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Abstract

The RAAD-score is a measurement for long term irreversible joint damage for patients
with rheumatoid arthritis. The goal of this study is to predict the RAAD-score and to see
which variables can explain the RAAD-score. Patient classification will be used for both.
Multiple methods were considered for patient classification. The methods that are applied
to the data are CART, random forest, and Naive Bayes. One of the importance measures
from the random forest method is used to determine the most important variables. Based on
the computations in this research it can be concluded that predicting the RAAD-score for
patients with rheumatoid arthritis, using one of the mentioned methods, is not easy. Main
reason for this is that the data set is complicated and on both numerical and classification
aspects.

Keywords: Rheumatoid arthritis, RAAD-score, patient classification.

1 Introduction

Rheumatoid arthritis (RA) is a chronic joint inflammation, which if untreated results in ir-
reversible joint damage. Medication may suppress inflammation and disease activity. The
current guidelines advise a treat-to-target strategy. The treatment is aimed at lowering the dis-
ease activity, which is usually measured with the “disease activity score” (DAS). The outcome
of treatment after five to ten years can be assessed and scored with the "Rheumatoid Arthritis
Articular Damage"-score, or RAAD-score. This outcome may depend on baseline characteris-
tics and interventions. Interventions, mostly treatment with various drugs, are determined by
national and international guidelines. However, in routine medical care there is practice varia-
tion, while treatment strategies also change over time, with the development of new drugs. This
study aims to investigate whether the RAAD-score can be explained by specific variables. The
approach will be to compare mathematical data analysis methods, in particular CART, random
forest, and Naive Bayes, for patient classification, prediction of RAAD-score, and effectiveness
of applied treatments per patient. The following questions can be asked in order to answer the
question whether the RAAD-score can be explained by specific variables:

1. On which attributes may the RAAD-score depend?

2. Which attributes explain the long-term outcome of RA as expressed by the RAAD-score?

(a) Which data analysis methods are suitable for patient classification?

3. Is the RAAD-score in part explained by variation in the applied treatments?
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1.1 Background

The RAAD-score of a patient is determined by physical examination of 35 small and large
joints. Each joint is scored separately, 0 if no damage, 1 if partial irreversible damage, and
2 for severe irreversible damage [1]. That means that the range of the RAAD-score is in the
integers from 0 to 70. For example, a score of 2 is applied when a knee has to be replaced by
a joint prosthesis. A low RAAD-score, below 3, means there is little to no damage. A high
RAAD-score, above 20, indicates that there are a lot of (severely) damaged joints.

2 Method

The classification of patients can be used to see which attributes determine the RAAD-score.
The complete data set contains data of 1381 patients. Since to aim is to investigate the long-
term outcome of patients with RA, not all data are used. More details about the data can be
found in Section 3 of this article.

The programming language R is used for classification. There are multiple classification
methods already available in R. The methods below are the methods that were considered.

Naive Bayes

The Naive Bayes algorithm is a simple method that uses Bayes’ theorem for classification.
Bayes’ theorem states that

P (A|B) =
P (B|A)P (A)

P (B)
.

When using Naive Bayes for classification, the classification becomes the probability that an
object belongs to a certain class, given the features of the object. In the formula above, A is
the class, and B is the intersection of all the features of the object: B1 ∩B2 ∩ · · · ∩Bn, where
n is the number of known attributes of the object. Since Naive Bayes assumes independence
between all attributs and the denominator does not depend on the class [2],

P (A|B) ∝ P (B1 ∩B2 ∩ · · · ∩Bn|A)P (A) = P (B1|A)P (B2|A) . . . P (Bn|A)P (A).

The likelihood that the class is A is then P (B1|A)P (B2|A) . . . P (Bn|A)P (A). To get the prob-
ability that the class is A, the likelihood must be divided by the total likelihood across all
possible classes.

Naive Bayes can only handle categorical data, so it is not ideal for data sets with many nu-
merical attributes [2]. In order to apply Naive Bayes, all numerical attributes and the outcome,
the RAAD-score, need to be categorised.

C5.0

The C5.0 algorithm makes decision trees, of which the leaf nodes correspond to the different
classes. A decision tree starts with a root node, this is the first parent node. At each node
a decision is made about the category or value of an attribute. After a decision is made, a
new node, child node, is reached. In these child nodes, another decision is made based on an
attribute and the child node becomes a parent node. This process continues until there is no
further decision to be made and a leaf node is reached. Since, for C5.0, the leaf nodes represent
the classes, the tree is called a classification tree.

