
Minimizing the overlap of cleaning times after
surgeries while considering multiple cleaning teams

Thomas Middelkamp
Applied Mathematics, University of Twente

Supervisor: Maarten Otten, MSc University of Twente

Abstract
Scheduling surgeries in their preassigned Operating Room (OR) is an important task of any
hospital. This paper investigates the issue of determining the order in which surgeries are
being scheduled in each OR in order to minimize the cleaning time overlap after surgeries. In
this way, the delay caused by a lack of cleaning teams is minimized and utilities are more ef-
ficiently used. An Integer Linear Program (ILP) is given for small instances. Several heuristic
methods are introduced that are tested in a simulation study. For the simulation, real data from
a Dutch hospital is used. Several realistic constraints are taken into account in the simulation.
Different types of surgeries and subcategories of these surgeries are determined from the data.
To test the heuristics we simulate several weeks that are reproduced from the data. The results
show that the ’Prevent overlap’ heuristic with four cleaning teams can reduce the average sum
of the cleaning time overlap with more than 10% when compared to the original schedule.
Keywords— Scheduling, Simulation, Sequencing, Cleaning time, Heuristics, Uncertain surgery dura-
tion, Heuristics, Operating rooms

1 Introduction

Scheduling elective surgeries in Operating Rooms (OR) can
be a difficult task. In the first decade of 21st century alone,
[Cardoen et al., 2010] showed that over 100 papers have been
published concerning operating room planning and scheduling.
There are numerous factors that complicate this task, such as the
scarcity of resources, conflicting priorities of stakeholders, and
the variability of the length of surgeries.
Many solutions techniques are proposed by
[Cardoen et al., 2010]. In order to maintain good quality of
healthcare, emergency patients should be scheduled for surgery
as soon as possible. However, not all ORs are suited for emer-
gency patients, as they may lack certain equipment.
The objective to construct a schedule to minimize the
waiting time of emergency patients is not uncommon.
[Lamiri et al., 2008] include a column generating approach
which means they consider a subset of all possible plans. This
is due to the fact that the set of all possible plans is too big and
thus not computationally feasible. Here, a plan is roughly an

allocation of elective patients over a set of ORs in a time horizon.
The costs of all surgeries in the plan are minimized in order to
find the optimal schedule. These plans are optimized with a
combination of heuristic methods.
It is shown by [Denton et al., 2007] that the sequence of surgeries
in a particular OR can improve utilization and delays can be
minimized. This is done with a simple heuristic based on which
the solution is optimized with local search methods. Real data
from a hospital is used and by scheduling surgeries with a higher
variance later in the schedule, most goals can be attained.
When there is no suitable OR available, a patient has to wait until
any OR finishes surgery. These moments when a patient can
break into the schedule are called Break In Moments (BIMs).
The notion of a BIM is first dicussed by [van Essen et al., 2012].
The time between two consecutive BIMs is called a Break In
Interval (BII).
[van Essen et al., 2012] propose an Integer Linear Programm
(ILP), local search methods and several heuristic solution
methods in order to minimize the length of the maximum BII.
Unfortunately, for large instances the ILP can not be solved

1

within a reasonable time.
[van Essen et al., 2012] showed that with the ’Fixed Goal Values’
heuristic, the average maximum BII can be reduced with 10%
when compared to a schedule of the Erasmus Medical Centre.
Numerous other solution methods are proposed. In all of the
solution methods mentioned in this paper, it is assumed that the
surgery times, at the times of scheduling, are deterministically
known. However, surgery times are far from deterministic
due to complications and other unforeseen events. Therefore
[Vandenberghe et al., 2019] suggested the notion of a Stochastic
Break In Moment (SBIM), where surgery durations are modeled
as independent random variables. In their paper they introduce
various methods on how to solve this problem. The methods
include a Mixed Interger Linear Programm (MILP) using Sample
Average Approximation (SAA), various local search methods
and a variance based heuristic.

The papers mentioned previously do not consider the cleaning
times after each surgery. If there are no cleaning teams available,
then overlapping cleaning times of different ORs will result in
an increase in the waiting time of to be performed surgeries. In
order for all planned surgeries to take place on the preassigned
date, it is desired to construct a schedule in such a way that the
overlap of completion times is minimized.

The objective of our problem is substantially different than
the objective of the (S)BIM problem. In the (S)BIM problem,
the objective is to minimize the length of a the maximum BII,
while our target is to minimize the overlapping cleaning times.
However, the (S)BIM problem is of great usage, its framework
allows us to adapt and construct heuristics in order to minimize
the overlapping cleaning times.
Minimizing the cleaning overlap can be seen as a Scheduling
with Safety Distance (SSD) problem. The goal of the SSD
problem is to schedule jobs in such a way that their comple-
tion time is a certain distance 3 apart. This is discussed by
[Spieksma et al., 1995]. In the BIM problem, SSD translates to
maximizing the minimum BII. Even though the methods used
in the (S)BIM and the SSD problems are different, the outcome
of the solution methods of the (S)BIM and SSD problem is to
spread the BIMs as evenly as possible over the day.
The main goal of this paper is to test heuristics by means of
a realistic simulation model. Various heuristics and an ILP
are introduced. Notation introduced by [van Essen et al., 2012]
will be used in the ILP. In the model, real data is used from a
dutch hospital and realistic scheduling constraints are taken into
account. One of the constraints is to take the working schedule
of surgeons into account. This is done according to a block
structure. The block structure is introduced to more realistically
In an OR, consecutive surgeries can only be scheduled if they
are of the same type as the previous surgery. When no surgeries
of the same type have yet to be scheduled, a new type of surgery

