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This report analyses a special topic in the field of graph theory: graph rigidity. Specifically,

three dimensional graph rigidity, for which necessary and sufficient conditions, which at the

same time are practically workable, still are to be found. This issue corresponds to the graph

rigidity problem being conjectured as an NP-hard problem. We will define graph rigidity

and flexibility, both locally and globally. We will then create two specific maps acting on

the nodes of the graph. This map will yield a system of an equation and an inequality which

will describe the rigidity conditions of a given graph. Last, using tools available in Wolfram

Mathematica, conclusions on the local/global rigidity of a graph will be drawn based on the

output of the algorithm.
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I. INTRODUCTION

This report explores an approach to answering the question whether a graph represen-

tation [1] is rigid or not in the three-dimensional case. A graph representation is a pair

(G, p), where G = (V, E, φ) is a graph defined by a set of nodes V, a set of edges E and

an incidence function φ which maps each edge to the unique couple of nodes it connects

(if any, these nodes are called adjacent) and p is a map from V to Rd (for a positive in-

teger dimension d) such that for all u, v ∈ V one has p(u) = p(v) only if u = v. The set

p(V) is then the embedding of the nodes in Rd. We will be concerned only with graph

representations in this thesis.

Intuitively speaking, we say a graph representation is rigid if there is no move that can

be done to any vertices so that the distance of connected vertices remains the same while

the distance between non-connected vertices is changed. Conversly, a graph representation

is said to be flexible. For a better understanding of this concept consider figures 1 and

2. In figure 1, we can move the two top vertices of rectangle to the right to obtain the

Figure 1: Non-rigid in d = 2.

parallelogram which shares two vertices with the rectangles. The parallelogram has the

same distance of adjacent points as the initial one, but a different length of the diagonals,

which however are not contained in the set E of distances to be preserved. Thus, the graph

representation is flexible. On the other hand, figure 2 presents a rigid graph: the move we

discussed before is undoable in this case in a two dimensional plane, given that now the

diagonal is part of the set E of edges whose distance must not change. There is actually

a move that could be done to deform its shape while preserving the lengths of the edges
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Figure 2: Rigid in d = 2.

in E, but that still keeps the graph rigid, informally speaking. We will see in the next

paragraph what we mean by this.

It is useful to distinguish two different kinds of rigidity a graph representation might

have: local and global. Considering figures 3, 4 and 5 we see flexible, a locally rigid and

a globally rigid graph, respectively. We consider all three graphs in d = 2 for explaining

the idea. We see that figure 4 -as figure (2)- is "sort of rigid", with the exception of two

movements of two points which change its distance, namely, mirroring either the top right

or bottom left point with respect to the diagonal would preserve adjacent nodes distances

but change the distance between the two non-adjacent points. Speaking a little bit more

Figure 3: flexible graph in d = 2.

precisely, a graph representation is said to be locally rigid if we can move some of its

vertices and change non adjacent vertices distances, but we cannot do it with a continuous

move. We can conclude that global rigidity is a stronger feature than local rigidity.

The rigidity problem has been solved for d < 3: by means of advanced combinatorics
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Figure 4: locally rigid graph in d = 2.

Figure 5: globally rigid graph in d = 2.

techniques this decision problem in dimensions 1 and 2 can be done efficiently. For d ≥ 3

this is not the case. The decision problem in higher dimensions is still open and there is a

feeling among scientists that this is a NP-hard problem [1]. Finding an efficient algorithm

for this decision problem would have outstanding consequences: for starters, if it could be

proved to be NP-hard, then the millenium problem P=NP would be solved. Moreover, for

more concrete applications, being able to determine whether a representation is rigid or

not would be of huge use and interest to engineering related fields, robotics, chemistry or

biology, to cite some.

In this report we will analyse the specific case d = 3 and develop a theory which

theoretically allows us to answer the decision problem. More specifically, in Section 2 we

will present formally the problem and technically derive a system of quadratic multivariate

equations and inequalities that describe the rigidity condition of the representation. In

Section 3 we will explain why the problem as formulated can be seen as an application of the
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Tarski-Seidenberg theorem and how the Cylindrical Algebraic Decomposition algorithm [2]

and the Exists[] function in Wolfram Mathematica come to our advantage for this decision

problem. In Section 4 we will see some concrete examples, solved either by intuitive

reasoning and trial and/or with the use of the algorithms. Finally, in Section 5 we will

give a conclusion.

II. THEORETICAL CONSTRUCTIONS

In this section we will formulate the problem more formally for the three-dimensional

case. Then we will introduce two maps and, by means of linear algebra and standard

inner product techniques, we will reformulate once more the problem as a system of a

multivariate quadratic equation and inequality with one unknown vector. After that, we

will prove some properties of the maps introduced.

