
BSc Thesis Applied Mathematics

Influence of popularity on tie
strength in tie-decay networks

Jop Zwienenberg

Supervisor: Dr. C. Stegehuis

June 26, 2020

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science



Preface

This paper was written to fulfill the graduation requirements of the bachelor Applied
Mathematics at the University of Twente. The research was performed from April 20,
2020 up to June 30, 2020. I would like to thank my supervisor Dr. C. Stegehuis for her
essential support and guidance during the entire time of my bachelor thesis.



Influence of popularity on
tie strength in tie-decay networks

Jop Zwienenberg

June 26, 2020

Abstract

The concept of tie strength can be used to analyze interactions. The tie strength
describes the strength of your friendship with one of your friends. It increases when an
interaction takes place, and then decays continuously over time if no new interaction
takes place. This concept can be very useful to find the most important connections in
a social network. This paper investigates the influence of popularity on the tie strength
in such tie-decay networks. To model popularity, we use an interaction probability
pij between persons i and j at every time step, which depends on the popularities
of persons i and j, the number of people in the network and the average popularity
among all people in the network. Consequently, the expected value of the long-term
tie strength between person i and a randomly chosen other person given i’s popularity
can be calculated. For this it is assumed that the popularity of all the other people in
the network follows a power law distribution. The results of this analysis are used to
analyze real life data of interactions: face-to-face contact data during 20-second time
intervals in different contexts. By analyzing this data, the distributions of real-world
tie strength are determined. Then, by using several network data statistics with,
among other things, the skewness, the differences between these distributions can be
explained.

Keywords: tie strength, popularity, interaction probability, people, friends, data, dis-
tribution, temporal networks

1 Introduction

In most networks, interactions appear and disappear over time. Over the past decade more
and more people became interested in the complex ‘connectedness’ of modern society. This
connectedness is found in the growth of the Internet and theWeb; there is a growing amount
of ways to communicate online through instant message networks such as WhatsApp. The
fast spreading of news and information as well as epidemics and financial crises around
the world are other illustrations of this connectedness. Motivated by these developments
in the world, there has been an increasing interest to investigate highly connected networks.

The interactions in these networks can be analyzed using ‘tie strength’. Usually, inter-
actions in social networks follow ‘bursty’ patterns. That means that you may interact
very frequently during a small time period, but it is also possible that the time between
two interactions is very long. This is the reason why it is good to have a measure for the
connectedness between two people. In this paper, the tie strength describes the strength of
your friendship with one of your friends. When you interact with one of your friends, the
tie strength increases. When you do not interact for a certain time period, the tie strength
of your friendship decreases. So the more interactions between two people, the higher the
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tie strength between them. In this way the concept of tie strength can be useful to find
the most important connections in a social network.

In a network some people are more popular than others. We will define the following
definition for popularity: "In sociology, popularity is how much a person, idea, place, item
or other concept is either liked or accorded status by other people. Liking can be due to
reciprocal liking, interpersonal attraction, and similar factors. Social status can be due
to dominance, superiority, and similar factors" [1]. For example, a friendly person may
be considered likable and therefore more popular than another person, and a rich person
may be considered superior and therefore more popular than another person. In general,
at a certain time, a popular person is more likely to interact with another person than a
less popular person. This is because, according to the previously mentioned definition of
popularity, a popular person is more liked or accorded status by other people than a less
popular person. Consequently, a popular person is also more likely to interact with another
popular person than with a less popular person. In these assumptions lies the basis of our
models.

In earlier models for tie strength [2, 3, 4], these differences in popularity between peo-
ple are not considered: it is assumed that every person has an equal popularity. This is in
contrast to the differences in popularity between people we will assume in our models. We
will model this by assuming that popularities are distributed according to a power law. A
power law is very unequally distributed: a relatively small fraction of people has a large
amount of popularity, which is a good representation of reality.

In this paper we investigate the mathematical properties of tie strength when some people
in the network are more popular than others. Consequently, the major research question
is: What happens to the tie strength when some people in the network are more popular
than others?

In order to model the increase and decrease in tie strength, we use the tie-decay model of
Ahmad [2] as our first model: during each time step, two people can have an interaction
or not. This model can be found in Subsection 2.1. If there is an interaction, then the tie
strength increases by 1. If there is no interaction, assuming α is the decay parameter, then
the tie strength decays exponentially. We will look at the effect of different values of α on
the tie strength values in this model. The second model we will use is the tie-decay model
of Jin [3] (Subsection 2.2): if there is an interaction, then the tie strength goes up to 1. If
there is no interaction, then the tie strength still decays exponentially.

We then analyze the long-term expected tie strength given popularity at time step t (for
example: t = 2 means at the end of the second time step from t = 1 to t = 2) in both
models by expanding these models to the situation that some people in the network are
more popular than others. For this reason, the long-term expected tie strength derived in
the work of Zuo [4] will include the probability of an interaction between two persons i
and j (pij) at time step t. We will not use an equal and stationary interaction probability
for all people, but one that depends on popularity and is unequal and stationary. This is
taken from the work of van der Hofstad [5].

The results of this analysis are used to analyze real life face-to-face contact data, during
20-second time intervals, in different contexts in Section 3. This data is obtained through

2



the SocioPatterns sensing platform [6]. Then, using the network data statistics for these
interaction networks on the Network Data Repository [7], the shape of the histogram plots,
in which the distribution of the tie strength is represented, can be explained.

To conclude, the goal of this paper is to investigate the influence of popularity on the
long-term expected tie strength in tie-decay networks. Using the resulting relation, con-
clusions about the distribution of tie strength are drawn from real life interaction data.

2 Behaviour of tie strength

In this section we will investigate the influence of popularity on the long-term expected
tie strength in tie-decay networks. The underlying time in these networks is continuous
and non-negative, which is measured in small increments δt. The tie strength between two
people depends on the history of interactions. That is why the tie strength between each
pair of people at t = 0 is considered as being 0. It increases when an interaction takes
place, and then decreases over time if no new interaction takes place. We assume that,
during a single time step, two people either have one interaction or no interaction. We
suppose that the growth and decay pattern of each pair of people is independent of all
other pairs, so we independently consider each pair during each time step.

2.1 Tie strength in the tie-decay model of Ahmad

As mentioned in the introduction, we use the tie-decay model of Ahmad [2] for our first
model. We will denote this model as model 1 for future reference. During a time step
of length δt, if there is an interaction between two people, which occurs with a varying
probability 0 ≤ pij ≤ 1 (more about the exact value later), then the tie strength of the
friendship between these two people increases by 1. If there is no interaction, which occurs
with complementary probability 1 − pij , then the tie strength between them decays by a
factor of e−αδt.

