optimized hyperparameters were the number of trees used in the random forest model. The
model which trained with the complete dataset had 70 trees in the forest, whereas the model
trained on the small dataset had 300 trees. In general, a higher number of trees help Random
Forest models to generalize better and avoid overfitting. Considering that the small dataset has
a smaller sample size, the fact that it requires more trees to generalize better makes sense.
After exploring the optimized hyperparameters, all experiments regarding structured modality
was over.

9.1.4 Image Modality

After finishing structured modality, experiments on image modality were executed in order to
find signs related to 30-days mortality. First of all, correct images had to be selected for image
modality experiments, to this end, a side-project had to be executed which built a model to
discriminate images with different views or different body parts. Details on this side project
can be found in appendix A. This model could also be used for more general tasks within
the hospital. After finalizing the image dataset, 30-days mortality modeling started. Transfer
learning was used in the convolutional part of neural networks for that purpose. By means
of fine-tuning, a couple of different configurations were tried out. Even though this study is
concerned with hip fractures, image modality experiments showed that there is more predictive
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power in chest x-ray images compared to hip x-ray images. By the use of chest x-ray images,
a model could reach up to 0.701 AUC score on the validation set, whereas this was only 0.614
with hip x-ray images. Logistic Regression, on structured modality experiments, had a maximum
AUC of 0.706 with the same validation set which is very close to what has been achieved with
the chest x-ray model. This is an important finding from the clinical perspective as it brings
evidence, however, signs found in chest x-rays, linked to 30-days mortality, are not yet directly
transferable to humans within the scope of this thesis. Yet, the explanation should be followed
up in future work. In the convolutional part of these models, Xception [58] model was the best
performing on the chest with full training, and ResNet152 [57] was on the hip with partial training.
Furthermore, including both image series in the same model and backpropagating at the same
time did not really improve the AUC score, the maximum score achieved on that way was 0.697
on the validation set. However, when training the best model again on the small dataset, the
highest AUC achieved on the validation set with chest x-ray images was 0.642. Therefore, it
can be confidently claimed that training with more data helps the model significantly on image
modality. This could be also in the structured modality experiments but the number of missings
did not allow the model to train in the most successful way. Based on this, the author suggests
that, as future work, decreasing the number of missings with the help of other modalities or
sources could help to achieve better performance.

9.1.5 Multimodal Learning

After finalizing the validation of unimodal predictors, multimodal learning was applied in three
different approaches, namely early fusion, late fusion, and neural networks. The most success-
ful attempt was with early fusion. This approach had an average AUC score of 0.801 on the
validation set. The early fusion model is in fact, the Random Forest model from the structured
modality experiments that is using also the findings from image modality. These findings are
the neuron outputs of the predecessor layer of the last layer of image modality models. In this
version of early fusion, two image models trained separately from each other. Although the
inclusion of these findings improved the average AUC of the model from 0.751 to 0.801 on the
validation set, not all of the variables carried information. It was observed that some of the neu-
ron outputs are constantly 0 for all patients. This shows that at least the classifier part of the
image modality model is suboptimal. Thus, by simplifying the fully connected layer architecture,
further improvements could be possible and should be investigated as future work.

9.1.6 Factors Affecting 30-Days Mortality

It is quite difficult to compare the variables found to be important in this study directly to the
ones in the literature due to the nature of the study. The inclusion of image modality and a
much higher number of variables in the prediction model for 30-days mortality of elderly hip
fracture patients brought a different approach than the ones in the literature. None the less, as
these findings from image modality improved the prediction performance when combined with
structured modality, it would be very valuable to know what the findings actually are. Especially,
in order to have it working on a daily health care system, an artificial intelligence model should
be as explainable as possible. Currently, this is possible with the early fusion model to some
extent. It is known by the feature importances function(see figure 8.2 and tables 8.35,8.36,8.37)
of the random forest model that, chest findings which carry information are the most valuable
variables of the random forest model, meaning that, they decrease the impurity most. Addition-
ally, activities of daily living and lab tests contribute substantially to the prediction of 30-days
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mortality, yet comorbidities extracted from diagnostic treatment codes did not show any signif-
icant contribution to this prediction task. On the other hand, ASA score and Age was in the
top 20 most important features of the model developed in this study, the literature suggests
that these variables also appear to be significant factors affecting 30-days mortality in elderly
hip fracture patients. As future work, heat maps from images could be generated to find out
which areas in the images contribute the most in findings. This would then let the users of the
model see why the model is making a decision in one particular direction. Moreover, another
future work could be to investigate the feature importances in another perspective, by setting a
threshold and removing the variables with importance below that threshold and see if the model
can perform as good.