C5.0 can handle both numerical AND categorical attributes. For the numerical attributes
it makes binary splits and for categorical attributes two or more splits are used depending
on the number of categories. To determine the attribute that should be used for the next
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split/decision, the C5.0 algorithm uses information gain. The information gain is calculated
using entropy. The entropy of a given segment of data S is the expected information content
of S and is calculated as follows:

Entropy(S) = −
∑
k

pk log2 pk,

where pk is the proportion of objects that fall into class k. Then the information gain is obtained
using

Information Gain = Entropy(S)−
∑
i

wi Entropy(Pi),

where Entropy(S) is the entropy before the split, wi is the proportion of objects in the ith split,
and Entropy(Pi) is the entropy in the remaining data after split i is made. The attribute with
the highest information gain is used next for splitting.

Even though the attributes can be either categorical or numerical, the class variable needs
to be categorical in order to apply C5.0. The leaf nodes should give the RAAD-score of a
patient. Since the RAAD-score is numerical, the RAAD-score needs to be categorised.

CART

CART stands for Classification And Regression Tree. In the basis, CART is similar to C5.0.
A decision tree created by CART also starts with a root node where a decision is to be made.
After each decision, another node is reached. In the nodes, either a decision is made or the node
is a leaf node if there is no further decision to make. With CART, each decision is a binary
split. So for categorical attributes with more than two categories, the categories are grouped so
that there are two groups that each go to a separate branch of the decision tree. For numerical
attributes, a splitting point is determined.

Furthermore, the CART algorithm allows the outcome to be either numerical or categorical.
If the outcome is categorical, it creates a classification tree. If the outcome is numerical, it
creates a so called regression tree. However, a regression tree does not actually use regression
to create a decision tree. Since the RAAD-score is numeric, a regression tree is obtained.
Instead of having classes at the leaf nodes of the decision tree, the leaf nodes of the regression
tree give the average value of the outcome of the patients in that leaf node.

The splitting criterion that is used depends on whether the tree is a classification or regres-
sion tree. When CART is used for building a classification tree, the splitting criterion that is
used is the Gini index. The Gini index is calculated using the following formula:

Gini = 1−
∑
k

pk
2,

where pk is the proportion of objects that fall into class k. The Gini index is a value between
0 and 1. If the Gini index is 0, then all elements belong to the same class. If the Gini index is
1, then the objects are randomly distributed over the classes. The attribute with the smallest
Gini index is used next for splitting when building a decision tree.

For building a regression tree, the goal of the CART algorithm is to find leaf nodes such
that the decision tree minimises the sum of squared residuals (SSR). The SSR is given by:

SSR =

J∑
j=1

∑
i∈Rj

(
yi − ŷRj

)2
,

where Rj are the leaf nodes of the regression tree, yi are the actual values of the objects in the
leaf node Rj , and ŷRj is the mean of the outcome of the objects in the leaf node Rj .
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Decision trees are very prone to over fitting. That means a tree will be very good at
reproducing the training data, but may not perform as well for the testing data. In order to
avoid over fitting, a technique called cost-complexity pruning can be used to remove some splits
that do not improve the prediction. Now the goal is to minimise

SSR+ (size penalty) =
J∑

j=1

∑
i∈Rj

(
yi − ŷRj

)2
+ αJ,

where SSR is as before, α is the complexity parameter, and J is the number of leaf nodes.
A small value for α results in a very large tree, as the penalty for the tree size is very small.
Taking a relatively large value for α results in a tree that only consist of a root node. The
implementation of CART takes α = 0.01 as default.

To find the best value for α, the approach is to start with a small value for α and then
increase α in steps. At each step, the cross validation error is computed, the tree for which the
α gives the smallest cross validation error is then used.

Random forest

Decision trees have high variance. So algorithms that create a single tree may give a very
different decision tree for a slightly different subsets of the same data. Ensemble methods can
be used to reduce the variance and increase the performance for predicting. One ensemble
method is random forest. Random forest takes samples with replacement, bootstrap samples,
from the training set and creates regression trees for each sample. The bootstrap samples each
come with their own test set, the out-of-bag (OOB) observations. Each tree finds an estimate
of the outcome of the object, ŷ1, . . . , ŷB, where B is the number of bootstrap samples. Then
an overall prediction is made using the average of the found estimates.

