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Abstract
Three-dimensional(3D) point cloud model of an object is essential in various appli-
cations, such as surface inspection, physical interaction with the target of interest,
obstacle detection for navigation, etc. Recent progress in Simultaneous Localization
And Mapping (SLAM) algorithms makes it possible to perform point cloud model re-
construction in real-time. Integrated with Unmanned Aerial Vehicles (UAVs), point
cloud model reconstruction research has witnessed new possibilities. This master
thesis proposes and validates an approach for ariel robotic system to autonomously
build a 3D point cloud model of a 3D object using unmanned aerial vehicle (UAV),
without having prior information about the object. The proposed method relies
on the textures on the surface of the object for UAV coverage path planning. The
reconstruction process comprises of two flight modes, initial arbitrary flight and ex-
ploration flight.The 3D point cloud generated from initial arbitrary flight undergoes
spatial segmentation to determine the uncovered regions to explore and improve the
point cloud model better. The identified low dense regions during the initial flight
are converted into the waypoints for the UAV to navigate. These waypoints are posi-
tioned in such a way that the trajectories are obstacle free. Polar coordinate system
used around the object is used to achieve the obstacle free path. There is trivial
solution where a helical trajectory around an object of interest results in a perfect
3D point cloud model. However, there are some drawbacks: 1) the measurements
of the object should be known before the start of trajectory to reach the maximum
height and to cover the circumference of the object without colliding with the object;
and 2) in a single flight, either the overlap of the field of view on the surface of the
object could be avoided or the coverage of uncovered regions out of the helical path
shall be satisfied. Nevertheless, the point cloud model obtained from helical trajec-
tory experiment with sufficient number of rotations is set as a benchmark solution
to evaluate our proposed method. The reconstruction completeness is evaluated
using the Iterative Closest Point (ICP) algorithm which compares the point cloud
model obtained using the bench mark solution with the proposed method. The pro-
posed algorithm was simulated within the ROS system using realistic parameters
of fully-actuated hexarotor UAV and a stereo vision camera for 3D perception. The
simulation results showed that the proposed method, unlike trivial helical trajec-
tory method, completes the point cloud model construction process autonomously
without a priori knowledge about the object of interest. In addition to that, the
proposed method completes the point cloud reconstruction in less time and high
quality than the aforementioned helical solution.
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Chapter 1

Introduction
1.1 Context

Modelling a three-dimensional (3D) object or a structure is an essential area of re-
search in the field of computer vision and robotics. It is a process of representing
a surface as a point cloud model. Physical interaction with the surface by a ma-
nipulator, investigation of surface quality, obstacle detection during autonomous
navigation and creating a realistic city map for game engines are some of the no-
table applications of 3D modelling. Computer-Aided Design (CAD) as in [5] is one
way of creating a 3D model. It requires a highly skilled modeller for execution.
An alternate method is surface reconstruction through sensor perception. Com-
monly used sensors are Light Detection And Ranging(LiDAR), Radio Detection And
Ranging(RADAR) and stereo cameras. A 3D object scanners are sufficient to obtain
the point cloud model of small objects without much effort. However, for enor-
mous man-made structures like skyscrapers, windmills and rocket launch pads,
scanners are not large enough to solve the purpose and neither a ground based
vehicles can reconstruct the structures which are tall; instead, they could be re-
placed with a fully actuated unmanned aerial vehicle (UAV) attached with sensors.
A fully actuated UAV allows for a variety of maneuvers that includes tilted flight,
inclined hovering and eliminate the use of gimbals for sensors which is not possible
with under actuated airborne. Massive man-made structures require a high level
of structural investigation during its construction and maintenance. It is hardly
possible for humans to reach out to high altitude for inspection without expensive
infrastructural support.This is possible only if an arieal medium approach is used to
accomplish the task. Surface reconstruction shall be performed either using man-
ually controlled UAVs or autonomously. An autonomous UAVs may accomplish this
task more effectively than a manually controlled UAVs because it does not demand
a trained operator to supervise reconstruction. It is a confined process between
take-off and landing. An appropriate application to support the aim of this the-
sis work is surface modelling of 3D printed dome-shaped structures, as shown in
Figure 1.1. National Aeronautics ansd Space Association (NASA) held a contest to
design home on Mars [1]. These structures are expected to be durable and robust
enough to withstand the alien weather conditions. A minor error in 3D printing

1
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Figure 1.1: An animated model of 3D printed structure on Mars [1].

would devastate the life of astronauts. So a careful inspection of the surface is cru-
cial in a project that demands high safety. Involving humans to inspect these tall
structures in Mars is a life-risking task. This application illustrates the importance
of using UAVs for surface reconstruction. Figure 1.2 shows another area of appli-
cation where three workers are cleaning the glass surface of a skyscraper. Workers
shall be replaced by an UAV with a manipulator that physically interacts with the
surface for cleaning. The surface information is obtained through 3D point cloud
reconstruction process.

There are two ways to perform autonomous surface reconstruction, offline or
model-based and online or non-model based reconstruction. The model-based
method demands an exact model of the object of interest and map of the surround-
ing where the UAV operates. Whereas, the online reconstruction process relies
on sensors’ data that perceive surrounding information. Thus, exploring an un-
known structure in an unknown environment autonomously, without prior infor-
mation (model) is more challenging than the offline method. Autonomous surface
reconstruction process involves multiple iterations of the following sub-processes:
1) Generating point cloud from the surface features (perception); 2) Determining
the current position and orientation of UAV with respect to the object (localization);
3) Planning the coverage path with an appropriate set of way-points for the UAV
(planning), and performing a smooth trajectory to different way-points (Navigation).
The explanation of these sub-processes is as follows.
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Figure 1.2: Three workers cleaning the glass surface of a skyscraper. (Image from
Shutterstock)

1.1.1 Perception

Point cloud acquisition system requires a surface that reflects light or beam of rays
and a sensor that receives the light for processing. There are four types of tech-
niques for point cloud acquisition. 1) Image-based method; 2) Light Detection And
Ranging system (LiDAR); 3) synthetic Aperture Radar (SAR) system; 4) Camera-
based method. Image-based methods as described in [6] generates a point cloud
from stereotype images acquired through the camera using photogrammetry con-
cepts. The point cloud shall be generated after the image acquisition process. This
method is called the passive approach because the image acquisition and recon-
struction process are not executed simultaneously. SAR system uses RADAR for
point cloud reconstruction. As explained in [7] the radar moves across the object-
of-interest while transmitting a successive pulse of radio waves. The pulses are
received back to obtain the physical information of the surface. This method is gen-
erally used for remote sensing and reconstruction of the landscape. LiDAR-based
systems as in [8] beam laser light source on the object surface and sense the re-
flected beam to generate point-cloud. Camera-based systems as used in [9] sample
the textures on the surface of the object to generate point-cloud. Unlike image-
based method, the point clouds are simultaneously generated using the image out-
put from the stereo camera. This method is called the active approach. There are
two types of camera-based sensors, monocular and stereo sensors. Of these two,
the stereotype sensor produces three-dimensional points which includes the depth
information of a point. The depth information of a point is essential for navigation,
obstacle avoidance, physical interaction and many more applications. In general,
among all the methods mentioned above, stereo camera sensors are economical,
less computational and suitable for small-sized UAVs.
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1.1.2 Localization and Mapping

An autonomous non-model based reconstruction using a UAV requires awareness
about the current location of the UAV with respect to the point cloud map it gener-
ates. This phenomenon is called localization and Mapping, which is performed by
(Simultaneous Localization And Mapping) SLAM algorithms. Several open-source
SLAM algorithms performs point cloud extraction using camera or LiDAR input
data and then execute localization and mapping process using the extracted point
cloud. SLAM algorithm is also made available for monocular and stereo vision cam-
era. Working of the SLAM algorithm is explained in Section 2.2.

1.1.3 Planning and Navigation

Coverage path planning(CPP) is a process of deriving several viewpoints for the UAV
in such a way that, on reaching out to these viewpoints, the UAV scans the com-
plete surface area of the object or the surrounding environment, avoiding obstacles
on its way. As discussed earlier, the categorization of model-based and non-model
based methods comes under this topic coverage path planning. The model-based
method is otherwise called the offline method, and the non-model-based method
is called online method. In the offline method, a model of the static object or map
of an environment (including the position of an obstacle) is required as an input to
perform coverage path planning, which ultimately leads to a global-optimal solu-
tion. Whereas in the online method, the real-time sensor measurements are used
to perform path planning during the flight. In this method, knowledge about the
environment is uncertain. This uncertainty leads to a local-optimal solution at its
best. However, online path planning method has several advantages over the offline
path planning method. For instance, in an exploration task, where the exact map
of the surrounding or the accurate model of the object of interest is unavailable,
an online coverage path planning method is the best choice. It is flexible in the
dynamic environments, acquiring a reference model involves a high level of human
effort, which is obsolete in the online-based method. In the online-based method,
simultaneous localization and mapping processes are inevitable, which shall be
supported by several SLAM algorithms. Figure 1.3 and Figure 1.4 shows the block
diagram of online and offline path planning method respectively.
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Figure 1.3: A block diagram depicting online path planning method for surface
reconstruction.

Figure 1.4: A block diagram depicting offline path planning method for surface
reconstruction.

Apart from the above-discussed advantages, there are challenges in the online
path planning method. It is uncertain to ensure that the aim of the reconstruction
process will be accomplished yet having a solution. It does not have access to a
global perspective of the environment or an object of interest. Instead, it can only
run the decision-making process on the go with a partial view of the subject in ad-
dition to obstacle detection. The computation cost increases at every step, as the
decision-making process has to consider the updated point cloud input and obsta-
cle information. The literature study on various online path planning algorithms is
discussed in the following section.The afore-mentioned classification of 3D recon-
struction methods are classified as shown in Figure 1.5. The flow diagram explains
different kinds of reconstruction methodologies that are possible. The green shade
in the flow chart implies the classification specific to this thesis work.
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Figure 1.5: Classification of 3D reconstruction process.Green shade denotes the
thesis related classification.

1.2 Related Work

The literature study for this thesis work is divided into two parts, 3D point cloud seg-
mentation methods and online reconstruction method using point cloud segmenta-
tion. Firstly, available point cloud segmentation methods are studied from various
research works, and then online-based autonomous 3D point cloud surface recon-
struction by different research approaches are presented. In online-based 3D point
cloud reconstruction, there are various applications such as ground and plane re-
construction, interior map generation for a building and object-centric reconstruc-
tion. Since coverage path planning is a common problem in any exploration task,
the literature study was carried out irrespective of applications mentioned above.