A. Precise formulation of the problem

In this subsection we will precisely define global and local flexibility of a graph rep-

resentation. The reason for choosing to define flexibility rather rigidity is related to the

whole analysis that has been done on this problem.

As we have said previously, a graph representation is a couple (G, p) formed by a

graph (V, E, φ) and a map p. In dimension d = 3 we can interpret this map as being

the Eucledian coordinates of each node. For convenience, from now on, we will refer to

the graph representation as just a graph. Moreover, we will refer to p as already the map

outcome, i.e., the coordinate vector of a certain node.

To be more specific, let G(V, E, φ) be a graph embedded in R3, that is, a graph with

position vectors pk ∈ R3 (k = 1, 2, ..., ν) where we assign each node a number and ν is the

cardinality of the set of vertices V. Also, let E be the set E = {(i, j)|1 ≤ i ≤ j ≤ ν} of all

possible edges in a given graph and E be the set of present edges in that graph. Clearly

E ⊆ E . We have now all the elements for providing the following definitions:

Def. 1: A graph representation is globally flexible if there exists a displacement

vector δ = (δ1, δ2, ..., δν)
T such that:

(i) ||(pi + δi)− (pj + δj)|| = ||pi − pj || for all couples (i, j) ∈ E

(ii)||(pi + δi)− (pj + δj)|| 6= ||pi − pj || for at least one (i, j) ∈ E\E
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Def. 2: A graph representation is locally flexible if for any ε > 0 there exists a

displacement vector δ such that conditions (i) and (ii) in Def.1 hold and in addition it

holds
∑ν

i=1 ||δi|| < ε, i.e., the vector can be chosen arbitrarily small.

When these two definitions do not hold, namely, there is not such displacement vector

that can be found, we say the graph representation is globally rigid. If instead there

exists one (or more) displacement vector which, however, cannot be chosen arbitrarily

small, then the graph representation is locally rigid. As a matter of fact, by a close look

to the definitions we see that globally flexible is equivalent to locally rigid: there is one

displacement vector for which the definition holds but it can not be chosen arbitrarily

small. In other words this means that we can’t move one or more vertices continuously so

that the distance of connected nodes is preserved and the distance of non-connected nodes

is not. It also follows from the definitions that local flexibility =⇒ global flexibility.

Finding such δ is a quite complicated task, this is why in the next subsection we will

try to find write the two conditions in a form which is equivalent but easier to solve for a

computer.

B. The relative distance and adjacency maps

In this subsection we will introduce two maps which will allow us to represent the

conditions of definition 1 as a system of one multivariate quadratic equation and one

multivariate quadratic inequality in the unknown vector δ we are looking for.

We start by representing the set of nodes with respective position vectors as a single

column vector p = (p1, p2, ..., pν)
T ∈ R3ν , where each pi ∈ R3. Let us now introduce the

relative position map r : R3ν → R
3
2
ν(ν−1), which acts on the vector p and maps it to a

vector

r(p) = ((p1−p2)(x), (p1−p2)(y), (p1−p2)(z), ..., (pν−1−pν)(x), (pν−1−pν)(y), (pν−1−pν)(z))

which lies in a smaller space and is formed by the relative distances of each node with all

the others in all three directions of the Eucledian space. The order in which we place the

points will be as follows: we start with node 1 and calculate the relative distances with
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nodes 2,3,4,...,ν. Then we continue with node 2 and calculate the relative distance with

nodes 3,4,...,ν, and so on until we arrive at node ν − 1.

We can represent the map by the matrix R as follows:

R =



I3 −I3 0 . . . 0

I3 0 −I3 . . . 0
...

...
...

...
...

I3 0 0 . . . −I3

0 I3 −I3 . . . 0
...

...
...

...
...

0 I3 0 . . . −I3
...

...
...

...
...

0 0 0 I3 −I3


where I3 represents the 3× 3 identity matrix and 0 stands for the 1× 3 zero vector. The

map is linear and this will be proved in the next subsection. Notice that we can also apply

the map r to the unknown displacement vector δ to obtain the relative displacements.

Taking a closer look now to the equality and inequality that we had in the definition of

global flexibility we see we can write them down differently. As a matter of fact, recalling

(i) in definition 1:

||(pi + δi)− (pj + δj)|| = ||pi − pj ||

⇐⇒ ||(pi + δi)− (pj + δj)||2 = ||pi − pj ||2

⇐⇒ (pi + δi − pj − δj , pi + δi − pj − δj) = (pi − pj , pi − pj)

⇐⇒ (pi − pj , pi − pj + δi − δj) + (δi − δj , pi − pj + δi − δj) = (pi − pj , pi − pj)

⇐⇒((((((((
(pi − pj , pi − pj)+(pi−pj , δi−δj)+(δi−δj , pi−pj)+(δi−δj , δi−δj) =((((((((

(pi − pj , pi − pj)