9.1.7 Testing and Benchmark

Finally, the validated early fusion model was tested on the test set in order to show its perfor-
mance on unseen data. As was already mentioned earlier in this chapter, the test split of the
complete dataset is actually quite difficult to predict than usual. Therefore, the results reported
on the test set could be slightly underestimating the performance of the model. In order to have
a better benchmark, an adjusted version of AHFS(Almelo Hip Fracture Score) was replicated.
It was reported that the AHFS model in [6] achieved AUC of 0.82. However, AHFS-a (Adjusted
Almelo Hip Fracture Score) could reach only AUC of 0.706 on the test set of this study, where
the early fusion model had AUC of 0.742. The same comparison was executed also on the small
dataset, AHFS-a had AUC of 0.729 where the early fusion model had 0.769. From these results,
one can see that the test split of the complete dataset is difficult as both models perform worse
in the complete dataset. Moreover, the early fusion model outperformed the AHFS-a model on
both datasets. It should be noted that missing value imputation by means of regression and
random oversampling for class imbalance handling was not applied when building the AHFS-a
model as they are part of the early fusion model. Missing values were imputed by mean values
instead which is a much simpler technique. The ROC curve of the final model was provided as
guidance for the future users of the model for setting the decision threshold. This adjustment
would allow one to re-balance the trade-off between the number of correctly predicted positive
samples and correctly predicted negative samples in the desired way.

9.2 Limitations

The limitations encountered in this study are listed as follows.

• According to the protocol, all patients admitted to Emergency Room with an acute hip
fracture, should have full pelvis x-ray images with AP view, however, this protocol is not
always followed due to the specific request of the surgeon. Therefore, for those patients
that full pelvis x-ray is missing, one-sided (right or left) hip x-ray with AP view is used.
This might have resulted in a drop in the quality of the dataset. If the full pelvis x-ray
image for all patients were available, it could have a positive impact on the performance
by improving the quality of features extracted from hip x-rays.

• Extracting comorbidities with diagnostic treatment codes, do not give us which year the
disease occurred, so it is possible that irrelevant comorbidities are considered in the pre-
diction. As an example, a patient could have a lung disease 10 years ago but now, they
are fully recovered, this should not affect the 30-days mortality, at least as much as a
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disease happened in the last year. But, this discrimination was not possible and therefore
was a limitation of this study.

• Another limitation with the extraction of comorbidities from the diagnostic treatment codes
is that, identification of cancer state. More precisely, cancer which is on metastasis and
normal phase cannot be discriminated which is in fact a huge difference regarding the
Charlson Comorbidity Index.
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10 CONCLUSION

So far, series of experiments were done to find appropriate techniques for missing value impu-
tation, handle class imbalance problems, extract features from image modality, and fuse image
modality with structured modality to predict 30-days mortality of elderly hip fracture patients. 2
datasets were employed in development of models, the first dataset is the complete dataset
whereas the second one (small dataset) excluded patients admitted before 2012-04-01 and
consequently much less missing values. The author will conclude the study by presenting the
clinical implications and answering the research questions.