1.2.1 Point Cloud Segmentation

A point cloud is a digital representation of any light reflecting surface. Point cloud
segmentation is one of the important preprocessing steps in point cloud processing.
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In point cloud segmentation, the point cloud is sub-divided into several regions
to ease the analysis in micro-level. The extracted point cloud using any of the
above mention methods produce a sparse point cloud with varying density. Many
methods are available in point cloud segmentation; they are, edge-based method,
region growing method and hybrid method. Edge-based point cloud segmentation
method finds the edges of a point cloud model. A drastic change in the point cloud
intensity is used to determine the edges. B. Bhanu, S. Lee, C. Ho, and T. Henderson
in [10] developed a gradient-based edge segmentation algorithm where the unit
normal vector on the surface is used to detect the edge points. X. Y. Jiang, U. Meier,
and H. Bunke in [11] proposed a fast segmentation method for range images of both
planar and curved surface. One serious disadvantage of edge-based segmentation
is that it is suitable only for a dense point cloud. The region growing point cloud
segmentation is a classical method of point cloud segmentation. This method is
subdivided into 2D and 3D region growing segmentation methods. As our thesis
work is about the reconstruction of the 3D point cloud model, literature related
to 3D points segmentation in region growing method is studied. A region growing
method is the process where a seed point is considered, and the region grows from
there based on similar surface normal. The region growing method for 3D point
clouds are further subdivided into 1) single-point approach, 2) voxel approach and 3)
hybrid units. In Single point approach, X.Ning, X. Zhang, Y. Wang, and M. Jaeger in
[12] developed a strategy to extract objects in 3D urban scenes for object recognition
and reconstruction where the single-point approach was adopted and applied a
normal vector criterion to include each point with the seed point. Even though the
single point approach resulted in high accuracy, it is a time-consuming process for
the vast point cloud. This problem is eradicated with the voxel approach, where
a group of 3D points and its properties are considered for region growing process.
This has improved the efficiency of the reconstruction process. J.-E. Deschaud and
F. Goulette in [13] developed a voxel-based region growing algorithm. Vo, Anh-Vu &
Truong-Hong in [14] developed an adaptive octree based region growing algorithm
for fast surface patch segmentation by incrementally grouping adjacent voxels with
a similar saliency feature. The hybrid method of point cloud segmentation gave
the best result in terms of accuracy and efficiency, Z. Dong, B. Yang, P. Hu, and
S. Scherer in [15] utilized a hybrid region growing algorithm, based on both single
point and super voxels region growing method, to realize coarse segmentation. The
region growing method performs better with a sparse point cloud model, but the
impact of noise and outliers in point cloud processing is one identified drawback.
Thus, a proper outlier removal technique should be followed before initiating region
growing point cloud segmentation.



CHAPTER 1. INTRODUCTION 8

1.2.2 Online coverage path planning

Among several autonomous 3D surface reconstruction methods, it is essential to
discuss the simple helical approach, proposed by Cheng et al. (2008) in [16] and
Mansouri et al. (2018) in [17]. Here, the UAVs are made to fly in a helical path
around the surface of the volume of interest such that the field-of-view (FOV) al-
ways faces the object’s surface as shown in Figure 1.6 (Left). The drawback in this
approach is that the measurement of the Volume-of-interest (VOI) must be known
before the start of trajectory to decide the number of rotation and circumference
of helical rotation, it neither avoids the overlap of FOV nor covers the uncovered
region along the helical path in a single trajectory plan. In online Coverage path
planning method, past works shall be divided into two different types, 1) Search-
Based Method and 2) Occlusion-Based method. Work done by Connolly et al. (1985)
in [18] proposes two algorithms to find out the “Next Best View” (NBV) through
Occlusion-based method attains complete coverage. Both these algorithms seg-
ment the search space using octree (hierarchical tree structure of cubical volume).
In the first method, the planetarium algorithm, where an evenly segmented sphere
encloses the VOI, samples each segment as occupied or unseen area. The segments
in the sphere having more number of unseen voxels are considered as the NBV. In
the second method, the normal algorithm, where occupied area having more num-
ber of empty areas as neighbours are considered for NBV to complete the coverage.
The NBV based reconstruction method and helical trajectory reconstruction method
is depicted in Figure 1.6 (Right).

A similar kind of NBV search-based method devised by Vasquez-Gomez et al.
(2014) in [3] proposes a coverage algorithm to compute NBV points to reconstruct
an object using a fixed end arm robot. A utility function is built to performs ray
tracing and check if the following constraints are met. New information constraint,
positioning constraint, sensing constraint and registration constraint. After ray
tracing, the evaluated viewpoints are again checked for position error. Finally, one
single NBV is reached that satisfies all the constraints considered. Again, similar
to the method discussed previously, 3D volumetric segmentation (Voxel) is used to
store information about the regions. One main drawback in this algorithm is that
it considers many constraints for predicting NBV that ultimately increases compu-
tation cost. L.M.Wong. (1999) in [19] came up with a new approach in NBV sensor
positioning algorithm for 3D modelling of an object. An objective function is de-
rived, that measures the quality of unknown information from each viewpoint. As
explained in the previous method, the object is spatially segmented using 3D vox-
els and labelled them as occupied, empty and unseen voxels. He developed three
different methods, Optimal method, surface-normal method and Adaptive method.
In the optimal method, viewpoints are placed uniformly around the object. In the
surface-normal method, summing the surface normal of the visible unknown voxel
faces that point in each axis direction. The adaptive method is a mix of both opti-
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mal and surface-normal methods. The optimal method consumes more time and
computationally expensive as it produces many viewpoints, whereas the surface-
normal method, excludes self-occlusions of the object. The third type gives the best
result in obtaining NBV. The main drawback in this method is computation time.
There is no space in this method to improve the time of reconstruction.

P. S. Blaer and P. K. Allen in [20] developed an algorithm which consists of two
different steps. First, a random flight to generate an initial set of point-cloud. For
maximum coverage, a map of the environment is taken as input. Then in the second
flight, the gaps and holes in the occupancy grid created during the random flight are
investigated by flying to NBV. These NBV points are derived based on identifying the
empty boundary voxels. The empty boundary voxels are the voxels which have more
number of empty voxels as neighbours. The view planning algorithms presented
in this manuscript eliminate unnecessary scans and reduce the time needed for
detailed modelling.

Figure 1.6: UAV flight in a helical path(Left) NBV flight method(Right) for recon-
struction.

The literature study listed above motivates our thesis work in establishing com-
plete autonomy in the reconstruction process of the partially known object. Algo-
rithms presented in the literature study regarding point cloud segmentation reveals
that voxel-based region growing method using octree data structure performs with
less computational effort than other methods discussed. A new horizon of detect-
ing point cloud edges in the sparse point cloud using the region growing method
is proposed in this thesis work. In the literature study of online coverage path
planning methods, there are several approaches in common. They are, data ac-
quisition accomplished through the sensor (cameras), partially known volume of
interest (at least one measurement of the object is required), spatial segmentation
of point clouds (voxel grid) to decide the NBV using unique utility function specific
to their work. Efforts on improving the reconstruction process in terms of time and
quality are made by improvising these utility function which determines NBV. Util-
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ity function considers one or more phenomenon to estimate the best viewpoint. For
example, constraints in motion, location of voxels, number of neighbouring empty
voxels etc. Also, every research work has a set of criteria of to decide the efficiency
of reconstruction such as completing the reconstruction process in a better time,
identifying and covering the occluded regions in the object, completion of recon-
struction process with least number of NBVs. Finding a novel solution to satisfy
the criteria mentioned above to get better results is the key research area of this
thesis work.

1.3 Method Overview

First, an initial set of point-cloud is extracted by traversing the UAV through a pre-
defined arbitrary path in a polar-cylindrical coordinate system that completely en-
closes the volume of interest. Figure 1.7 shows the vertical and helical path as the
initial trajectory. The latter trajectory improves reconstruction time than the former
as it covers a larger surface area of the object during the initial flight. An explana-
tion about how initial trajectory path impacts the reconstruction time is explained
in Section 3.2. Point cloud extraction from surface features, localization of UAV and
point cloud registration tasks are taken care of by SLAM system. Then, the extracted
initial set of point cloud during arbitrary helical trajectory undergoes a refinement
procedure, where the outliers are removed using crop box filter. As discussed in the
literature study on point cloud segmentation, region growing method is vulnerable
to outliers. Thus removing the outliers increases the efficiency of subsequent seg-
mentation process. After this, the refined SLAM generated point cloud is spatially
segmented using octree-based voxelization method. An explanation about the voxel
map representation of point cloud is given in section spatial voxelization.

Figure 1.7: Different methods of implementing initial arbitrary trajectory around
an object of interest. Vertical lift(Left) and Helical trajectory(Right).

The generated voxel grids are again refined to eliminate the voxels at dense point
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cloud regions. The refinement process makes use of the number of points per voxel
criterion to eliminate the unwanted voxels. The list of existing voxels that are located
along the boundaries of the existing point cloud is carried over to the subsequent
steps. Then, the centroid coordinate of each voxel is calculated and translated away
from the object’s surface along the surface normal vector of neighbouring points,
such that the new position lies on the polar-coordinate system. These relocated
positions become the next best view(NBV) points or otherwise, way-points for the
UAV during exploration flight. Then the UAV takes trajectory to these new view-
points one after other while simultaneously performing feature point extraction.
Once after covering the first set of viewpoints, the newly generated point cloud is
registered with the existing point cloud using SLAM registration module.

The entire process continues until the termination condition is satisfied. The
termination condition is satisfied if the number of feature point extraction slows
down. The rate of increase in the number of feature point gradually saturates during
the exploration flight. This behaviour was experimentally verified using a double
helix trajectory around the object. The experiment results are presented in Section
5.4. Based on this experiment result, this termination condition is incorporated in
the algorithm. The proposed algorithm is shown as a flowchart in Figure 1.8.

Figure 1.8: Flowchart explaining the proposed reconstruction approach.

1.4 Motivation for Proposed Method

Determining NBV though number of points per voxel criterion was derived based on
the inference made by P.D. (Patrick) Radl in 2019 [9] from ORB-SLAM 2 evaluation
, where it shows that as the distance between the object of interest and the UAV
increases, the number of generated feature points reduces. The generated map
points possess less number of points along the edges or boundaries of that set of
points. This inference took the thesis work toward analysing the number of points



CHAPTER 1. INTRODUCTION 12

in the segmented voxels. Figure 1.9 shows the schematic representation of this
inference.

Figure 1.9: The dense and non-dense point cloud regions of a planar and cylindri-
cal surface created by ORBSLAM2.

1.5 Problem Formulation and Research Questions

1.5.1 Research Objective

The main objective of this thesis work is to develop a methodology for UAVs that
can autonomously perform reconstruction of an unknown 3D object through on-
line (non-model based) coverage path planning approach. As a result, we obtain a
complete digital representation (point cloud) of an object.

1.5.2 Research Questions

A detailed study on various research works reveals that the non-model based au-
tonomous reconstruction of a 3D object consists of following iterative steps. Data
acquisition through sensors (camera/LiDAR), feature point extraction, if the cam-
era is used for data acquisition, spatial segmentation of point cloud to determine
“Next Best View” (NBV) for progressive exploration and registration of new sets of
point-cloud. Among these, deriving the next best view to exploring the uncovered
regions of an object is the key area of this research work.

In our proposed method, as explained above, the number of points per voxel
criterion is considered as a piece of key information to find out the next best view-
points to improve point cloud better. The performance of proposed reconstruction
method is evaluated based on quality of reconstruction and time taken to complete
the reconstruction. The quality of the reconstruction process shall be concluded
with two factors. One, completeness of the point cloud model.

Two, the minimum registration error. The completeness of the reconstruction
process is ensured using the Iterative closest point approach and the number of
feature points extracted. The minimum registration error is validated by calculating
the root mean square(RMS) distance between the ground truth trajectory and the
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estimated camera trajectory. If the RMS distance between ground truth and the
estimated camera trajectory is high, then the quality of the point cloud is reduced.
The results obtained through a helical trajectory is kept as the benchmark solution
for validation. The results ideally contain the number of points generated and the
time of reconstruction.

And, the time of reconstruction is compared with the helical method reconstruc-
tion time. To the best of my knowledge, this approach of determining NBV was not
attempted so far in determining the best viewpoints for reconstruction.This led to
the following research question.

Q.1 How does the proposed methodology for 3D point cloud model reconstruction
perform better in terms of time and quality than the helical trajectory approach?

As stated above reconstruction performance depends on time of reconstruction.
Lesser the time better is the performance. In our proposed approach, there are
various opportunities to reduce the reconstruction time. Some of these options are
varying the voxel resolution and number of points (NoP) threshold limits, re posi-
tioning the NBVs, and changing the orientation of UAV. Some times while adapting
to these measures, quality of reconstruction could be affected.

Q.2 How does experiments conducted to minimize the reconstruction time like tun-
ing the voxel resolution, threshold condition, relocating NBVs, and varying UAV’s pitch
affects the quality of reconstruction?