⇐⇒ 2(pi − pj , δi − δj) + (δi − δj , δi − δj) = 0

We recognize the values pi − pj and δi − δj as elements of the vectors r(p) and r(δ)

corresponding to the couple of nodes (i, j). This yields:

2(r(p)i,j , r(δ)i,j) + (r(δ)i,j , r(δ)i,j) = 0 (1)

for the couples (i, j) of adjacent nodes (i.e., edge ei,j ∈ E). Keep in mind that (·, ∗)

represents the standard inner product.
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Similarly for condition (ii) of definition 1 we obtain the inequality

2(r(p)(ij), r(δ)ij) + (r(δ)(ij), r(δ)(ij)) 6= 0 (2)

for at least one couple of nodes (i, j) such that ei,j ∈ E\E.

In order to encode which edges are in E and which in E\E we will introduce the

adjacency matrix A. The idea of the matrix is that it will be zero everywhere but in some

entries of the diagonal where it will have three 1s (one per coordinate) each time a couple

of points is connected. Remark: the order of the ’node coupling’ is the same that we have

done for the map r.

For instance consider a rectangle with nodes 1, 2, 3, 4 (set counterclockwise starting

from the bottom left node), its adjacency matrix will look as follows:

A =



I3 0 . . . . . . . . . . . .

. . . 0 . . . . . . . . . . . .

. . . . . . I3 . . . . . . . . .

. . . . . . . . . I3 . . . . . .

. . . . . . . . . . . . 0 . . .

. . . . . . . . . . . . . . . I3


The entries in the diagonal correspond in order to the pair of points (1,2), (1,3), (1,4),

(2,3), (2,4), (3,4).

The matrix A will have by construction dimension 3
2ν(ν − 1)× 3

2ν(ν − 1). Moreover, it

is a Hermitian projector since it can be checked that A2 = A and that AT = A. This will

be done in the next subsection.

We consider (1) and we try to make use of the adjacency matrix and of the matrix R.

Since we want (1) to hold for all adjacent nodes, we can write it as:

2(A ·R · p,A ·R · δ) + (A ·R · δ, A ·R · δ) = 0

⇐⇒ 2(A ·R · p)T · (A ·R · δ) + (A ·R · δ)T · (A ·R · δ) = 0

⇐⇒ 2pTRTATARδ + δTRTATARδ = 0

⇐⇒ 2pTRTARδ + δTRTARδ = 0

(3)
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where the last implication follows since A is a Hermitian projector, thus AT ·A = A ·A =

A2 = A.

For equation (2) we have a similar form where instead of A we use I − A, with I the
3
2ν(ν − 1)× 3

2ν(ν − 1) identity matrix. Using this matrix allows us to encode precisely the

non adjacent nodes of the graph. Notice that (I − A) is a Hermitian projector as well.

Thus, the same steps done for (1) can be applied.

With this results, we obtain now the following system of quadratic multivariate equation

with the unknown δ to be found:
2 · [pTRTARδ] + δTRTARδ = 0

2 · [pTRT (I −A)Rδ] + δTRT (I −A)Rδ 6= 0

(4)

We have now found the set of multivariate quadratic equation and inequality to

describe the flexibility - hence, rigidity as well - condition of a graph. Thus, if we are

able to find a vector δ which satisfies these equations, we can conclude that the graph

is globally flexible. Needless to be said, finding such a δ or proving there is not one can

turn out to be an extremely complicated task. The field of mathematics that deals with

polynomial equations is algebraic geometry. Luckily for us there is a theorem in algebraic

geometry which closely relates to our problem. This theorem gave birth to an algorithm

which will help us deal with the system above. Both the theorem and the algorithm will

be presented in the next section. We can now give formal proof of the linearity of the map

r and that the adjacency matrix is a Hermitian projector.

C. Proofs of properties of the maps

In this subsection we will give proofs that the relative distance map r is a linear

transformation and that the adjacency matrix A is a Hermitian projector. This last proof

justifies the steps done in (3).

Proof 1): The relative distance map is linear

We shall prove that the map r, represented by the matrix R defined in section 2. To do

so we shall prove that r(c · p + q) = c · r(p) + r(q), with c an arbitrary real constant and

p, q two position vectors of the same dimension. Without any loss of generality we can
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consider the map for graphs with only three nodes. The map is the following:

R =



1 0 0 −1 0 0 0 0 0

0 1 0 0 −1 0 0 0 0

0 0 1 0 0 −1 0 0 0

1 0 0 0 0 0 −1 0 0

0 1 0 0 0 0 0 −1 0

0 0 1 0 0 0 0 0 −1

0 0 0 1 0 0 −1 0 0

0 0 0 0 1 0 0 −1 0

0 0 0 0 0 1 0 0 −1


Let p = (p

(x)
1 , p

(y)
1 , p

(z)
1 , p

(x)
2 , p

(y)
2 , p

(z)
2 , p

(x)
3 , p

(y)
3 , p

(z)
3 ) and q =

(q
(x)
1 , q

(y)
1 , q

(z)
1 , q

(x)
2 , q

(y)
2 , q

(z)
2 , q

(x)
3 , q

(y)
3 , q

(z)
3 ). We obtain:

r(c · p+ q) = R · (c · p+ q) =



c · p(x)1 + q
(x)
1 − c · p(x)2 + q

(x)
2

c · p(y)1 + q
(y)
1 − c · p

(y)
2 + q

(y)
2

c · p(z)1 + q
(z)
1 − c · p

(z)
2 + q

(z)
2

c · p(x)1 + q
(x)
1 − c · p(x)3 + q

(x)
3

c · p(y)1 + q
(y)
1 − c · p

(y)
3 + q

(y)
3

c · p(z)1 + q
(z)
1 − c · p

(z)
3 + q

(z)
3

c · p(x)2 + q
(x)
2 − c · p(x)3 + q

(x)
3

c · p(y)2 + q
(y)
2 − c · p

(y)
3 + q

(y)
3

c · p(z)2 + q
(z)
2 − c · p

(z)
3 + q

(z)
3


which we can write as

c



p
(x)
1 − p

(x)
2

p
(y)
1 − p

(y)
2

p
(z)
1 − p

(z)
2

p
(x)
1 − p

(x)
3

p
(y)
1 − p

(y)
3

p
(z)
1 − p

(z)
3

p
(x)
2 − p

(x)
3

p
(y)
2 − p

(y)
3

p
(z)
2 − p

(z)
3



+



q
(x)
1 − q(x)2

q
(y)
1 − q

(y)
2

q
(z)
1 − q

(z)
2

q
(x)
1 − q(x)3

q
(y)
1 − q

(y)
3

q
(z)
1 − q

(z)
3

q
(x)
2 − q(x)3

q
(y)
2 − q

(y)
3

q
(z)
2 − q

(z)
3



= c ·R · p+R · q = c · r(p) + r(q)
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which concludes our proof.

Proof 2): The matrices A and (I −A) define a Hermitian projector:

In order to show that the two matrices are Hermitian projectors we shall show that A2 = A

and AT = A. Clearly the same must hold for (I −A).

Let us take a closer look to how we constructed the adjacency matrix: the matrix is

0 everywhere but in some elements in the diagonal, where it is 1. Consider a graph with

nodes p1, p2, p3 and let p1p2 and p2p3 be connected by an edge, respectively. The matrix

is the following:

A =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


We see that by construction A2 will be equal to A since the diagonal elements will

remain the same, having each a 0 if the diagonal element is 0 (zero row × zero column),

and a 1 if the diagonal was a 1 (row×column will be equal to 12 = 1). All the other elements

will be zero since the rows and columns in the respective row-column multiplication, even

if neither were a zero vector, the 1-entries will be in different positions, resulting in a 0.

In addition to that, having only non zero entries (possibly) in the diagonal, we have

that AT = A since the diagonal elements do not move by taking the transpose. With this

being said, and noticing that a similar reasoning can be applied for the matrix (I − A),

we have proved that both matrices are Hermitian projectors.

With this proof being correct, the last step of (3) is justified and correct. In the next

section we will see how to interpret system (4) as an application of the Tarski-Seidenberg

theorem and how the cylindrical algebraic decomposition and the exists[] function come to

our help.
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III. PRACTICAL IMPLEMENTATION

The aim of this section is to give insight on how our problem relates to the fields of

algebraic geometry and computer algebra, which might seem at first unrelated to our task.

We will first present the Tarski-Seidenberg theorem and try to explain how it relates to

our problem. Then we will look into the cylindrical algebraic decomposition and how it

hypothetically solves our problem. Finally, in the last subsection we will see its practical

use, explain what the limitations of the first algorithm are and provide another function

that can be used for our purpose.

A. Tarski-Seidenberg Theorem

This section will present the Tarski-Seidenberg theorem[3] and explain why intuitively,

the graph rigidity problem can be seen as an application of this theorem. The theorem

itself is quite involved and is part of a very advanced mathematical subject: algebraic

geometry.

As we found in the previous section, we have a system of multivariate quadratic equal-

ities and inequalities that describes the rigidity conditions for a given graph. Algebraic

geometry is the subject that deals with these kind of equations and explores techniques

for solving them. However, these techniques (4) are out of the scope of this report and the

field does not belong to my personal competences. Nevertheless, we present the following

theorem and try to interpret it:

Tarski-Seidenberg Theorem: this theorem states that a set in (n + 1)-dimensional

space defined by polynomial equations and inequalities can be projected down onto

n-dimensional space, and the resulting set is still definable in terms of polynomial

identities and inequalities. More formally: let X be a semi-algebraic set in Rn+1 and let

π be the projection map that sends a set of points (x1, x2, ..., xn+1) ∈ Rn+1 to the set of

points (x1, x2, ..., xn) ∈ Rn. Then π(X) is a semi-algebraic set in Rn.