10.1 Clinical Implications

Hip fractures are a major health care problem in society. This study presents a prediction model
for 30-days mortality of elderly hip fracture patients by following a multimodal machine learning
approach, in order to guide the decision-making process with respect to the treatment of the
patient. This approach fuses the image modality with the structured modality for the prediction
task. At the same time, it also addresses the problems related to the class imbalanced dataset
and the high number of missing values. The proposed model outperforms a replicated version
of the Almelo Hip Fracture Score (AHFS-a) with an AUC score of 0.742 vs 0.706. However, due
to the fact that the test is particularly harder to predict, these scores might be underestimating
the actual model performances. Although an AUC score of 0.742 is considered as acceptable
discrimination, by itself, it is still not good enough to decide directly on which patients should
be operated or not. Yet, it can be used as a tool to identify high-risk patients. Finally, by the
analysis of feature importances, this study also demonstrates that chest x-ray images contain
important signs related to 30-days mortality of the patients.

10.2 Research Questions-Answers

1. To what extent, one can predict 30-days mortality of the elderly hip fracture patients
after surgery using machine learning with pre-operative variables?
Test results showed that the early fusion model developed in this study can achieve AUC
score of 0.742 on the complete dataset and 0.769 on the small dataset. Although the
results are similar to what had been achieved in the literature, there is enough evidence
to think that the score on the complete dataset might be underestimating the model per-
formance. See discussion in chapter 9 to have a better overview of the benchmark of the
model.

(a) With respect to the class imbalanced dataset, to what extent, class imbalance
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handling techniques are useful to preprocess the data for classification?
Oversampling techniques, namely Random Over-Sampling, SMOTE, Borderline-SMOTE,
ADASYN improved the classification to a similar extent. However, Random Over-
sampling was chosen due to its compatibility with the chosen classifier. Adjusting
class weights was used in deep learning. However,it showed poor results when
applied with traditional machine learning algorithms. Additionally, the NearMiss-2
technique showed significantly poor results. Finally, the improvement by these tech-
niques are not much higher than no handling. Therefore, it might also be acceptable
to not apply any technique to handle the class imbalance.

(b) Due to the high amount of missing values, to what extent, the missing value
imputation techniques are suitable in predicting 30-daysmortality of the elderly
hip fracture patients?
KNeighborsRegressor algorithm was found to be the best regression model to im-
pute missing values. Although this technique performed significantly better than filling
with mean values, the missing value imputation task was not successful as desired.
Both validation and test results on the small dataset had better scores than the com-
plete dataset. Thus, it can be concluded that Partial Listwise Deletion (creating small
dataset) method performed better than missing value imputation.

(c) Which machine learning algorithm performs best in the classification task?
RandomForestClassifier outperformed the other candidates during validation with
AUC of 0.761, even though LinearSVC (Support Vector Machine with linear kernel)
and XGBClassifier were performing quite well around 0.75-0.74. However, Logistic
Regression and AdaBoost Classifier showed remarkably worse results.

2. As the literature suggests thatmultimodal machine learning showed good results in
the medical domain, it is important to question whether different modalities would
contribute to predicting 30-days mortality of elderly hip fracture patients.

(a) To what extent, one can predict 30-days mortality by using chest and hip X-ray
images?
On the complete dataset, the model using chest x-ray images achieved 0.70 vali-
dation AUC whereas the model with hip x-ray images achieved only 0.614. On the
small dataset, the chest model reached 0.642 AUC and hip had 0.632. This means
that chest x-ray images contain valuable information and have remarkable prediction
power with respect to 30-days mortality.

(b) Different variable groups have difficulties in the collection and extraction phases
and might be costly as well. However, if it was possible to extract these vari-
ables from x-ray images, it would be less costly and easier. To what extent,
extracted features from x-ray images can be used to replace structurally col-
lected variables?
Feature importances of the final model showed that features extracted from the chest
and hip x-ray images have much higher contributions to the prediction of 30-days
mortality. In fact, four features extracted from chest x-ray images were in the top 5
most important features regarding the prediction of 30-days mortality. On the con-
trary, comorbidity features extracted from diagnostic treatment codes had the least
contribution in the prediction. Therefore, it can be concluded that imaging data, espe-
cially chest x-rays contain valuable information with respect to the 30-days mortality
of patients, and can be used to replace comorbidity variables extracted from diag-
nostic treatment codes.