As the online reconstruction approach involves exploration of an unknown ob-
jects in unknown surroundings, it is impossible to accurately estimate the time
required for reconstruction. Fixing a random time limit may result in incompletion
of the intended task. On the other hand, giving reconstruction time low priority
might also lead to incompletion of reconstruction due to a shortage of battery ca-
pacity in an extended period of the flight. So a termination condition needs to be
provided to end the reconstruction process. In our proposed method, saturation
of the number of feature point is considered as the termination condition for the
reconstruction process.

Q.3 How effectively does the termination condition used in our approach determine
the end of the reconstruction process?

All these research questions are investigated through simulated experiments and
evaluated with realistic parameters.

1.6 Report organization

Remaining part of this report is structured in the following manner. Chapter 2
discusses the background knowledge required for the reader to get in track with
the work done in this thesis work. It consists of the concepts behind point cloud
generation, an open-source SLAM system, octree based voxelization of point-cloud
using PCL library, iterative closest point approach which is used to determine the
fitness score for the reconstructed point cloud. Chapter 3 explains the proposed
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algorithm in detail with each step in the reconstruction process is explained with
the pseudo code. Chapter 4 presents the efficiency improvement methods used in
the algorithm to fasten the reconstruction process. Chapter 5 describes different
types of the evaluation carried out in the thesis work. The evaluation process in-
cludes evaluation of simulation specification, evaluation of the proposed method,
evaluation of performance improvement techniques and evaluation of termination
condition. Chapter 6 discusses the final conclusion, where the research questions
are answered with the evaluation results and also provides the scope for future work
to improve the proposed reconstruction method.
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Background
In this chapter, a detailed explanation of the relevant background information is
discussed. Following topics are covered in this chapter. The concept behind fea-
ture point extraction, point cloud generation through ORB-SLAM2 and its sub-
components, octree based segmentation of acquired point cloud model, and the
working of iterative closest point approach which is used to verify the completeness
of reconstruction.

2.1 Surface point generation

Point clouds are the set of discrete points that are generated from the features on
the surface of any object or thing that corresponds to a coordinate system. In
this thesis work, the final output of the object representation will be in the form
of point cloud. Therefore, it is necessary to know the concept behind point-cloud
generation. As mentioned earlier in this report, there are several ways of obtaining
a point-cloud model. Our goal is to reconstruct a 3D object using a stereo cam-
era. A 3D point extracted using the stereo-vision camera is represented as P(x,y,z)
whereas in a regular monocular-vision camera a point in an image is represented
as P(x,y). A stereo-vision camera consists of two image sensors, left one and a right
one respectively. Triangulation method is used to extract a point from the 3D space.
This concept behind the point-cloud generation using the stereo-vision camera is
discussed in the following section.

2.1.1 Point Generation by Triangulation Method

A 3D point is determined in a given space using triangulation method given two dif-
ferent projection of a scene. As mentioned before, a stereo-vision camera provides
two different projections through the right and left image sensors. The intersection
of two known rays is sufficient to estimate the point coordinate. To determine the
point coordinate using the intersection rays, the following information is required.
The parallel optical axis of both the cameras(unparalleled axis involves a different
triangulation approach to find point position), geometrical arrangements and in-
ternal parameters of the stereo cameras. The triangulation method is depicted in

15
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Figure 2.1.

Figure 2.1: Depicts the stereo vision process using triangulation method.

The distance between two camera centers is called baseline. Let the baseline
be perpendicular to the optical axes of the cameras and parallel to the x-axis. The
distance between cameras is d and cameras have equal focal length f. Z is the depth
of the point in a three-dimensional world. The point (x,y,z) have x and y coordinate
in each camera, respectively as (Xl, Yl) and (Xr, Yr). From similar triangles in the
figure implies

Z =
df

Xl −Xr

Where Xl − Xr is the disparity. A disparity map is a representation of depth
information which is calculated using two images obtained from the stereo-vision
camera. Thus, the disparities of the corresponding image points are used to retrieve
depth at various scenes. Also, x and y are calculated using the below equations

X =
d(Xl +Xr)

2(Xl −Xr)

Y =
d(Yl + Yr)

2(Yl − Yr)

Now, the generated points have to be grouped in their respective position, which
in turn represents the volume of interest. The following section explains the system
which performs this process.

2.2 SLAM

The purpose of Simultaneous Localization and Mapping (SLAM) algorithms is to
build a map of an unknown environment and determine the position of the sensor
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the perceives data about the operating environment. It is used in various appli-
cations mainly focused on robotic navigation, driver-less cars and virtual reality.
SLAM is also used as the basic function in many path planning algorithms. The
basic architecture of SLAM algorithms consists of four components: perception,
loop closing, mapping and optimization. There are various open-source SLAM sys-
tems available. These SLAM algorithms can be broadly classified into a feature-
based and direct method. Feature-based method completely relies on the surface
features for SLAM operation. Whereas direct method exploits all the information for
its operation.

Developed by Mur-Artal and Tardos (2017) in [2] , ORB-SLAM2 is the successor
of ORB-SLAM, with an added advantage of using it in stereo-vision camera in addi-
tion to the monocular-vision camera. Oriented FAST and Rotated BRIEF (ORB) is a
fast, robust local feature detector which is based on the Features from Accelerated
Segment Test (FAST) key-point detector and the visual descriptor Binary Robust In-
dependent Elementary Features (BRIEF). It replaces SIFT detectors which are gen-
erally used to extract features. Scale Invariant Feature Transform (SIFT) is highly
computationally expensive. Thus ORB feature extraction technique has reduced
computational load to CPU in real-time. The working of ORB feature extraction is
described by Ethan Rublee and Vincent Rabaud in 2011 [21]. ORB-SLAM2 is di-
vided into three threads, tracking, local mapping and loop closing. The functional
block diagram representation is shown in Figure 2.2.

2.2.1 Tracking

ORB-SLAM2 processes every input frame of stereo output and determines the dis-
tinguishable feature points which are then converted to map points. Feature ex-
traction is carried out using the ORB feature detection algorithm by Rublee et al.
(2011) [21].

Camera pose is calculated from the previous frame using the constant velocity
model, and feature matching is performed between the frames. If the tracking is
lost, the current frame is compared to key-frames to match features and thereby re-
localise. If in both cases enough features are found the current pose of the camera is
predicted. With these initial set of features and camera pose, the map is projected to
search for map point in correspondence of features. Computation load is reduced
by selecting points from only the related key-frame. Related key-frames are key-
frames that should have map points in common with the current frame and their
neighbours. Neighbouring key-frames are determined by their shared map points
with each other. Based on the corresponding points, which are also in the frame
visible, the camera pose gets optimized and updated.

Determining new key-frame is one of the core function of tracking. According
to Mur-Artal et al. (2015) as in [2], the current frame must satisfy the following
criteria.
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• Re localization and key-frame insertion must be done at least after every 20
frames.

• At least 50 points are tracked.

• At least 90% of the points of the key-frame with the highest map point corre-
spondence are tracked.

One exception for all these exits. Using the stereoscopic version of the algorithm in
this research, the initial frame is used as initial key-frame, as Mur-Artal and Tardos
(2017) point out. At this point, the camera is also set to the origin, and an initial
map is created from detected features.

Figure 2.2: Structure of ORB-SLAM2 by Mur-Artal and Tardos (2017), showing the
three main threads [2].

2.2.2 Local Mapping

Local Mapping is performed at every new key-frame. It consists of five different
processes such as Key Frame Insertion, Recent map points culling, New map points
creation, Local bundle adjustment (BA) and Local key-frame culling.

In the Key Frame Insertion step, a co-visibility graph is updated where a new
node is updated in the new key-frame. The new key-frame is linked with other key-
frames having common points. Then a bag of words is computed to represent the
key-frame that helps in the triangulation of new points.
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In Recent Map Points Culling, the map points are tested to be retained in the
next three key-frames after creation, to ensure that it was not wrongly triangulated.
The points must fulfil the following two conditions.

1. The tracking must find the point in more than 25% of the frames in which it
is predicted to be visible.

2. If more than one key-frame has passed from map point creation, it must be
observed from at least three key-frames.

Once a map point passes this test, it can only be removed if at any time it is
observed from less than three key-frames. This can happen when key-frames are
culled and when local bundle adjustment discards outlier observations. This policy
makes our map contain very few outliers.

In New Map Points Creation, new map points are created through triangulation
method as stated in section 2.1.1. For each unmatched ORB in new key-frame, a
match with another unmatched point in other key-frames will be searched. This is
done by “Bags of Words Place Recognition” method as described by Gálvez-López et
al. (2012) [22].

In Local Bundle Adjustment, currently processed key-frames are optimised.
All key-frames are connected to the co-visibility graph. All other key-frames that
see those points but are not connected to the currently processed key-frame are
included in the optimization but remain fixed. Observations that are marked as
outliers are discarded at the middle and at the end of the optimization. In Local Key-
frame Culling, the local Mapping tries to detect redundant key-frames and delete
them.

2.2.3 Loop Closing

ORB-SLAM2 provides a loop closing feature, which targets to reduce the accumu-
lated error during the observation. When reaching the same pose, this drift in the
map should be possible to estimate. Hence, the last key-frame processed by the lo-
cal Mapping is compared with a database to determine if the scene was previously
observed. Between the detected loop key-frame and the current key-frame, a map
point matching is applied to determine the error accumulated in the loop to con-
struct a “similarity transformation”. In a first step, this transformation is applied to
the current frame and its neighbours to fuse matched map points. Finally, all the
key-frames within the loop are getting transformed to remove the drift error. Loop
closing also corrects the map points covered by those key-frames.

In ORB-SLAM2 a full BA is invoked after closing a loop. As it is computationally
very costly and to not avoid detecting new loops, it is running in a separate thread.
Full BA distinguishes from the previously mentioned local BA that it is optimizing
all key-frames and all map points. When it is finished, the map has to be updated
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with the output of the full BA. Meanwhile, newly introduced key-frames and their
map points are transformed by propagating the correction, which was applied to
the optimized ones.

2.3 Spatial Voxelization of Point Cloud

Analysing a point cloud model of a large structure or object as a single entity does
not help in localized inspection for reconstruction. Hence a modular analysis of
point cloud is required to detect the incomplete regions in the surface 3D point
cloud model. Voxelization is a process in which a 3D cubical space similar to pixels
in the 2D bitmap overlays the input point cloud, as shown in Figure 2.3 (Right).
The trace ability of voxel information is established through an octree based spatial
segmentation. It is a continuous grip of connected voxels in the cartesian space.
In the octree data structure, space decomposition is performed congruently. Each
node is split into eight children node of the same dimension and is labelled based
on the occupancy of points in it. An occupied node contains map points, and an
empty node does not have map points. The voxelization initially fits in minimum
cubical bounding box enclosing entire point cloud which is called level 0. Then this
cube recursively sub-divides into eight children node until the minimum resolution
criteria are met. Each subdivision marks a level of nodes. Each node in the octree
data structure stores several salient features. They are coordinates of 3D points,
the number of points, surface normal of point, the label of the node(occupied or
empty)ad bounding limits of each node. These features are then used application-
specific. Figure 2.3 (Left) shows the pictorial representation of octree data structure.

Figure 2.3: An Octree data structure [3](Left) and voxelization of stanford bunny
rabbit [4](Right).
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2.4 Iterative Closest Point

The Iterative Closest Point algorithm was introduced by Besl and McKay in [23]
to aligning two 3D point clouds by minimizing the distance between them using
geometric transformations (rotations and translations). The ICP algorithm has two
steps:

1. Determine the correspondence pairs (K) between two data sets P and Q. Where
P = p1, p2, p3, ..., pn ,pi ∈ R3 and Q = q1, q2, q3, ..., qn, qj ∈ R3 with current trans-
formation matrix (T). The goal is to find for each point in P its closest point in
Q .

2. The second step is to update the transformation (T) (rotation and translation)
in order to minimize the objective function E(T) over the correspondence pairs
(K).