Remark: A semi-algebraic set in Rn is a finite union of sets defined by a finite number of

polynomial equations and inequalities.

The reader will see from the statement of the theorem that there is probably some sort

of relation between it and our flexibility conditions: they are indeed a finite set of equations

and inequalities in R3ν , more specifically, one equation and one inequality. However, this
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theorem by itself is not so helpful: knowing that we can map the displacement vector

δ we are looking for in the flexibility conditions to vector in a smaller space does not

help us that much in figuring out whether this δ exists or not. Why we presented the

theorem, besides the relation with our problem, is that it gave birth to the cylindrical

algebraic decomposition algorithm, which will be explained in the following subsection and

will make the reader aware of why it could hypothetically be used for our purpose.

B. Cylindrical algebraic decomposition algorithm

In this subsection we will explain why the cylindrical algebraic decomposition is in

theory the best option for determining an answer to our decision problem. We will also

explain how to implement it in Wolfram Mathematica.

The information we will provide about the algorithm is taken by the article "How to

use cylindrical algebraic decomposition" by M.Kauers. The algorithm derives from the

Tarski-Seidenberg theorem we saw in the previous subsection. What it does is quantifier

elimination over the reals: if we give a quantified formula it finds an equivalent formula

without quantifiers. Actually it is considered to be a general tool for dealing with sub-

sets of Rn. If we give a description of the subset by means of polynomials equations and

inequalities, it describes this set, allowing to draw different conclusions of non trivial ques-

tions. Among all, the important question it allows us to answer whether or not a given

semi-algebraic set is empty, finite, open, closed, connected, or bounded.[2]

This is exactly what we need for our decision problem. As a matter of fact, for global

flexibility, we do not want to know what the solutions are to (4), we are just interested in

the existence or not of this solution. Thus, we want to know whether the set of solutions

is empty or not. We can consider three cases for the output:

• Empty solution set: If the solution set is empty it means that the system has

no solutions, i.e., no displacement vector can be found. Thus, we conclude that the

given graph is rigid.

• Finite solution set: If the solution set is finite, the graph is globally but not locally

flexible. To prove this, look back at definition 2 in section 2 for local rigidity: if there

are finitely many δ’s, then there exists one such that
∑ν

i=1 δi is minimal (remark:

here δi represents each component of the vector, not different displacement vectors).

Call this displacement vector δmin and let
∑ν

i=1 δmini = εmin. Then we can pick a

14



number ε such that 0 < ε < εmin and there would be no displacement vector such

that the sum of the norm of its components is less than ε. Thus, the condition of

definition 2 is not satisfied, meaning the graph cannot be locally flexible.

• Infinite set of solutions: if the set of solutions is infinite then the graph is once

again globally flexible for sure. Moreover, it might also be locally flexible. The

requirement for the graph to be locally flexible is that the infimum of the displace-

ment vectors is the zero vector. This can be intuitively explained using the same

reasoning we have done in the previous point: if there is an infimum which is not

the zero vector then we will always be able to find an ε like above.

The actual implementation of the algorithm is beyond the scope of this report. Luckily

we are not required to implement it: Wolfram Mathematica has a function called Cylindri-

calDecomposition[] which takes as input the equations and inequalities together with the

unknown variables and runs the algorithm by itself. The rest of the implementation is just

writing down the position vectors, the two matrices and performing the operations of (4).

It almost look like we are living the perfect dream with everything that has been said

so far. Unfortunately, the algorithm has doubly exponential complexity in the number of

unknowns. This is very inefficient. Finding an algorithm with a smaller complexity still

remains an active research field. The other bad news is that, with how we have constructed

the problem, every node added, adds three unknown value (one per direction) which, with

a doubly exponential complexity, increases the time by a huge amount.

We have seen that theoretically, assuming sufficient amount of time and memory in

a computer, we would get a solution for the problem using the CAD algorithm. In the

next subsection we will present an implementation in Wolfram Mathematica and introduce

another function the program has that could help us find a solution in some specific cases.

C. Practical use and the ’Exists[]’ function

In this subsection we will show the implementation in Wolfram Mathematica of one

example. Later, we will show what happened after the implementation, namely, the time

and the memory it took. Finally, we will see the use of another function in Mathematica

which in some cases is more helpful than CAD: Exists[].