is allowed to be scheduled, creating a new block. The other
constraints are to schedule children as early as possible in the
day and infectious patients at the end of the day.
The remainder of this paper is structured as follows. In section 2
we define the BIM problem and develop it to match our different
objective. In section 3, an ILP and several constructive heuristics
are presented. In section 4 it is explained how several parameters
that are used in the simulation are extracted from the data.
In section 5, assumptions and results of the simulation are
discussed. In section 6, we summarize this paper and look into
further research of this topic.

2 Problem description
Before defining the problem, let us first visualize how the BIMs
and BIIs look like in a schedule. For simplification, we will use
three ORs.

Figure 1: Break in Moments and Break In Intervals.

As can be seen, the BIMs occur whenever a surgery ends, the in-
terval between two consecutive BIM is the BII.
However, Figure 1 is not accurate with the situation in reality.
Every OR is cleaned after surgery. A delay in one or more ORs
occurs in the following situation. If more ORs need to be cleaned
at the same time but there are less cleaning teams than ORs. This
will cause delay in one or more ORs. Therefore, we want to pre-
vent that the cleaning times of ORs overlap, as this decreases the
probability of causing a delay.
The delay is indicated in Figure 2.

Figure 2: The schedule with the overlapping cleaning time indicated.

The delays have an effect on the rest of the schedule that day. As

2

can be seen in Figure 2, the delay in OR 1 causes a delay of the
end time of surgery 3. It might occur that the cleaning time of
surgery 3 overlaps with a cleaning time of another OR, while this
was not planned in the original schedule. This overlap later in the
day is caused by an overlap earlier that day. The effects of the
delay in this example are displayed in Figure 3.

Figure 3: The adjusted schedule.

An emergency patient can be treated only if an OR is available or
during any moment of when cleaning is done. Because of this,
instead of the BIMs being moments, the BIMs become intervals.
In the worst case, an emergency patient arrives just after the start
of the largest BII. Therefore, in the BIM problem, it suffices to
schedule the elective surgeries such that the maximum BII is min-
imized.
Let � = {1, 2, . . . , "} be the set of surgeries. Each surgery 8 ∈ �
is of a certain type, e.g. Ear Nose and Throat (ENT), gynaecol-
ogy (GYN) or Urology (URO). The type of surgery 8 is denoted
by C ∈) , where) = {1, 2, . . . , (} is the set of all distinct types
of surgeries. We write 8C if surgery 8 ∈ � is of type C ∈) . We
will omit this notation if the type of surgery is irrelevant in the
context. The duration of the surgery 8C ∈ �, C ∈) is denoted as
?8C . The set of ORs is given by � = {1, 2, . . . , #}. The set of
surgeries assigned to OR 9 ∈ � is � 9 ⊂ �. Let $ (8) denote the the
OR in which surgery 8 ∈ � can be performed. We define a block �
to be a set of surgeries of the same type. Thus the set of surgeries
in OR 9 ∈ �, � 9 = {�C1 , �C2 , ..., �C< }, where CA ∈) for 1 ≤ A ≤ (.
After every surgery, the OR in which the surgery was performed
has to be cleaned. For surgery 8C ∈ �, C ∈) denote the cleaning
time of this surgery as !8C .
The interval of which surgeries are performed in all ORs is called
the occupied interval. The time at which OR 9 ∈ � begins its first
surgery is defined as B 9 , the time at which OR 9 ∈ � finishes its
last surgery is defined as 4 9 .
The interval starts at time S, when the first OR starts perform-
ing surgeries, and ends at time E, when the last OR completes
all of its surgeries. In contrast with [van Essen et al., 2012] and
[Vandenberghe et al., 2019] we define the occupied interval as the
time that any OR is active. This is needed as the objective is dif-
ferent. The (S)BIM problem is concerned with minimizing the
time until the next BIM occurs. We are interested in the mini-

mum overlap of cleaning times, so even if an OR is available the
cleaning times should still be minimized.
The OR scheduling problem can be seen as scheduling jobs on
machines. Here the ORs are viewed as ’machines’ and the surg-
eries that have to be scheduled as ’jobs’.

3 Solution methods
In this section we discuss two types of solution methods.
We will first introduce an Integer Linear Programm (ILP) in
subsection 3.1. In subsection 3.2 several constructive heuristics
are proposed. The solution methods are adapted from the paper
by [Amalia, 2018], this paper is a bachelor thesis from the
University of Twente.