These two steps are repeated until the error is below a given threshold or until the
maximum number of iterations is reached. A cost function is derived using least
mean square approach. The algorithm considers each point cloud consist of a set
of distance measurements.

E(T ) =
∑

(p,q)∈K

‖p− Tq‖2

The ICP algorithm establishes a transformation parameters iteratively between the
corresponding points in both point clouds so that the mean square distance is
minimized. ICP yields a metric called fitness score which describes the overlapping
area between the two point clouds and is defined by the formula

F =
Nk

Np

where Nk is the number of correspondences and Np is the number of points in
the target point cloud.
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Proposed Method
Our proposed algorithm to reconstruct the point-cloud model of a 3D object using
UAVs consists of two-staged flight initial arbitrary and exploration flight. The explo-
ration flight is the subsequent step of arbitrary flight. During the arbitrary flight, a
pre-planned trajectory around the object of interest is executed to generate an initial
point-cloud model of the surface. This initial flight plan does not establish a com-
plete coverage around the object. Instead, it initiates the ORB-SLAM2 system for
pose estimation and tracking. The initial arbitrary flight plays an essential role in
reducing the time of reconstruction by covering the maximum surface area without
any computation. Thus choosing an optimal initial trajectory path is vital. Among
the two different initial flight path discussed in the method overview section, the
helical method covers a maximum area of on the object’s surface. The explanation
for this choice is presented in the Section 3.2.

The second flight is an exploratory flight in which the UAV flies to the list of re-
fined NBVs determined by our algorithm. The UAV on flying to all the determined
NBVs, ORB-SLAM2 system generates the feature points and builds the point cloud
model. The exploratory flight ends only when the condition for reconstruction com-
pletion is satisfied. The two-staged flight method was inspired from work done by
Tobias Koch and Marco Körner 2019 as in [24], where they have implemented two
stages of scanning using UAV flight planning for image-based 3D reconstruction.
The initial set of point-cloud extracted through arbitrary flight undergoes filtration
process to remove noises and then spatially segmented using octree-based volu-
metric segmentation method explained in Section 2.3. A vector of occupied voxels
having feature points less than a predefined threshold limit is pushed to the sub-
sequent step, and other voxels that do not satisfy the threshold limit are discarded
from the process at this stage. Then the centroids of these filtered voxels are calcu-
lated and translated along the surface normal, away from the object such that they
lie on the polar coordinate system. These translated centroid point on the polar
coordinate surface are the NBV points which also acts as the waypoints for UAV
trajectory, preventing the vehicle from colliding itself from the volume of interest.
Once the NBV points are determined, the explorative flight begins.

22
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Figure 3.1: The detailed block diagram of proposed algorithm.

The UAV executes smooth trajectory to all the NBV points, camera facing the
object’s surface. During the explorative flight, ORB-SLAM2 system simultaneously
performs feature point generation, pose estimation, tracking, and registration of
new points with the existing point-cloud. Also, the point-cloud processing such
as outlier removal, spatial volumetric segmentation and NBV generation, which are
common to both stages of flights, continues until the reconstruction process is com-
plete.The reconstruction process is said to be complete if the number of points ex-
tracted from the texture is saturated within the predefined range. For a given object
with a given texture, the number of feature points does not increase beyond a spe-
cific limit. This observation was witnessed by conducting a double-helical trajectory
experiment using the same object of interest. The experiment results are shown in
Section 5.4. Thus for a given textured object, the maximum number of feature
points saturates at some stage of reconstruction. If there is no vast difference in
the number of points in the point-cloud, reconstruction is said to be complete. A
detailed representation of proposed algorithm is presented in Figure 3.1. The fol-
lowing part of this proposed method section contains a detailed explanation of the
UAV trajectory, initial trajectory, point cloud processing, positioning the next best
viewpoints, Stabilising the NBVs, explorative trajectory to NBVs and termination
condition for the reconstruction process.
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3.1 UAV Trajectory

The UAV is bound to fly in a polar-cylindrical coordinate system that encloses the
entire object on the x-y plane. This aids in avoiding collision with the object of
interest. Unlike cartesian coordinate system where a spatial point is represented as
(x,y,z), in a polar-coordinate system a spatial point is represented as (r,θ,z) where r
is the distance of the point from central axis at the origin, θ is the angle between the
x-axis and the line segment connecting central axis to the point and z is the height.
A polar-cylinder coordinate system is pictorially presented in Figure 3.2. The radius
of the polar-coordinate system is chosen as 5 meters. The reasoning for choosing
this radius is discussed in Section 5.1.3.

Figure 3.2: The polar cylindrical coordinate system enclosing the object of interest
(Left) and the cartesian representation of polar cylindrical coordinate
system.

A UAV in the polar coordinate system either follow a circular path or vertical
displacement or both simultaneously. The circular trajectory followed by the UAV is
defined by the equations 3.1,3.2, and the vertical trajectory is defined by equation
3.3.

x(t) = r ∗ cos(±ωt) + x0 (3.1)

y(t) = r ∗ sin(±ωt) + y0 (3.2)

z(t) = ±(Vzt) + z0 (3.3)

In equation 3.1 and 3.2, r is the radius of the polar coordinate system, t is the
trajectory time which corresponds to the simulation step function. The duration of
a step function is denoted by ∆ts (∆ts = tn− tn−1), (±ω) is the angular displacement



CHAPTER 3. PROPOSED METHOD 25

in counter-clockwise (positive) and clockwise (negative), and (x0, y0) is the position
of the central axis of the object. In our experiment, the centre of axis lies at the
origin. In equation 3.3, Vz is the velocity along z-axis both in upward(+Vz) and
downward (−Vz) direction and z0, the current altitude of UAV. The combination of
above equations leads the UAV towards a required position in the polar coordinate
system. For a helical trajectory, all the three equations are triggered simultaneously
with all the parameters (r,ω,t) set before the start of trajectory.

3.2 Initial Arbitrary Trajectory

The first stage of flight is an arbitrary trajectory in the polar coordinate system.
There are three possible combinations of the trajectory plan in a polar coordinate
system. One, along the z-axis. Two, a circular path around the object in the x-y
plane. Three, a combination of one and two. Figure 3.3 shows the pictorial repre-
sentation of three possible trajectories on a polar coordinate system. Among these,
the third plan results in a pure helical trajectory and covers a maximum area on the
surface, provided the helical path length is equal to the diagonal length of the 2D
projection of 3D cylindrical surface. If a 3D cylindrical surface is projected on the 2D
surface it forms a rectangular plane where the height of the cylinder corresponds to
the breadth of the rectangular plane, the circumference of the cylinder corresponds
to the length of the plane and a helix path of maximum length corresponds to the
diagonal of the rectangular plane.

Figure 3.3: The helical trajectory around an object in polar coordinate covers more
surface area than other options.

Among the three possible types of trajectories, a simple mathematical calculation
reveals that the helical trajectory covers more surface area of the surface. Thus in
our algorithm, the initial trajectory is chosen to be a helical trajectory. Equation
of the helical trajectory is provided in Section 3.1. The pictorial representation of
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the helical UAV trajectory around the object and the resultant point cloud is shown
Figure 3.4.

Figure 3.4: The simulation result of the helical trajectory around the object of in-
terest.

Before initiating the helical trajectory, the UAV is made to perform a negligible
amount of vertical lift to initiate the ORB-SLAM2 system which is available in Fig-
ure 3.4. This step is used to generate an initial set of map points that helps the
ORB-SLAM system to initiate the localization process. The stages of flights such
as vertical lift, helical trajectory and inspection trajectory are synchronized within
the state machine. The pseudo code of transitions in the state machine is shown in
Algorithm 1 as in Figure 3.5.
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Figure 3.5: State transitions of the UAV.
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3.3 Point Cloud Processing

The object of interest is expressed in the form of discrete set of surface points P
= p1,p2,p3,. . . ..pn where each point denotes a 3D spatial coordinate. Map points
generated by ORB-SLAM2 contains noisy data which increases the computation
load and reduces the performance in determining best viewpoints. For this reason,
it is essential to remove the outliers from the raw ORB-SLAM2 output. We took
advantage of the PCL open-source library for point cloud processing. PCL library
consists of various open-source algorithms to work on point-clouds. Crop-box filter
is one such PCL functionality where a user-defined box which filters only the data
points that fall inside the frame. Other points are omitted from further processing.
Octree-data structure is another functionality from the PCL library used for spatial
segmentation of point clouds. The detailed information regarding the octree data
structure is discussed in Section 2.3. The filtered point cloud is fed to the octree
data structure for octree decomposition. Octree decomposition is executed based
on the resolution criterion. In our algorithm, the octree resolution is cuboid of
length 0.4 meters for the chosen object of interest. The impact of varying the octree
resolution is discussed in Section 5.3.1. The segmentation of point cloud involves a
grid of connected voxels (Nv = number of voxels in the octree data structure) which
are denoted as V= v1,v2,v3,. . . ..vn. These voxels undergo a filtration process using
one of the salient features in the octree data structure, the number of points in each
voxel (Np). A threshold limit for Np is set to filter the voxels below the limit. Vthres
denotes the threshold limit. The set of voxels which hold the number of voxels below
Vthres are grouped as R =r1,r2,r3,. . . ..rn. These collection of voxels appears along
the boundaries of the existing dense point-cloud model, as shown in Figure 3.7.
Then the coordinates of these voxel centroids are determined using voxel bound
limits. This piece of information is calculated using the minimum and maximum
voxel bound limits that are stored in the octree data structure. These minimum
and maximum limits along x,y and z-axis are denoted as vxmin, vxmax, vymin, vymax,
vzmin, vzmax respectively. Centroid coordinates(vcx, vcy, vcz) of the filtered voxels are
determined using the formula 3.4.

vcx =
vxmin + vxmax

2
vcy =

vymin + vymax

2
vcz =

vzmin + vzmax

2
, (3.4)

The centroids of filtered voxels are listed as Ci = 1, 2, ..., n = vi ∈ C, comprised of
the 3D location of centroids vi ∈ R3. The pseudo-code of the octree-based point
cloud processing in the algorithm is described in Algorithm 2 as in Figure 3.6.
The simulation result of determining the centroid of low-density voxels is shown in
Figure 3.7. The blue points in the figure are the ORB-SLAM2 generated point cloud
model, and the red points are the position of the centroid of low-density voxels in
the octree data structure.
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Figure 3.6: Extract centroids of Low Density Voxels.

Figure 3.7: The simulation result of Low-density voxel centroids in Octree data
structure.

3.4 Positioning Next Best Views (NBVs)

The centroids obtained through octree-based point cloud processing are the regions
to be improved to complete the reconstruction process. The UAV in its exploration
flight has to fly to these regions to generate more feature points. These centroid
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points are not the surface points, but they lie among the surface points. If the UAV
is made to fly to these positions, it collides with the surface. Hence it is necessary
to translate these centroid points away from the surface such that UAV fly to these
points to generate new sets of points. In our algorithm, the UAV is restricted to fly
only in the polar coordinate system to avoid the computational effort for obstacle
detection. It is a viable solution to translate these centroid points on to the polar
coordinate system. These new position of centroids in the polar coordinate system
are the NBVs for UAV to fly during the exploratory flight. The process of translating
the centroid points on the polar coordinate system is explained in Algorithm 3 as
in Figure 3.8 . The simulation result of positioning the NBVs are shown in Figure
3.9.

Figure 3.8: Positioning voxel centroids in polar coordinate system.
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Figure 3.9: The translated centroid points towards the polar coordinate system(left)
and Top view of the same (right).

