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Increasing the rate of discharge conversations by pharmacy
assistants

Guido A. W. Moltman ∗

June 28, 2020

Abstract

The main goal of this article is to reduce medication verification errors at Ziekenhuis
Groep Twente (ZGT). This is tried by reducing the rate of not happening discharge
conversations. The research question is: How to increase the number of discharge
conversations at ZGT, in order to reduce medication verification errors? Scenarios are
tested with help of a simulation verified by the queueing network analyzer (QNA). The
effect of digital phone calls and another server distribution is tested. The combination
of these scenarios lead to a 47 % reduction of the rate of not happening discharge
conversation.

Keywords: queuing theory, network of queues, pharmacy assistant, medication verifi-
cation, discharge conversations, QNA

1 Introduction

Despite the relatively high-level quality of the Dutch health care system, it is shown that
still patients suffer from medical mistakes, which could eventually lead to death [4]. In
order to reduce this number, many activities took place in order to increase attention to
the topic and to improve the safety of patients [13]. One of these activities, which is of huge
importance, includes the information exchange between patients and health care providers
[8]. An important issue contributing to a better information exchange, are pharmacy
assistants and the admission and discharge conversation they take [10]. In the hospitals of
Ziekenhuis Groep Twente (ZGT) these problems are also observed and the medical staff
would like to optimize the processes of medication verification. Although it seems that
enough pharmacy assistants are available for admission and discharge conversations, the
rate of occurred discharge conversations is still lower than hoped. Therefore, specifically,
the goal of this article is to propose improvements for the medication verification process
at ZGT, to increase the rate of discharge conversations. In a broader sense, this article
proposes a network of multi-server queues, that is able to optimize processes, like the
medication verification process. Therefore, the research question of this report is stated
as: How to increase the number of discharge conversation at ZGT, in order to reduce
medication verification errors?

In the second Chapter the underlying literature of this article will be presented in a short
literature review. Thereafter, the process of medication verification is presented together
with the model of this process represented by the queueing network with M|M|s queues, the
Queueing Network Analyser (QNA) with GI|G|s queues and the Discrete Event Simulation
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(DES). After this, a step-wise verification of the DES will be presented, with help of the
Queueing model and the QNA. In chapter 4, the verified DES is used to analyse the real
process of medication verification at ZGT. Different scenarios are tested and compared to
each other to answer the research question. Finally, the article is ending with a discussion
and conclusion.

2 Literature Review

In this chapter, articles are presented related to this research. Furthermore, some under-
lying articles related to the theory are presented. Kelly [6] presents the first queueing
network with different patient types. This is extensively used in the simulation. To verify
this simulation the queueing network analyzer (QNA) of Whitt [15] is used. Morover,
Whitt writes about the performance of the QNA and the performance of a G|G|m queue
[14, 16]. This article is built upon these articles.

Furthermore, this article builds upon other scientific research related to queueing net-
works and health care systems. Bourne et al. [2] are presenting an article to reduce medi-
cations errors. The cause of this reduction is based upon changing the management style.
This research could help in finding scenarios in the analysis of the process at ZGT. Nev-
ertheless, this article is not presenting a queueing network. Cochran and Roche [3] are
presenting a queueing network for the emergency department and Green and Savin [5]
present an article to reduce delays with a queueing approach. Furthermore, Zonderland
and Boucherie [18] are implementing the QNA for an outpatient clinic, which is even more
useful for this research. For the optimization of the model, the article of Bahadori et al. [1]
is really useful. In this article, Bahadori et al. [1] describe how a pharmacy system could
be optimized with help of scenarios.

3 The Model

3.1 The Problem

As mentioned above, the process of medication verification at ZGT is considered. The
medication verification occurs at one of the two hospitals of ZGT. These hospitals are lo-
cated in Almelo and Hengelo. The medication of every arriving and leaving patient at the
hospital needs to be verified by pharmacy assistants. Important elements of this verifica-
tion are admission and discharge conversations. These conversations lead to the significant
reduction of medication verification errors, which leads to better health of patients [10].
A patient may enter the hospital for two reasons. First, a patient could unplanned enter
the hospital. For example, if the patient arrives as a consequence of an emergency. In
such a case, the patient arrives at the first aid (spoedeisende hulp (SEH) in Dutch). An-
other type of an unplanned arrival is at the acute medical assessment unit (acute opname
afdeling (AOA) in Dutch) [12]. Both on the SEH and AOA admission conversations take
place. Secondly, entering could occur due to a planned appointment, for example, a knee
surgery. For planned appointments two types of admission conversations take place. First,
the patient could have an admission conversation at the outpatient clinic (pre-operatieve
screening (POS) in dutch) a few days before the surgery. In the other case a patient is
admitted immediately to the department (DEP). Dependent on the state of the patient,
some patient do not have a admission conversation. In such a case, due to, for example, a
bad mental illness or physical state of the patient, conversations are not possible. When a
patient is transmitted from the SEH to a department and no admission conversation took
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place at the SEH, this conversation will still occur at the department. This is also applica-
ble for patients arriving at a department without a visit to the POS. In some cases it might
be that a admission conversation is taken twice, at the previous department, POS or SEH,
and the new department. These may occur since it might be that the medication is not
clear after the first admission conversation. Furthermore, the patients at the department
in Hengelo always have a conversation by protocol.

Discharge conversations only take place at the departments. In this case the AOA is
also seen as a department. So it might be that a patient leaves the AOA with a discharge
conversation. Nevertheless, the discharge conversation at the department does not always
take place, since nurses send patients home before the official discharge is planned or
because the preparation of discharge takes too long. The main reason for a long preparation
time is bad communication between pharmacy assistants and doctors. Again, patients in
a bad state are not having discharge conversation. Although the conversations does not
take place, medication verification occurs, just as in the case with admission conversation.
The problem of not occurring discharge conversations, while these could happen is treated
in this report.

3.2 Models

One of the ways to model the process of admission and discharge conversation is with help of
a discrete event simulation (DES). To verify the DES, three steps will be performed. First,
a queueing model will be proposed, in which it will be assumed that all stations/queues
are M |M |s queues. For these types of networks, characteristics of this model could be
calculated in a simple way. Second, a queueing network analyser (QNA) will be introduced,
an algorithm to calculate waiting times for networks with GI|G|s queues [15]. The outcome
of the QNA will be compared to the analytically calculated results from step 1 to verify
the QNA. Consequently, the QNA could be used to state characteristics of the queueing
network with queues other than M |M |s queues, like GI|G|s queues. Finally, the results
from the QNA will be used to verify a discrete event simulation of the network with data
from ZGT. In the following subsections the queuing model, QNA and the DES will be
described in detail with corresponding formulas.