It is important to examine multiple values of αδt [8]. In this paper, we focus on the
decay and boosting behavior of ties between two people. Therefore, it is more meaningful
to examine the product of the time step (δt) and the decay rate (α), instead of studying
them individually. For simplicity, we take δt = 1 in this model, which is in line with [4].
Consequently, time will be discrete and non-negative. Later, in Subsection 2.1.1, we will
see the effect of different values of α (and thus different values of αδt) on the tie strength
values for different popularities in the theoretical model 1. In model 2 this effect will be
similar. In the next section about real life interaction data in model 1 (Section 3), we will
see the effect of these different values on the distribution of the tie strength. We then try
to explain this effect by using the effect of different values of α on the tie strength in model 1.

We can rewrite the aforementioned model in a single expression so that it enables us
to calculate the tie strength at a certain time step t:

Definition 2.1. If zt is a Bernoulli random variable (so zt = 1 if there is an interaction
during time step t and zt = 0 if there is no interaction) and assuming the length of a time
step δt = 1, then we can write the tie strength st between two persons i and j at a certain
time step t as:

st = zt + e−α(1−zt)st−1. (1)
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In Figure 1, we show an illustrative example of the model’s tie-decay dynamics [4]. The
tie strength between two people increases by 1 when there is an interaction during a time
step, and it decays exponentially when there is no interaction:

Figure 1: An illustration of dynamics in the tie-decay model of Ahmad [2]. In
this simulation, we have N = 1000 people, a decay rate of α = 0.01, a homogeneous
interaction probability of p = 0.003, and t = 1000 time steps. The vertical axis
shows the tie strength between one pair of people. Six interactions occur between
these two people.

In the work of Zuo [4] this same model is used and subsequently the long-term expected
tie strength is calculated for one interaction probability (pij) at time step t. This leads to
the following theorem:

Theorem 2.2 (Equation (3) of [4]). The long-term expected tie strength between two per-
sons i and j with interaction probability pij and decay parameter α is given by:

E[s] := lim
t→∞

E[st] = E[s]e−α(1− pij) + (E(s) + 1)pij =
pij

(1− e−α)(1− pij)
. (2)

Proof. Note that we use pij as probability of success (interaction probability) of the
Bernoulli random variable zt. As a consequence, by the law of total expectation and
using equation (1):

E[st] = E[zt + e−α(1−zt)st−1] = E[zt] + E[e−α(1−zt)st−1]

=E[zt] + E[e−α(1−zt)st−1|zt = 1]P (zt = 1) + E[e−α(1−zt)st−1|zt = 0]P (zt = 0)

=pij + E[st−1]pij + e−αE[st−1](1− pij) = pij(1 + E[st−1]) + (1− pij)e−αE[st−1].

Now in the paper of Zuo [4] it is verified that we reach a stationary state as t → ∞. In
this state it holds that limt→∞E[st−1] = limt→∞E[st] = E[s]. Taking t → ∞, we obtain
the following:

E[s] := lim
t→∞

E[st] = pij(1 + lim
t→∞

E[st−1]) + (1− pij)e−α lim
t→∞

E[st−1]

=pij(1 + E[s]) + (1− pij)e−αE[s].

From here we isolate E[s] and obtain:

E[s] =
pij

(1− e−α)(1− pij)
.

4



2.1.1 Long-term expected tie strength given popularity

We can now obtain the long-term expected tie strength given popularity, which depends on
the probability of an interaction between two persons i and j (pij) at every time step t. The
definition of pij in the paper of van der Hofstad [5] is now used, which is in the generalized
random graph model. Here h = (hi)i∈[n] are the node weights of nodes [n] = {1, 2, ..., n}
and

∑
i∈[n] hi is the total weight of all nodes. Then the probability that there is an edge

between two nodes i and j equals:

pij =
hihj∑

i∈[n] hi + hihj
. (3)

The interaction probability is proportional to the product of the given weights of nodes
i and j: hihj . This implies the following: the higher the product of the node weights
of a certain pair of nodes, the higher the probability that there is an edge between these
nodes. In [5] they have the following explanation for using equation (3) to determine this
probability: nodes with high weights have a higher probability to have many neighbors
than nodes with small weights. Nodes with extremely high weights could act as the ‘hubs’
[5] observed in many real-world networks. Hubs can be understood as centers of these
real-world networks. Based on the probability in equation (3), we will use the following
formula for our model. It is important to note that Hi is a random variable and hi a
realization of this random variable:

Definition 2.3. If every person i in the network has a popularity Hi = hi, N is the number
of people in the network and 〈h〉 is the average popularity among all people in the network,
then the probability that two persons i and j interact at every time step is:

pij =
hihj

N〈h〉+ hihj
. (4)

In order to be able to obtain an illustration of the long-term expected tie strength given
Hi = hi and Hj = hj against the popularity hi, which we will derive later in equation (7),
we need values for α, hj , 〈h〉 and N . The values of hj and 〈h〉 will be based on the
assumption that the popularity of all the people in the network other than person i follows
a power-law distribution. A power law is very unequally distributed: a relatively small
fraction of people has a large amount of popularity. Below we have the mathematical
definition of a power-law distribution using [9]. To be more precise, p(hj) is here the
probability density function (pdf) of the distribution of hj for hj ≥ hjmin :

p(hj) =
β − 1

hjmin

(
hj
hjmin

)−β
. (5)

Consequently, the first moment of hj [9] is defined as:

〈h〉 = hjmin

(
β − 1

β − 2

)
. (6)

This is only defined for β > 2. When 1 < β < 2, the mean as well as the variance are
infinite and when 2 < β < 3, the mean of the popularity is finite, but the variance is
infinite, which is the case for many real-world networks. When β > 3, the mean and the
variance are both finite. This is the reason we will choose β = 2.5 in case of performing
simulations. Now hjmin has to be chosen: the minimum popularity of person j. We will
choose hjmin = 1, so that equations (5) and (6) become easier to read. At this point, we
have enough knowledge to derive the long-term expected tie strength given popularities
Hi = hi and Hj = hj in equation (7) and given only popularity Hi = hi in equation (8):
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Theorem 2.4. The long-term expected tie strength between two persons i and j given their
popularities Hi = hi and Hj = hj, using equations (2) and (4) is:

E[s|Hi = hi, Hj = hj ] =
hihj

(1− e−α)N〈h〉
. (7)

Then, consequently, the long-term expected tie strength between a person i and a randomly
chosen other person given only popularity Hi = hi becomes:

E[s|Hi = hi] =
3hi

(1− e−α)N〈h〉
. (8)

Proof. Using Equation 2 in combination with Equation 4, we obtain the following:

E[s|Hi = hi, Hj = hj ] =

hihj
N〈h〉+hihj

(1− e−α)(1− hihj
N〈h〉+hihj )

=
hihj

(1− e−α)(N〈h〉+ hihj − hihj)
=

hihj
(1− e−α)N〈h〉

.