(c) What is the most suitable way to fuse image modality and structured modality
when predicting 30-days mortality of the elderly hip fracture patients?
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Early fusion (separate training for imaging) appeared to be the best way to fuse image
modality and structured modality, as it had 0.801 average validation AUC. Late fusion
had 0.77 average validation AUC, the neural network approach achieved 0.756 vali-
dation AUC. Early fusion, first takes the inner layer output from convolutional neural
networks which are used to extract features from images separately for each image
series. Next, it uses these neuron outputs as structured variables in the Random
Forest model alongside other structured variables.

(d) Towhat extent, multimodal fusion improves the prediction on 30-daysmortality
when compared to prediction with only structured modality?
Without fusing imaging features, the Random Forest model had 0.751 average val-
idation AUC. This score improved to 0.801 with the early fusion of image modality
into the Random Forest model.
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A IMAGE SELECTION

Imaging data in medical domain usually is in DICOM format. This format lets user to add meta-
data and labels to the image so that it could be stored and processed in an efficient manner.
Some of the important features for the identification of image are Study Description, Series De-
scription, Body Part Examined and Accession Number. Study Description describes the kind of
study such as Bekken/Heup(Hip) or Thorax(Chest), similar to that Body Part Examined spec-
ifies obviously which body part was examined during that study. Series description is used to
describe the view of the study such as AP (Anterior-Posterior) or lateral. However, a study
could have more than one series. Imaging data of a particular patient is retrieved by the ”ac-
cession number” which is referring to the study. Therefore, when an accession number is used
to extract a study of a patient, usually one can end up with multiple series, i.e. multiple images
of the study with different views. The problem at this point is that, not all the meta-data are
correct. Sometimes, data registry goes wrong in the radiology and one can end up with a chest
x-ray from a study of hip or vice versa. Furthermore, it could also be that an image with a se-
ries description ”AP” might be in fact lateral. On the other hand, these labels are not perfectly
standardized, meaning that, one can register a thorax AP image with series description ”ap” or
”thorax ap” or ”pa” and so on. All of these mentioned issues makes the image data extraction
by query extremely difficult and impossible to end up with desired result. For this reason, an
Artificial Intelligence had to be developed to select the desired images for each patient. Desired
images in this project are one ”AP” view of Thorax and one ”AP” view of pelvis or hip. The other
views are discarded due to lower quality.

First step was to develop two datasets, one for thorax studies and one for hip studies.

A.1 Hip Dataset Creation

Filters used for ”StudyDescription” to include in hip dataset: ’Bekken+heup links’, ’Bekken+heup
rechts’, ’Bekken’, ’Heup rechts’, ’Heup links’, ’Bekken+heup beiderzijds’, ’Bekken,femur,knie
rechts’. After applying this filter to the ”StudyDescription”, ’PELVIS’ filter was applied to ”Body-
PartExamined”.

From the remaining images, desired images had to be selected and labeled as correct so that
they can be used in supervised learning on the next stage. This is done by first selecting images
which contain ’AP’ (none case-sensitive) in ”SeriesDescription”. Finally, images were grouped
by the accession number and the groups which have more than 1 member were discarded. By
this way, studies with only single ’AP’ series were obtained. After adding few images by manual
observation, positive samples of this dataset was completed, namely correct images.

Afterwards, negative samples had to be collected, namely incorrect images. For this class, any
x-ray image which is not a hip study with ap view can be eligible. Therefore, images having
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’StudyDescription’ one of ’Thorax’, ’Thorax liggend op bed’, ’Thorax op bed’ were put in this
class, except the ones having ”BodyPartExamined” = ’PELVIS’. This filter contained mainly
chest x-rays, and thus helped the model to distinguish between hip images and chest images.
Moreover, images with ”SeriesDescription” containing one of ’lau’, ’ax’, ’lat’ were also marked
as incorrect and put in this class. This filter helped the model to distinguish between ’AP’ and
other views of hip x-ray images.

In the end, the dataset consisted 2680 correct and 7006 incorrect images. Train, validation and
test split took place with ratios of 50%, 40% and 10% respectively.