3.2.1 Queuing Model

The queuing model used is represented in Figure 1. Pharmacy assistants are having conver-
sations with patients during admission and discharge. Admission conversations take place
at three departments, at the emergency room (SEH), department (DEP) and at the med-
ical assessment unit (POS). After an admission conversation at the SEH or POS, it might
happen that the patient has again a conversation at the DEP, see also Section 3.1. The
AOA as represented in Section 3.1 will be part of department, as mentioned before. After
admission a patient is treated at a department (Dep. Treatment) by nurses. It is assumed
that there is always place to treat a patient, so there is no waiting time. That is why a infi-
nite number of servers is assumed. After treatment at the department a discharge needs to
be prepared (Dep. Preparation). After preparation, a discharge conversation takes place
(Dep. Discharge) or not. This depends on the sojourn time at queue 5 if this sojourn
time at queue 5 is too long the patient leaves before the discharge conversation occurred.
Furthermore, there is a number of patients that are excluded for discharge conversations
at all, for example because of the department they are lying on or the patient does not
have any medication.

Each station or queue is defined as i. The external arrival rate and total arrival rate
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Figure 1: Model of process medication verification

at station i are defined as γi and λi, respectively. The transition probability from queue
i to queue j is defined by rij . The number of servers at station i is si, and the service
time at station i of patient type p is defined as µi,p. The patient types p are based on age,
since this states something about the total amount of medicines the patient uses and the
ability of the patient to have a clear and concise conversation with the pharmacy assistant.
There are in total 4 patient types, children (age 0-18), adults (age 18-50), aged adults (age
50-75), and the elderly (age 75+).

The queues are assumed to be M|M|s queues. Therefore, the arrival rates to the queues
could be computed by [17]:

λj = γj +

J∑
i=1

rijλi (1)

in which J is the number of queues, J = 6. For the model represented in figure 1 the
solution to the system of traffic equations, expressed in the external arrival rates γi and
the transition rates rij , is:

λ1 = γ1

λ2 = γ2 + r12γ1 + r32γ3

λ3 = γ3

λ4 = γ1(r12 + r24r12) + γ2r24 + γ3(r34 + r24r32)

λ5 = γ1(r12 + r24r12) + γ2r24 + γ3(r34 + r24r32)

λ6 = r56(γ1(r12 + r24r12) + γ2r24 + γ3(r34 + r24r32)).

There are two options for a patient to leave queue 5. First, the transition probability
r56 is defined as the the proportion of patient that should have a discharge conversation
at queue 6. Second, the fraction 1 − r56 is the proportion of patients that do not have a
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discharge conversation at all, mentioned as the proportion of patient excluded by protocol
before. Nevertheless, not all patients flowing from queue 5 to 6 are having a discharge
conversation. There is a proportion rl that flows out of the system before getting service
at queue 6, see also Figure 1. This fraction rl is based on the sojourn time at queue 5. If
the sojourn time at queue 5 is larger than the accepted sojourn time, EWacc,5, then the
patient is leaving before service (rl).

The average waiting time and average queue length at queue i are defined as E[Wqi ]
and E[Lqi ], respectively. Using the traffic equations, the number of servers at station i,
si, and the assumption that the arrival and services time are exponential, the following is
applicable for i 6= 4 [17]:

E[Lqi ] =
ρsi+1
i

(si − ρi)2(si − 1)!
· P0i (2)

E[Wqi ] =
E[Lqi ]

λi
(3)

in which ρi = λi
µi
< si and P0i is the steady state probability for 0 customers in queue i,

defined as [17]:

P0i =

(
si−1∑
n=0

ρni
n!

+
ρsii

(si − ρi)(si − 1)!

)−1
. (4)

For i = 4, there is an infinite number of servers. Therefore, a patient does not wait at
queue 4 and so E[Wq4 ] = 0. The average sojourn time at queue i is defined as E[Wi]. The
formula for the average sojourn time [17]:

E[Wi] = EWqi +
1

µi
. (5)

So knowing these formulas, rl, could be calculated as

rl = P (W5 > EWacc,5) (6)

in which W5 is the random variable representing the sojourn time in queue 5.

3.2.2 Queuing Network Analyzer

The queueing network analyser (QNA) is an algorithm, which calculates the average wait-
ing time for networks with GI|G|s queues [15]. The QNA will be verified by the analytical
calculations of the queueing model with M|M|s queues. The QNA will be used to verify the
discrete event simulation for networks with GI|G|s queues. The verification is presented
in Section 4. The algorithm for the queuing network analyzer (QNA) as described by
Zonderland and Boucherie [18] is used. This QNA consists of five steps. Full description of
this QNA could be found in Appendix B. Eventually, the waiting time at queue j, E[Wj ],
is calculated as

E[Wj ] ≈ E[WM |M |s]
c2A,j + c2S,j

2
, (7)
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where E[WM |M |s] is the expected waiting time of queue j for a M|M|s queue [18].
Furthermore, c2A,j and c

2
S,j are the squared coefficients of variation (scv) of the inter-arrival

and service times, respectively. These parameters are calculated in the first four steps of
the QNA.

3.2.3 Discrete Event Simulation

A good way to replicate the original process of admission and discharge conversation is
using a discrete event simulation (DES). As stated before, this DES will be verified by the
QNA. The DES is implemented as illustrated in Figure 2. The general idea of the DES is
adding and removing events from the event-list until the event StopSimulation is reached.
There are five types of events which could be added and removed from the event-list:
Arrival, Arrival2, ArrivalQ6 StartService and EndService. These events are illustrated as
big squares in Figure 2. Each event needs a certain number of parameters to work. The
arrival event needs a time, the type of the patient and the number of the queue. For
StartService and EndService an extra input should be given, the number of the servers
(see also Figure 2). This number ranges from 1 to sk, the number of servers at queue k.
ArrivalQ6 needs a time, type of a patient and the sojourn time of that patient in queue 5.
Another important variable in the DES is the queue. The number of queues ranges from 1
to 6, since there are 6 queues in our queuing model. In the DES the queue is a dictionary
with the numbers 1 to 6 as the keys. The values are lists of patients in the system, so
the patient being served plus the waiting patients. The number of types are the same as
defined in section 3.2.1. Within Figure 2, schedule ’Event’ means the insertion of an event
in the event-list. After implementation of an event, the event is deleted from the event
list. After deletion, the next events is executed. This process continues until the event
StopSimulation is reached. This event is based on the end time put in before starting the
simulation.