Then, using the law of total expectation and the formula for expectation: E[f(hj)] =∫∞
1 f(hj)p(hj)dhj , with p(hj) from equation (5) with β = 2.5 and hjmin = 1, we acquire
the following:

E[s|Hi = hi] = E
[
E[s|Hi = hi, Hj = hj ]

]
= E

[
hihj

(1− e−α)N〈h〉

]
=

hi
(1− e−α)N〈h〉

E[hj ] =
hi

(1− e−α)N〈h〉

∫ ∞
1

hj
1.5

h2.5j
dhj

=
1.5hi

(1− e−α)N〈h〉

∫ ∞
1

h−1.5j dhj =
−3hi

(1− e−α)N〈h〉
[h−0.5j ]∞1 =

3hi
(1− e−α)N〈h〉

.

Now, values for hj can be obtained by generating power-law distributed random num-
bers. The formula for this is taken from the work of Clauset [10]. Here r is uniformly
distributed in the interval 0 ≤ r < 1:

hj = hjmin(1− r)−
1

β−1 . (9)

In the following plots we will use equations (6) and (9) to plot equations (7) and (8) against
the popularity of person i (hi). In line with [4], we will use α = 0.01 in both equations.
We will generate values for hj 10 times according to the power-law distribution. In other
words, the value of r is determined 10 times. In Figures 2a and 2b the different values of
hj can be distinguished by different line colors. For each hi in the range from 1 to 100, the
corresponding long-term expected tie strength is determined for respectively N = 100 and
N = 1000. We expect that the higher the popularity of person i, the higher the expected
long-term tie strength. And for N = 1000 (so 1000 people in the network), in general,
the expected long-term tie strength is anticipated to be lower at the same popularity
compared with the situation N = 100. More people in the network implies a lower chance
of interacting with a specific person j according to equation (4), so also a lower expected
long-term tie strength between persons i and j. The results of plotting equation (7) against
the popularity of person i, which are simulated in MATLAB, can be seen in Figure 2a and
2b:
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(a) N = 100 people (b) N = 1000 people

Figure 2: Expected long-term tie strength given popularity of person i (hi) and
person j (hj) as a function of popularity of person i for 100 people in Figure 2a and
1000 people in Figure 2b for α = 0.01.

Now we will also plot the long-term expected tie strength given onlyHi = hi in equation
(8) against the popularity hi. We expect this will result in only one increasing line, since
now the expectation does not depend on the random variable hj (as in equation (9))
anymore, as can be seen in equation (8).

(a) N = 100 people (b) N = 1000 people

Figure 3: Expected long-term tie strength given popularity of person i (hi) as a
function of popularity of person i for 100 people in Figure 3a and for 1000 people
in Figure 3b for α = 0.01.

These results are exactly in line with our expectations: the more popular a person i,
the higher the expected long-term tie strength with a random other person j in the net-
work. Also, the expected long-term tie strength for N = 1000 is indeed, in general, lower
at the same popularity compared with the situation N = 100. Mathematically, this can
be explained as follows: if we have a look back at equation (7) and (8), then we see that
a higher value of N implies a lower value for the expected tie strength.

As a side note, we will now look at what impact a lower and a higher value of α has
on the plots of the long-term tie strength against popularity in Figures 2a and 3a for
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N = 100. We do not consider N = 1000, since the effect of different values of α on the tie
strength values for different popularities will be similar. First, we plot the long-term tie
strength against popularity for a lower value of α (α = 0.0001):

(a) Given popularity of person i (hi) and j (hj) (b) Given popularity of person i (hi)

Figure 4: Expected long-term tie strength given popularity of person i (hi) and
person j (hj) in Figure 4a and given popularity of person i (hi) in Figure 4b as a
function of popularity of person i for N = 100 and α = 0.0001.

If we compare Figure 2a with Figure 4a, then we see that the positive slope of the line
increases in Figure 4a as α decreases. The same goes for Figure 3a compared with Figure
4b. This implies that the ratio between the long-term tie strength values of relatively
popular people and less popular people is way higher in the case of a lower value of α, due
to the higher long-term tie strength values of relatively popular people. Mathematically,
this can be explained as follows: if we have a look back at equations (7) and (8), then
we see that a lower value of α implies a higher exponent of e−α(1−zt), thus a higher value
of e−α(1−zt), which implies a lower decrease in tie strength if two persons i and j do not
have an interaction in a certain time interval. This means that the long-term expected
tie strength attains higher values and that the positive slope of the line is larger as well,
since the line is linear. The line represents the long-term expected tie strength at different
values for hi.

Second, we plot the long-term tie strength against popularity for a higher value of α
(α = 1):
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(a) Given popularity of person i (hi) and j (hj) (b) Given popularity of person i (hi)

Figure 5: Expected long-term tie strength given popularity of person i (hi) and
person j (hj) in Figure 5a and given popularity of person i (hi) in Figure 5b as a
function of popularity of person i for N = 100 and α = 1.

If we compare Figure 2a with Figure 5a, then we see that the positive slope of the line
decreases in Figure 5a as α increases. The same goes for Figure 3a compared with Figure
5b. This implies that the ratio between the long-term tie strength values of relatively
popular people and less popular people is way lower in the case of a higher α. Looking
back at equations (7) and (8), we see that a lower value of α implies lower values for the
long-term expected tie strength and thus a smaller positive slope of the line.

2.2 Tie strength in the tie-decay model of Jin

We will now have a look at a different tie-decay model than the model of Ahmad [2],
namely the model of Jin [3] for our second model. We will denote this model as model 2
for future reference. We will see if it results in a similar plot of the expected tie strength
against popularity. During a time step of length δt, if there is an interaction between two
people, which occurs with a varying probability pij , then the tie strength of the friendship
between these two people goes up to 1, as opposed to the model of Ahmad [2] in equation
(1) in which the tie strength increased by 1 after an interaction. If there is no interaction,
which occurs with complementary probability 1− pij , then the tie strength still decays by
a factor of e−αδt.