3.5 Stabilize the NBVs

As mentioned earlier in the method overview, the ORB-SLAM2 system constantly
generates the point cloud at the frequency 0.01s-1. This frequency corresponds to
the ROS timer set to schedule the callback functions. Defining this frequency as low
as possible results in the smooth simulation process. The callback functions are
called once in every 0.01 seconds. The callback functions consist of the proposed
algorithms(Algorithm 1-4). As a result the NBVs which are determined using the
NoP threshold limit, is also called every 0.01 seconds. The UAV which performs tra-
jectory constantly generates new point cloud resulting in the dynamic behaviour of
NBVs. Because, the number of points in each voxels are constantly varying that lead
the NBV list to get updated every step cycle(0.01s). This phenomenon could van-
ish the destination NBV even before the UAV reaches the destination point. These
unstable NBV list results in the wobbling behaviour of UAV. Hence it is vital in the
algorithm to hold the NBV list unchanged until UAV completes the trajectory to the
destination NBV. In our proposed method the ROS node which generate NBVs are
made to go sleep for a predefined amount of time, right after the end of initial arbi-
trary trajectory. This helps the generated NBV point to be unaltered for a predefined
time limit.

At the end of exploration trajectory, the new point clouds are registered with
the existing point cloud.Figure 3.10 describes the algorithm as the signal diagram.
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The generated feature points after the initial trajectory, is kept on hold until UAV
performs trajectory to all the five NBVs. At the same time ORB-SLAM2 generates the
feature point constantly from the start of initial trajectory. In the following section,
algorithm for trajectories to all the NBVs are explained.

3.6 Trajectory to NBVs

The UAV at this point in algorithm comes out of the helical trajectory stage and
transfer to exploratory trajectory stage. The list of NBV’s mentioned in Algorithm 2
are the new locations for UAV to fly to. The UAV initiate the trajectory to each NBVs
in the list. The ORB features are extracted simultaneously during the exploration
flight. New feature points after going through point cloud processing, are registered
with the existing point cloud generated during the initial flight. These new set of
points are again voxelated to obtain new NBVs and are added to the existing list.
This iteration continues until the reconstruction process is complete. Selecting the
shortest path is vital in reducing the reconstruction time. In our algorithm, it is
calculated based on four quadrants x-y plane. The pseudo-code for selecting the
shortest path is presented in Algorithm 4 as in Figure 3.11.

Figure 3.11: Choosing the shortest path to NBV in Polar coordinate system.

The direction (D) value obtained from Algorithm-4 with the vertical destination
point (either Up or Down), provides the condition for choosing the combination of
equations described in Section 3.1. UAV traversing to all the generated NBVs re-
sulted in the completion of the reconstruction process. The simulation result of the
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Figure 3.10: Sample illustration of proposed algorithm’s parameters over time.
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reconstructed cylindrical object of interest using the proposed method is shown in
Figure 3.12.

Figure 3.12: The complete 3D Point cloud model reconstruction(right) of a cylin-
drical object(left) using the proposed method.

3.7 End of Reconstruction

On performing trajectory to all the view-points established by Algorithm 2, point
clouds are progressively built.Overall Algorithm shown in Figure 3.13 includes the
sub functions that are describes in previous algorithms.Limited power source in
the vehicle demands a termination condition to end the reconstruction process. In
our algorithm, the total number of feature points are considered to decide the end
of reconstruction. If the number of feature points remains within a range for a
pre-defined period, then the reconstruction process is said to be completed. Our
algorithm relies on these criteria because the generation of NBVs is based on the
textures. The textures resulting in weak map points always satisfies the threshold
condition, which leads to recurrence of NBVs. Thus we rely on the total number of
feature point generated instead of looking for the number of NBVs reaching null.
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Figure 3.13: Overall algorithm.



Chapter 4

Efficiency Improvement
Improving the efficiency implies completing the quality work in better time. To make
the reconstruction process more efficient, different techniques are carried out in
this thesis work. In an online non-model based 3D reconstruction process where
the reconstruction time cannot be estimated before the start of trajectory, it is essen-
tial to find the unnecessary workload of UAV and cut them off from the algorithm.
Octree-based point cloud segmentation method in the proposed algorithm provides
different options to make the reconstruction process more efficient. They are, tun-
ing the voxel resolution to increase centroid spacing, tuning the NoP threshold to
avoid inappropriate voxels, manipulating the NBV position and changing the orien-
tation of UAV to maximize the coverage. Each optimization method has its individual
and combined impact on the efficiency of the reconstruction process, which will be
discussed in the following sections.

4.1 Tuning Voxel Resolution and NoP Threshold

Voxel resolution denotes the size of the cuboid-shaped volumetric space that seg-
ments the point cloud model in an octree based point cloud segmentation. The
detailed explanation about voxels is presented in Section 2.3. Voxel resolution cre-
ates a significant impact on the time of reconstruction. Also, voxel resolution, along
with NoP threshold limits influences the reconstruction quality. The following sec-
tion discusses how the voxel resolution decides the time of reconstruction process
and how the combination of both voxel resolution and the NoP threshold affects the
quality of 3D point cloud model reconstruction.

Contribution of Voxel Resolution

Contribution of Voxel Resolution Voxel resolution is a user-defined value. The octree
data structure segments the point cloud model until the defined voxel resolution is
reached. The resolution value can be set in such a way that one voxel or several
connected voxel grids completely encloses the point cloud model. To achieve a micro-
level inspection, it is desirable to choose the resolution value such that several voxels
enclose the point cloud model. In our proposed method, the filtered voxel centroids

36
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are used to define the regions that need to be focused on improving the feature
points. Moving these centroids apart from each other increases the efficiency of
exploration task. It helps to cover the uncovered regions in less time. The distance
between the centroids shall be increased by increasing the voxel resolution. An
added advantage of increasing the voxel resolution is that the number of centroid
points are reduced when the voxel resolution is increased.

For example, consider a cylindrical point cloud model of measurement 4-meter
height and 2-meter diameter. A single voxel shall completely enclose the point
cloud model and returns one centroid point if the voxel resolution of 4 meters is
set. Whereas, if the voxel resolution of 1 meter is set, then 16 voxels are created
which returns 16 centroid points. Thus, voxel resolution is inversely proportional to
the number of centroids extracted. These centroid points are later translated on to
the polar coordinate system to act as the Next Best Viewpoints or the way-points for
UAV. To summarise, increasing voxel resolution has two advantages as listed below.

1. Increased voxel resolution reduces the number of centroids which ultimately
reduces the number of viewpoints to be explored.

2. It increases the distance between the centroids, which helps to cover more
uncovered regions in less time.

The simulation results of different voxel resolution are shown in Figure 4.1. The red
coloured cubes in the image are the centroid coordinates of voxels that are filtered
with the constraint, NoP threshold. The steps of the simulation experiment are as
follows. The UAV travels to a height of 4 meters from its initial position. The gen-
erated point cloud model is segmented using the voxel grid of different resolutions.
This simulation result shows that as the voxel resolution is increased, the distance
between the centroid points increases. Another inference that could be drawn from
Figure 4.1 is that the occurrence of centroid points moves farther in each image.
This phenomenon is due to the ratio between Voxel resolution and NoP threshold,
which is discussed in the following section.
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Figure 4.1: Results of increasing the Voxel resolution. Resolution 0.2(a) ,Resolu-
tion 0.4(b), Resolution 0.6(c) Resolution 0.8 (d)

Contribution of NoP Threshold

Similar to the voxel resolution, NoP threshold plays a vital role in reducing the
reconstruction time. In our proposed method number of points in each voxel is the
key piece of information from the octree data structure, which is used to derive the
next best view for the UAVs. Hence, refining appropriate NBVs using appropriate
NoP threshold limit directly impacts the reconstruction time. The NoP threshold
is decided in such a way that the probability of voxel that satisfies the threshold
limit is always optimal. The maximum and minimum extremities of probability in
filtering the voxels that satisfy the threshold condition results in zero voxels and an
abundant number of voxels, respectively. For instance, in the following conditions
to filter the voxels, (1) and (2) gives bad results, and (3) gives an optimal result.

1. Threshold limit of one feature point per voxel of resolution 1 meters.
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2. Threshold limit of 200 feature points per voxel of resolution 0.2 meters.

3. Threshold limit of 20 feature points per voxel of resolution 0.5 meters.

The first condition will result in zero voxels because the probability of finding a bigger
voxel with one feature point is very low. In contrast, the second condition results in
a vast number of voxels as in Figure.4.2(a), which ultimately lead the UAV to traverse
to ineffective way-points during exploration flight. Hence an optimal NoP threshold
limit as in the third condition must be set such that the voxels appear only on the
boundaries of the point cloud. Figure 4.2 shows the simulation result of various
NoP threshold for the constant voxel resolution (0.4meters). From Figure 4.2, it
is evident that as the ratio between voxel resolution and NoP threshold increases,
unwanted voxels that are located in the dense point cloud region is reduced.

Figure 4.2: Results of varying NoP threshold. NoP threshold 20(a) ,NoP threshold
10(b), NoP threshold 5(c) , constant voxel resolution (0.4)

The contribution of the NoP threshold toward the improvement of reconstruction
time is evaluated and presented in Section 5.3.2.

4.2 Manipulating the NBV position & UAV Pitch

The Next best view(NBV) implies the best possible viewpoint for the UAV to generate
new surface feature points for reconstruction. In a non-model based exploration
task, the best viewpoints are the ones which cover an entirely unexplored region
on the surface. To accomplish this, the centroids of the voxels that are translated
along the surface normal of the object to the polar coordinate system(as shown in
Figure 3.9) are manipulated in such a way that no existing feature points will fall
into the FOV of the camera. Hence the available options are

1. Varying the distance from the centre of the object (radius).

2. Moving the point theta degrees around object centre and

3. Translating the point along the vertical axis.
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Among these, the first option does not contribute to accomplishing the best view,
rather it varies the depth of view and hinders the localization process of ORB-SLAM2
.The second option is taken care of by varying the voxel resolution. As the distance
between the centroids increases, the translated centroid points over the polar coor-
dinate system increases its angular distance from its original location on the sur-
face. Translating along the vertical axis, both in the positive and negative direction
with respect to the actual viewpoint position, poses a disadvantage. If the viewpoint
on the polar coordinate system is translated below the actual position, the top edge
of the object is not covered during reconstruction. At the same time, if the view
points on polar coordinate system is shifted above its actual position, the FOV may
not cover the bottom edges of the object. To compensate for the loss of view, the
pitch of the camera is varied along with the repositioning of viewpoints. Pitch is a
change in orientation along the lateral axis, as shown in Figure 4.3. Pictorial rep-
resentation of Pitch, Roll and Yaw. The pitch can be either increased or decreased
along the lateral axis. Varying the camera pitch has the following two advantages.

1. If the longitudinal axis (as shown in Figure 4.3) of the UAV is aligned with the
surface normal of the object (pitch = zero degrees), then the area covered by
the FOV on object’s surface increases if the pitch of the UAV is varied.

2. By increasing the pitch, FOV covers maximum usable information while fly-
ing at high altitude. Also, the top surface of the object is covered during the
reconstruction process. During low altitude flight, the unnecessary ground
coverage is avoided by shifting the viewpoints above the actual position as dis-
cussed above.

Figure 4.3: Pictorial representation of Pitch, Roll and Yaw.

In our simulation experiment, the translated centroid points on the polar coor-
dinate system are shifted 0.5 meters above the actual position, and the pitch of the
UAV is increased by 10 degrees from the initial pitch angle. The pitch configuration
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of the UAV to optimize the reconstruction process is as below.

OLDRU
pC =

 0.9082 0 0.4186

0 1 0

−0.4186 0 0.9082

 NEW RU
pC =

 0.8216 0 0.5699

0 1 0

−0.5699 0 0.8216


The contribution of changing the NBV position and UAV pitch to the efficiency

of the reconstruction process is evaluated in Section 5.3.3.



Chapter 5

Evaluation
The evaluation section of this thesis work is subdivided into four categories. 1)
Evaluation of experiment specifications. This part includes the validation of choices
made in simulation such as the texture of the object, shape of the object, and ra-
dius of the polar coordinate system, 2) Evaluation of the proposed algorithm, 3)
Evaluation of efficiency improvement methods that are discussed in Section.4, and
4) Evaluation of termination condition.