3.1 Exact solution method
We will use the framework of the ILP of [van Essen et al., 2012],
however we do have to modify certain constraints such that
the ILP fits our context. These modifications are introduced in
[Amalia, 2018].
We assume the duration of each surgery and cleaning time is de-
terministic. However, these times depend on the surgery. Assume
for this solution method that there is only one cleaning team. In
order to solve this scheduling problem, we will have to determine
all the BIM of all ORs. To be able to determine the BIMs, we
define a local and a global sequence. Consider one specific OR,
the consecutive completion times �8 of surgeries in this OR is
called the local sequence. The global sequence is defined as the
consecutive completion times �8 over all ORs.
We define the global BIM sequence to be all the BIMs of all the
ORs. The local BIM sequence is a sequence of all the BIMs of
one OR. In this sequence, the BIMs are sorted in increasing order.
From this global sequence, we can determine the lengths of the
BII. An example of a global sequence is shown in Figure 4.
The global sequence is defined by its BIMs. Note that the BIMs

Figure 4: Global sequence: (7,1,4,2,8,5,3,9,6)

itself are defined by completion and cleaning times of the surg-

3

eries. The completion time of surgery 8 ∈ � will be denoted by�8 .
We introduce a binary variable that defines the global sequence.
Let .8: take on value 1 whenever surgery 8 ∈ � is before surgery
: ∈ � in the global sequence. If surgery : is scheduled before
surgery 8 in the global sequence, we have .:8 = 1.
In order that only one of the two .8: and .:8 is 1, we need the
following constraint:

.8: + .:8 = 1, ∀8, : ∈ �, 8 ≠ :. (1)

Let the global position of surgery 8 ∈ � be denoted by /8 . We
obtain an expression for /8 in terms of .:8 .

/8 = 1 +
∑
8∈�

.:8 , ∀8, : ∈ �, 8 ≠ :. (2)

Note that if .8: = 1, that means that surgery 8 is scheduled before
surgery : , thus /8 < /: . Thus we need the following constraint:

/8 ≤ /: +M.:8 , ∀8, : ∈ �, 8 ≠ :. (3)

Note that if .8: = 1, the constraint is directly satisfied. On the
other hand, if.:8 = 1, then we can find a sufficiently large number
M such that /8 ≤ /: .
The local sequence has to be consistent with the global sequence.
Recall that if surgery 8 ∈ � is before surgery 9 ∈ � in the local
sequence, this means that the completion time of surgery 8 ∈ � is
less than the completion time of surgery 9 ∈ �.
This means that in the global sequence we must have .8: = 1,
which is established in the following constraint:

�8 −M(1 − .8:) = �: , ∀8, : ∈ �, 8 ≠ :. (4)

A closed expression for the completion time, �8 of surgery
8 ∈ � can be obtained as follows. Start by adding the duration,
including cleaning times, of all surgeries that occurred in the OR
where 8 will take place, say OR 9 . Furthermore, add the time
when the OR performed its first surgery, B 9 , and the duration of
surgery 8 ∈ �, ?8 .

�8 =
∑

:∈�$ (8)

(?: + !:).:8 + ?8 , ∀8, : ∈ �, 8 ≠ :. (5)

Let -8: be the amount of time the cleaning windows of surgery
8, : ∈ � overlap. For most surgeries, the overlap of cleaning win-
dows will be zero as they are scheduled too far apart.
However, if .8: = 1 we want to make sure that the cleaning win-
dows do not overlap. Thus the completion time of surgery 8 ∈ �
plus the cleaning time of surgery 8 ∈ � should be less than or equal
to the completion time of surgery : ∈ � plus the overlap -8: . We
add -8: because during this time, the cleaning team is cleaning
OR �$ (8) , so overlap in cleaning windows can not happen. This
is given in the following constraint:

�8 + !8 ≤ �: + -8: +M(1 − .8:), ∀8, : ∈ �, 8 ≠ :. (6)

Our overall goal is to minimize -8: ∀8, : ∈ �, 8 ≠ : . Thus we
obtain the following minimization problem:

<8=
∑
8,:∈�
8≠:

-8: , (7)

B.C. (1) − (6),
.8: ∈ {0, 1}; -8: ∈ R ∀8, : ∈ �, 8 ≠ :,
�8 , !8 , ?8 ∈ R+; /8 ∈ N ∀8 ∈ � .

It has been shown by [Amalia, 2018] that solving this ILP is NP
hard . Only solutions for small instances can be obtained within a
reasonable time. The goal of this paper is to construct a schedule
in the realistic case. That is why we choose to not solve this ILP.
In subsection 3.2 faster approximation methods are introduced.

3.2 Constructive heuristics
In this section, we will adapt the heuristic methods presented
in [Amalia, 2018]. The heuristics need to be changed in order
to fit the realistic scheduling constraints. In order to keep the
Algorithms 1-5 readable, only the block structure will be added.
A schedule will be determined with each heuristic. A simulation
study will be done in order to test each heuristic against various
situations. Each heuristic is adapted according to a block
structure. Each OR is preassigned with blocks of surgeries, each
OR has a ’current’ block, the first nonempty block in the local
sequence. Due to the this block structure we do not have the
freedom of choosing every surgery. We denote the current block
as �2 ∈ � 9 . For OR 9 ∈ � we can only select a surgery 8 from our
current block �2 .