We also take δt = 1 in this model. Consequently, time will be discrete and non-negative.
We can rewrite the aforementioned model in a single expression so that it enables us to
calculate the tie strength at a certain time step t:

Definition 2.5. If zt is a Bernoulli random variable (so zt = 1 if there is an interaction
during time step t and zt = 0 if there is no interaction) and assuming the length of a time
step δt = 1, then we can write the tie strength st between two persons i and j at a certain
time step t as:

st = zt + (1− zt)e−α(1−zt)st−1. (10)
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In Figure 6, we show an illustrative example of the model’s tie-decay dynamics [4]. The
tie strength between two people resets to 1 when there is an interaction during a time step,
and it decays exponentially when there is no interaction:

Figure 6: An illustration of dynamics in the tie-decay model of Jin [3]. In this
simulation, we have N = 1000 people, a decay rate of α = 0.01, a homogeneous
interaction probability of p = 0.003, and t = 1000 time steps. The vertical axis
shows the tie strength between one pair of people. Four interactions occur between
these two people.

In the work of Zuo [4] this same model is used and subsequently the long-term expected
tie strength is calculated for one interaction probability at time step t. This leads to the
following theorem:

Theorem 2.6 (Equation (5) of [4]). The long-term expected tie strength between two per-
sons i and j with interaction probability pij and decay parameter α is given by:

E[s] := lim
t→∞

E[st] = pij + E[st−1]e
−α(1− pij) =

pij
1− e−α(1− pij)

. (11)

Proof. Note that we use pij as probability of success (interaction probability) of the
Bernoulli random variable zt. As a consequence, by the law of total expectation and
using equation (10):

E[st] = E[zt + (1− zt)e−α(1−zt)st−1] = E[zt] + E[(1− zt)e−α(1−zt)st−1]
=E[zt] + E[(1− zt)e−α(1−zt)st−1|zt = 1]P (zt = 1)

+E[(1− zt)e−α(1−zt)st−1|zt = 0]P (zt = 0) = pij + e−αE[st−1](1− pij).

Now in the paper of Zuo [4] it is verified that we reach a stationary state as t → ∞. In
this state it holds that limt→∞E[st−1] = limt→∞E[st] = E[s]. Taking t → ∞, we obtain
the following:

E[s] := lim
t→∞

E[st] = pij + e−α lim
t→∞

E[st−1](1− pij)

=pij + e−αE[s](1− pij).

From here we isolate E[s] and obtain:

E[s] =
pij

1− e−α(1− pij)
.
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2.2.1 Long-term expected tie strength given popularity

In order to be able to obtain an illustration of the long-term expected tie strength given
Hi = hi in equation (13) against the popularity hi, we will use equations (5), (6) and (9)
again. For this we first need to obtain the long-term expected tie strength given popularities
Hi = hi and Hj = hj , which includes the probability of an interaction between two persons
i and j (pij) at time step t. For this we again use equation (4).

Theorem 2.7. The long-term expected tie strength between two persons i and j given their
popularities Hi = hi and Hj = hj, using equations (11) and (4) is:

E[s|Hi = hi, Hj = hj ] =
hihj

N〈h〉(1− e−α) + hihj
. (12)

Then, consequently, the long-term expected tie strength between person i and a randomly
chosen other person given only popularity Hi = hi becomes:

E[s|Hi = hi] = −
3hi

(√
hi

N〈h〉(1−e−α) arctan

(√
N〈h〉(1−e−α)

hi

)
− 1

)
N〈h〉(1− e−α)

. (13)

Proof. Using Equation 11 in combination with Equation 4, we obtain the following:

E[s|Hi = hi, Hj = hj ] =

hihj
N〈h〉+hihj

1− e−α(1− hihj
N〈h〉+hihj )

=
hihj

N〈h〉+ hihj − e−α(N〈h〉+ hihj − hihj)
=

hihj
N〈h〉(1− e−α) + hihj

.

Then, using the law of total expectation and the formula for expectation: E[f(hj)] =∫∞
1 f(hj)p(hj)dhj , with p(hj) from equation (5) with β = 2.5 and hjmin = 1, we acquire
the following:

E[s|Hi = hi] = E
[
E[s|Hi = hi, Hj = hj ]

]
= E

[
hihj

N〈h〉(1− e−α) + hihj

]
=hiE

[
hj

N〈h〉(1− e−α) + hihj

]
= hi

∫ ∞
1

hj
N〈h〉(1− e−α) + hihj

1.5

h2.5j
dhj

=1.5hi

∫ ∞
1

1

N〈h〉(1− e−α)h1.5j + hih2.5j
dhj .

Now substitute b = N〈h〉(1− e−α), since it is a constant. Then we acquire:

E[s|Hi = hi] =
3hi
2

∫ ∞
1

1

hih2.5j + bh1.5j
dhj .

By performing the substitution u =
√
hj (so du

dhj
= 1

2
√
hj
) we acquire:

E[s|Hi = hi] = 3hi

∫ ∞
1

u

hiu5 + bu3
du = 3hi

∫ ∞
1

1

u2(hiu2 + b)
du.

Now, by performing partial fraction decomposition:

E[s|Hi = hi] = 3hi

∫ ∞
1

(
1

bu2
− hi
b(hiu2 + b)

)
du

=
3hi
b

∫ ∞
1

1

u2
du− 3h2i

b

∫ ∞
1

1

hiu2 + b
du.
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By performing the substitution v =
√
hiu√
b

(so dv
du =

√
hi√
b
) we acquire:

E[s|Hi = hi] =
3hi
b

[
−1

u

]∞
1

− 3h2i
b

∫ ∞√
hi
b

√
b√

hi(bv2 + b)
dv

=
3hi
b
− 3h1.5i

b1.5

∫ ∞√
hi
b

1

v2 + 1
dv =

3hi
b
− 3h1.5i

b1.5
[arctan(v)]∞√

hi
b

=
3hi
b
− 3h1.5i

b1.5

(
π

2
− arctan

(√
hi
b

))
= −

3hi

(√
hi
b

(
π
2 − arctan

(√
hi
b

))
− 1

)
b

=−
3hi

(√
hi
b arctan

(√
b
hi

)
− 1

)
b

.

Now by undoing the substitution b = N〈h〉(1− e−α):

E[s|Hi = hi] = −
3hi

(√
hi

N〈h〉(1−e−α) arctan

(√
N〈h〉(1−e−α)

hi

)
− 1

)
N〈h〉(1− e−α)

.