To start the DES, some arrivals needs to be implemented by hand. Once one arrival
is planned, for a specific type p, and at a specific q, i, the DES automatically plans new
arrivals of that specific patient type at that specific queue. This means that for the earlier
presented queuing model, an arrival should be planned at time 0, for type 1− 4, at queue
1, 2 and 4. Since there are four types and there are external arrivals at queue 1 − 3. So
in total, twelve events should be inserted, just to initiate the DES. Since after an arrival,
automatically a new arrival is planned based on some arriving distribution, or as will be
done later in this article, based on a list of data. Furthermore, within executing the event
Arrival, after planning a new arrival, the number of servers at queue k will be compared
with the queue length at queue key k (remember the queue is a dictionary). If this number
of servers is bigger than the total length of the queue, it will be checked which server is
available. After this available server i is found, out of a range 1 to si servers, StartService
is planned for a certain patient at server i and the patient is put in the queue. If there is
no server available, the patient will be placed in the queue with server i = 0. As probably
noticed and mentioned above, putting a patient in a queue does not mean that he is already
served, it is dependent on the number of server i if the patient is served. This character
i may be confusing, since this character is also used for the queues. In the description of
the DES the character k is used for queues.

Within StartService, only EndService will be scheduled. The time of EndService is
based on the distribution of the service times. These distribution might, for example, be
exponential, uniform or any other distribution of the service rates. During the execution
of the event EndService, a patient of a certain type at an certain queue, will be deleted
from the queue. After deletion, the number of servers will be compared with the length of
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Figure 2: Flowchart Discrete Event Simulation (DES)
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the queue. If this queue is bigger than the number of servers than the event StartService
will be inserted. After this or if the queue is smaller than the number of service the patient
will be transmitted to another queue. This transition is based on a transition matrix R
. This matrix have to be put in before the simulation is started. With help of a random
number generator, the new queue will be chosen, with help of R. If a patient is transmitted
to another queue k∗, an Arrival2 event at queue k∗ is inserted. Arrival2 is part of Arrival
and is almost the same as Arrival. The difference between Arrival and Arrival2 is that at
Arrival2 a new arrival is not rescheduled. The transition matrix has also the possibility to
transmit a patient to queue 0, which is meaning that the patient goes out of the system.
The transition from queue 5 to queue 6 is special, because this transition depends on the
sojourn time at queue 5. If k∗ is equal to 6, the event ArrivalQ6 is inserted in the eventlist.
Within the ArrivalQ6 event it is checked if the sojourn time of the patient coming from
queue 5 is smaller than the accepted waiting time, EWacc,5. If this is the case the patient
is following the same procedure as in Arrival2. If this is not true, the patient will leave
the system, so k∗ = 6 will be changed into k∗ = 0. Since the QNA does not satisfy
this possibility, for verification a accepted waiting time is chosen, such that every patient
arriving at queue 6 will also be served.

4 Results Verification

4.1 Queueing model with M|M|s queues

In this subsection the waiting time is calculated for a network of M|M|s queues. For this
purpose, the formulas as presented in section 3.2.1 are used, formulas 5 and 4. The exact
numbers of the verification are stated in appendix A. The resulting waiting times are
displayed in table 1.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
E[Wj ] 0.0723 0.0001 0.5333 NaN 0.2164 3.5072

Table 1: Calculated waiting times for M|M|s queues at station i.

These numbers are calculated with the programming language Matlab and are four-
decimal precise. For i = 4 Matlab gives NaN , not a number. Since there are an infinite
number of servers at queue 4, which does not satisfy the formula 5. The average waiting
time at queue 4 is equal to 0, as stated earlier.

4.2 Queueing Network Analyser with M|M|s queues

In this section the correctness of the QNA is verified. After the verification, the QNA will
be used to compute the waiting times for networks of other types of queues, like G|GI|s
queues. The steps of the QNA as stated in [18] are performed, see also appendix B. The
QNA is implemented in the programming language Matlab. The inputs for the QNA are:

γ: external arrival rates at each queue i, γi.

R: transition matrix, with entries rij , transitions from queue i to queue j.

s: number of servers at each queue i, si.

µ: services rates at each station i, mui
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Figure 3: Average waiting queue length over the number of arriving patients.

VarExt: variance of external inter-arrival rates.

VarS: variance of service times.

The exact filled in numbers could be found in Appendix A, as stated before. The QNA
model should give the same results as the analytical calculations, when the same inputs
are used. The results of the QNA are indeed the same as the analytic calculations, exposed
in table (1).

4.3 Discrete Event Simulation with M|M|s and G|GI|s queues

When verifying the discrete event simulation, first a good warm-up period needs to be
defined. This warm-up period is defined by looking at the average waiting queue length
over time. An example of a picture in which this is represented, is in Figure 3

After this warm-up period steady state is reached. Therefore, within a picture this
warm-up period could approximately be seen. From Welch’s graphical approach the fol-
lowing formula could be deviated [7]:

∣∣∣∣∣ 1
2d

∑2d
k=1Dk

1
d

∑d
k=1Dk

− 1

∣∣∣∣∣ < α (8)

with

Dk =
1

N

N∑
n=1

Dnk (9)
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in which N is the number of runs, Dnk is the observation of the k-th observation in the
n-th run, and d is the index of observation k. The parameter alpha is determined by the
graphical representation. In the following simulations the value for α are ranging between
0.025 and 0.0001. For the waiting times after the warm-up period 95% confidence intervals
are set up, by the following equation [9]:

95%− CI =

(
X̄ − c ∗ S√

N
, X̄ + c ∗ S√

N

)
. (10)

In this equation X̄ is the sample mean, c is the critical value for α/2, two tailed t-test,
and S is the sample standard deviation. The confidence intervals are based on 20 runs,
n = 20. Dependent on the distribution of the inter-arrival and service times the DES
takes about 3 to 7 minutes to run for t = 100,000. It is assumed during verification that
one time unit is equal to a quarter. When simulating the real situation one time unit is
equal to a hour. The t-distribution is used to determine the confidence intervals with 19
degrees of freedom, namely 20−1, so c = 2.093 [9]. The sample mean and sample variance
are calculated over data after the warm-up period. The discrete event simulation (DES)
should give a confidence interval for the average waiting time at station i. First it will be
checked if the DES verifies the M|M|s queues. For all the queues the waiting time for de
QNA and DES are given. Moreover, a 95%-CI is given in table 2, for the results of the
DES. The data as described in Appendix A is used as input.

E[Wj ]

Queue QNA DES 95%-CI DES
i = 1 0.0723 0.0720 (0.0713, 0.0728)
i = 2 0.0001 1.0983 ∗ 10−4 (0.9929 ∗ 10−4, 1.2037 ∗ 10−4)

i = 3 0.5333 0.5359 (0.5318, 0.5400)
i = 4 NaN 0.0000 (0.0000,0.0000)
i = 5 0.2164 0.2154 (0.2123, 0.2185)
i = 6 3.5072 3.4808 (3.3808, 3.5809)

Table 2: Waiting times for QNA and DES for M|M|s queues.