3.2.1 Midpoint fixed goals with blocks

In this method, we try to schedule a surgery one by one such
that the duration added by half of the cleaning time is as close
to a target value _ as possible. For example, consider a situation
with four ORs where three surgeries are assigned to each OR.
Suppose the occupied interval is twelve hours. We would like
the completion time added by half of the cleaning time after each
surgery takes place at {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, if we assume the
occupied interval starts at time zero.
What we try to accomplish with this heuristic is that the BIM’s
are spread as evenly as possible over the occupied interval. The
target value _ can be calculated as follows. Recall that S and E
are the start and end time of the occupied interval, respectively.
Here " 9 denotes the number of assigned surgeries in OR 9 ∈ �.

_ =
� − (∑
9∈� " 9

=
� − (
"

. (8)

4

Algorithm 1: Fixed goals midpoint with blocks
Determine _, set C = 1,� ′ = ∅, (9 = B 9 for all 9 ∈ � and
3>=4 = �0;B4;

while not done do
for each OR j in 1,2,...,N do

Let �2 be the current block of surgeries;
Determine for all the unscheduled surgeries in that
block the completion time �8 = ($ (8) + ?8;

end
Set B = min 9∈� (9 ;
Determine what surgery has to be scheduled next.
: = arg min8∈� |B + _C − (�8 + 1

2!8) |;
For OR O(k), update the start time
($ (:) = ($ (:) + (?: + !:);

Delete surgery : from I, i.e. � = � \ {:};
Add surgery : to our schedule � ′, i.e. � ′ = � ′ ∪ {:};
Set C = C + 1;
if I is empty then

3>=4 =)AD4;
end

end

3.2.2 Endpoint fixed goals with blocks

This heuristic is very similar the the heuristic proposed in Section
3.2.1. However, now we try to schedule the surgeries such that the
completion time added by the cleaning time is as close to _ in (8)
as possible. This is illustrated in algorithm 2.

Algorithm 2: Fixed goals endpoint with blocks
Determine _, set C = 1,� ′ = ∅, (9 = B 9 for all 9 ∈ � and
3>=4 = �0;B4;

while not done do
for each OR j in 1,2,...,N do

Let �2 be the current block of surgeries;
Determine for all the unscheduled surgeries in that
block the completion time �8 = ($ (8) + ?8;

end
Set B = min 9∈� (9 ;
Determine what surgery has to be scheduled next.
: = arg min8∈� |B + _C − (�8 + !8) |;

For OR O(k), update the start time
($ (:) = ($ (:) + (?: + !:);

Delete surgery : from I, i.e. � = � \ {:};
Add surgery : to our schedule � ′, i.e. � ′ = � ′ ∪ {:};
Set C = C + 1;
if I is empty then

3>=4 =)AD4;
end

end

3.2.3 End point flexible goals with blocks

In the proposed heuristics, the goal value _ in (8) is calculated
once before the algorithm schedules the surgeries. Note that the
value _ depends on the total number of surgeries. So when there
are surgeries scheduled, this values changes. That is why in this
heuristic, we update the value of _ after each time a surgery is
scheduled. In this way, we get a more accurate value of _ when
certain surgeries have already been scheduled.
There are two things that change in each iteration that is needed
to calculate _, the remaining occupied interval and the number of
to schedule surgeries.
Denote % as the start of the remaining occupied interval. Let
denote the number of scheduled surgeries. Now _ is defined as
follows.

_ =
� − %∑

9∈� " 9 −
=
� − %
" − . (9)

The implementation can be seen in algorithm 3

Algorithm 3: Flexible goals endpoint with blocks
Set C = 1,� ′ = ∅, (9 = B 9 for all 9 ∈ �, = 0 and
3>=4 = �0;B4;

while not done do
Set % = min 9∈� B 9 , determine _;
for each ORs j in 1,2,...,N do

Let �2 be the current block of surgeries;
Determine for all the unscheduled surgeries in that
block the completion time �8 = ($ (8) + ?8;

end
Set B = min 9∈� (9 ;
Determine what surgery has to be scheduled next.
: = arg min8∈� |B + _C − (�8 + !8) |;

For OR O(k), update the start time
($ (:) = ($ (:) + (?: + !:);

Delete surgery : from I, i.e. � = � \ {:};
Add surgery : to our schedule � ′, i.e. � ′ = � ′ ∪ {:};
Set C = C + 1;
Set = + 1;
if I is empty then

3>=4 =)AD4;
end

end

3.2.4 Prevent overlap

We start with selecting the surgery with the shortest completion
and cleaning time all together. We call this surgery : ∈ �. In
this way, the idle time of the cleaning team in the beginning of
the day is minimized. Doing this enables us to increase coverage
of the cleaning times over the occupied interval. This facilitates
spreading the cleaning intervals more evenly over the day.

5

The objective is to find another surgery F ∈ � such that there is
no overlapping cleaning time.
Consider the end of the cleaning time of surgery : . In the most
ideal situation, surgery F ∈ � finishes as close as possible to the
end of the cleaning time of surgery : ∈ �. We can find this surgery
F ∈ � systematically if we take F = arg min8∈� {�: + !: − �8}.
This heuristic is illustrated in the algorithm 4.