For the situation N = 100 the results can be seen in Figure 7a and 8a and for N = 1000
in Figure 7b and 8b using α = 0.01:

(a) N = 100 people (b) N = 1000 people

Figure 7: Expected long-term tie strength given popularity of person i (hi) and
person j (hj) as a function of popularity of person i for 100 people in Figure 7a and
for 1000 people in Figure 7b.
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(a) N = 100 people (b) N = 1000 people

Figure 8: Expected long-term tie strength given popularity of person i (hi) as a
function of popularity of person i for 100 people in Figure 8a and for 1000 people
in Figure 8b.

2.3 Comparing the plots of long-term tie strength of the two models

Since in model 2 the tie strength increases to a value of 1 after an interaction, also the
expected long-term tie strength in Figures 7 and 8 will never reach a value above 1. This
is different in model 1, in which the tie strength can reach very high values due to the fact
it increases with 1 after an interaction. This can be seen in Figures 2 and 3 in which the
expected long-term tie strength with a random other person j in the network is increasing
with the popularity of a person i. Also, for higher N the expected long-term tie strength
will in general have lower values compared with situations of lower N . However, we see
differences in the way the lines are increasing. In Figures 2 and 3 we see a linear growth
of the expected tie strength for increasing popularity of person i. This can be explained
by the linear nature of the formulas for the long-term expected tie strength in equations
(7) and (8). In Figures 7 and 8 we see a decreasing growth of the expected tie strength for
increasing popularity of person i.

We now explain the nature of the graphs in Figures 2 and 3 of model 1 against the graphs in
Figures 7 and 8 of model 2. Model 2 differs from model 1 in that the tie strength does not
increase with 1 if there is an interaction, but increases to a value of 1. The consequences
of this can be seen in the graphs of model 2 in Figures 7 and 8: we see that for increasing
popularity the increase in expected tie strength is lower than in the graphs of model 1:
Figures 2 and 3. To explain this we need the following reasoning: a higher popularity of a
person i implies a higher probability of having an interaction with a random other person
j during a certain time step, thus a higher amount of interactions on the long term with
person j. Considering model 2, for more popular people, it will more often happen that
the tie strength increases from an already relatively high value (close to 1) to 1 compared
with less popular people. For less popular people the tie strength will more often increase
from a relatively low value to 1. On the long run this means that in model 2, the ratio
between the expected tie strength for popular people and less popular people is smaller
than this ratio in model 1, in which the tie strength increases with 1 after each transaction,
which happens more often for more popular people.
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3 Real life interaction data

3.1 Interaction data applied to model 1

In this section we will take a closer look at real life data of interactions. We will look
at interactions as being face-to-face contacts. For this we use face-to-face contact data
during 20-second time intervals obtained through the SocioPatterns sensing platform [6].
We will use 6 data sets. The contexts in which these data were collected are: a workplace,
with data collected in two different years (InVS13, InVS15), a hospital (LH10), a scientific
conference (SFHH), a primary school (LyonSchool) and a high school (Thiers13). The
data files represent the active contacts during 20-second intervals of the data collection.
Each line has the form ‘ijt’. Here i and j are the anonymous IDs of the people in con-
tact, and the interval during which this contact was active is [t – 20s, t] (with t in seconds).

We will use this data to simulate the tie strength between all people in the data set,
according to the definition of tie strength in model 1 in equation (1), in MATLAB. In
other words, if there is an interaction between persons i and j during a 20-second time
window, then the value of the tie strength increases with 1 compared with the last win-
dow. If there is no interaction, then the tie strength decreases with a factor e−α. After all
the simulations have been performed for the data available, we will acquire a tie strength
matrix in which each entry (i, j) represents the tie strength between persons i and j at the
last time at which data is available. It is important to note that we will not also perform a
simulation according to the definition of tie strength in model 2 in equation (10). Since in
this model the tie strength resets to 1 when there is an interaction, only the last interaction
will contribute to the final value of the tie strength, which is opposed to model 1, in which
all interactions are important for the final value.

Then a histogram plot can be made in which the distribution of the tie strength is repre-
sented. The x-axis provides the tie strength s on a linear scale and the y-axis provides the
relative frequency of tie strength values on a log scale. The log scale enables to see bars
with widely varying heights and also more bars in the histogram. The relative frequency
of the tie strength is defined as the fraction of the total number of ties that take certain
tie strength values in a bin. It is important to note that we used 50 bins, which turned
out to be right balance between seeing as many bars as possible and seeing all the different
bars clearly. By using the relative frequency instead of the total frequency, the number
of different ties in a network as in Table 1 does not influence the histogram. In this way,
the histograms can be better compared. In the calculations of the long-term expected tie
strength given popularity of person i as in equation (8) we assumed that the popularity
of all the people in the network other than person i follows a power-law distribution. As
we only computed the expected tie strength in equation (8), we do not necessarily expect
the long-term tie strength in all the considered data to be exactly following a power-law
distribution as well, but we do expect the data to be right skewed with a heavy tail, just
as the power-law distribution. A possible suggestion for future research is to determine
the best-fit distributions for the histograms below. This will be further explained in the
conclusion and future work section (Section 4).

We will compare the plots of distribution of tie strength in similar contexts: the work-
place in 2013 and 2015 and the primary and high school. Then we try to give (possible)
explanations for the differences. We will also try to explain the plots of the hospital and
scientific conference on their own, because they have nothing in common with the other
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contexts. We will do this by using - among other things - the concept of skewness, which
is a measure of the asymmetry of the data around the sample mean. In the table below we
will already summarize other data using the network data statistics for all data sets on the
Network Data Repository [7], which we will use in analyzing the histogram plots. Here the
start-up period is defined as the time it takes before at least two interactions take place in
the same time window. All periods are measured in seconds.

Context Participants Different
ties

Measuring
period [s]

Starting
time

Start-up
period [s]

Workplace
2013

92 755 987620 08:00 1240

Workplace
2015

232 4274 993540 08:00 0

Hospital 75 1139 347500 13:00 540
Conference 403 9889 114300 09:00 880
Primary
school

242 8317 116900 08:40 0

High school 329 5818 363560 08:20 0

Table 1: Network data statistics for different interaction networks

We will now focus on the skewness and the measures that indicate the height of the
value of the skewness, namely the sample mean and the maximum of all the tie strength
values. If skewness is negative, then the data spreads out more to the left of the mean
than to the right. If skewness is positive, then the data spreads out more to the right. So
the more positive the skewness, the more the data spreads out to the right. The skewness
of every perfectly symmetric distribution is zero. It computes a sample version of this
population value. In the formula of the biased skewness, µ is the mean of x, σ is the
standard deviation of x, and E(t) represents the expected value of the quantity t:

s =
E(x− µ)3

σ3
=

1
n

∑n
i=1(xi − x̄)3(√

1
n

∑n
i=1(xi − x̄)2

)3 , (14)

