
Symbolic Parity Games: Two Novel Fixpoint Iteration
Algorithms with Strategy Derivation

Oebele Lijzenga
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

o.r.lijzenga@student.utwente.nl

ABSTRACT
In this paper, we study symbolic parity game solving using
BDDs. The state of the art of symbolic parity game algo-
rithms is improved by implementing two novel fixpoint iter-
ation algorithms. Contrary to current symbolic algorithms,
our algorithms also derive winning strategies. Empirical
evaluation compares the new symbolic algorithms with a
symbolic implementation of Zielonka’s recursive algorithm
over benchmark sets from SYNTCOMP 2020. We conclude
that both new algorithms are competitive with Zielonka’s
algorithm, while also providing winning strategies.

Keywords
Parity games, binary decision diagrams, complexity theory,
formal verification, model checking

1. INTRODUCTION
Parity games are turn-based games played by the players
Even and Odd on a finite directional graph. All vertices
are labelled by an integer priority. A play in a parity game
is an infinite sequence of vertices consistent with the edge
relation, where the owner of the current vertex (Even or
Odd) determines the next vertex. The play eventually
results in an infinitely repeating sequence of vertices and
their priorities. If the highest priority in this sequence is
even, then player Even wins, otherwise player Odd wins.
Solving a parity game can either be to determine the
winning area of the graph for a player, or determining
a winning strategy for both players, or both. A strategy is
winning for some player if it contains one move for each
vertex controlled by, and in the winning area of that player,
and all moves consistent with that strategy always cause
that player to win.

Parity games are an interesting field of study for many
reasons. In [17], Van Dijk states that ”their study has
been motivated by their relation to many problems in for-
mal verification and synthesis that can be reduced to the
problem of solving parity games, as parity games capture
the expressive power of nested least and greatest fixpoint
operators”(p.291). In formal verification, we want to know
if some condition can be satisfied or realised. This corre-
sponds to computing the winning areas of a parity game.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
33rd Twente Student Conference on IT July 3rd, 2020, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

In synthesis, we want to obtain a controller which satisfies
a specification. This corresponds to computing the winning
strategy for a parity game.

It is widely believed that a polynomial time solution exists
for determining the winner of a parity game [11]. So far,
only quasi-polynomial time solutions have been found [3,
7]. For this reason, parity games are also widely studied
with regards to complexity theory.

Due to the use of parity games in verification and synthesis
problems, parity games can grow quite large. It is common
for explicit parity game solvers to require over 8GB of
memory for large specifications [16]. In the past, symbolic
parity game solvers using BDDs (binary decision diagrams)
have been explored [1, 16, 4, 12]. Symbolic parity game
solvers replace explicit data-structures with implicit (i.e.
symbolic) ones like BDDs, using powerful well-optimised
packages like CUDD1, Sylvan2 and BuDDy3. The implicit
nature of such data-structures, if used properly, can lead
to massively reduced memory-usage [16].

Well known parity game solving algorithms like Zielonka’s
recursive algorithm [22] and priority promotion [2] can
derive winning strategies and have been implemented sym-
bolically by e.g. Sanchez et al. [16]. However, these sym-
bolic implementations do not include derivation of winning
strategies. The results for symbolic parity game solvers are
still quite promising, and show that they should be more
extensively explored.

This paper aims to improve the state of the art of symbolic
parity game algorithms by implementing fixpoint iteration
algorithms capable of deriving winning strategies. We im-
plement the fixpoint iteration algorithm with justifications
proposed by Lapauw et al. in [15] (FPJ), and the fixpoint
iteration algorithm with distractions and freezing proposed
by Van Dijk et al. in [19] (DFI). We look for potential
advantages in deriving and representing winning strategies
symbolically, while replicating the known advantages of
symbolic algorithms found in previous studies on symbolic
parity games.

2. PRELIMINARIES
2.1 Parity games
We define a parity game PG as a tuple (V , V3, V2, E, pr).
V3 and V2 partition the set V , indicating which vertices
are controlled by player Even and Odd respectively. Thus,
V3 ∩ V2 = ∅ and V3 ∪ V2 = V . We say that vertices
with an even priority are of Even parity, and vertices with
an odd priority are of Odd parity, denoted by V0 and V1

1https://github.com/johnyf/cudd
2https://github.com/utwente-fmt/sylvan
3http://vlsicad.eecs.umich.edu/BK/Slots/cache/
www.itu.dk/research/buddy/

1

https://github.com/johnyf/cudd
https://github.com/utwente-fmt/sylvan
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/

respectively. The mapping E ⊆ V × V describes which
moves can be made from each vertex in V , and each vertex
has at least one successor. We also write E(u) for all
successors of u, and u→ v if v ∈ E(u). Furthermore the
function pr: V → {0, 1, ..., d} assigns a priority to each
vertex, where d is the highest priority in the game. So
if vertex v has priority 3, then pr(v) = 3. We denote a
player as α ∈ {3,2} where 3 represents player Even and
2 represents player Odd. The opponent of player α is
denoted by ᾱ. For convenience, we can filter elements of a
set of vertices by their parity as follows: Xp∈{0,1} = X∩Vp.
Similarly, for the owner of vertices we have Xα∈{3,2} =
X ∩ Vα.