The confidence intervals as presented in Table 2 are all falling around the real mean,
meaning the means calculated with the QNA. So the DES is verified for M|M|s queues. Ac-
tually this part should be about verifying general inter arrival and service times. Therefore,
the QNA and the DES are compared for uniform service times and uniform inter-arrival
times. It should be noticed that the QNA is also a approximation for GI|G|s queues, which
becomes better when the load, ρ = λ

sµ , converges to one [15]. Therefore other service rates
are used then the previous cases. These new input numbers could again be found in Ap-
pendix A. Nevertheless, the load at queue 4 will never converge to 1, since it is a infinite
server queue, so this may lead to a wrong approximation. Another changing variable in
Appendix A is the variance since the variance of a uniform distribution differs from the
variance of a exponential distribution [11]. In Table 3 the results for GI|M|s queues are
given with an uniform arrival process. For the queues 1 to 3 the results for the QNA and
the DES are almost the same. The results for queue 5 and 6 differ quite a lot between the
DES and the QNA. This may be a result of the fact that queue 4 has an infinite number
of servers [15]. Furthermore although the loads for the queues are changed these are still
about 0.9, and could converge further to 1.

The big errors for queue 5 and 6 coming also back for a network of M|G|s queues, see
Table 4. There is also a big error at queue 5 for a network of GI|G|s queues, see Table 5.
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E[Wj ]

Queue QNA DES 95%-CI DES
k = 1 6.0758 6.0408 (5.8489, 6.2327)
k = 2 1.9992 1.8529 (1.7885, 1.9173)
k = 3 2.8860 2.8875 (2.8065, 2.9686)
k = 4 NaN 0.0000 (0.0000,0.0000)
k = 5 1.5914 1.3686 (1.3470, 1.3903)
k = 6 3.5057 3.2774 (3.1925, 3.36236)

Table 3: Calculated waiting times for uniform inter arrival times (GI|M|s queues).

E[Wj ]

Queue QNA DES 95%-CI DES
k = 1 6.0758 5.9585 (5.6450, 6.2720)
k = 2 1.9035 1.9479 (1.9002, 1.9956)
k = 3 2.8860 2.9365 (2.8715, 3.0015)
k = 4 NaN 0.0000 (0.0000,0.0000)
k = 5 1.0416 0.7774 (0.7652, 0.7899)
k = 6 2.1141 2.0414 (1.9295, 2.1533)

Table 4: Calculated waiting times QNA and DES for uniform service times (M|G|s
queues).

If the hypothesis is true that the big errors in Tables 3, 4, and 5 are because of the
infinite server queue 4, this error should disappear when the infinite number of servers is
replaced by a finite number or if queue 4 is deleted from the network. Both options are
tested for uniform inter-arrival and service times. Furthermore, within these new test the
loads are increased to about 0.95 for each queue. The new input values could again be
found in Appendix A. The results of these two test could be found in Table 6 and Table 7.

The two new tests also result in big errors for the last two/three queues. This might still
be a result of the load, which could still converge more to 1. On the other hand the waiting
times for queue 1 to 3 in Tables 6 and 7, did not become significantly more precise than
the waiting times in Table 3, 4 and 5. It is hard to state if this is applicable for queue 4,5,
and 6, since in contrast to queue 1, 2, and 3, the queues, 4,5, and 6 do not have external
arrivals and the effect of external arrivals are not clear. Although the QNA is able to
handle networks with G|GI|s queues [15], the performance of these networks are not tested
[14]. Whitt [14] is testing the performance of networks of G|GI|1 queues. In addition,
Whitt [16] is exposing approximations for one single GI|G|s queue. So the performance of
the QNA for a network G|GI|s queues is not exactly known. More about this issue is in the
discussion. Although the simulation does not equal the QNA approximations for general
inter-arrival and service times, the results in 2 and the fact that the QNA is almost true for
the queues 1, 2 and 3 are convincing enough to state that the DES is verified well enough.
Summarized, the following two reasons are also stating why the verification is well enough.
First, if there is a mistake in the simulation, it should have been noticeable in Table 2.
Second, if by some reason the simulation is still not correct due to some other reason,
this is also not needed. Since scenarios are compared in the analysis, the focus is on the
proportion of differences between scenarios, not on precise waiting times. Furthermore, it
is not the case that the error is ten times bigger or ten times smaller, the error is less than
60%.
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E[Wj ]

Queue QNA DES 95%-CI DES
k = 1 3.0379 3.0057 (2.8446, 3.1669)
k = 2 1.0439 0.9611 (0.9430, 0.9792)
k = 3 1.4430 1.3751 (1.3527, 1.3975)
k = 4 NaN 0.0000 (0.0000,0.0000)
k = 5 1.0328 0.6113 (0.6058, 0.6168)
k = 6 2.1125 1.8027 (1.7460, 1.8593)

Table 5: Calculated waiting times for QNA and DES with uniform inter arrival
and service times (GI|G|s queues).

E[Wj ]

Queue QNA DES 95%-CI DES
k = 1 3.0379 2.9414 (2.8595, 3.0233)
k = 2 2.8431 2.7264 (2.6430, 2.8098)
k = 3 3.0972 3.0768 (2.98104, 3.1726)
k = 4 1.7695 1.3223 (1.2837, 1.3608)
k = 5 1.8428 1.2254 (1.2013, 1.2494)
k = 6 4.2482 3.5901 (3.4412, 3.7389)

Table 6: Calculated waiting times for network of 6 finite server G|GI|s queues.

5 Results Analysis

Since sufficient reasons are given why the DES could be used to simulate the real situation,
the DES could be used to test the real system. By the idea of Bahadori et al. [1], scenarios
are tested and compared to each other. The scenarios that are going to be tested are listed
below. These scenarios are chosen since, it is indicated as a solution for the problem by
pharmacy assistants and/or it is thought of as a solution myself during the internship at
ZGT or during the process of this research.

S0: The original, real scenario.

S1: Conversations are replaced by digital phone calls.

S2: The number of servers per station is changed.

S3: The scenarios S1 and S2 together.