A.2 Chest Dataset Creation

During chest dataset creation, a similar procedure was followed as in hip dataset creation.
Filters used for ”StudyDescription” to include in chest dataset: ’Thorax’, ’Thorax liggend op
bed’, ’Thorax op bed’. After applying this filter to the ”StudyDescription”, ’CHEST’ filter was
applied to ”BodyPartExamined”.

From the remaining images, desired images had to be selected and labeled as correct so that
they can be used in supervised learning on the next stage. This is done by first selecting im-
ages which contain ’AP’ or ’PA’ (none case-sensitive) in ”SeriesDescription”. Finally, images
were grouped by the accession number and the groups which have more than 1 member were
discarded. By this way, studies with only single ’AP’ series were obtained. After adding few
images by manual observation, positive samples of this dataset was completed, namely correct
images.

Afterwards, negative samples had to be collected, namely incorrect images, this part was slightly
different than hip dataset creation. First, correct images of the hip dataset was used as incor-
rect images of the chest dataset. Afterwards, if a image has ”BodyPartExamined” = ’HIP’ and
”StudyDescription” one of ’Thorax’, ’Thorax liggend op bed’, ’Thorax op bed’, then they were
marked as incorrect. Furthermore, images with ”BodyPartExamined” = ’HIP’ or ’CHEST’, and
contain ’ax’ or ’la’ in their series description were also marked as incorrect.

In the end, the dataset consisted 2932 correct and 6861 incorrect images. Train, validation and
test split took place with ratios of 50%, 40% and 10% respectively.

A.3 Modelling

Convolutional Neural Networks were used during the modelling phase of image selection. With
respect to the implementation, Keras library was used with TensorFlow backend. The first at-
tempt was using DenseNet169 [26] by means of transfer learning for the convolutional part of
the network. However, it achieved extremely good results and therefore no further experiment
had to be executed. DenseNet169 model was fine tuned seperately for each of the datasets.
Fine tuning was done by adding fully connected and dropout layers at the end of CNN and train-
ing with correct/incorrect labels. Information on added layers can be found in table A.3. Data
augmentation and hyperparameters used were completely same in modelling of both datasets
and can be found in table A.2 and A.1. Validation and test results for chest and hip models
can be found in table A.4. After testing the models, all of the images were fed into the models
and got predicted, i.e. received a score between 1 and 0 regarding their correctness. Finally,
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for each patient, image with highest chest score was selected as the correct chest image and
image with highest hip score was selected as the correct hip image for that patient. By this way,
it was achieved to associate almost all patients with one chest ’AP’ and one pelvis/hip ’AP’ scan.

Setting/Hyperparameter Value
Number of Epochs 100

Loss Function Binary Cross Entropy
Optimizer Adam

Learning Rate 0.001
Monitored Value for Early Stopping Validation Accuracy

Patience for Early Stopping 10
Minimum delta required for improvement 0.0001

Monitored Value for Reducing Learning Rate Validation Accuracy
Patience for Reducing Learning Rate 6

Factor by which the learning rate will be reduced 0.1

Table A.1: Settings/Hyperparameters used in Experiments

Data Augmentation Setting Value
Rotation Range 20

Width Shift Range 0.1
Height Shift Range 0.1

Shear Range 0.1
Zoom Range 0.1

Channel Shift Range 10
Horizontal Flip True

Fill mode Nearest
Interpolation(also applies to validation & test) Bicubic

Table A.2: Data augmentation settings used in experiments for image data generation during
training phase

Layer Name Number of Neurons Activation Function Bias Initializer Dropout Rate
Dense_0 1024 Relu zeros -
Dropout_0 - - - 0.5
Dense_1 512 Relu zeros -
Dropout_1 - - - 0.5
Dense_2 256 Relu zeros -
Dropout_2 - - - 0.5
Dense_3 128 Relu zeros -
Dropout_3 - - - 0.5
Output 1 Sigmoid zeros -