The example we will consider is a rectangle in the three dimensional space with one

diagonal, where the coordinates of the nodes are p1 = [1 1 1]T , p2 = [3 1 1]T , p3 = [3 2 1]T
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and p4 = [1 2 1]T . Figures (6), (7) and (8) show the Mathematica script implemented:

Figure 6: Position vector and relative distance matrix

Figure 7: Adjacency matrix and unknown displacement vector
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Figure 8: Calculation of the four addends in (4) and CAD implementation

The implementation seems correct. Unfortunately, the CAD algorithm works with very

few unknowns, more or less 6. Therefore already a simple rectangle generates too many

unknowns for the algorithm to give an output.

We have let the code run in a device with 8GB of RAM and a CPU Intel(R) Xeon(R)

CPUX5650@2.67GHz. Even with such a powerful CPU, after 36 hours the program still

did not give an output. In figure (9) we show the RAM occupied by the program running:

You can see that 4.75GB of RAM have been occupied by the code. We interpret this as the

Figure 9: CPU and RAM

program locating in memory all the solutions it has found up until now, which we reckon

means that what we have discussed is correct and that it should, hypothetically, work.

As we discussed before, to determine global flexibility, we are just interested in the
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existence of the solution. For this purpose there is another function we can use in Mathe-

matica: Exists[]. More than a function, using Exists[] makes a statement of what we put

inside the brackets. Therefore, if we then resolve the statement, we will get a true/false

output. If the output is true then we know for sure the graph is globally flexible, but we

are not able to say if it is locally flexible. Later in this subsection we will give an intuitive

interpretation that can be made based on the time Mathematica takes to give the output.

Below we use the existence function and resolve it for the example of the images above.

We expect the output to be ’True’. Figure (10) shows the implementations of the same

equations in figure (8). Thanks to this output we can conclude immediately that the graph

Figure 10: Solution existence

is globally flexible. The case in which this is practically better than CAD is when we are

quite confident that the graph is flexible: this is because using Exists[] the program uses

brute force and terminates as soon as it finds one solution to (4). However, if the graph is

rigid, this last procedure will never terminate since it should have to test infinitely many

possibilities, while CAD will, presumably, terminate.

Our thought is that, if the graph is locally flexible, like the example we just saw, the

algorithm will return ’true’ immediately. Else, if it takes some time to return ’true’ or

never terminates, then either the graph is globally flexible (locally rigid), or it’s globally

rigid. This is because there might be for instance only one specific solution that makes

the graph flexible, and looking for it, Resolve[] in (10) might take a while finding it with

brute force.

We have seen how our model can be seen as an application of the Tarski-Seidenberg

theorem and how the CAD algorithm comes to use when dealing with this problem (the-
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oretically, assuming we have enough time and memory in our computer). Moreover, we

have seen how we can draw conclusions on the flexibility of a graph by the means of the

Exists[] function in Wolfram Mathemtica.

In the next section we will give some concrete examples, from trivial to more complicated

ones, and present their solutions.

IV. WORKED EXAMPLES

In this section we will provide different examples to make the theory we have explained

through this report much clearer. For the examples we will draw conclusions by intuitive

-still precise and correct- reasoning. Except for the examples of the first subsection, in each

of the others we will always check them using Wolfram Mathematica. Each subsection will

discuss a different example.

A. Complete and empty graph

In this subsection will consider two basic examples, namely a complete graph and an

empty graph embedded in R3. We will conclude that the first one is rigid while the other

is locally flexible. Before discussing the examples consider again (4):

• Complete graph: Let G(V, E) be a complete graph, i.e., E = E . We notice that

in this case the adjacency matrix A equals the identity matrix, since all possible

pairs of nodes are connected by an edge. Therefore the inequality of system (4) will

yield 0 6= 0 (since I −A = 0), which is a contradiction. Thus, we can conclude that

there are no solutions to the system, meaning that the graph is rigid.

• Empty graph: Let now G(V, E) be an empty graph, i.e., E = ∅. Intuitively

it is clear that we can move any point just a little bit and its distance from the

connected nodes will remain the same, since there are no connected nodes, while its

distance from the non adjacent point will change. Formally speaking, considering

(4) we will have the adjacency matrix A = 0, thus the first equation will be 0 = 0

which is always true. The inequality will become 2 · [pTRTRδ + δTRTRδ] 6= 0, and

there are infinitely many solutions to this. Moreover the solutions can be picked
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arbitrarily small. Therefore the empty graph is locally flexible.

We have shown the rigidity/flexibility properties of these two graphs. We proceed with

another example.

B. Simple example: a square

In this subsection we will decide the rigidity of a square embedded in R3. Being a

square a special case of a rectangle, we expect the same result we had for the rectangle in

the introduction, namely, flexibility.

Consider a square embedded in the three dimensional eucledian space. For simplicity

we will show a 2d figure but you should imagine it lying in three dimensions. As you

Figure 11: A non rigid graph

can see from figure (11), the figure respects the definition of global flexibility, i.e., we can

move the top nodes to the right and downwards and we will have preserved the adjacent

nodes distance but the diagonals’ distances have changed, as in figure (12). To be even

more precise, we realize that this ’move’ can be arbitrarily small, meaning that the graph

is locally flexible. We will now try to use the theory explained previously to draw the same

conclusions.