First, scenario S0 is discussed, together with the relating parameters. These parameters
include the number of patient types, the arrival and service rates for each patient type, the
transition matrix for each patient type, the distribution of pharmacy assistants over the
different queues, the working times and the accepted sojourn time at queue 5, EWacc,5.
The exact numbers of some of these parameters could be found in Appendix C. Two types
of data-files are delivered to estimate these values. First, data of the admissions and
discharges are delivered by the application managers at ZGT. The most important parts
of this data includes the arrival time, the leaving time and the age of a patient. The age
is used to categorize patients in four patient types. The arrival time and the leaving time
is used to determine the mean service time and the variance of the service time at queue
4. Furthermore, the arrival time is used in order to create a list of arrivals to the system
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E[Wj ]

Queue QNA DES 95%-CI DES
k = 1 3.0379 2.9363 (2.8449, 3.0277))
k = 2 2.8431 2.7406 (2.6343, 2.8470)
k = 3 3.0972 3.0397 (2.9244, 3.1551)
k = 4 1.7695 1.2890 (1.2636, 1.3144)
k = 5 4.2420 3.5445 (3.4488, 3.6403)

Table 7: Calculated waiting times for network of 5 G|GI|s queues.

according to the working times. The pharmacy assistants are working each day a week
from 8:00-17:30 with breaks from 10:00-10:20, 12:00-12:30, and 15:00-15:20. These breaks
are also included in the arrival times. Even though some departments are having breaks
in turns. Within the transitions between queues also extra time is included when the end
time of a service is not during working times. This extra time is included in the end-service
time. The transition rates are also deviated from the first Data-file. Some transitions could
not be extracted from the data-file like, r10 and r12. These transitions are set to 0. The
external arrivals are also treated a bit different. There are only probabilities that a patient
came via the SEH, DEP or POS. Therefore, a random generator generates a number from
1 to 3 with these probabilities, whenever an Arrival Event needs to schedule a new arrival.
Instead of always reschedule an Arrival at a certain queue, k = 1,2,3. A new arrival is
scheduled from a list, therefore, the warm-up periods are almost not included for the real
case simulations.

Furthermore, there is a second data-file that delivers information about the service
times. This second file is delivered by pharmacy assistants. Since the response of the
pharmacy assistants was low in a very short time frame, the variances of the services are
adapted by hand, to prevent extreme variances. These assistants had to fill in the service
times for each patient type for the POS, SEH, department and AOA, for admission and
discharge. The service times consisted out of three parts, preparation, walk to/of the
patient and the conversation itself. Later the service times for the AOA and department
are added for the DEP. This is done with help of data-file 1, from which the proportion
of patients at the AOA could be extracted. In the DES the service times are uniform
distributed. Therefore, it was also needed to reduce the variance of the service times
since, otherwise, the service times could have become negative. There is not a uniform
distribution at queue 4. The service time for queue 4 is log-normal distributed. A well-
known distribution for estimating the stay at the hospital. From the second data-file
together with knowing how the number of pharmacy assistants in the weekend differ, a
distribution of servers over the different queues could be made. Since pharmacy assistants
are handling both admission and charge conversations in some cases the number of servers
is not an integer. In such cases, the number of pharmacy assistants is rounded to an
integer. Again, all the exact parameters could be found in C.

The only parameter that is not defined yet is the accepted sojourn time at queue 5,
EWacc,5. This variable is defined with help of the DES. From the first data-file the rl
could be determined for each patient type p. This the proportion of patients that leave the
hospital, before a necessary conversation took place. The results are presented in Table
8 and are rounded to 4 decimals. These fractions are combined to one value for rl, since
in this research this combined fraction is tried to reduce. There is no priority in patient
types. The total fraction rl is computed with help of the fractions of patient types arriving
at queue 6. This is resulting in rl = 0.3691. To simulate this rate with the simulation, the
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Type 0-17 18-49 50-74 75+
rl 0.6494 0.4305 0.3297 0.3700

Table 8: Proportion of leaving patients before discharge conversation.

Figure 4: The probability rl for different accepted sojourn times at queue 5.

simulation is run with a range of different accepted sojourn times. During this simulation
the rl is also estimated. The accepted sojourn time that leads to the least error with the
real rl = 0.3691, is taken as real value for the accepted sojourn time. The values for the
accepted sojourn times ranges between 1.5 and 1.61. For these values, the rl could be
simulated, see Figure 4. From this test, the accepted sojourn time at queue 5 is chosen
to be on EWacc,5 = 1.555. This sojourn time is used to test the other scenarios. The
estimated rl is in this case estimated by 0.3715, see also the results for scenario S0 in Table
9.

Scenario S0 is described above with all related parameters. In scenarios S1, S2 and
S3 these parameters are changed, and the outcomes for rl are compared with S0. In the
first scenario, S1, the effect of replacing a part of the conversations by digital phone calls
is tested. When a digital phone call takes place the mean service time decreases. The
walking time is about 1 to 2 minutes. The average time a patient picks up the phone is
estimated about 30 seconds, 0.5 minutes. So the service time changes at the queues 1, 2,
3 and 5. In scenario S1 three cases are tested.

C1: Testing when 50% of the conversations are replaced by digital phone calls.

C2: Testing when 75% of the conversations are replaced by digital phone calls.

C3: Testing when 100% of the conversations are replaced by digital phone calls.

The results are exposed in Table 9. The second scenario S2 is based upon another dis-
tribution of servers at the queues. When a pharmacy assistant is shifted from queue k
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to queue k∗, the waiting time at queue k is increasing, but the waiting time at queue k∗

is decreasing. The waiting time of queue 5 needs to decrease in order to reduce rl. The
waiting time at the SEH should not increase, since emergencies are important to cover
quick. So two cases are possible. The first case: remove a pharmacy assistant from the
POS and add that pharmacy assistant to the Dep. Preparation. The second case: remove
a pharmacy assistant from the DEP and add this assistant to Dep. Preparation. Another
possibility would be to check the first case with the condition that every patient leaving
from the POS is not checked again at the DEP, so this means that r32 = 0. This results in
a lower waiting time at queue 2. For case 2 this needs not to be checked. Since this extra
rule, r32 = 0, does not lead to changes in the waiting time of the POS. In total there are
three cases to be checked:

C1: At DEP, 3 pharmacy assistant and at Dep. Preparation 4. (r32 6= 0)

C2: At POS 2 pharmacy assistant and at Dep. Preparation 4. (r32 6= 0)

C3: At DEP, 3 pharmacy assistant and at Dep. Preparation 4. (r32 = 0)

In the original process there are 4 pharmacy assistants at DEP, 3 pharmacy assistants
at the POS and 3 pharmacy assistants at the Dep. Preparation. The results are again
exposed in Table 9. In scenario S3 the scenarios S1 and S2 are combined. Since there are
three cases for S1 and three cases for S2, there are in total nine cases for S3. These cases
are defined as Cm,n, where m is the corresponding case in S1 and n the corresponding case
in S2. The results of this last scenario are also exposed in Table 9. The overall reduction of
rl in percentages is presented in Table 10. As expected the leaving probability, rl, reduces
when scenario S1, S2, and S3 are applied. The combination of scenario S1 and S2 in
scenario S3 seems the most effective, especially case C3,2.