Algorithm 4: Prevent overlap
Set � ′ = ∅, (9 = B 9 for all 9 ∈ � and 3>=4 = �0;B4;
while not done do

for each OR j in 1,2,...,N do
Let �2 be the current block of surgeries;
Determine for all the unscheduled surgeries in that
block the completion time �8 = ($ (8) + ?8;

end
Set k = arg min8∈� (�8 + !�);
Schedule surgery : in OR O(k);
For OR O(k), update the start time
($ (:) = ($ (:) + (?: + !:);

Delete surgery : from I, i.e. � = � \ {:};
Add surgery : to our schedule � ′, i.e. � ′ = � ′ ∪ {:};
for each OR j in 1,2,...,N do

Let �2 be the current block of surgeries;
Determine for all the unscheduled surgeries in that
block the completion time �8 = ($ (8) + ?8;

end
Set F = arg min8∈� {�: + !: − �8};
Schedule surgery F in OR O(w);
For OR O(w), update the start time
($ (F) = ($ (F) + (?F + !F);

Delete surgery F from I, i.e. � = � \ {F};
Add surgery F to our schedule � ′, i.e. � ′ = � ′ ∪ {F};
if I is empty then

done is True;
end

end

3.2.5 One by one sequencing

Similarly to heuristic ’Prevent overlap’ we start by selecting
the surgery with the shortest total time. Again, we call this
surgery : ∈ �. In choosing the next surgery 8 ∈ �, we try to not
schedule surgeries that will result in overlap of cleaning times.
Choosing surgery 8 ∈ � can be chosen from two perspectives.
One perspective is that the completion time added by the cleaning
time of surgery 8 is as close as possible to the completion time of
surgery : .
The other perspective is to choose the next surgery is to select
one such that the completion time added by the cleaning time of
surgery : is as close as possible to the completion time of surgery
8. Thus, choosing such a surgery can be realised according to the

following F = arg min8{(�: − (�8 + !8))+, (�8 − (�: + !:))+}.
This is illustrated in Figure 5. Both surgeries 81 and 82 do not
cause an overlap in cleaning time.
Only positive values are considered. This is because if both
values are negative, this minimization does not minimize the
overlapping cleaning time. This is illustrated in Figure 6.
In order to minimize this overlap, we choose F =

arg max8∈� {(�: − (�8 + !8)), (�8 − (�: + !:))}. The
heuristic is illustrated in the following algorithm.

Algorithm 5: One by one sequencing
Set � ′ = ∅, (9 = B 9 for all 9 ∈ � and 3>=4 = �0;B4;
while not done do

for each OR j in 1,2,...,N do
Let �2 be the current block of surgeries;
Determine for all the unscheduled surgeries in that
block the completion time �8 = ($ (8) + ?8;

end
Set k = arg min8∈� (�8 + !�);
Schedule surgery : in OR O(k);
For OR O(k), update the start time
($ (:) = ($ (:) + (?: + !:);

Delete surgery : from I, i.e. � = � \ {:};
Add surgery : to our schedule � ′, i.e. � ′ = � ′ ∪ {:};
for each OR j in 1,2,...,N do

Let �2 be the current block of surgeries;
Determine for all the unscheduled surgeries in that
block the completion time �8 = ($ (8) + ?8;

end
if �: − (�8 + !8) > 0 or �8 − (�: + !:) > 0 then

F = arg min8{(�: − (�8 + !8))+, (�8 − (�: + !:))+};
end
if for all i ∈ �2 C: − (�8 + !8) < 0 and
�8 − (�: + !:) < 0 then
F = arg max 8{(�: − (�8 + !8)), (�8 − (�: + !:))};

end
Schedule surgery F in OR O(w);
For OR O(w), update the start time
($ (F) = ($ (F) + (?F + !F);

Delete surgery F from I, i.e. � = � \ {F};
Add surgery F to our schedule � ′, i.e. � ′ = � ′ ∪ {F};
if I is empty then

done is True;
end

end

6

Figure 5: Either one of these scenarios is preferred.

Figure 6: A situation when the cleaning times will always overlap.

4 Data analysis
A table with all the extracted data that is used in the simulation
can be found in Appendix A. For the simulation, real data from
the ’Jeroen Bosch Ziekenhuis’ (JBZ) from July 2016 until July
2018 is used. The JBZ has 16 ORs with 20 different surgery
types that can be performed. On average, 54 surgeries take place
each day. In the proposed heuristics in section 3.2, it is assumed
that for each surgery 8C ∈ � of type C ∈) , the duration ?8C is deter-
ministically known. Using the heuristics, a schedule is obtained
that is simulated. For the simulation, we assume that each surgery
8C ∈ � of type C ∈) has a three parameter lognormal distribution
with � [?8C] = `8C and Var = f2