Each time random forest makes a split, only a random subset m of the attributes is consid-
ered. For regression, m = p/3 is used, where p is the number of attributes. This way the trees
have low correlation, since strong features are not used first in every tree and so the trees will
differ from each other.

The downside of random forest, compared to a model with just one decision tree, is that
the decision making process cannot be visualised.

M5’

M5’ is an algorithm that builds a model tree. A model tree is very similar to a regression tree,
the difference is in the leaf nodes. In the leaf nodes of a model tree, a linear regression model is
used to determine the outcome. This is also why model tree generally gives better results than
regression trees.

Since model trees use linear regression, all attributes and the outcome should be numerical.
Therefore, the categorical data must be transformed to numerical.

Artificial Neural Networks

The method of artificial neural network is a so called black-box method. The transformation
from input to output is obscured by an imaginary box. Artificial neural network models use the
understanding of how a biological brain works to model the relations between input and output
signals. Neural networks require all attributes to be numerical. This means the categorical
attributes in the data set need to be transformed to numerical attributes.
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Support Vector Machines

Support Vector Machines create a boundary between points in multidimensional space. The
goal is to create a hyper plane that divides the space in to partition the data into groups of
similar class values. Like Artificial Neural Network, Support Vector Machine is a black-box
method. Furthermore, Support Vector Machines also require all attributes to be numerical. So
the categorical attributes need to be transformed to numerical.

Due to time restrictions and the practical applicability of the methods to the complex data
set, not all methods are applied. The CART algorithm, random forest, and Naive Bayes are
the methods that were used to analyse the data.

3 Data

The data set contains the attribute values per patient. Each patient can be identified by an
anonymous patient number. The attributes used for patient classification are presented in Table
3.1. Although there is global awareness of risk factors for future joint damage despite treatment,
there is little information regarding the prediction of long-term damage. Each of the attributes
in Table 3.1 may potentially influence the RAAD-score.

These attributes are not all independent from each other. For example, the ACR 2010 score
depends on six other variables. One of those is BSE, which in part depends on age and BMI.
Also, the variables about smoking are related to each other.

The original data base contains variables that represent the same attribute, e.g. “serology”
reflects the presence or absence of rheumatoid factors (attribute RF) and/or anti-CCP anti-
bodies (attribute CCP). In cooperation with a rheumatologist the data set was reduced to the
presented set of attributes, which includes the most representative variables.

The data set contains both categorical and numerical valued attributes. The outcome, the
RAAD-score, is numeric. Furthermore, there are some missing data. Most implementations of
the methods can still be applied to the data despite the missing data. Only random forest does
not allow missing values in the data.

Not all classification methods described in Section 2 can be applied directly to the data, for
some methods the data need to be transformed.

3.1 Transformation from numerical to categorical

In the description of C5.0 and Naive Bayes, it is mentioned that some data need to be trans-
formed from numerical to categorical. In order to do this, the numbers are put into categories,
the so-called bins. Each bin is an interval, if a number is inside the interval, it will be put into
that bin. In order to do this, appropriate cut points need to be determined.

3.2 Transformation from categorical to numerical

M5’, Artificial Neural Networks, and Support Vector Machines are algorithms that require data
to be numerical. For transforming categorical data to numerical data, there are two options.
The first option is integer encoding. With integer encoding, every category of an attribute is
assigned an integer value. The integer values have an ordered relationship with each other,
while this might not be the case in the original categorical attribute(s). So this method is not
suitable for categorical attributes that do not have an ordered relation. The second option is
to use one hot encoding. Using this method does not result in numerical values that have an
ordered relationship. This method creates new variable, so called dummy variables, based on
each category of a categorical attribute. It will assign a 1 if an object belongs to the category,
and a 0 if not.
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Table 3.1: Overview of attributes.