In our case x is the matrix in which each entry (i, j) represents the tie strength between
persons i and j at the last time at which data is available. As an addition to the histogram
plots of the distribution of the tie strength in different contexts, we will first list the sample
mean and the maximum of all the tie strength values together with the skewness of the
tie strength values in the table below. In this way it becomes more evident that all the
distributions are right skewed (all the skewness values are positive) and that the positive
(right) skewness values differ between the different contexts.
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Context Sample mean of
tie strength

Maximum of tie
strength

Skewness of tie
strength

Workplace 2013 0.2106 68.88 20.90
Workplace 2015 0.3589 651.0 43.16
Hospital 0.3977 76.96 18.95
Conference 0.09275 435.3 94.65
Primary school 0.4660 85.14 16.54
High school 0.1655 149.6 40.85

Table 2: Skewness for different interaction networks

3.2 Long-term tie strength in a workplace in two different years

In this section we will simulate the long-term tie strength in a workplace by using a data
set of a temporal network of contacts between individuals measured in an office building
in France, from June 24 to July 3, 2013, which was described and analyzed in [11], and
in 2015, described and analyzed in [12]. In the figure below the distribution of the tie
strength, using α = 0.01, for these data-sets in 2013 and 2015 is represented in the form
of a histogram:

(a) 2013 (b) 2015

Figure 9: Distribution of the tie strength s in a workplace in France in 2013 in
Figure 9a and in 2015 in Figure 9b for α = 0.01.

As expected, both above histogram plots are right skewed with a heavy tail, just as the
power-law distribution for the long-term expected tie strength that is predicted in Figure
3 by equation (8). Comparing the two histograms, we see the same relative distribution:
a relatively large fraction of the people has a relatively low value of tie strength. What
differs is that the data of 2015 results in much higher values for the tie strength in general
(in particular a higher maximum long-term tie strength as can be seen in Table 2). This, in
combination with a similar low sample mean of tie strength, then leads to an even stronger
right skewed distribution: in 2015 the plot has an even longer right tail than in 2013 as can
be seen in Figure 9. Another cause of this stronger right skewness has to do with start-up
effects. If we take a closer look at the start-up periods in both years in Table 1, then we see
that the interactions in 2015 are much faster at a high level compared with those in 2013,
while the measuring period and starting time are similar. This has probably to do with
stricter regulations regarding being on time at work at 8:00 in 2015. In 2013 interactions
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really started to build up only around 8:20. We can also mathematically substantiate this
stronger right skewed distribution in 2015 by calculating the skewness as in equation (14).
We acquire a value of 20.90 for the data of 2013 and 43.16 for 2015, which confirms our
thoughts.

As a side note, we will now look at what impact a lower and a higher value of α has
on the shape of the histogram plots as in Figure 9. We will only do this for the case of
the workplace, since the effect of a change in α in other contexts will be similar. We then
try to explain the different shapes of the corresponding histograms by using the effect of
different values of α on the tie strength in the theoretical model 1 as in Subsection 2.1.1.

First, we plot the distribution of the tie strength for these data-sets in 2013 and 2015
for a lower value of α (α = 0.0001):

(a) 2013 (b) 2015

Figure 10: Distribution of the tie strength s in a workplace in France in 2013 in
Figure 10a and in 2015 in Figure 10b for α = 0.0001.

If we compare the distribution of tie strength in the workplace in 2013 and 2015 for
α = 0.01 in Figures 9a and 9b respectively and for α = 0.0001 in Figures 10a and 10b
respectively, then we see that for a lower value of α the relative frequency of higher tie
strength values is higher. This means that less mass of the distribution is concentrated
to the left of the mean, thus the right skewed distribution is weaker. Consequently, more
bars can be seen in the histogram plot. Because of this, the heavy tail of the right skewed
distribution can be seen more clearly. In Figures 10a and 10b it can be clearly seen that
the higher the tie strength values, the lower the bars (the lower the relative frequency of
the tie strength values). This was already the case for α = 0.01 in Figures 9a and 9b, but
there only eight and five bars were visible respectively in contrast to respectively 15 and
24 bars for α = 0.0001 in Figures 10a and 10b.

We do expect higher tie strength values in general for a lower value of α if we have a
look back at the definition of tie strength in model 1 in equation (1) that we used for these
simulations. The lower the value for α, the higher the tie strength values in general. We
also saw this relation in the plots we made for model 1 for N = 100 in Figures 2a and 3a
for α = 0.01 compared with Figures 4a and 4b for α = 0.0001 respectively.

Second, we plot the distribution of the tie strength for these data-sets in 2013 and 2015
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for a higher value of α (α = 1):

(a) 2013 (b) 2015

Figure 11: Distribution of the tie strength s in a workplace in France in 2013 in
Figure 11a and in 2015 in Figure 11b for α = 1.

If we compare the distribution of tie strength in the workplace in 2013 for α = 0.01 in
Figure 9a and for α = 1 in Figure 11a, then we see that for higher α the relative frequency
of lower tie strength values is higher. This means that more mass of the distribution is
concentrated to the left of the mean, thus the right skewed distribution is stronger. Con-
sequently, less bars can be seen in the histogram plot. Because of this, the heavy tail of
the right skewed distribution can be seen less clearly. In Figure 11a it can be seen less
clearly, compared with Figure 9a, that the higher the tie strength values, the lower the bars.

We do expect lower tie strength values in general if we have a look back at the defini-
tion of tie strength in model 1 in equation (1). The higher the value for α, the lower the
tie strength values in general. We also saw this relation in the plots we made for model 1
for N = 100 in Figures 2a and 3a for α = 0.01 compared with Figures 5a and 5b for α = 1
respectively.

If we compare the distribution of tie strength in the workplace in 2015 for α = 0.01
in Figure 9b and for α = 1 in Figure 11b, then we do not see clearly that for higher α the
relative frequency of lower tie strength values is higher, what we would expect if we look
at the definition of tie strength in equation (1). We only see that the bar around a tie
strength value of 40 in Figure 9b is included in the large bar around 0 in Figure 11b. We
can explain the fact that the 3 remaining bars for tie strength values higher than 200 do
not take lower values for a higher value of α. The value of α only influences the value of tie
strength between two persons i and j if they do not have an interaction for a certain time.
Since two people with a very high tie strength almost have had an interaction in every
time interval, their final value of tie strength has not been negatively influenced much by
a higher value of α, so the bars did not move to a lower bin.