5.1 Evaluation of Experiment Specifications

The proposed algorithm for the autonomous 3D surface reconstruction of an ob-
ject using a UAV is evaluated in a simulated environment. The reason for choosing
a simulation instead of real-world UAV is, safety and cost. The gazebo simulation
tool along with ROS is used for the experiment. Gazebo is a 3D simulation environ-
ment where a realistic complex indoor and outdoor environments could be simulated
similar to several gaming physics engines.It consist of various robotic models, wide
variety of sensors and convenient programmatic and graphical interface. The spec-
ification of the simulation experiment are size, shape, texture and position of the
volume of interest,angular velocity of the UAV and size of the outer polar-cylindrical
coordinate that encloses the volume of interest. Justification for the choices made
on the above specifications is presented in this section.

5.1.1 Surface Texture

Our output is a point cloud model of the surface. Features on the surface are con-
verted to point cloud, hence choosing an appropriate texture is essential in our
work. A trial and error method is required to select a suitable texture for simula-
tion. In addition to this reason, ORB-SLAM2 is a feature-based algorithm which
ultimately demands features on the surface of the object. As explained before these
features are converted to points through triangulation method. Hence texture plays
a vital role in building the point cloud as far as cameras are used for perception.
LiDAR does not depend on the textures. The intensity of features on the surface
makes an impact on the performance of ORB-SLAM2. Because ORB-SLAM2 rely
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entirely on the map points for tracking, localizing and loop closing. A texture less
surface does not trigger the ORB-SLAM2’s estimated camera trajectory. Estimated
camera trajectory (ECT) is the position of the camera in the Cartesian space esti-
mated by ORB-SLAM2. It calculates this position through point mapping between
the left image view and the right image view. It is crucial that ECT travel along with
the actual camera trajectory to get an error-free reconstruction. Thus an evaluation
of textures is crucial before the start of the experiment.

The texture selection was made with several different samples. The error be-
tween the Actual Camera Trajectory (ACT) and the Estimated Camera Trajectory
(ECT) is considered for texture selection. If the ECT lags behind ACT, then we can
conclude that there are no enough textures present for ORB-SLAM2 to perform
point mapping between left view image and right view image. Those textures are
rejected for the experimentation. The UAV was made to traverse through the helical
path around the cylindrical object-of-interest with different textures such that the
stereo camera attached to the UAV always faces the centre of the object. Different
textures are used in the experiment, plots describing the trajectory path of ECT
and ACT, resultant point cloud model and the error between ECT and ACT for each
texture sample used are shown below.

Figure 5.1: Metallic texture where the reconstruction of cylindrical shaped object
is complete and the trajectory between ACT and ECT has minimum
error.
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Figure 5.2: Plots of the error | ∆x | + | ∆y |on the x-y plane and the error | ∆z | in
z-direction between Estimated Camera Trajectory and Actual Camera
Trajectory when scrapped metallic texture is used as the texture.

Figure 5.3: A Bark texture where the reconstruction of cylindrical shaped object is
complete and the trajectory between ACT and ECT has zero error.
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Figure 5.4: Plots of the position error | ∆x |, | ∆y | and | ∆z | in x,y and z-direction
between Estimated Camera Trajectory and Actual Camera Trajectory,
when bark texture is used as the texture.

Figure 5.5: A Brick texture where the reconstruction of cylindrical shaped object
is not started and the trajectory between ACT and ECT is high and
abnormal.
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Figure 5.6: Plots of the error | ∆x |, | ∆y | and | ∆z | in x,y and z-direction
between Estimated Camera Trajectory and Actual Camera Trajectory,
when brick texture is used as the texture.

Figure 5.7: A Plywood texture where the reconstruction of cylindrical shaped object
is not started and the trajectory between ACT and ECT is high and
abnormal.
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Figure 5.8: Plots of the position error | ∆x |,| ∆y | and | ∆z | in x,y and z-direction
between Estimated Camera Trajectory and Actual Camera Trajectory,
when plywood texture is used as the texture.

Figure 5.9: A glass building texture where the reconstruction of cylindrical shaped
object is Incomplete and the ECT lags behind ACT which produces in-
correct reconstruction.
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Figure 5.10: Plots of the position error | ∆x |,| ∆y | and | ∆z | in x,y and z-direction
between Estimated Camera Trajectory and Actual Camera Trajectory,
when glass building texture is used.

From the above experiments, it can be inferred that if the estimated camera
trajectory matches with the actual camera trajectory due to enough feature points
as in Figure 5.2 and Figure 5.4 the point cloud model reconstruction is complete.
In Figure 5.6,Figure 5.8 and Figure 5.10 the trajectory graph shows that ECT lags
behind ACT or do not follow the expected trajectory due to an insufficient number of
features on the surface. Hence, out of the best results obtained using old scratched
metallic texture and bark texture, Old metallic texture was used for this thesis work.

5.1.2 Object Shape

Autonomously reconstructing a point cloud model of an object’s surface should be
versatile; it must perform successful reconstruction of objects with various shapes.
It entirely depends on the visual SLAM (VSLAM) the algorithm used in the recon-
struction process. We chose to use ORB-SLAM2 algorithm to reconstruct the 3D
point cloud model of the surface of a static object in a static environment. Based
on the evaluation work done by Patrick (2019) [9], ORB-SLAM2 system is stable
and robust of all SLAM algorithm available in a static environment. However, ORB-
SLAM2 have limitations with its pose estimation algorithm in dealing with the dy-
namic feature points. The pose is the spatial position and posture of the camera
in the operating environment. Tracking is the process of calculating the change in
pose of the robot.
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As described by Huaming Qian and Peng Ding in 2019 as described in [25],
the pose estimation in ORB-SLAM2 fails if a space point moves with respect to
the whole environment. This inference was experienced when the helical trajectory
experiment was conducted with a cuboid-shaped object or in other words, objects
with sharp edges.

For instance, a cuboid-shaped object enclosed by a polar coordinate system ex-
periences irregularities in the helical trajectory because edges of the cuboid are
closer to the UAV path than the points on the surface on all the four faces of the
cuboid. The feature points appear to be dynamic(moves closer/away from the cam-
era) to the pose estimation algorithm, which in turn breaks the tracking process
of ORB-SLAM2. Thus it is viable to choose a homogeneous surface because the
distance between the surface and the camera is always constant, and the feature
points remain static to the pose estimation process.

Figure 5.11: A successful reconstruction(left) when a cylinder is chosen and a
failed reconstruction(right) using a cuboid object as the object of in-
terest.
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Figure 5.12: Plots of the position error | ∆x |,| ∆y | and | ∆z | in x,y and z-direction
between Estimated Camera Trajectory and Actual Camera Trajectory,
when object-of-interest with sharp edges are used.

Figure 5.13: Plots of the position error | ∆x |,| ∆y | and | ∆z | in x,y and z-direction
between Estimated Camera Trajectory and Actual Camera Trajectory,
when the object-of-interest is homogeneous.
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5.1.3 Polar Coordinate System

Obstacle avoidance is an essential factor to consider in the surface reconstruction
process. A UAV during the reconstruction process should not collide with the object-
of-interest. To accomplish this, a polar coordinate system is considered around the
object as shown in Figure 3.2 such that the object is wholly enclosed and a suffi-
cient distance required for the stereo-vision system to perform pose estimation is
provided. Any object or massive structure can be made to fit inside this polar coordi-
nate system. Using a stereo vision camera, the depth of an object can be measured
when the object is in the overlapping region of both the left and right view camera.
Closer the object lesser will be the overlapping region and vice versa. Hence a mini-
mum distance(radius of the polar coordinate system) away from the surface must be
constantly maintained. On executing two different trials with two different radius
values, we arrived at a particular distance at which the UAV will perform the smooth
surface reconstruction. The experiment is similar to the previous experiment con-
ducted for texture and shape selection. The UAV must complete a helical trajectory
around the object without any irregularities, and the error between ACT and ECT
should be minimum. Figure 5.14 shows the experimental result conducted with a
cylindrical object having old scratched metallic texture on the surface.

Figure 5.14: Experimental result of UAV revolving around the object at a distance
of 1.5 meters away from surface(Left) and 2 meters away from the
surface(Right)

The experiment shows that as the distance from the surface increases, the over-
lapping region between the left image view and right image view increases which
facilitates the pose estimation process of ORB-SLAM2. From this inference a con-
clusion was arrived that the UAV must be made to fly two meters away from the
surface of the object to get smooth helical trajectory.
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5.2 Evaluation of Proposed Algorithm

Evaluation of the proposed method consists of two parts. One, generating a refer-
ence point cloud model which acts as the benchmark solution for the actual evalu-
ation of our proposed method. Two, evaluation of our proposed method, where the
results obtained from the helical trajectory and the proposed method are qualita-
tively and quantitatively analysed.

5.2.1 Creating Benchmark Point Cloud Model

The proposed reconstruction algorithm is a non-model based method. The point
cloud model of the volume of interest is not available before the start of the recon-
struction process. Thus to evaluate the proposed method, it is inevitable to generate
a point cloud model of our own using the trivial solution s(helical trajectory). A he-
lical trajectory around the object of interest results in complete coverage and the
required base point cloud model of the object. The base model implies a sufficient
number of 3D points in the point cloud model to represent the object’s surface. A
series of five experiments with the specifications provided in Table 5.1 is executed
and the resultant behaviour of the number of point with respect to time is plotted
in the graph shown in Figure 5.15.

Experiment Specifications
Shape of Object Cylinder

Texture on the surface Old scratched metal
Height of Object 4.5 m

Diameter of the Object 2 m
Object centred at Origin
Trajectory shape Single Upward Helix

Number of rotations in
a single helical trajectory

10 rotations per
4.5 m height

Diameter of the polar
coordinate system

8 m

Angular velocity of UAV 0.2 rad/s
Vertical velocity 0.2 m/s

Pitch of UAV 0 degrees

Table 5.1: Experiment specification for Single helical trajectory.

At the end of the helical trajectory, an average of 12,826 points are extracted in
708 seconds which constitutes a complete point cloud model of our object of interest.
The number of points increases if the number of rotation in the helical trajectory is
increased. Because on increasing the number of rotations, multiple coverage of the
surface results in the extraction of more number of points. However, on increasing
the number of rotations, time of reconstruction process also increases. The bench-
mark solution obtains a basic point cloud model that represents the complete 3D
model of the object of interest. The evaluation of our proposed algorithm is carried
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out with this reference point cloud model. This point cloud model is used as the
source point cloud model in the ICP algorithm.

Experiment
Trial

End of Upward Helical Trajectory
Time (s) Number of Points

1 708 15274
2 708 12688
3 708 12688
4 708 11992
5 708 11492

Average 708 12826

Table 5.2: NoP at the end of the helical trajectory.

Figure 5.15: behaviour of the number of feature point with respect to time in a
helical trajectory.

5.2.2 Evaluation of Proposed Method

The evaluation procedure of our proposed algorithm is carried out in the simulation
environment. All the performance improvement techniques discussed in Chapter 4
are introduced in the experiment. The specification of the experiment is shown
in Table 5.3. The experiment was conducted five times for authenticity, and the
average result is considered for performance analysis.
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Experiment Specifications
Shape of Object Cylinder

Texture on the surface Old scratched metal
Height of Object 4.5 m

Diameter of the Object 2 m
Object centred at Origin
Trajectory shape Proposed Algorithm

Number of rotations in
a single helical trajectory

One rotation per
4.5 m height

Diameter of the polar
coordinate system

8 m

Angular velocity of UAV 0.2 rad/s
Vertical velocity 0.2 m/s
Voxel Resolution (0.4 x 0.4 x 0.4) m
NoP Threshold < 5 points per voxel
Pitch of UAV 10 degrees

Table 5.3: Experiment specification for evaluating the proposed method.