Attribute Type Description
Gender cat. Male or female.
Age at diagnosis num. Age of patient in years at the time of diagnosis.
BMI num. Body mass index.
Doctor cat. The doctor of the patient.
Affected joints cat. Number and size of affected joints.
Duration of arthritis cat. Whether the patient has symptoms for more or less

than 6 weeks at the time of diagnosis.
Acute phase reaction cat. Whether BSE and/or CRP are normal or not.
BSE num. Measurement for the sedimentation rate of red

blood cells (ESR).
CRP num. Measurement for the amount of the protein CRP in

blood.
ACR 2010 score num. Score on scale 1-10 based on affected joints, serology,

duration of arthritis, acute phase reaction, BSE, CRP.
Erosions cat. Whether there are erosions in joints before diagnosis.
Prednisolon cat. Whether the patient had prednisolon before diagnosis.
Smoke status cat. Whether the patient smokes or not, or has stopped

smoking, at the time of diagnosis.
Type of tobacco cat. If applicable, type of tobacco the patient smokes/smoked.
Packyears num. Packyears = (years smoking)·(amount per day)/20,

before and after diagnosis, until RAAD-score date.
Amount per day num. Number of cigarettes, cigars, etc. smoked per day.
RF num. Measure of auto-antibody in the blood common to RA.
CCP num. Measure of antibodies against the body’s own protein CCP.
Steroids cat. Whether the patient got steroids and in which form.
Average DAS num. Average of the disease activity score.
Initial therapy cat. First treatment strategy that was used in a patient.
Start of b-DMD num. Time, in months, between diagnosis and the patient

getting treated with b-DMD. B-DMD is an expensive
drug that is work well.

Duration of b-DMD num. Duration of treatment with b-DMD in days.
Start of pred num. Time, in days, between diagnosis and the patient

getting treated with prednisolon.
Duration of pred num. Duration of treatment with prednisolon in days.
Start of mtx num. Time, in days, between diagnosis and the patient

getting treated with methotrexaat.
Duration of mtx num. Duration of treatment with methotrexaat, in days.
Start of bDMARD num. Time, in days, between diagnosis and the patient

getting a bDMARD type of treatment. bDMARD are
biological Disease Modifying Anti-Rheumatic Drugs,
which are relatively expensive.

Duration of bDMARD num. Duration of treatment with bDMARD, in days.
Start of cDMARD num. Time, in days, between diagnosis and the patient

getting a cDMARD type of treatment. cDMARD are
classical Disease Modifying Anti-Rheumatic Drugs.

Duration of cDMARD num. Duration of treatment with cDMARD, in days.
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4 Results

Since RA is a progressive disease, the duration of RA plays a big role in the height of the
RAAD-score. Therefore only data of patients with a diagnosis in 2004 or later, and with a
disease duration of more than four years are used for analysis. This leaves a data set containing
522 patients. Of these patients 90% of the data are used for training and the other 10% are
used for testing.

Figure 4.1 displays the distribution of the RAAD-score using both histograms and box plots.
In the histogram, it can be seen that most patients have a RAAD-score of 0, and the amount
of patients decreases in each category of the RAAD-score as the RAAD-score increases. The
horizontal box plot also shows that most patients have a RAAD-score of 2 or less, the dots in
the box plot show potential outliers.

0 (0−2] (2−4] (4−7] (7−10] (10−15] (15−20] (20−30] (30−45] (45−70]

RAAD−score for diagnosis in or after 2004

0
50
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(a) Histogram.

0 10 20 30 40

Boxplot RAAD−score for diagnosis in or after 2004

(b) Box plot.

Figure 4.1: Distribution of RAAD-scores.

4.1 CART

The CART algorithm is the only method that can be applied directly to the data without
transformation, so this method will be investigated first. Applying the CART algorithm to the
training data results in the decision tree as shown in Figure 4.2.

The tree is read from top to bottom. The first split is based on the BMI of the patient. If
this is lower than 19.57, then node 9 is reached, it can be seen that there are some patients with
a low BMI that have a high RAAD-score. The box plot in this node shows that the RAAD-score
is wide spread for these patients as the median is quite low, while the mean RAAD-score of
patients in this node is 12.9. This difference can be explained by the fact that there are only
11 patients in this node with wide spread RAAD-scores.

If the BMI of the patient is higher than or equal to 19.57, then there is another decision to
be made in the next node, node 2. The split in node 2 is based on BSE. The tree can be read
continuing this way until the patients have reached a leaf node. The box plots in the nodes do
not show what the average RAAD-scores of the patients in the nodes are.

From the decision tree, the following rules are used for determining the RAAD-scores of
patients. The first number is the RAAD-score, followed by when this score is assigned.

• 12.91 when BMI < 19.57,

• 8.57 when BMI ≥ 19.57 & BSE ≥ 87.5,

• 0.95 when BMI ≥ 19.57 & BSE < 87.5 & Lft.bij.start < 63.5,

• 1.98 when BMI ≥ 19.57 & BSE < 87.5 & Lft.bij.start ≥ 63.5.
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Figure 4.2: CART decision tree.