Scenario Case rl 95%-CI Queue EWj 95%-CI
S0 C1 0.3715 (0.3697, 0.3734) k = 1 0.0114 (0.0094, 0.0135)

k = 2 0.9533 (0.9500, 0.9566)
k = 3 0.0960 (0.0879, 0.1042)
k = 5 1.0644 (1.0604, 1.0685)
k = 6 0.0215 (0.0205, 0.0224)

S1 C1 0.3514 (0.3496, 0.3532) k = 1 0.0099 (0.0084, 0.0114)
k = 2 0.9109 (0.9078, 0.9140)
k = 3 0.0919 (0.0879, 0.0959)
k = 5 1.0117 (1.0076, 1.0157)
k = 6 0.0258 (0.0247, 0.0269)

C2 0.3368 (0.3352,0.3385) k = 1 0.0120 (0.0104, 0.0136)
k = 2 0.8877 (0.8848, 0.8907)
k = 3 0.0960 (0.0915, 0.1005)
k = 5 0.9784 (0.9746, 0.9821)
k = 6 0.0270 (0.0262, 0.0278)

C3 0.3283 (0.3266, 0.3302) k = 1 0.0091 (0.0078, 0.0104)
k = 2 0.8690 (0.8662, 0.8718)
k = 3 0.0995 (0.0946, 0.1045)
k = 5 0.9580 (0.9542, 0.9618)
k = 6 0.0291 (0.0283, 0.0300)
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Scenario Case rl 95%-CI Queue EWj 95%-CI
S2 C1 0.2327 (0.2310, 0.2343) k = 1 0.0099 (0.0084, 0.0114)

k = 2 1.6230 (1.6148, 1.6313)
k = 3 0.1031 (0.0971, 0.1090)
k = 5 0.7335 (0.7307, 0.7362)
k = 6 0.0662 (0.0648, 0.0676)

C2 0.2283 (0.2265,0.2300) k = 1 0.0101 (0.0087, 0.0114)
k = 2 0.9514 (0.9484, 0.9544)
k = 3 0.2144 (0.2078, 0.2209)
k = 5 0.7254 (0.7226, 0.7283)
k = 6 0.0677 (0.0660, 0.0695)

C3 0.2306 (0.2289, 0.2322) k = 1 0.0096 (0.0082, 0.0110)
k = 2 1.6020 (1.5936, 1.6104)
k = 3 0.0897 (0.0852, 0.0942)
k = 5 0.7306 (0.7276, 0.7336)
k = 6 0.0675 (0.0658, 0.0691)

S3 C1,1 0.2106 (0.2091, 0.2121) k = 1 0.0109 (0.0095, 0.0122)
k = 2 1.5384 (1.5317, 1.5451)
k = 3 0.0927 (0.0875, 0.0979)
k = 5 0.6994 (0.6964, 0.7024)
k = 6 0.0789 (0.0767, 0.0811)

C1,2 0.1978 (0.1961, 0.1994) k = 1 0.0092 (0.0079, 0.0106)
k = 2 1.4887 (1.4834, 1.4939)
k = 3 0.0878 (0.0831, 0.0925)
k = 5 0.6783 (0.6755, 0.6811)
k = 6 0.0884 (0.0865, 0.0904)

C1,3 0.2117 (0.2100, 0.2134) k = 1 0.0101 (0.0086, 0.0115)
k = 2 1.5124 (1.5076, 1.5171)
k = 3 0.0877 (0.0830, 0.0924)
k = 5 0.6994 (0.6966, 0.7022)
k = 6 0.0775 (0.0761, 0.0790)

C2,1 0.1978 (0.1963, 0.1993) k = 1 0.0078 (0.0063, 0.0092)
k = 2 1.4892 (1.4840, 1.4944)
k = 3 0.0897 (0.0856, 0.0937)
k = 5 0.6788 (0.6763, 0.6814)
k = 6 0.0888 (0.0868, 0.0909)

C2,2 0.1945 (0.1929, 0.1960) k = 1 0.0099 (0.0085, 0.0114)
k = 2 0.8872 (0.8844, 0.8899)
k = 3 0.2184 (0.2108, 0.2259)
k = 5 0.6718 (0.6691, 0.6745)
k = 6 0.0877 (0.0855, 0.0900)

C2,3 0.1968 (0.1953, 0.1984) k = 1 0.0095 (0.0079, 0.0111)
k = 2 1.4646 (1.4605, 1.4687)
k = 3 0.1023 (0.0960, 0.1085)
k = 5 0.6760 (0.6735, 0.6785)
k = 6 0.0874 (0.0852, 0.0896)

C3,1 0.1861 (0.1845, 0.1878) k = 1 0.0092 (0.0077, 0.0103)
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Scenario Case rl 95%-CI Queue EWj 95%-CI
k = 2 1.4584 (1.4534, 1.4634)
k = 3 0.0880 (0.0841, 0.0918)
k = 5 0.6617 (0.6588, 0.6645)
k = 6 0.0948 (0.0926, 0.0970)

C3,2 0.1851 (0.1835, 0.1868) k = 1 0.0098 (0.0081, 0.0114)
k = 2 0.8665 (0.8635, 0.8694)
k = 3 0.2139 (0.2072, 0.2206)
k = 5 0.6563 (0.6535, 0.6591)
k = 6 0.0955 (0.0932, 0.0977)

C3,3 0.1878 (0.1862, 0.1894) k = 1 0.0109 (0.0089, 0.0129)
k = 2 1.4330 (1.4282, 1.4378)
k = 3 0.0923 (0.0876, 0.0969)
k = 5 0.6619 (0.6594, 0.6645)
k = 6 0.0938 (0.0916, 0.0959)

Table 9: Results for different scenarios

Scenario Case Reduction rl 95%-CI
S1 C1 5.41 % (0.0493, 0.0590)

C2 9.34 % (0.0888, 0.0977)
C3 11.63 % (0.1112, 0.1209)

S2 C1 37.36 % (0.3693, 0.3782)
C2 38.55 % (0.3809, 0.3903)
C3 37.93 % (0.3750, 0.3838)

S3 C1,1 43.31 % (0.4291, 0.4371)
C1,2 46.76 % (0.4633, 0.4721)
C1,3 43.01 % (0.4256, 0.4347)
C2,1 46.76 % (0.4635, 0.4716)
C2,2 47.64 % (0.4724, 0.5192)
C2,3 47.03 % (0.4659, 0.4743)
C3,1 49.91 % (0.4945, 0.5034
C3,2 50.17 % (0.4972, 0.5061)
C3,3 49.45 % (0.4902, 0.4988)

Table 10: Reduction of rl in percentages.

6 Discussion

This discussion consists out of theoretical and practical implications. The discussion is
started with theoretical implications. In the theoretical implications, the limitations of
this report are discussed. These limitations are opportunities for future research. The
limitations are split into three parts. The first part is about future research in ZGT. The
second part is about how to improve this specific research. The final part is about what
future research that could take place in mathematical sense.