Figure 5.16: Behaviour of number of feature point with respect to time in the pro-
posed method
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Experiment
Trial

Proposed Method
(Best in Quality)

ICP Fitness
Score

(with Helical
Point Cloud)

Time
(s)

Number
of

Points
1 498 12876 0.9911
2 526 12892 0.9943
3 572 12814 0.9926
4 584 12890 0.9943
5 611 12849 0.9967

Average 558 12864 0.9938

Table 5.4: Best in Time with benchmark NoP

Experiment
Trial

Proposed Method
(Best in Quality)

ICP Fitness
Score

(with Helical
Point Cloud)

Time
(s)

Number
of

Points
1 708 16682 0.9982
2 708 15522 0.9931
3 708 14713 0.9932
4 708 14504 0.9921
5 708 13186 0.9910

Average 708 14921 0.9935

Table 5.5: Best in NoP at benchmark time

From the experimental results, it is proven that the 3D point cloud model recon-
struction process executed using the proposed method gives the best result when
compared with the helical trajectory solution. The proposed algorithm reconstructs
a complete point cloud model in time 150 seconds faster than the time taken by
helical trajectory.The performance in terms of time and NoP are presented below.
Each efficiency improvement methods involved in our algorithm is evaluated in the
following sections.

Performance in terms of time:
THelix = 708 seconds to obtain 12864 points
TAlgorithm = 558 seconds to obtain 12864 points

Performanceat:NoP=12864 = (
THelix − TAlgorithm

THelix
) ∗ 100

Performanceat:NoP=12864 = (
708− 558

708
) ∗ 100 = 21.18%
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Performance in terms of NoP:
NoPHelix = 12826 points at 708 seconds
NoPAlgorithm = 14921 points at 708 seconds

Performanceat:t=708 = (
NoPAlgorithm −NoPHelix

NoPAlgorithm
) ∗ 100

Performanceat:t=708 = (
14921− 12826

14921
) ∗ 100 = 14%

the above performance calculation shows that, the proposed method performs
21.18 percentage better in terms of time when compared to helical trajectory method
and 14 percentage better in terms of NoP when compared to the helical trajectory
method.

Figure 5.17: The resultant point cloud model obtained in five experiment runs dis-
cussed above.
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Figure 5.18: The resultant point cloud model with ECT and ACT trajectory using
proposed algorithm.

Figure 5.18 presents the point cloud model generated using the proposed algo-
rithm with trajectory made by UAV and estimated camera trajectory. Figure 5.19
shows the error between estimated camera trajectory and actual UAV trajectory
along x-y plane(blue) and along z-axis(red). Minimum error between ECT and ACT
denotes that the quality of reconstruction is not compromised during the recon-
struction process.
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Figure 5.19: Plots of the position error | ∆x | + | ∆y | and | ∆z | in x,y and z-direction
between Estimated Camera Trajectory and Actual Camera Trajectory

5.3 Evaluation of Efficiency Improvement Methods

The efficiency improvement methods that are used to reduce the reconstruction
time is evaluated using a series of simulation experiments that are specific to each
method. Improved efficiency by introducing each methods are individually exam-
ined and evaluated. The number of points (NoP) and the time of upward helical tra-
jectory during the evaluation of the helical method is considered as the benchmark
solution for evaluation. The test cases that are carried out during the simulation
shown in Table 5.6. The results of all the test cases are verified for the completion
of the reconstruction process using the ICP algorithm. Finally, the cumulative con-
tribution of all the efficiency improvement techniques are evaluated and discussed.

5.3.1 Evaluation of Voxel Resolution

The first four test cases are executed in the simulation environment with the same
object of interest used in our main experiment and double-helical experiment. The
simulation results are plotted and shown in Figure 5.20, Figure 5.21 and Figure
5.22. From Figure 5.21, it is evident that the voxel resolution 0.4 gives the best
result. It reaches 12,735 points in 1205 seconds. Whether the reconstructed point
cloud model with 1205 points represents the expected complete point cloud model of
the object of interest is found using the ICP fitness. The point cloud file obtained at
1205 seconds with voxel resolution 0.4 using the proposed algorithm is given as the
target file, and the point cloud file obtained using double helix experiment is given as
the source file. A fitness score of 0.9461 is obtained using the iterative closest point
algorithm. This score implies that there is 94.6% similarities between the given set
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Test
Title

Test
Case

NoP
Threshold
(points per

voxel)

Voxel
Resolution
(m x m x m)

Manipulating
NBV position
(metres along

z-axis)

Pitch of
UAV

(degrees)

Angular
Velocity
of UAV
(rad/s)

Vertical
Velocity

(m/s)

Changing
Voxel

Resolution

1 15 0.2 0 0 0.2 0.2
2 15 0.4 0 0 0.2 0.2
3 15 0.6 0 0 0.2 0.2
4 15 0.8 0 0 0.2 0.2

Changing
NoP

Threshold

5 30 0.4 0 0 0.2 0.2
6 20 0.4 0 0 0.2 0.2
7 10 0.4 0 0 0.2 0.2
8 5 0.4 0 0 0.2 0.2

Relocating NBV
Position & Varying

Pitch of Camera
9 5 0.4 +0.5 +10 0.2 0.2

Table 5.6: the test cases followed for the evaluation of efficiency Improvement meth-
ods

of input point clouds at time 1205 seconds. From the above analysis, it is evident
that a complete 3D point cloud model of the object of interest is reconstructed using
the proposed method in a better time.

Whereas, from Figure 5.22, the voxel resolution 0.6 and 0.8 does not yield a
better result when compared to 0.4. The reason for this is that the NoP threshold
is maintained constant in all the four test cases. For the given NoP threshold limit
the probability of voxels that satisfying the condition is high when the resolution
value is 0.4. But, the probability is relatively low when higher resolution values are
used. Because finding a bigger voxel that contains less than 15 feature points is a
rare scenario in the given texture. Thus for the voxel resolution of 0.6 or above the
UAV recursively flies to available NBVs and perform multiple coverage to increase the
point count and ultimately increase the number of voxels that satisfies the threshold
condition which in turn increases the NBV count. The exploration further continues
to the new NBVs. This is the reason why in Figure 5.22 the graph remains stable
when the resolution value is set to 0.6 and 0.8. At the same time, the reconstruction
time substantially reduces when the resolution is set to 0.4.

Another important point to consider is that, when the voxel resolution is in-
creased, the purpose of localized surface analysis vanishes. Thus voxel resolution
must be increased in proportion to the size of the object. If not, the reconstruction
process will prolong or may lead to incompletion due to power demand in the UAV.
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Test
Title

Test
Case

Voxel
Resolution

(m)

Time
of

Flight (s)

Number
of

Points

ICP
Fitness
Score

Evaluation of
change in Voxel

Resolution

1 0.2
1520 6884 0.6453
7731 15521 0.9932

2 0.4
1520 13112 0.9432
7731 23297 0.9998

3 0.6
1520 12509 0.9115
7731 16218 0.9943

4 0.8
1520 12509 0.9126
7731 11720 0.9910

Table 5.7: ICP fitness scores for different voxel resolution at times 1520 & 7731 s

Figure 5.20: Reconstruction behaviour with different Voxel Resolution.
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Figure 5.21: Reconstruction behaviour with voxel resolution 0.2 and 0.4

Figure 5.22: Reconstruction behaviour with voxel resolution 0.6 and 0.8

5.3.2 Evaluation of NoP Threshold

The contribution of the NoP threshold in reducing the reconstruction time is eval-
uated in this section. The test cases five to nine in Table 5.6 are executed in the
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simulated environment with the same object of interest. The voxel resolution, which
showed the best result in the previous evaluation, continues to be the same for this
evaluation. Four different threshold values are chosen to analyse the reconstruc-
tion performance. The results obtained from each experiment with four different
threshold limits are plotted in the graph, as shown in Figure 5.23.

Figure 5.23: Performance variation with different NoP threshold.

The number of points plotted against time in Figure 5.23 shows that the best
result is achieved when the threshold limit is set as less than 5 points per voxel.
A total of 13,002 points are extracted in 651 seconds. The comparison between
the two extremities in the graph shows that the reconstruction performance is 100
per cent higher when the threshold limit is set minimum. As explained in Section
4.1, the unwanted voxels in the dense point cloud regions do not appear when an
appropriate NoP value is chosen. Thus letting the UAV make trajectory only to the
uncovered regions and reduces the reconstruction time. To verify the completeness
of the reconstruction at 651 seconds, the ICP algorithm is made use of to compare
the point cloud result obtained at 651 seconds and the point cloud obtained through
double helical trajectory. ICP fitness score of 99.81 % is achieved at 651 seconds.
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Test
Title

Test
Case

Voxel
Resolution

(m)

NoP
Threshold

Limit

Time
of

Flight
(s)

Number
of

Points

ICP
Fitness
Score

Evaluation of
change in

NoP Threshold

5 0.4 30 651 7144 0.6431
6 0.4 20 651 8774 0.7743
7 0.4 10 651 10676 0.8231
8 0.4 5 651 13002 0.9981

Table 5.8: ICP fitness score for different NoP threshold at time 651 seconds.

5.3.3 Evaluation of Relocating NBVs and Varying Pitch

The ninth test case in Table 5.6 is executed to evaluate the improvement in recon-
struction efficiency when NBVs are relocated, and the camera pitch is varied in a
positive direction. The experiment specifications, which obtained the best results
in the previous optimization methods, remains unchanged in this experiment to get
the cumulative performance. The plot in Figure 5.24 shows the results of five exper-
iments executed with the same test case. The result shows that there is a drastic
improvement in the reconstruction performance. An average of 13,060 points are
extracted in 562 seconds at the end of reconstruction process. And the top surface
of the cylindrical object of interest is reconstructed, as shown in Figure 5.25, which
was not possible without applying the found efficiency improvement methods.

Figure 5.24: Performance improvement by relocating NBVs and changing the Pitch
of the camera
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Test
Title

Test
Case

Voxel
Resolution

(m)

NoP
Threshold

Limit

Pitch
of

UAV
(degrees)

Time
of

Flight
(s)

Number
of

Points

ICP
Fitness
Score

Evaluation of Re-positioning
NBVs and Changing

the Pitch of UAV

9 0.4 5 10 496 13062 0.9992
9 0.4 5 10 531 13051 0.9976
9 0.4 5 10 578 13005 0.9952
9 0.4 5 10 591 13179 0.9982
9 0.4 5 10 614 13004 0.9951

Average 9 0.4 5 10 562 13060 0.9970

Table 5.9: Presents the reconstruction trend and ICP fitness score when NBV posi-
tion is relocated and camera pitch increased using our proposed method.

Figure 5.25: 3D point cloud model reconstructed using all the efficiency improve-
ment methods(Left) and top view of the same shows the extracted
feature points from the top surface of the cylinder(Right)

The performance improvement by applying each optimization methods is shown
in Figure 5.26 . The efficiency of the reconstruction process has increased by ap-
plying all the identified optimization methods. Thus the final performance of the
proposed 3D point cloud model reconstruction approach has outperformed the triv-
ial solution. Table 5.9 shows that our algorithm has produced an average of 13,060
feature points in 562 seconds, with an ICP fitness score of 99.70%. The performance
of the proposed algorithm is calculated in comparison with the helical trajectory ex-
periment presented in Section 5.2.1. The number of points extracted at 562 seconds
in the helical method (HNoP ) and the proposed method (PNoP ) is used to calculate
the performance improvement contributed by the proposed method. Table 10 Table
10.shows the NoP obtained in helical trajectory at time 562 seconds. For the chosen
object of interest with chosen surface texture, our algorithm has performed 26.89%
higher than the helical trajectory. Also, from the ICP score in Table 10 shows that
the reconstruction is not complete at 562 seconds of helical trajectory for the chosen
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object of interest.