Next to the decision tree and the corresponding rules, the algorithm also gives an indication
of the variable importance with respect to the other attributes, see Table 4.1. The variable
importance is based on the reduction of SSR per attribute, and scaled so that the total sums
up to 100.

Table 4.1: Variable importance of regression tree.

BMI BSE Age at start Start of pred.

74 19 6 1

4.1.1 Model performance

Using the decision tree and the testing data set, it can be predicted how the model performs.
The summary statistics of the predicted and the actual RAAD-scores of the test set can be
found in Table 4.2. The summary statistics show the minimum, 25% quantile (1st. Qu.), 50%
quantile (median), 75% (3rd Qu.) quantile, maximum, and the mean. The quantiles, together
with the minimum and maximum say something about the distribution to RAAD-scores. The
mean gives the average RAAD-score of the patients.

Since the algorithm takes the average RAAD-score of the patients in the training set in each
node, it is expected that the lowest RAAD-scores of the prediction are not equal to zero. Overall,
the decision tree model does seem to do quite well at predicting the RAAD-score. However,
the prediction of a patient having a RAAD-score of 12.91 might not be the same patient that
has an actual RAAD-score of 14. Therefore, other measures for model performance need to be
examined.
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Table 4.2: Summary statistics of the predictions using the decision tree and the testing
data.

Min. 1st Qu. Median Mean 3rd Qu. Max.

actual 0.00 0.00 0.00 2.00 2.25 14.00
predicted 0.95 0.95 0.95 1.44 1.98 12.91

Another indicator of model performance that can be used, is correlation. The correlation
measures the relation between two vectors, it gives a value between -1 and 1. A correlation
close to -1 or 1 indicates a strong linear relation. A correlation around 0 indicates there is
most likely no relation between the two vectors. The correlation between the predicted and
the actual RAAD-scores of the test set is 0.35. This does not indicate a very strong relation
between the predicted and actual RAAD-scores.

Furthermore, the mean squared error (MSE) and the mean absolute error (MAE) can be
used as a measure for model performance. The MSE is related to the SSR, the aim of the
regression tree is to minimise the SSR as described in Section 2. The MAE gives insight in the
difference between the prediction and the actual RAAD-score on average. Let n be the number
of patients in the test set, then the MSE is given by:

MSE =
SSR
n

=
1

n

 J∑
j=1

∑
i∈Rj

(
yi − ŷRj

)2 ,

and the MAE is given by:

MAE =
1

n

J∑
j=1

∑
i∈Rj

∣∣yi − ŷRj

∣∣ .
For both measures hold that the closet the value to zero the better the model performs. The
MSE is mostly used to compare performance of methods. The MSE, using the predicted and
actual test data, is 9.26. The MAE is found to be 1.93. This indicates that the model’s
prediction differs on average 1.93 form the actual RAAD-score.

4.2 Pruning CART

Before the pruning can be done, a very large regression tree has to be created. As described
in Section 2, this can be done by setting the complexity parameter α very small at 0.00001.

Figure 4.3: Pruned CART decision tree.

The tree obtained with α = 0.00001
has 40 splits, where the tree before
had 3 splits.

Now, analysing the cost param-
eter values and the corresponding
cross-validation errors, the smallest
cross-validation error is when α =
0.046. The full table containing
the different cost parameters and
the corresponding cross-validation
errors can be found in Appendix A.
This α gives a tree with only 1 split
and is the same split as the first split
in Figure 4.2. The pruned tree can
be found in Figure 4.3, and has the
following rules:
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• 12.91 when BMI < 19.57,

• 1.39 when BMI ≥ 19.57.

The only variable that is important in the pruned tree is BMI.
In order to compare the performance of the pruned regression tree to the regression tree

of Section 4.1, the same measures are used. The summary statistics of the pruned model are
displayed in Table 4.3. From the summary statistics, it can be seen that the model performs
worse for low RAAD-scores, but the predicted mean comes closer to the actual mean than
before. The fact that the prediction for the maximum RAAD-score is the same as before can
be explained since the original and the pruned tree have a corresponding leaf node.

Table 4.3: Summary statistics of the predictions using the pruned decision tree and
the testing data.

Min. 1st Qu. Median Mean 3rd Qu. Max.

actual 0.00 0.00 0.00 2.00 2.25 14.00
predicted 1.39 1.39 1.39 1.61 1.39 12.91

The correlation between the prediction from the pruned tree and the actual testing data is
0.36, which is slightly better than with the original CART model.