8C
. [Strum et al., 2000] suggest

that surgery durations are most realistically modelled with a log-
normal distribution, and especially the three parameter lognormal
distribution, which has been shown by [Spangler et al., 2004] and
[Stepaniak et al., 2010]. The third parameter which we will call
W is a shift parameter. The parameters are determined using the
scipy.stats module in Python. This module allows for negative
values of W, which is unconventional according to [Singh, 1998].
The data consists of over 30.000 surgeries, the type of each
surgery is indicated. All types C ∈) can be characterized in
this way. In order to obtain a realistic distribution, surgery types
are not considered if there are less than one hundred occurrences
in our data set. Each surgery has an expected duration. On the
expected durations, a lognormal fit is obtained using Python. In
Figure 7, an example is shown for anaplasty type surgeries.
The height of each peak represents the percentage of surgeries
that have this planned duration.
As can be seen in Figure 7, the lognormal fit over the entire data
set of planned durations is not satisfactory. This means that draw-
ing random samples from the distribution is not representative for

Figure 7: An example of a lognormal fit on the surgery type anaplasty. The density
on the amount of surgeries is considered.

all the surgeries. Therefore, subcategories of the surgeries are in-
troduced. A subcategory is chosen as a duration that has more
than 5% occurrences in the total amount of surgeries of that type.
The rest of the surgeries are added to the closest duration peak
higher than 5%. The merged peaks for anaplasty type surgeries is
shown in Figure 8. The original durations are shifted slightly to
the left to prevent overlap, in order to clarify the figure.

Figure 8: The grouped surgeries to all the peaks that are higher than 5%.

For each of these subcategories, a lognormal fit is made based on
the real duration. An example is shown in Figure 9 and Figure 10.
This is done for each type of surgery in order for the simulation

to be more realistic.
The cleaning time that is scheduled by the JBZ is always 15 min-
utes. The cleaning time after a surgery depends on its type and
duration. The mean of all durations !8C for all 8 ∈ �, C ∈) are
obtained from the data and used in the simulation. It is assumed
that the cleaning times in the simulation are deterministic.
In determining the schedule, three realistic scheduling constraints
are taken into account. The first is the block schedule to more re-
alistically display the schedule of the surgeons. The second is

7

Figure 9: A lognormal fit for anaplasty type surgeries of the 30minute subcategory.

Figure 10: A lognormal fit for anaplasty type surgeries of the 90 minute subcate-
gory.

that children should be scheduled as early as possible. There is
a possibility that more than one type of surgery is assigned to an
OR, and at least one surgery of each type concerns a child. In
this case, the block structure is preserved and there is a possibil-
ity that a child is scheduled later on the day. Lastly, surgeries that
concerns patients with an infectious disease should be scheduled
last in a day to prevent contamination.
The proportion of surgeries 8C ∈ �, C ∈) which are children or
infectious are obtained from the data and used in the simulation.
The schedule of any given day can be reconstructed. A schedule
consists of a set of ORs that correspond to a set of surgeries that
have been scheduled in that OR. From these surgeries, the start
and end times are known. Using this information, the lengths of
the BIIs can be calculated. A BII is assumed to take place in be-
tween two surgeries. Thus ORs that are inactive are not taken into
account for the calculation of lengths of the BIIs.

5 Simulation

Two randomly selected weeks are selected for the simulation.
This is done in order to create a view on how the heuristics per-
form in a realistic situation. The average number of surgeries
per day is 54. To maintain a realistic view, we choose that there
should be at least 400 surgeries performed in that week. Weeks
that contain days that have 0 surgeries are omitted.
A new order of the surgeries of each OR are determined using
the heuristics of Section 3.2. In determining the order of the
surgeries, it is assumed that for all 8C ∈ �, C ∈) , the planned
durations ?8C and the planned cleaning times !8C are determinis-
tic. Because the lognormal distribution is a skewed distribution,
the planned duration of a surgery 8C ∈ �, C ∈) is the median of
the three parameter lognormal distribution. The planned cleaning
times are chosen as follows, if ?8 < 30 then !8 = 5, otherwise
!8 = 15. After the schedule is determined by a heuristic method,
it is simulated. The number of cleaning teams can be set as a
variable in the simulation. Consider Figure 3, if there were two
cleaning teams present, there would not have been any overlap
of cleaning times. From the figure, it is clear that the increase
of cleaning teams can have a negative effect on minimizing the
length of the maximum BII. This is because if ORs are waiting
for cleaning, emergency surgery can take place. Cases with three
and four cleaning teams are considered only, as the results using
less cleaning teams are insufficient. Each evaluated schedule is
simulated 500 times. Confidence intervals (95%) are provided
for the average duration of an overlap and the sum of all over-
laps. An overlap is accounted for only if there is a delay caused
by it. The results of two randomly selected weeks are presented
in Table 1 and Table 2. In simulating the real schedule and the
schedules determined by the heuristics, we assume that there is
no idle time in between surgeries or idle time at the start of a day,
even though if this was the case on that day.
The simulation model is implemented in Python 3.7.
The confidence intervals of the average overlap of two cleaning
intervals all tend to converge to the same values. Even though the
schedules are different, the set of surgeries that is being scheduled
in an OR is the same for all heuristics. It is assumed that clean-
ing times are deterministic in the simulation. Therefore, using
different heuristics to construct the schedule, the same amount of
cleaning time takes place in each OR. Apparently, in the simu-
lation, the average amount of overlap between any two cleaning
intervals throughout the day that cause a delay approaches a con-
stant.
The results show that only the Prevent overlap (PV) and the One
by one sequencing (OOS) heuristic always improve on the origi-
nal schedule. However, PV performs better in all instances than
OOS.
Both of these heuristics schedule two surgeries in each itera-
tion. The surgery with the shortest total time is chosen, a sec-
ond surgery is selected to prevent or minimize the overlap. The

8

Table 1: Instance of a random selected week. There were 405 surgeries this week. Conf. int. avg. overlap (min) = average overlap of
two cleaning windows in minutes;Conf. int. sum overlap (min) = the total overlap in minutes;Conf. int.max. BII (min) = the longest
length of a Break In Intervals in minutes.