Experimental
Trial

End of Upward Helical Trajectory ICP Fitness
ScoreTime (s) Number of Points

1 562 11086 0.8223
2 562 10516 0.7922
3 562 10151 0.7912
4 562 10238 0.7917
5 562 9473 0.7222

Average 562 10292 0.7919

Table 5.10: NoP obtained in helical trajectory at time 562 seconds.

Performanceat 562 s = (
PNoP −HNoP

HNoP
) ∗ 100

Performanceat 562 s =
13060− 10292

10292
∗ 100 = 26.89%

Figure 5.26: Step by step improvement in the reconstruction time using efficiency
improvement methods.

5.4 Evaluation of Termination Criteria

In our algorithm the reconstruction termination condition is given based on the
saturated number of points or in other words, if the feature point generation is
within the pre-defined limit, then the reconstruction process is said to be com-
plete. This termination criterion adapted in our algorithm is evaluated using the
double-helical trajectory experiment. The same object of interest (cylinder) with
the same texture (old scratched metal) used in our algorithm is subjected to this
evaluation process. The UAV is made to execute a double-helical trajectory around
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the object. The double-helical trajectory consists of upward and downward helix
trajectory such that the entire object undergoes multiple coverage during the flight.
The number of points generated through ORB-SLAM2 system is recorded and plot-
ted in the graph for analysis. The specification of the experiment is shown in Table
11. Experiment specification for evaluating Helical trajectory and the double-helical
trajectory is shown in Figure 5.27. The experiment is repeated six times to build
the authenticity factor. The plotted graph is shown in Figure 5.28.

Experiment Specifications
Shape of Object Cylinder

Texture on the surface Old scratched metal
Height of Object 4.5 m

Diameter of the Object 2 m
Object centred at Origin
Trajectory shape Double Helix

Number of rotations in
a single helical trajectory

36 rotations per
4.5 m height

Diameter of the polar
coordinate system

8 m

Angular velocity of UAV 0.2 rad/s
Vertical velocity 0.2 m/s

Pitch of UAV 0 degrees

Table 5.11: Experiment specification for evaluating Helical trajectory.

Figure 5.27: Double Helical trajectory

The graph shown in Figure 5.28 reveals that during the upward helical trajec-
tory, the number of feature points increased, which is expected behaviour. During
the downward helical trajectory where the FOV covers the same region covered dur-
ing the upward trajectory, the number of feature point do not drastically increase.



CHAPTER 5. EVALUATION 67

Thus we can conclude that for a given object of interest with the given texture, the
number of feature point output from ORB-SLAM2 gets saturated within a range at
the end of double helical trajectory. Any point beyond upper helix region shall be
considered as a termination criterion to conclude the reconstruction process. An-
other important inference from this experiment is that there is an improvement in
the point cloud quality after the upward helical trajectory. This implies that multi-
ple coverage of parts of the object increase the quality of point cloud. Thus, an up-
ward helix trajectory generated a sufficient amount of feature points to complete the
reconstruction process, and the downward helix trajectory improves the quality of
point cloud output that was generated during the upward trajectory. Table 12.Show
the increasing trend in point cloud density after multiple coverage(Downward heli-
cal trajectory)shows the split-up of the number of points at the end of the upward
helical trajectory and downward helical trajectory. Among the five experiments con-
ducted, an average of 14,536 feature points are obtained at the end of the upward
helical flight in 625 seconds.

Figure 5.28: Graph plotted with number of feature points against time. Each
coloured plot represents an experiment trial. Five trials were at-
tempted during the experiment.
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Experiment Trial
End of Upward Helical Trajectory End of Down ward Helical Trajectory
Time (s) Number of Points Time (s) Number of Points

1 625 13899 1155 16607
2 625 13212 1155 16445
3 625 15333 1155 16968
4 625 16202 1155 16607
5 625 14038 1155 14608

Average 625 14536 1155 16247

Table 5.12: Increasing trend in point cloud density after multiple cover-
age(Downward helical trajectory)



Chapter 6

Conclusion and Future Work

This chapter consists of two sections where we discuss the conclusion of the report
and the recommended future work.

6.1 Conclusion

The research questions framed in Section 1.5 is answered with the evaluation re-
sults as the proof of concept.Each research questions are answered one after the
other.

Q.1 How does the proposed methodology for 3D point cloud model reconstruction
perform better in terms of time and quality than the helical trajectory approach?

It is crucial to access that the proposed method for 3D point cloud model re-
construction of an object performs better than the simplest available solution. A
straight forward coverage path planning for surface reconstruction is the helical
trajectory around the object of interest. An algorithm that outperformed the helical
trajectory approach has been developed and evaluated. The evaluation was carried
out with the point cloud model obtained using the helical trajectory. The specifica-
tion of the helical trajectory was framed such that there is an optimal level of overlap
in FOV, and no region on the object surface was left uncovered. This complete point
cloud model and the time taken to construct was chosen as the benchmark solution
for evaluation. This process of generating a benchmark solution is vital because our
goal is to reconstruct a 3D point cloud without a reference model. Hence a ground
truth point cloud model of the object of interest, which was reconstructed using the
helical trajectory is used for the evaluation purpose.

The evaluation result shows that for a chosen volume of interest and chosen
texture, our developed algorithm has performed 26.89% better than the helical tra-
jectory in terms of time . This implies that a complete point cloud model was recon-
structed using the proposed method took lesser time than the helical trajectory.

Q.2 How does efficiency improvement methods like tuning the voxel resolution,
threshold condition, relocating NBVs, and varying UAV’s pitch affects the quality of
reconstruction?

69
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As the reconstruction process completely relies on several parameters defined
in the algorithm. It is vital to analyse how these parameters positively and nega-
tively affect the reconstruction performance. The following parameters are used for
analysis in this thesis work, voxel resolution set during spatial segmentation, and
the threshold limit to eliminate the ineffective regions (dense point cloud region). In
addition to this the physical orientation of the UAV is varied to increase the useful
coverage during the flight.

Each methods are individually analysed on how it improves the reconstruction
efficiency.Without using any of the methods, the proposed algorithm still complete
the reconstruction process in an extended period.But on incorporating the identified
methods there is reduction in reconstruction time which was evaluated using nine
test cases in Table 5.6. From Table 5.8 (test case 7 and 8) it is evident that a
proper tuning of the voxel parameter enhances the reconstruction efficiency. If
wrong parameters are chosen, then the reconstruction is incomplete as inferred
from Table 5.8 (test case 5 and 6) and Table 5.7 (test case 1).

A most critical analysis from the aforementioned efficiency improvement meth-
ods is that in an object-oriented 3D point cloud reconstruction, varying the UAV
pitch increases the FOV which ultimately includes a larger area for perception thus
improves the efficiency of the reconstruction process. Use of fully actuated UAV
have made the tilted flight possible and avoided the use of gimbals, an additional
accessory to change the pitch of the camera. In our algorithm where the polar coor-
dinate system is used for UAV trajectory and the camera always facing the object’s
surface, changing the UAV pitch assist in covering the top surface of the chosen
volume of interest which adds credit to the quality of reconstruction. From Fig-
ure 5.24, it is evident that the optimization methods have drastically improved the
reconstruction time and efficiency of the reconstruction process on the whole.

Q.3 How effective does the termination condition used in our approach determine
the end of the reconstruction process?

The primary criteria to terminate the reconstruction process in our proposed
algorithm is the saturated number of points. In order to verify if the number of
points gets saturated for the chosen object-of-interest, a double helical experiment
was conducted. The result of the experiment in Section 5.4 shows that the number
of points saturates within a range. However, there is a slight variation in the number
of points within this saturated region, as shown in Figure 5.28. This is because
the ORB-SLAM2 system regularly updates the extracted feature points where the
erroneous points are removed, and new points are added. It is challenging to pre-
define the upper and lower limit that comprises the saturated region.

In addition to the above drawback, let us consider that a well-defined NoP sat-
uration range is determined to terminate the reconstruction process. In this case,
our proposed algorithm achieves the benchmark (helical experiment output) quality
of reconstruction in a better time (150 seconds faster) which can be witnessed from
Figure 49. If this termination criteria is adopted in our algorithm, then the UAV
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has to fly for some more time to satisfy this condition which can be inferred from
double helical experiment and data shown in Table 5.12. Thus, using the number
of feature points to determine the accurate termination time is not the appropriate
solution.A work around for this is discussed in the following future work section.

6.2 Future Work

Some of the improvements that could be accommodated in future work are as fol-
lows.

1. Some of the NBVs are recursive due to week texture patterns on the surface.
As the number of feature points extracted from these week textured regions
will not satisfy the NoP threshold condition ever if the generated map points are
always less than the threshold value. This is the reason why the total number
of points is considered as the termination criteria. At the same time, number
of points used to identify the end of reconstruction is not accurate, as the map
points saturation takes more time than the completion of reconstruction. If
NBV recurrences are avoided in the algorithm, then the return of zero NBVs
shall be considered as the termination condition. Also, the reconstruction time
will be further reduced.

2. Eliminate the wait time at each NBV position to make the UAV trajectory con-
tinuous.In our algorithm this wait time was introduces to stabilize the trajec-
tory. But reducing this wait time to minimum will improve the reconstruction
efficiency.

3. Research work on how to accomplish point cloud model reconstruction for
different shape of objects. In our proposed method, only objects with homo-
geneous surface were used as the object of interest. It was identified during
the experiment that an object of interest with sharp edges cannot be used for
reconstruction.

4. Real-world experiments. By repeating the tests with the same setup should
be made possible with the actual hexa-rotor and a modeled object of inter-
est. This real-world experiment will ensure whether the simulation results are
appropriate.



Appendix A

Implementation

Implementation of this research work is presented in the appendix section.The tools
used, implementation to extract ground truth UAV position and estimated camera
trajectory and trajectory of UAV to NBVs.

A.1 Tools and Software

The implementation for this thesis work is based on Robotic Operating System (ROS)
[26] along with gazebo robotics simulation tool[(Open Robotics (2019a))]. RotorS
Gazebo simulator framework of Furrer et al. (2016) [27], which is used to design
our own UAV-models within it as shown in Figure A.1 and develop our own UAV
controller.

Figure A.1: UAV “betaX” with stereo camera as two cubes below the central base
frame (the red arrow is pointing at them)

The controller used in this thesis work developed by Rashad et al. (2019), [28]. It
was developed in aim to match a real UAV as close as possible.According to Furrer
et al. (2016) [27] the same interface components used in the simulation can be
directly applied to real UAV without any modifications. The ORB-SLAM2 system
by [2] by Mur-Artal and Tardos (2017) is used for point cloud generation. These
point clouds are visualised with rviz [29]. It is used for data visualization for any
algorithm.

72



APPENDIX A. IMPLEMENTATION 73

A.2 Trajectory planning

Two different trajectory planning methods are described in this thesis work. One,
initial helical trjectory and two, exploratory trajectory to all the NBV points. The
exploratory trajectory which is an online trajectory planning method uses the point
cloud provided by ORB-SLAM2.To perform the reconstruction process, the stereo
cameras as indicated in A.1 (red arrow) perceives the object surface and sends the
stereo frames to ORB-SLAM2 system for further processing. The acquisition of
stereo frames are represented as RotorS block in the data flow diagram shown in
A.2. The ORB-SLAM2 system extracts the ORB features and sends to the recon-
struction component developed for this thesis work.In the reconstruction module
the map point outliers are removed using crop box filter and the least point cloud
density areas are determined and these coordinates are transformed to polar coor-
dinate system and fed to the graphical user interface(GUI) module. The GUI module
receives the new way-point along with yaw, pitch and roll values of the vehicle. The
new way-points are determined as explained in 3.3. The yaw angle is set such
that the camera always faces the surface of the object.The GUI which provided way-
points for the helical trajectory now establishes the waypoints for NBV.The UAV flies
to these NBV setpoints by registering the new map points and build the point cloud
model.

Figure A.2: Data flow diagram that represents the execution of trajectory planning
for 3D reconstruction
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