First, we start by defining position vectors for the nodes. Let us run counterclockwise

direction in counting the nodes starting from the bottom left one. We set the following

position vectors: p1 = [0 0 0]T , p2 = [1 0 0]T , p3 = [1 0 1]T and p4 = [0 0 1]T . Note that

20



Figure 12: A non rigid graph

the position vectors also correspond to the coordinates of the points in the space. We can

write the matrix for the map r which will look as follows:

R =



I3 −I3 0 0

I3 0 −I3 0

I3 0 0 −I3

0 I3 −I3 0

0 I3 0 −I3

0 0 I3 −I3


We can interpret the columns as being representative of p1, p2, p3, p4 and the rows of

representing three times each (one per direction), (p1 − p2), (p1 − p3), (p1 − p4), (p2 −

p3), (p2 − p4), (p3 − p4), respectively. Moreover we have the following adjacency matrix:

A =



I3 0 0 0 0 0

0 0 0 0 0 0

0 0 I3 0 0 0

0 0 0 I3 0 0

0 0 0 0 0 0

0 0 0 0 0 I3


Here the rows (and columns) can be interpreted as representative of coupling of nodes

(once again, three times per couple) p1p2, p1p3, p1p4, p2p3, p2p4, p3p4, respectively. We

will have the identity matrix in the entry if the nodes are connected and a 0 if they are

not.
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We now have defined everything needed for writing down and calculating the equation

and inequality derived before in the unknown vector δ, which will be a 12 × 1 vector.

There is no efficient way to determine a solution for the system (4), however as we can

see from the figures, any circular movement of two adjacent edges will work. Without any

loss of generality we decide to move vertices 3 and 4. Say we want to move them from a

right angle to a 60◦ with respect to the 1-2 edge. This translates in our case of moving

vertices 3 and 4 of sin(π3 ) units to the left and cos(π3 ) units downwards (remark:60◦ = π
6

rad), as shown in (11) and (12). Thus the displacement vector for this move is δ =

(0, 0, 0, 0, 0, 0, sin(π3 ), 0, −cos(
π
3 ), sin(

π
3 ), 0, −cos(

π
3 )). This δ satisfies (4), meaning the

graph is globally flexible. Moreover, we can see that the displacement vector can be taken

arbitrarily small, as soon as we push a little bit one node, horizontally or vertically, also

the adjacent node in that direction will move, and the diagonal length will change as well.

In figure (13) the check for flexibility in Wolfram Mathematica: As expected, the output

Figure 13: The square

of the Exists[] function returns true. In the next example we will see a similar example

and compare it to what has been said before.

C. A rectangle with a diagonal: the difference between two dimensions and three

In this subsection we will analyze a rectangle with a diagonal. We will find out, first

intuitively and then with the Wolfram Mathematica check, that the graph is flexible. This

will seem contradictory to what we have said in the introduction, where it sufficed to put

the diagonal in the rectangle to make it rigidm (locally rigid, to be precise). But keep in

mind that in the introduction we explained rigidity giving a two dimensional example, in
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this case we are lying in the three dimensional space, which gives the rectangle an additional

degree of freedom to move. As a matter of fact, we aren’t able to push the nodes as in

the previous example, since the diagonal prevents the movement to be possible. We can,

however, rotate two sides of the rectangle in three dimensions with respect to the diagonal.

This idea is shown in figures (14) and (15).

Figure 14: The rectangle with a diagonal

Figure 15: The rectangle flipped

Let the rectangle have the following position vectors: p1 = [1 1 1]T , p2 = [3 1 1]T ,

p3 = [3 2 1]T and p4 = [1 2 1]T . Let also the edges connect p1p2, p2p3, p3p4, p1p3 and p1p4.

Without any loss of generality let us rotate node 2 with respect to the diagonal of 180◦. This

rotation corresponds to the displacement vector δ = (0, 0, 0,− 1√
5
, 0, 2√

5
, 0, 0, 0, 0, 0, 0)T ,

which satisfies (4). We have found one displacement vector that works, but notice that

once again we can rotate it along the diagonal of an infinitesimally small degree. This

infinitesimal rotation will change the distance between nodes 2 and 4. Thus, the graph

is locally flexible. We see in this case the difference between being in two dimensions
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and three: while in the former the rectangle with the diagonal was globally flexible (locally

rigid), in the latter it is locally flexible. As in the previous example we check with Wolfram

Mathematica this case as well. Notice that, except for p, what changes from the previous

example is the adjacency matrix, which is the following:

A =



I3 0 0 0 0 0

0 I3 0 0 0 0

0 0 I3 0 0 0

0 0 0 I3 0 0

0 0 0 0 0 0

0 0 0 0 0 I3


Of course also the addends in (4) change, as we see in figure (16).