Finally, we take notations from the modal µ-calculus[21]
to denote successor states. In the context of parity games,
we refer to u as a successor of v if u→ v. We define the
following operators:

3X = {v ∈ V | ∃u : v → u ∧ u ∈ X} (1)

2X = {v ∈ V | ∀u : v → u =⇒ u ∈ X} (2)

Formula 1 computes all vertices that have an edge to X.
This is the preimage of X. Formula 2 computes all vertices
for which all outgoing edges go to X.

Figure 1 shows an example of a parity game taken from lec-
tures notes of Van Dijk [18]. The diamond-shaped vertices
are owned by player Even, and the box-shaped vertices
are owned by player Odd. All vertices of this parity game
are won by Odd because from all vertices, Odd can make
moves in such a way that always results in an infinite se-
quence of vertex priorities where the highest priority is
odd, regardless of the moves of Even.

Figure 1. Parity game example (Van Dijk 2019)

2.2 Binary Decision Diagrams
Binary Decision Diagrams [5] (BDDs) are a frequently used
data structure for the representation and manipulation
of Boolean functions. Figure 2 shows an example of a
BDD. This particular BDD is equivalent to the function
Y (~x) = x1 ⊕ x2 ⊕ x3 which can be used to represent the
set Y = {x ∈ X | Y (x)} in a memory efficient manner as it
does not require a copy of each individual element of Y from
X. Thus, BDDs can be used to describe sets as Boolean
functions. In a BDD, each node always corresponds to
a single Boolean variable, and one Boolean variable can
correspond to any number of nodes. All nodes have two
outgoing edges. One for when the nodes corresponding
Boolean variable is true, and the other for when it is false.
If input vector ~x for some BDD can represent all possible
elements of a set X, then we can obtain any subset of X
through a BDD.

One of the strengths of BDDs is that some structures can be
very efficiently represented if a favourable variable ordering

Figure 2. BDD example (Drechsler 2001)

for that structure is found. Conversely, a poor variable
ordering can lead to much larger and more inefficient BDDs.
For a comprehensive overview on BDDs and what can make
them both efficient and inefficient were refer to [6].

Some commonly used BDD packages were previously men-
tioned. Such packages aim for the fastest possible manipu-
lation of BDDs. To achieve this, BDDs are given a static
variable ordering which yields ordered BDDs (OBDD).
Variables are encountered in the same order for every path
over an OBDD. As a result, an OBDD is canonical which
means that for each Boolean function there exists only
one OBDD which represents it. Due to their canonicity,
equivalence checking of OBDDs is trivial.

BDDs are difficult to use as data structures for algorithms
in comparison to their explicit counterparts. There are two
reasons for this. First, most common problems are provided
explicitly, requiring conversion to a symbolic representa-
tion which is rather time consuming and often results in
inefficient BDDs. Additionally, the result of an algorithm
is often used in its explicit form, requiring computations of
satisfying assignments (SAT) of the symbolic result. Thus,
BDDs are most effective when used in multiple successive
stages of some piece of software, as conversions between
explicit and symbolic are not desirable. Secondly, lack
of knowledge on BDDs and internal operation of BDD
packages can result in sub-optimal implementations and
hidden complexities. In [20], Van Dijk et al. demonstrate
the many pitfalls of implementing symbolic algorithms.
Poor order of application of BDD operations results in
additional internal operations for the used BDD package
which returns an canonical, optimised BDD for each inter-
mediate result in a sequence of BDD operations, regardless
of whether this is desirable.

2.3 Fixpoint Iteration
Fixpoint iteration algorithms for parity games are a class
of algorithms which aim to iteratively refine an estimate
of which vertices are won by which player. An initial
estimate might, for example, be that each player wins all
vertices of their parity. Each iteration of such an algorithm
is a monotonic function which updates the estimate Z,
unless the fixpoint is reached. This estimate Z can be
the set of vertices estimated to be won by player Even,
also implicitly estimating vertices won by Odd. When the
fixpoint is reached, we know that Z contains all vertices
won by player Even, and V \ Z contains all vertices won
by player Odd.

2

2.4 DFI
The DFI algorithm proposed by Van Dijk et al. [19] is
a fixpoint iteration algorithm built around the idea of
distractions. Other fixpoint iteration algorithms maintain
a set Z of vertices estimated to be won by e.g. player
Even. Instead, DFI tracks vertices which are a distraction.
Distractions are vertices which one intuitively might expect
player α to win, but are in reality won by ᾱ. DFI starts
with the assumption that a player wins all vertices of their
parity, and uses Z to store vertices which violate this
assumption. In figure 1, vertex f is a distraction because
its priority is high and even. But if Even always tries to
play to f then Odd wins.