Solution methods Runtime (s) Conf. int. avg. overlap (min) Conf. int. sum overlap (min) Conf. int. max. BII (min)
Three cleaning teams

Original schedule 70.82 2.91 ±4.2 61.31 ±46.08 48.98 ±91.05
Midpoint fixed goals 72.99 2.93 ±4.22 63.97 ±49.88 46.44 ±78.5
Endpoint fixed goals 73.1 2.92 ±4.21 64.72 ±48.32 48.79 ±102.77
midpoint flexible goals 71.63 2.96 ±4.25 68.89 ±56.16 51.46 ±93.98

Prevent overlap 71.2 2.83 ±4.12 55.07 ±42.29 47.35 ±79.54
One by one sequencing 73.19 2.84 ±4.12 57.34 ±41.29 49.93 ±118.39

Four cleaning teams
Original schedule 30.92 2.12 ±3.28 14.84 ±19.07 47.79 ±87.19

Midpoint fixed goals 33.16 2.14 ±3.29 17.1 ±22.83 46.59 ±75.73
Endpoint fixed goals 33.61 2.13 ±3.26 16.04 ±20.26 45.59 ±79.46
midpoint flexible goals 32.86 2.17 ±3.29 19.52 ±25.94 50.64 ±91.81

Prevent overlap 32.58 2.07 ±3.21 12.75 ±16.93 50.71 ±111.63
One by one sequencing 32.55 2.07 ±3.21 12.83 ±17.37 49.68 ±119.7

Table 2: Instance of a random selected week. There were 439 surgeries this week. Conf. int. avg. overlap (min) = average overlap of
two cleaning windows in minutes;Conf. int. sum overlap (min) = the total overlap in minutes;Conf. int.max. BII (min) = the longest
length of a Break In Intervals in minutes.

Solution methods Runtime (s) Conf. int. avg. overlap (min) Conf. int. sum overlap (min) Conf. int. max. BII (min)
Three cleaning teams

Original schedule 59.0 3.03 ±4.41 61.5 ±49.74 64.18 ±100.92
Midpoint fixed goals 75.89 3.02 ±4.43 58.67 ±44.77 59.61 ±91.26
Endpoint fixed goals 91.78 3.0 ±4.38 59.67 ±46.3 60.89 ±93.15
midpoint flexible goals 75.16 3.01 ±4.4 64.72 ±48.64 59.8 ±101.87

Prevent overlap 66.81 2.99 ±4.36 57.16 ±46.03 57.27 ±87.99
One by one sequencing 53.11 3.02 ±4.38 58.81 ±46.36 57.37 ±86.05

Four cleaning teams
Original schedule 34.71 2.28 ±3.54 14.57 ±19.41 63.63 ±93.71

Midpoint fixed goals 88.09 2.25 ±3.54 13.92 ±18.07 61.31 ±92.03
Endpoint fixed goals 68.09 2.25 ±3.54 14.34 ±18.49 60.55 ±100.81
midpoint flexible goals 35.71 2.26 ±3.54 15.23 ±19.38 58.96 ±83.64

Prevent overlap 34.02 2.24 ±3.52 13.3 ±17.93 56.49 ±89.31
One by one sequencing 34.38 2.22 ±3.48 13.7 ±17.94 57.13 ±84.09

other heuristics, i.e. ’Fixed’ and ’Flexible goals’, aim to spread
the cleaning intervals as evenly as possible over the day. These
frequently perform worse than the original schedule.
The reason that PV and OOS perform better could be due to the
fact that there are many surgeries of all sorts of durations, as can
be seen in Figure 11 and Figure 12. This can be beneficial for
PV and OOS as there is more freedom in choosing the second
surgery in the iteration. This can be unfavourable for the other
heuristics as the target _ might not be attained later on in the day
the because there are no surgeries left that are close to _.
A reason why all heuristics might perform worse than expected is
that it is assumed that all surgeries start at time C = 0. This results
in a peak workload for the cleaning teams in the beginning of the
day. The high work load results in cleaning time overlaps which
in turn effects the rest of the schedule in that OR. The heuris-

tics do not account for the already shifted schedule. Because of
this The peak contributes to overlap which affects the rest of the
schedule in that OR. In creating the schedule using the heuristics,
the overlap and its effects are not accounted for.
Even though the objective was not to minimize the maximum BII,
it is interesting to examine the performances. The variance of the
conf. int. of the maximum BII is very broad, using more cleaning
teams resolves this. Another factor of this is the high variance of
the surgery durations. The purpose of the fixed and flexible goals
heuristic is to spread the cleaning intervals as evenly as possible
over the days. This shows in Table 1, the maximum BII is the
lowest amongst the other heuristics. In Table 2, PV and OOS per-
form better on minimizing the maximum BII.
We conclude that the PV heuristic algorithm performs the best.
The average sum of the overlap is the lowest amongst all other

9

Figure 11: The duration density of the planned durations of the week in Table 1

heuristics. Furthermore, the average maximum BII is minimized
in most cases.