The MSE of the pruned tree is 8.96, where it originally was 9.26. This would indicate that
the pruned model performs better than the original. However, the MAE of the pruned model
is 2.05, where it originally was 1.93, and indicates that the original model performs better.

Taking all performance measures into account, it cannot be concluded whether the original
or the pruned decision tree performs better.

4.3 Random forest

Another method that uses regression trees is random forest. It creates a lot of trees and takes
the average of all the outcomes of the separate trees. Unfortunately, random forest is not able
to handle missing data. Therefore the missing data need to be removed from the data set. Some
attributes are missing for more than 50 patients. The same training and testing sets are used
as before. In order to still have a reasonable size data set, these attributes are not used for the
random forest. The removed attributes are: type of tobacco, packyears, amount per day, and
CCP. For the remaining data, the patients that have missing values for one or more attributes
are removed from the data. This results in a training set of 383 patients, and a test set of 39
patients.

In order to determine the number of trees for the random forest, first a random forest with
a lot of trees, 1000 in this case, is created. The MSE of each size random forest is computed,
the size with the smallest MSE is used for the random forest. The number of trees that is used
for the random forest is 127.

The random forest has two measures for variable importance. The first is %IncMSE. This
is the increase in MSE of predictions, estimated with the OOB observations, as a result of
a variable being permuted. First the MSE of the full random forest is calculated with the
OOB observations, let this be MSE0. Then for each variable j in the model, the variable
is permuted (randomly the values are shuffled). A new model is created with the permuted
variable j and again the MSE error is calculated using the OOB observations, call this MSEj .
Now the %IncMSE of variable j is MSE0 −MSEj averaged over all trees in the random forest
and normalised by the standard deviation of the differences.
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The second variable importance measure is IncNodePurity. It is the total decrease in SSR
from splitting on the variable, averaged over all trees. For both measures of variable impor-
tance, a higher score indicates higher variable importance. The variable importance of the
random forest, using both measures, is given in Figure 4.4, a table with the exact values of the
importance measures can be found in Appendix B.

Figure 4.4: Importance of variables in random forest.

Both measures indicate that BSE is an important variable that can explain the RAAD-score.
However, the IncNodePurity is more unstable and bias, since it may vary each model run and it
favours variables with many levels. Therefore the %IncMSE is used to determine the important
variables.

In order to see how an attribute influences the prediction of the RAAD-score, one should
look at all separate decision trees to say something about this.

4.3.1 Model performance

In order to compare the performance of the random forest model to the original and the pruned
regression tree, the same measures are used. The summary statistics of the prediction and
the actual RAAD-scores of the test set can be found in Table 4.4. The summary statistics
imply that the random forest model predicts the outcome for patients with a low RAAD-score
quite close. For patients with a higher RAAD-score the random forest seems not to predict the
outcome very well.

Table 4.4: Summary statistics of the predictions using random forest and the testing
data.

Min. 1st Qu. Median Mean 3rd Qu. Max.

actual 0.00 0.00 1.00 2.28 3.50 14.00
predicted 0.21 0.81 1.27 1.59 1.96 6.43
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The correlation between the prediction of the random forest and the actual test data is
0.51. This is higher than previously found when using the CART algorithm, and indicates a
moderate relation. The MSE of this model is 8.76, and the MAE is 1.87. These are both lower
than the MSEs and MAEs seen before in the CART model.

However, since the training and testing data are not the same as before, the comparison is
not fair. In order to do a fair comparison, the CART algorithms (original and pruned) need to
be applied to the new data. The summary statistics in Table 4.5 and the performance measures
in Table 4.6 show the comparison between the algorithms.

The performance measures in Table 4.6 show that the random forest does perform better
than both the original and pruned CART models.

Table 4.5: Summary statistics of the predictions and the testing data.

Min. 1st Qu. Median Mean 3rd Qu. Max.

actual 0.00 0.00 1.00 2.28 3.50 14.00
predicted with CART 1.10 1.10 1.10 1.54 1.10 9.50
predicted with pruned CART 1.48 1.48 1.48 1.68 1.48 9.50
predicted with random forest 0.21 0.81 1.27 1.59 1.96 6.43

Table 4.6: Performance measures of different models.

correlation MSE MAE

CART 0.31 10.65 2.14
pruned CART 0.38 9.82 2.08
random forest 0.51 8.76 1.87

4.4 Naive Bayes

Where CART and random forest give an indication of which variables are important for predict-
ing the RAAD-score, Naive Bayes only does classification. As stated in Section 2, all attributes
and the outcome need to be categorical in order to apply Naive Bayes.