In order to reduce medication verification errors at ZGT, in future research the focus
could be shifted from increasing the discharge rate to, for example, increasing the admission
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rate or on how to improve bad communication between doctors, nurses and pharmacy
assistants, which could also lead to medication verification errors. It is strongly advised
that in such a case, first the notation of admission and discharge become more consequent.
It is hard to extract data from the available data, since some same cases having different
notations. Furthermore, future research would be easier if the information about patients is
organized in timelines. So per timeline the admission and discharge of a patient, including
his visit to the SEH, POS or department. This is also one of the points, which could lead
to a better results in this specific research. Another point of improvement would be to
estimate the service times better, The estimation of the service times are now based on
three pharmacy assistants, and these values are much deviating. Furthermore, the results
of this research could be improved by a better distribution of servers or with the option to
let servers work for a proportion of the day. Next to a better distribution of servers, the
research results could also be improved by including more patient types. For example, types
per age per department. A prioritizing of the patients would also improve this research.
Mathematically, an important step needs to be done in analyzing the performance of the
QNA. Which factors leads to better estimations of the QNA. In such a way simulation could
be verified better. The verification as described in chapter 4 was not optimal because of
this point. In future research, the verification may be extended as well.

In the practical implications, it is discussed what the results of this research could
mean in practice. First, it is important to mention that the results in this report are
not exact numbers for the real problem, since some assumptions are made, which may
be incorrect, see theoretical implications. This report is about the relationship between
scenarios. The results for scenario S3 are the best, especially the cases C3,1, C3,2 and C3,3.
Nevertheless these cases are based on the case in scenario S1 that all conversation become
digital. This way of taken conversations may also lead to medication verification errors.
Since elderly people may not understand the process of digital phone calls. Moreover, the
expression of a patient is a good indicator for the pharmacy assistant to trust a patient
during medication verification. This recognizing of expressions may be lost when applying
digital phone calls. Furthermore, the assumption is made that the average time to pick up
a phone is 30 seconds, which may also deviate much, for example, when a patient does not
pick up the phone at all. Summarized, by the previous mentioned reasons, the cases C3,n

are not advised. The advise would be to start in ZGT with implementing the first two
cases of S1, to see the effect of digital phone calls on the leaving rate rl. After this testing
period other scenarios/cases could be added. Especially, case C1,2 and C2,2 are advised,
since the waiting time at the POS is relatively low. Furthermore, with the simulation
program other scenarios could be tested. For example, it could be tested what the effects
are of changing working times. Any scenario that is based on changing the arrival rates,
service rates, server distribution, or working times, could be tested.

7 Conclusion

In this article, the process of medication verification at ZGT is tested, with help of a
simulation. The simulation is verified by the queueing network analyzer. It is advised to
implement the cases C1,2 and C2,2. These cases include testing the process when 50 / 75
% of the conversations are digital and when a pharmacy assistant is shifted from the POS
to discharge preparation. Other scenarios could also be tested on advise of the simulation
presented in this report. Shifting the working times may lead, for example, to a decrease
of the waiting times, see Appendix D. The scenario that working times are split in two
parts may also lead to an increasing waiting time.
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A Filled in numbers verification

In Table 11, the "1", "2" and "3" after rate, variance and after servers, are representing
three situations. The first situation is verification with a infinite server queue at position 4.
The second situation represents verification with queue 4 as a finite server 4. In situation
three, the infinite queue is left out. So there are only 5 queues.

Queues i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
External M|M|s Rate 1 2.0 2.0 2.0 0 0 0
rates Var 1 1

4
1
4

1
4 0 0 0

GI|M|s Rate 1 2.0 2.0 2.0 0 0 0
Var 1 1

12
1
12

1
12 0 0 0

M|G|s Rate 1 2.0 2.0 2.0 0 0 0
Var 1 1

4
1
4 1/4.0 0 0 0

GI|G|s Rate 1/2/3 2.0 2.0 2.0 0 0 0
Var 1/2/3 1

12
1
12

1
12 0 0 0

Service M|M|s Rate 1 1.5 1.5 1.5 1.5 1.5 1.5
rates Var 1 1

2.25
1

2.25
1

2.25
1

2.25
1

2.25
1

2.25

GI|M|s Rate 1 0.7 0.35 1.1 1.5 1.2 1.5
Var 1 1

0.72
1

0.352
1

1.12
1

1.52
1

1.22
1

1.52

M|G|s Rate 1 0.7 0.35 1.1 1.5 1.2 1.5
Var 1 ( 2

0.7)2 1
12 ( 2

0.35)2 1
12 ( 2

1.1)2 1
12 ( 2

1.5)2 1
12 ( 2

1.2)2 1
12 ( 2

1.5)2 1
12

GI|G|s Rate 1 0.7 0.35 1.1 1.5 1.2 1.5
Var 1 ( 2

0.7)2 1
12 ( 2

0.35)2 1
12 ( 2

1.1)2 1
12 ( 2

1.5)2 1
12 ( 2

1.2)2 1
12 ( 2

1.5)2 1
12

GI|G|s Rate 2 0.7 0.33 1.05 1.2 1.2 1.5
Var 2 ( 2

0.7)2 1
12 ( 2

0.33)2 1
12 ( 2

1.05)2 1
12 ( 2

1.2)2 1
12 ( 2

1.2)2 1
12 ( 2

1.5)2 1
12

GI|G|s Rate 3 0.7 0.33 1.05 1.2 1.5
Var 3 ( 2

0.7)2 1
12 ( 2

0.33)2 1
12 ( 2

1.05)2 1
12 ( 2

1.2)2 1
12 ( 2

1.5)2 1
12

Servers 1 3 7 2 100 5 2
Servers 2 3 7 2 5 5 2
Servers 3 3 7 2 5 2

Table 11: Rates and server distributions

The transition matrix in Table 12 is suitable for the situations 1 and 2. For situation
three this matrix is a 5x5 matrix, with the same probabilities but without queue 4.

rij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
i = 1 0.0 0.05 0.0 0.7 0.0 0.0
i = 2 0.0 0.0 0.0 1.0 0.0 0.0
i = 3 0.0 0.05 0.0 0.95 0.0 0.0
i = 4 0.0 0.0 0.0 0.0 1.0 0.0
i = 5 0.0 0.0 0.0 0.0 0.0 0.5
i = 6 0.0 0.0 0.0 0.0 0.0 0.0

Table 12: Transition matrix
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B Queuing Network Analyser

Step 1. Calculate the aggregate arrival at queue j, λj :

λj = γj +

J∑
i=1

λirij (11)

In this equation γj is the external arrival rate at queue j, J is the number of queues,
and rij is the transition rate from queue i to queue j.