6 Conclusions and recommendations
We have studied the problem to minimize overlap of cleaning
times. We built on the framework provided by [Amalia, 2018].
We have used this framework and introduced an ILP and several
heuristic methods. The heuristics are adjusted in order to create
a more realistic scenario. A simulation study on reconstructed
weeks using date from a Dutch hospital has been done to test
several solution methods. In the simulation, several realistic con-
straints are taken into account. A block structure of consecutive
surgeries of the same type is introduced. Elective surgeries that
concern children should be scheduled early on the day and infec-
tious surgeries are scheduled at the end of the day.
The ’Prevent overlap’ algorithm provides the best results in min-
imizing the average sum of cleaning overlap and minimizing the
maximum BII. The average sum of the overlap can be reduced
by more than 10%, provided that four cleaning teams are in use.
Therefore, we recommend hospitals to use the prevent overlap
heuristic and use four cleaning teams. Both the average sum of
cleaning overlap and the length of the maximum BII can be re-
duced substantially.
Further research can focus on whether inserting idle time can
have a positive effect on minimizing the cleaning time overlap.
This can be at the beginning of a day or in between surgeries.
Idle time can be scheduled in ORs if it is expected that the com-
pletion times of the surgeries are close to each other. In this way,
the completion times can be shifted which might result in fewer
overlaps. Inserting idle can be beneficial in the results of the BIM

Figure 12: The duration density of the planned durations the week in Table 2

problem too, as inserted idle time in can reduce the length of a
BII.

Acknowledgement
I would like to thank Maarten Otten, Msc, for all the support and
insightful conversations about the thesis. I could not have imag-
ined a more pleasant interaction between student and supervisor.
I thank ir. Jasper Bos for providing the data from the Jeroen
Bosch Ziekenhuis.

References
[Amalia, 2018] Amalia, O. A. (2018). Surgery Sequencing in

Multiple Operating Rooms while Considering Cleaning Time
Windows. (1973177).

[Cardoen et al., 2010] Cardoen, B., Demeulemeester, E., and
Beliën, J. (2010). Operating room planning and scheduling: A
literature review. European Journal of Operational Research,
201(3):921–932.

[Denton et al., 2007] Denton, B., Viapiano, J., and Vogl, A.
(2007). Optimization of surgery sequencing and scheduling
decisions under uncertainty. Health Care Management Sci-
ence, 10(1):13–24.

[Lamiri et al., 2008] Lamiri, M., Xie, X., and Zhang, S. (2008).
Column generation approach to operating theater planning
with elective and emergency patients. IIE Transactions,
40(9):838–852.

10

[Singh, 1998] Singh, V. P. (1998). Three-Parameter Lognormal
Distribution. pages 82–107. Springer, Dordrecht.

[Spangler et al., 2004] Spangler, W. E., Strum, D. P., Vargas,
L. G., and May, J. H. (2004). Estimating procedure times for
surgeries by determining location parameters for the lognor-
mal model.

[Spieksma et al., 1995] Spieksma, F. C., Woeginger, G. J., and
Yu, Z. (1995). Scheduling with safety distances. Annals of
Operations Research, 57(1):251–264.

[Stepaniak et al., 2010] Stepaniak, P. S., Heij, C., and de Vries,
G. (2010). Modeling and prediction of surgical procedure
times. Statistica Neerlandica, 64(1):1–18.

[Strum et al., 2000] Strum, D. P., May, J. H., and Vargas, L. G.
(2000). Modeling the uncertainty of surgical procedure times:
Comparison of log- normal and normal models. Anesthesiol-
ogy, 92(4):1160–1167.

[van Essen et al., 2012] van Essen, J. T., Hans, E. W., Hurink,
J. L., and Oversberg, A. (2012). Minimizing the waiting time
for emergency surgery. Operations Research for Health Care,
1(2-3):34–44.

[Vandenberghe et al., 2019] Vandenberghe, M., De Vuyst, S.,
Aghezzaf, E. H., and Bruneel, H. (2019). Surgery sequenc-
ing to minimize the expected maximum waiting time of emer-
gent patients. European Journal of Operational Research,
275(3):971–982.

11

Appendices
A Extracted data
The appendix is purposely excluded for security reasons.

12

	Introduction
	Problem description
	Solution methods
	Exact solution method
	Constructive heuristics
	Midpoint fixed goals with blocks
	Endpoint fixed goals with blocks
	End point flexible goals with blocks
	Prevent overlap
	One by one sequencing

	Data analysis
	Simulation
	Conclusions and recommendations
	References
	Appendices
	Extracted data