For Naive Bayes, the attributes that have %IncMSE above 1 are used for classification
with Naive Bayes. These attributes are: BSE, erosions, duration of arthritis, ACR 2010 score,
steroids, duration of b-DMD, acute phase reaction, and doctor. The variables BSE, ACR 2010
score, and duration of b-DMD need to be transformed from numerical to categorical. The
other attributes are already categorical. Table 4.7 shows the intervals for the categories of each
attribute. The cut points have been chosen such that each category contains approximately
the same number of patients. For the duration of b-DMD, this was not possible since most
patients never started this treatment. The patients that never started with b-DMD are put in
a separate category, the other patients are divided over four intervals such that each interval
contains approximately the same number of patients.

Table 4.7: Attributes from numerical to categorical and their cut points.

Attribute Categories

BSE ≤ 11 (11, 19] (19, 29] (29, 43] > 43
ACR 2010 score ≤ 5 (5, 6] (6, 7] (7, 8] > 8
duration of b-DMD 0 (0, 1139] (1139, 1990] (1990, 2740] > 2740
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The RAAD-score is categorised using the same intervals as in Figure 4.1a: 0, (0, 2], (2, 4],
(4, 7], (7, 10], (10, 15], (15, 20], (20, 30], (30, 45], and (45, 70]. These categories are selected in
consultation of a rheumatologist.

The Naive Bayes algorithm is trained with the training data, which contain 90% of the
patients. The other 10% is used to compare the actual categories of the RAAD-sore to the
predicted categories. This comparison can be found in Table 4.8. Since Naive Bayes has
categorical output, as opposed to numerical, the performance measures used before cannot be
applied here.

Table 4.8: Cross table of Naive Bayes predictions.

Actual
Predicted 0 (0, 2] (2, 4] (4, 7] (10, 15] Row total

0 27 9 4 1 0 40
(0, 2] 2 2 0 0 1 5
(2, 4] 0 1 1 0 1 3
(4, 7] 2 1 0 0 0 3

Column total 31 13 5 1 2 52

It can be seen that patients are quite often predicted to have a RAAD-score of 0, where this
in not actually the case. From the table, the accuracy can be calculated:

Accuracy =
number of correctly predicted outcome

total patients in test set
=

27 + 2 + 1

52
≈ 0.58.

An accuracy of 58% is not very high. The model classifies quite a lot of patients to have a
RAAD-score of 0, while the actual RAAD-score is higher. Patients with an actual RAAD-score
of 0 get correctly classified. But the model also classifies lots of other patients at 0, while their
actual RAAD-score is higher.

There are multiple explanations for the model not to perform very well. First, numerical
attributes needed to be transformed to categorical before Naive Bayes could be applied. This
does not contribute to the accuracy of the model. Second, more than half of the patients have
a RAAD-score of 0, as can be seen in Figure 4.1a. These patients might all have very different
attribute values, which might lead to the model favouring the class with a RAAD-score of 0.

Furthermore, Naive Bayes assumes that all attributes are independent from each other.
With this data, this is not the case. For example, the ACR 2010 score depends, among other
variables, on duration of arthritis, acute phase reaction, and BSE. Also the initial therapy may
very well be related to the doctor of the patient.

5 Conclusion

This research was performed in order to discover which mathematical methods are suitable for
for predicting the RAAD-score of patients with rheumatoid arthritis, and to find whether this
score can be explained by certain variables. Of the available methods, three methods were
applied to the data: CART, random forest, and Naive Bayes.

The classification of patients, and the prediction of their RAAD-score, proved to be compli-
cated. There are lots of variables that may have an effect on the outcome, and the predictions
do not seem to be very accurate.

The CART algorithm and the random forest gave insight in which attributes are important
when predicting the RAAD-score. The %IncMSE measure of the random forest is the most
robust and is used to decide which attributes can explain the outcome. These attributes are:
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BSE, erosions, duration of arthritis, ACR 2010 score, steroids, duration of b-DMD, acute phase
reaction, and doctor. These are also the variables that where used to train the Naive Bayes
model. The Naive Bayes did not perform well with an accuracy of only 58%. This could be
in part be explained by the complicated data, the transformation of data, and the assumed
independence between variables.