Step 2. Calculate the load of a server at queue j, φj :

φj =
λjE[Sj ]

sj
. (12)

In this equation E[Sj ] is the mean service time at queue j.

Step 3. Calculate the flow from queue i to queue j, λij :

λij = λirij (13)

and calculate the fraction of arrivals from queue i to queue j, qij :

q0j =
γj
λj
, qij =

λij
λj
. (14)

In this equation q0j denotes the fraction of external arrivals.

Step 4. Calculate the squared coefficient of variation (scv) at queue j for the inter
arrival times (c2A,j) with help of the scv for the external inter arrival times (c20j), and
the scv of the service times (c2S,j).

c2A,j = aj +

J∑
i=1

c2A,ibi,j , with

aj = 1 + wj

(
(q0jc

2
0j − 1) +

J∑
i=1

qij((1− rij) + rijφ
2
ixi)

)
(15)

Furthermore,

xi = 1 +
1
√
mi

(max(c2S,i,
1

5
)− 1), (16)

in which mi is the number of servers at queue i. In the continuation of this article,
the letter s will be used. We also have,

bij = wjqijrij(1− φ2i ), (17)

wj =
(
(1 + 4(1− φj)2(ηj − 1)

)−1
, (18)

and

ηj =

(
J∑
i=0

q2ij

)−1
(19)

22



Step 5. Calculate the mean waiting time at queue j, E[Wj ]:

E[Wj ] = E[WM |M |s]
c2A,j + c2S,j

2
(20)

In this equation, E[WM |M |s] is the mean waiting time of an M|M|s queue.

C Parameters real system

The arrival rates in Table 13 are the probabilities that a customer comes via the SEH,
DEP or POS. The service time 1 and 2 in the same Table are the parameters for either
the uniform or the log-normal distribution. The transition rates in Table 14 are 0 when
the cell is empty.

Type Name Queues
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

0-17 Ext. Arrival Rates 0.0021 0.9895 0.0084
Service time 1 0.0083 0.0167 0.0333 1.7454*24 0.0167 0.0333
Service time 2 0.3667 0.3667 0.3083 4.0701*576 0.2333 0.1750

18-49 Ext. Arrival Rates 0.0193 0.8909 0.0898
Service time 1 0.1000 0.1000 0.2250 2.0027*24 0.0333 0.0833
Service time 2 0.4000 0.4000 0.2917 9.4412*576 0.2417 0.1917

50-74 Ext. Arrival Rates 0.0278 0.8019 0.1703
Service time 1 0.2167 0.2167 0.2167 3.3721*24 0.1333 0.1000
Service time 2 0.3917 0.4083 0.5000 23.0095*576 0.2500 0.2167

75+ Ext. Arrival Rates 0.0366 0.8537 0.1097
Service time 1 0.2167 0.2167 0.2500 4.8597*24 0.1167 0.1167
Service time 2 0.3917 0.4000 0.5000 28.8601*576 0.2667 0.2500

All Distribution Servers 2 4 3 1000 3 2

Table 13: Service rates and distribution of servers of queues for four patient types
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Type Queues
0-17 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

i = 1 1
i = 2 1
i = 3 0.0021 0.9979
i = 4 1
i = 5 0.3235
i = 6

18-49 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
i = 1 1
i = 2 1
i = 3 0.0214 0.9786
i = 4 1
i = 5 0.5337
i = 6

50-74 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
i = 1 1
i = 2 1
i = 3 0.0665 0.9335
i = 4 1
i = 5 0.6336
i = 6

75+ i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
i = 1 1
i = 2 1
i = 3 0.0354 0.9646
i = 4 1
i = 5 0.5097
i = 6

Table 14: Transition rates for four patient types

D Results extra scenarios

In this appendix, extra results are exposed for new scenarios. These are added, since these
might also be useful as an advise. These are not included in the main text, since the time
was insufficient to document it in a precise way.

S4: Changing working times for admission.

S5: Combining cases S2 and S4

The cases for S4:

C1: Working times admission 1 hour later.

C2: Working times admission 1 hour earlier.

C3: Working times admission 2 hours earlier.

The cases of S5 are combining the cases 1 and 2 of S2 and the cases 2 and 3 of S4.
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Scenario Case rl 95%-CI Queue EWj 95%-CI
S4 C1 0.3690 (0.3673, 0.3707) k = 1 0.0459 (0.0406, 0.0511)

k = 2 2.9983 (2.9939, 3.0027)
k = 3 0.2462 (0.2359, 0.2564)
k = 5 1.0622 (1.0584, 1.0660)
k = 6 0.0217 (0.0209, 0.0225)

C2 0.3633 (0.3616, 0.3650) k = 1 0.0075 (0.0062, 0.0088)
k = 2 0.5371 (0.5342, 0.5400)
k = 3 0.0557 (0.0540, 0.0574)
k = 5 1.0419 (1.0379, 1.0459)
k = 6 0.0213 (0.0205, 0.0221)

C3 0.3039 (0.3018, 0.3060) k = 1 0.0207 (0.0109, 0.0305)
k = 2 1.5831 (1.5712, 1.5949)
k = 3 0.1961 (0.1740, 0.2182)
k = 5 0.8814 (0.8776, 0.8852)
k = 6 0.0212 (0.0203, 0.0222)

S5 C1,2 0.2260 (0.2245, 0.2275) k = 1 0.0070 (0.0057, 0.0082)
k = 2 1.1056 (1.0977, 1.1135)
k = 3 0.0527 (0.0498, 0.0556)
k = 5 0.7199 (0.7173, 0.7226)
k = 6 0.0669 (0.0655, 0.0683)

C1,3 0.1629 (0.1611, 0.1647) k = 1 0.0259 (0.0174, 0.0345)
k = 2 2.4705 (2.4580 2.4829)
k = 3 0.1910 (0.1719, 0.2102)
k = 5 0.6075 (0.6049, 0.6101)
k = 6 0.0690 (0.0672, 0.0709)

C2,2 0.2237 (0.2222, 0.2252) k = 1 0.0083 (0.0070, 0.0097)
k = 2 0.5382 (0.5356, 0.5408)
k = 3 0.1382 (0.1335, 0.1429)
k = 5 0.7130 (0.7104, 0.7156)
k = 6 0.0658 (0.0644, 0.0673)

C2,3 0.1600 (0.1583, 0.1617) k = 1 0.0177 (0.0077, 0.0276)
k = 2 1.5816 (1.5714, 1.5918)
k = 3 0.6878 (0.6595, 0.7162)
k = 5 0.6013 (0.5988, 0.6039)
k = 6 0.0672 (0.0649, 0.0694)

Table 15: Results for extra scenarios
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