Table A.3: Fully Connected Layers which are added after the convolutional part of pre-trained
models
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Dataset Validation Accuracy Test Accuracy
Chest 100% 99.89%
Hip 99.26% 99.39%

Table A.4: Results of image selection models
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B CONVOLUTIONAL AUTO-ENCODERS

Auto-encoders are a technique of unsupervised learning. As this study is concerned with mul-
timodality, learning a representation of image modality in an unsupervised way was also one
of the approaches. However, the end goal was to use this feature set which represents image
modality, in traditional machine learning algorithms such as Random Forest, Logistic regres-
sion. This requires such an extraction that with only a few variables, signs of early mortality
should be summarized. To this end, convolutional auto-encoders were employed to extract fea-
tures from image modality. Experimental settings used on auto-encoders can be seen in table
B.1

The performance of auto-encoders in this context is evaluated by their ability to reconstruct
images from the encoded features. However, when the target encoding dimensions decrease,
more and more information loss occurred as the quality of the reconstructed image dropped
significantly. In table B.2, layer architecture can be seen sequentially. In the encoding part, each
block consists of one convolutional layer and one max-pooling layer, whereas in the decoding
part, the upsampling layer is used as the opposite operation of max-pooling. This example
shows an architecture of an auto-encoder with 3 blocks on each encoding and decoding parts.
After the encoding, the feature set has a dimension shape of 32 × 32 × 64 = 65536 which is
extremely big for use in traditional machine learning. Other architectures were also tried out
with more blocks or with different numbers of kernels. Original images of 3 patients can be
seen in figure B.1. Reconstructed images from different experiments are in shown figures B.2
- B.7. In figures B.4 and B.7, the reconstruction of three different images ended up in the same
black image which does not carry any information. The conclusion was that this approach
will not contribute to 30-days mortality prediction in a practical way due to the high amount of
information loss and necessity of a high number of features to represent image modality.

Setting/Hyperparameter Value
Number of Epochs 200
Loss Function Mean Squared Error
Optimizer Adam
Learning Rate 0.01
Monitored Value for Early Stopping Validation Loss
Patience for Early Stopping 20
Batch Size 20
Initial Image Dimension 256x256
Color mode Gray Scale

Table B.1: Settings/Hyperparameters used in auto-encoder experiments
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Layer Kernel size Nr. of Kernels Activation Padding Interpolation
Convolutional2D 3x3 64 Relu zero padding -
MaxPooling2D 2x2 - - zero padding -

Convolutional2D 3x3 64 Relu zero padding -
MaxPooling2D 2x2 - - zero padding -

Convolutional2D 3x3 64 Relu zero padding -
MaxPooling2D 2x2 - - zero padding -

Convolutional2D 3x3 64 Relu zero padding -
UpSampling2D 2x2 - - - nearest

Convolutional2D 3x3 64 Relu zero padding -
UpSampling2D 2x2 - - - nearest

Convolutional2D 3x3 64 Relu zero padding -
UpSampling2D 2x2 - - - nearest

Table B.2: Example layer architecture of an auto-encoder with 3 blocks and 64 kernels on each
convolutional layer

(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure B.1: Example chest x-ray scans of patients, original version

(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure B.2: Reconstructed images on auto-encoder with 3 blocks and 64 kernels on each con-
volutional layer, number of features after encoding is 65536
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(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure B.3: Reconstructed images on auto-encoder with 5 blocks and 64 kernels on each con-
volutional layer, number of features after encoding is 4096

(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure B.4: Reconstructed images on auto-encoder with 7 blocks and 64 kernels on each con-
volutional layer, number of features after encoding is 256

(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure B.5: Reconstructed images on auto-encoder with 3 blocks and 16 kernels on each con-
volutional layer, number of features after encoding is 16384
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(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure B.6: Reconstructed images on auto-encoder with 5 blocks and 16 kernels on each con-
volutional layer, number of features after encoding is 1024

(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure B.7: Reconstructed images on auto-encoder with 7 blocks and 16 kernels on each con-
volutional layer, number of features after encoding is 64
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