Of the three methods that were applied to the data, random forest performed best when
it comes to predicting the RAAD-score of patients. Next to this, random forest also gives a
robust measure for variable importance. Based on this study, random forest is suggested as a
mathematical method to both predict and explain the RAAD-score.

However, it might be worthwhile in future research to explore other methods that could
perform better when it comes to predicting, and maybe explaining, the RAAD-score. Also, it
might be an option to apply the used models to a bigger data set as more data becomes available,
as it is known that the amount of available data influences the accuracy of the predictions.
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A Cost complexity parameter for CART decision tree

In the table, the cross-validation error is denoted as ‘xerror’.

Table A.1: Cost complexity parameter and corresponding cross-validation error.

Complexity parameter α n split rel error xerror xstd

0.178099986 0 1.00000 1.00202 0.35698
0.045805216 1 0.82190 0.96699 0.26698
0.013090727 2 0.77609 0.99227 0.26784
0.008967565 3 0.76300 1.01958 0.26733
0.007314297 5 0.74507 1.02030 0.26548
0.006383011 6 0.73775 1.01646 0.26673
0.005324613 7 0.73137 1.03018 0.26820
0.005249864 9 0.72072 1.02880 0.26823
0.004327849 11 0.71022 1.03397 0.26839
0.004187611 12 0.70589 1.03619 0.26838
0.003542870 13 0.70171 1.03189 0.26714
0.002786289 14 0.69816 1.02985 0.26713
0.002685929 17 0.68981 1.03223 0.26712
0.002590203 18 0.68712 1.03385 0.26711
0.002299863 19 0.68453 1.03141 0.26694
0.002271724 20 0.68223 1.03141 0.26694
0.002206665 21 0.67996 1.03090 0.26694
0.001859298 22 0.67775 1.02756 0.26801
0.001632541 23 0.67589 1.02927 0.26801
0.001534011 24 0.67426 1.03045 0.26800
0.001004791 25 0.67273 1.03222 0.26800
0.000830883 26 0.67172 1.03210 0.26800
0.000696784 28 0.67006 1.03585 0.26871
0.000567865 29 0.66936 1.03504 0.26871
0.000482623 30 0.66879 1.03518 0.26871
0.000395735 31 0.66831 1.03619 0.26937
0.000299526 32 0.66792 1.03673 0.26937
0.000279807 33 0.66762 1.03782 0.26937
0.000255099 34 0.66734 1.03791 0.26937
0.000251068 35 0.66708 1.03791 0.26937
0.000214267 36 0.66683 1.03791 0.26937
0.000199145 37 0.66662 1.03857 0.26938
0.000056019 38 0.66642 1.03937 0.26998
0.000015657 39 0.66636 1.03950 0.26998
0.000010000 40 0.66635 1.03916 0.26998
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B Variable importance random forest

Table B.1: Variable importance of random forest.

Attribute %IncMSE IncNodePurity

Geslacht -0.6078274 11.886931
Arts 1.1107536 276.937520
Aangedane.gewrichten -2.4541231 183.355937
Duur.artritis 2.0208749 3.460980
Acuut.fase.reactie.in.het.bloed 1.4770729 21.566630
BSE 3.9569586 591.195417
CRP 0.9890549 153.127449
ACR.2010.score 1.6938300 119.456026
Erosies 2.3664290 70.452218
Prednisolon 0.9775856 2.949803
Rookstatus -1.1923082 50.212746
Rf 0.4328144 27.812808
Steroiden 1.6314448 228.977837
BMI 0.3153830 813.391498
Lft.bij.start -0.3925925 467.008760
duur.tot.start.b.DMD..mnd. 0.4566311 40.534761
Duur.b.DMD..days. 1.5293312 24.755168
Gemiddelde.DAS -0.8870447 432.827346
Initiele.therapie -1.0772182 161.216640
duur.tot.start.pred..days. 0.1879447 89.078654
totale.duur.pred..days. 0.7667765 90.853192
duur.tot.start.mtx..days. 0.1581210 283.881614
totale.duur.mtx..days. 0.2268293 110.980177
duur.tot.start.bDMARD..days. 0.7494410 52.079925
totale.duur.bDMARD..days. 0.7609155 34.075975
duur.tot.start.cDMARD..days. 0.4727015 109.033823
totale.duur.cDMARD..days. -0.5141646 313.108337
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