Figure 16: Rectangle with the diagonal

The result is once again the one expected. We will proceed with the example of a solid.

D. A three dimensional object

In this subsection we will consider two pyramids lying in two opposite sides with the

same base, a square with one diagonal and having different heights, like we see in figure

(19). We require the base to have the diagonal to avoid the possibility of moving the base

of the solid like in example 2 of this section. It might seem like the solid we are presenting

is rigid. We will first implement it in Mathematica, see the output and try to interpret
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the result. We give the following position vectors for the solid: p1 = [0 0 0]T , p2 = [2 0 0]T ,

p3 = [2 0 2]T p4 = [0 0 2]T , p5 = [1, 1, 4]T and p6 = [1, 1, −2]. We implement this in

Mathematica. Figures (17) and (18) show the equation and inequality in the 18 unknowns

obtained from (4) in this case and the Exists[] with its output. It is not so obvious that

Figure 17: The equations obtained

Figure 18: The output

the graph we chose is flexible, but it is actually globally but not locally flexible. The only

allowed displacement of the graph we chose are the ones that take each top of the pyramid

and reflect it with respect to its base, namely δ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4)T

and δ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−8, 0, 0, 0)T . Notice from this example that global

flexibility is equivalent to local rigidity: we cannot find a continuous move that preserves

the adjacent distances and changes the non adjacent one.

In the next subsection we will explain the types of examples where it becomes too hard to

implement the model.
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Figure 19: The pyramid

E. A no longer practically workable example

In this subsection we will explain the sort of examples are too big to be implemented.

We have seen before the limits of the CAD algorithm and of the Exists[] function: the

CAD algorithm supports in a reasonable amount of time up to 6 or 7 variables in most

cases, thus, already three nodes become probably too many; on the other hand, the Exists[]

function might never end should the expected output be ’false’.

One other problem with our model is the dimensions of the matrix: both R and A grow

quadratically in the number of nodes. Therefore, it becomes infeasible to write down the

matrices if there are too many nodes: already in the last example the adjacency matrix

was 45× 45 and the relative distance matrix 18× 45. Both were implemented by hand. In

the next section we will draw conclusions and discuss the results, we will discuss the limits

of the theory developed, provide possible improvements that can be made.
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V. CONCLUSIONS

In this report we have presented the problem of graph rigidity in three dimensions. By

defining the right map we managed to rewrite the flexibility conditions as a system of a

multivariate quadratic equation and inequality in an unknown displacement vector. Using

Wolfram Mathematica we can draw conclusions on the flexibility of a given graph. If a

solution to the system exists then the graph is either surely globally flexible (equivalently

locally rigid) and it might be locally flexible. In theory, the CAD algorithm (provided

sufficient time and memory) allows us to determine whether a graph is locally flexible: for

this we would need to know that the solution set of the system is infinite and has the zero

vector as an infimum.

The results obtained in this research provide now an interesting way of determining

whether a graph is flexible. This, as we said in the introduction, might be of interest to

the fields of engineering and maybe other natural sciences that more indirectly deal with

graphs, such as chemistry or biology.

The limits of the theory is that the CAD algorithm is really inefficient, therefore, even

if it works in theory, it hardly does in practice. There is a specific function used for

determining the existence of solution given the equation and inequality. But even this

one might fail if the graph is rigid. There are several improvements that might be made

for this problem: for instance, deeper linear algebraic analysis can be made to the map

introduced to possibly determine rigidity of a graph without the need of finding solutions

to the system. Secondly, by a close look to many different examples, a pattern might be

recognized in the coupling of the variables in the (in)equations. Moreover, an algebraic

geometrical and topological approach to the problem might make several properties or

solutions to special kinds of graphs arise. These are only few of the improvement points.

Finally, I would like to give one personal interesting thought about the problem regard-

ing the implementation in Mathematica: although I have not been able to prove this, it

is in my belief that, if the computer stores in memory the solution found by the Exists[]

function that returns ’True’, then by taking that solution and changing it by an infinites-

imal amount - with certain constraints which might differ from one case to another- then

it would mean that, provided that the changed solution is still a solution, the graph is

locally flexible. This is because it means, in my point of view, the map that has moved

the original graph to the new one is continuous.
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VI. TABLE OF SYMBOLS

Symbol Description

G(V, E) Graph defined by the couple of node and edge set

φ Incidence function

E Set of all possible edges of a graph

E Set of actual edges of a graph

V Set of nodes

ν Cardinality of V, i.e., number of nodes

pk Position vector of node k

eij Edge connecting node i and j

p Position vector of the whole graph

δ Displacement vector

r Relative distance map

R Relative distance matrix

A Adjacency matrix

I Identity matrix
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