3.3 Long-term tie strength in a hospital

In this section we will simulate the long-term tie strength in a hospital ward in Lyon,
France by using a data set of a temporal network of contacts between patients, patients
and health-care workers (HCWs) and among HCWs from Monday, December 6, 2010 at
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1:00 pm to Friday, December 10, 2010 at 2:00 pm. The study included 46 HCWs and 29
patients and is described in [13]. In the figure below the distribution of the tie strength
for this data-set is represented in the form of a histogram:

Figure 12: Distribution of the tie strength s in a hospital ward in Lyon

This histogram plot is right skewed with a heavy tail, just as the power-law distribution
for the long-term expected tie strength that is predicted in Figure 3 by equation (8). We
see in Figure 12 that a relatively large fraction of the people in the hospital has a very low
value of tie strength. What strikes us, is the weak right skewed distribution compared with
the other contexts in Figures 9, 13 and 15 (except for the primary school in Figure 14).
This is also confirmed by the second lowest value of skewness in Table 1 of 18.95. This
is caused by a very low maximum long-term tie strength in combination with a relatively
high sample mean of tie strength as can be seen in Table 2.

3.4 Long-term tie strength of participants to a scientific conference

In this section the long-term tie strength of participants to a scientific conference is sim-
ulated using a data set that describes the face-to-face interactions of 405 participants to
the 2009 SFHH conference in Nice, France (June 4-5, 2009). It was released as data set in
[12]. In the figure below the distribution of the tie strength for this data-set is represented
in the form of a histogram:

19



Figure 13: Distribution of the tie strength s of participants to a scientific confer-
ence

This histogram plot is right skewed with a heavy tail, just as the power-law distribution
for the long-term expected tie strength that is predicted in Figure 3 by equation (8). We
see in Figure 13 that a relatively large fraction of the participants to the conference has a
very low value of tie strength. What strikes us, is the very strong right skewed distribution
compared with all the other contexts in Figures 9, 12, 14 and 15. This is also confirmed by
the highest value of skewness in Table 1 of 94.65. This is caused by a very high maximum
long-term tie strength in combination with a very low sample mean of tie strength as can
be seen in Table 2. We also see in Table 1 that the conference had the lowest measuring
period (114300 seconds). This implies that the tie strength are less likely to reach high
values which leads to very unevenly distributed tie strength values.

3.5 Long-term tie strength in a primary school

We will now simulate the long-term tie strength in a primary school by using a data set
of a temporal network of contacts between children and teachers. It is used in the study
published in BMC Infectious Diseases 2014 [14] and in Plos One [15]. In the figure below the
distribution of the tie strength for this data-set is represented in the form of a histogram:
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Figure 14: Distribution of the tie strength s in a primary school

Again this histogram plot is right skewed with a heavy tail. More explanation will follow
in Subsection 3.7.

3.6 Long-term tie strength in a high school

Now we will simulate the long-term tie strength in a high school using a data set that
gives the contacts of the students of nine classes in Marseilles, France, during 5 days in
December 2013. It is analyzed in the publication [16]. In the figure below the distribution
of the tie strength for this data-set is represented in the form of a histogram:

Figure 15: Distribution of the tie strength s in a high school

Again this histogram plot is right skewed with a heavy tail.

3.7 Comparing the distribution of the tie strength of the primary school
with the one of the high school

As expected, both histogram plots in Figures 14 and 15 are right skewed with a heavy tail,
just as the power-law distribution for the long-term expected tie strength that is predicted
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in Figure 3 by equation (8). Comparing the two histograms, we see the same relative dis-
tribution: a relatively large fraction of the people has a relatively low value of tie strength.
What differs is that the data of the high school results in higher values for the tie strength
in general (in particular a higher maximum long-term tie strength as can be seen in Table
2). This, in combination with a lower sample mean of tie strength (0.1655 for the high
school against 0.4660 for the primary school), then leads to an even stronger right skewed
distribution: for the high school the plot has an even longer right tail than for the primary
school as can be seen in Figures 14 and 15. Another possible cause for this is also simi-
lar to one of those mentioned for the workplace in two different years in Subsection 3.2:
the interactions for the high school are faster at a higher level compared with the primary
school. Assuming both schools started at the same time measuring interactions as the time
school nearly starts (which is plausible looking at the starting times in Table 1), a possible
explanation for this can be given. From own experience, while attending high school you
have long interactions rather than many interactions. You have close friends rather than
many friends, so you will contact these close friends faster than a student in primary school
would contact a ‘less close’ friend. This, in combination with the longer measuring period
(363560 for high school against 116900 for primary school), leads to a higher chance for tie
strength in high school to reach higher values at the end of the measuring period. So the
data spreads more out to the right. We can also mathematically substantiate this stronger
right skewed distribution for the high school by calculating the skewness as in equation
(14). We acquire a value of 40.85 for the data of the high school and 16.54 for the primary
school, which confirms our thoughts.

When looking at the differences between the number of participants and number of dif-
ferent ties for both schools in Table 1, we see that the number of participants is higher
for the high school (329) compared with the primary school (242), while the number of
different ties formed is much lower for the high school (respectively 5818 and 8317). This
implies that the number of different ties formed per student is lower in the case of the high
school. Using this data, the previously mentioned possible explanation for the stronger
right skewed distribution for the high school - while attending it you have long interactions
rather than many interactions - becomes even more realistic.

4 Conclusions and recommendations

In this section we will return to the research question and goals as formulated in the in-
troduction in Section 1. We will also formulate new insights and ideas that the research
led to that still need to be worked out.

The concept of tie strength can be used to analyze interactions. The tie strength describes
the strength of your friendship with one of your friends. It increases when an interaction
takes place, and then decreases over time if no new interaction takes place. This concept
can be very useful to find the most important connections in a social network.

Our research question was: What happens to the tie strength when some people in the
network are more popular than others? We saw in Section 2 that the more popular a per-
son, the higher is the long-term expected tie strength between this person and a randomly
chosen other person. We even saw in model 1 that this relation is linear in Figures 2 and
3. This was concluded by assuming that the popularity of all the people in the network
other than person i follows a power-law distribution, which is a right skewed distribution
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with a heavy tail: a relatively small fraction of people has a large amount of popularity. In
model 2 the relation between popularity and long-term expected tie strength is not linear
and more complicated than in model 1 as can be seen in Figures 7 and 8.

We also saw that the chosen value of the decay rate α has a large effect on the tie strength
values for different popularity in the theoretical model 1 and on the distribution of the tie
strength for which real life interaction data is used. A higher value for α implies lower
tie strength values in general. Then, more mass of the distribution is concentrated to
the left of the mean and the right skewed distribution is stronger. In our analysis of the
workplace the heavy tail in the distribution of the tie strength was the most clearly visible
for α = 0.0001. When choosing higher values for α, more tie strength values are close to
0.

We saw that the distribution of tie strength of real life interaction data, according to
the definition of tie strength in model 1 in equation (1), in different contexts is very right
skewed (which implies high values for the skewness), similar to the assumed power-law
distribution of popularity in both models. This right skewed data is also what we expect
following the linear relation between popularity and long-term expected tie strength in
model 1 in equation (8).

A first suggestion for future research is to develop a good procedure to choose the right
value for the decay rate α to model a certain data-set, so that the differences between all
tie strength values at the end of the measuring period are a good representation of the
differences in the strength of all the friendships in reality. Therefore the value of α should
maybe depend on the length of the measuring period of the certain data-set or on another
specific network data-set statistic as in Table 1. It is also possible that it should depend
on the mean number of interactions per time window over the whole measuring period of
the certain data-set.

A second suggestion is to take into account the department, class and/or status of each
individual in each context for plotting and analyzing the histograms. In this paper, we
did not distinguish between interactions between people from the same department, class
and/or status and those between different ones. For example, in the hospital a distinction
can be made in interactions between patients, patients and health-care workers (HCWs)
and those among HCWs. Then by counting the number of interactions in each category a
more detailed explanation can be given for the low maximum long-term tie strength and
the relatively high sample mean. Also the shape of the histogram can be better explained.
A similar approach can be used for other contexts for which a distinction can be made
in department, class and/or status of the individuals. For each context, except for the
scientific conference (since all the individuals in the data-set are participants), the IDs and
their corresponding department, class and/or status are available through the SocioPat-
terns sensing platform [6]. For our research it was only important to investigate whether
or not the distribution of the tie strength of real life interactions in a certain context,
regardless of the department, class and/or status of the individuals, does really follow a
right skewed distribution with a heavy tail, just as the power-law distribution.

Determining the best-fit distribution is our third recommendation for future work. We
did conclude that all the histogram plots were right skewed with a heavy tail, but this does
not necessarily imply that all the distributions are power-law distributions. We did not
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investigate which distribution(s) best fits to the histograms of the tie strength in different
contexts in Figures 9, 12, 13, 14 and 15. These can be worked out in further research by
comparing different distributions.
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5 Appendix

This section will include source MATLAB code we used to plot our results.

First, we have the code of plotting equation (7) against the popularity of person i as
can be seen in Figure 2 plotted by ‘figure(1)’. Then we also have the code of plotting
equation (8) against the popularity hi as can be seen in Figure 3 plotted by ‘figure(2)’:

1 % Long−term tie strength against popularity plot
2 M = 10; %Number of times values for h_j are determined
3 N = 1000; %Number of people in the network
4 h_j = (1−rand(M,1)).^(−1/1.5); %Popularity of person j
5 h_m = 3; %Expectation of h_j
6 h_i = 1:0.00001:100; %Range of popularity of person i
7 alpha = 1; %Decay rate
8 Eshi = (3.*h_i)./((1−exp(−1*alpha)).*h_m.*N);
9 %Expected tie strength given popularity of i

10 hold on
11

12 figure(1)
13 for k = 1:10
14 %Calculates expected tie strength given popularity of i and j
15 Es = (h_i.*h_j(k))./((1−exp(−1*alpha)).*(N.*h_m));
16 txt = ['h_j = ',num2str(h_j(k))];
17 plot(h_i,Es,'LineWidth',1.5,'DisplayName',txt)
18 end
19 xlabel('h_i: Popularity of person i')
20 ylabel('E[s|h_i,h_j]: Expected tie strength given popularity of i and j')
21 title('Long−term tie strength against popularity')
22 axis fill
23 hold off
24 legend('show','Location','northwest')
25

26 figure(2)
27 plot(h_i,Eshi,'LineWidth',1.5)
28 xlabel('h_i: Popularity of person i')
29 ylabel('E[s|h_i]: Expected tie strength given popularity of i')
30 title('Long−term tie strength against popularity')
31 axis fill
32 hold off

The code of plotting equations (12) and (13) against the popularity of person i, in Figures
7 and 8 respectively, is similar to the previously mentioned code. The only difference is
that ‘Es’ is now equal to equation (12) and ‘Eshi’ equal to equation (13).

Finally, we have the code for plotting the distribution of the tie strength, using α = 0.01,
for different data-sets in the form of a histogram. The following code is used to plot the
histogram of the workplace in 2013, as in Figure 11a. The histograms of all the other
data-sets can be plotted as well, just by changing the argument of ‘importdata’.

1 data = importdata('ia−workplace−contacts.edges'); %Imports data−set
2 T = size(data,1); %Number of interactions
3 m = max(max(data(:,1:2))); %Maximum ID
4 S = NaN(m);
5 %Stores the tie strength between person i and j at a certain time step
6 alpha = 0.01; %Decay rate

25



7 p1 = 0; %Time = 0
8 for t = 1:T %Initialize all data−entries at 0
9 S(data(t,1), data(t,2)) = 0;

10 end
11 for t = 1:T %Updates the tie strength during every time window
12 if data(t,3) 6=p1
13 S = S*exp(−1*alpha);
14 p1 = data(t,3);
15 end
16 S(data(t,1), data(t,2)) = S(data(t,1), data(t,2))/exp(−1*alpha)+1;
17 end
18 S(isnan(S)) = []; %Remove all NON data−entries from the matrix
19 NumberTS = numel(S); %Number of different ties
20 [N, edges] = histcounts(S,50);
21 %Number of tie strength within a certain bin of in total 50 bins
22 idx = find(N); %Find indices of nonzero elements of N
23 disp(['Alpha =',num2str(alpha),':']) %Display alpha
24 for i = idx %Display bin with count
25 disp(['Bin = ', '(',num2str(edges(i)),'−',num2str(edges(i+1)), '), ...

count = ', num2str(N(i))])
26 end
27

28 figure(1)
29 histogram(S,50,'Normalization','probability')
30 %Plot normalized histogram with 50 bins
31 MeanTS = mean(S); %Mean value of all values of matrix S(i,j)
32 MaxTS = max(S); %Max value of matrix S
33 Skewness = skewness(S); %Skewness of S
34 set(gca, 'XScale', 'linear')
35 set(gca, 'YScale', 'log')
36 xlabel('s: tie strength')
37 ylabel('relative frequency')
38 title('Distribution of the tie strength')
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