DFI is also capable of deriving winning strategies for par-
ity games using a technique called freezing, which also
improves the efficiency of the algorithm by omitting unnec-
essary re-computations when new distractions are found.
Re-computations are required because a vertex being a
distraction (or not) relies on which successors are won by
which player. Similarly to all other fixpoint iteration al-
gorithms, an iteration of DFI is monotonic. An iteration
always finds new distractions until all distractions are found
and the algorithm finishes. For an extensive explanation
of the DFI algorithm and proof of its correctness, we refer
to [19].

2.5 FPJ
The FPJ algorithm is the fixpoint iteration algorithm with
justifications proposed by Lapauw et al. [15]. A justifi-
cation graph is used as a data structure to construct a
winning strategy, and reset lower vertices when the esti-
mate is updated. This justification graph is updated during
each iteration step of the algorithm. Justification graphs
as used by Lapauw et al. were first proposed by Hou et
al. [9]. For an in-depth overview of the FPJ algorithm we
refer to [15].

Justification J is a subset of E. An edge e can be included
in J (justified) for two reasons: e is a winning move, or
the starting vertex of e is lost by its owner. When a vertex
is estimated to be lost by its owner, all edges from that
vertex are added to J . FPJ visits unjustified vertices, which
are vertices for which no outgoing edges are included in
J . When the estimate of winning vertices is updated, all
edges from which the updated vertices can be reached over
justification J are deleted from J . This causes vertices
depending on other vertices to win (or lose) to be reset
in a topological manner because they become unjustified,
causing these vertices to be re-visited. When FPJ ends, J
is transformed to a winning strategy by only taking the
edges from J which are won by their owner.

3. RELATED WORK
As briefly mentioned in the introduction, there exists some
past research on symbolic parity games. In [12], Kant
et al. implement Zielonka’s algorithm symbolically. This
implementation is also capable of deriving winning strate-
gies, but this is excluded from the empirical evaluation.
The empirical evaluation compares symbolic Zielonka with
other symbolic parity game solvers using parity games from
real model checking problems. In [4], Stasio et al. imple-
ment Zielonka, APT [14] and a small progress measures
algorithm. These algorithms are extensively empirically
evaluated using several different classes of parity games, but
the evaluation lacks a comparison with explicit algorithms.
Finally, Sanchez et al. implement Zielonka, fixpoint iter-
ation, APT and priority promotion symbolically without
strategy derivation, and evaluate these implementations

using random parity games and Keiren’s benchmark set[13].

In general, symbolic parity game algorithms which derive
winning strategies have received little attention. Presum-
ably because there is still a lot to be learned about symbolic
parity games themselves. Furthermore, symbolic implemen-
tations require a lot of knowledge on their data-structures,
and practical applications are still limited as explicit imple-
mentations are usually more convenient. Symbolic parity
games are still a valuable topic of research as the previ-
ously mentioned work has shown that there are significant
benefits to using symbolic parity games over explicit ones,
especially when it comes to memory usage.

We also notice that there is still no consensus on how parity
game algorithms should be empirically evaluated. Bench-
mark sets (e.g. Keiren’s) include a wide variety of parity
games from real formal verification and synthesis problems.
This is still far from ideal however, as it would be preferred
to have a multitude of parity games for range combinations
of number of priorities, average outgoing degree and num-
ber of vertices. For this reason, many empirical evaluations
use random parity game generators which can be tuned to
obtain any number of parity games for any combination of
properties. It has however yet to be shown that random
parity game generators can consistently replicate parity
games originating from real formal verification and synthe-
sis problems. As a result, there is a wide variety of levels
in which random parity games have been incorporated
into empirical evaluations. Some researchers avoid random
parity games entirely, whereas others use them as their
only means of evaluation. In addition, evaluations which
use both random parity games and parity games used in
practice, show a wide variety of value attached to results
from random games.

4. BDDS AND PARITY GAMES
In order to solve a parity game symbolically, the parity
game itself has to be represented symbolically, in our case
using BDDs. Furthermore, data-structures and procedures
from DFI and FPJ have to be transformed to their sym-
bolic counterparts. Our implementations are available on
Github4. The version of this repository at time of writing
is tagged as v1.0.

4.1 Symbolic Parity Game Algorithms
4.1.1 Tooling

To implement symbolic algorithms, some BDD package
is required. For the implementations discussed in this
paper, the Python package dd5 was used in combination
with the CUDD backend using Cython bindings. The dd

package provides a generic Python interface on top of sev-
eral BDD back-ends including CUDD, Sylvan and BuDDy.
Optimisations in algorithms were found by analysing their
performance using the LineProfiler6 package.

4.1.2 Data Structures
To use BDDs as a data-structure for parity games, explicit
data-structures have to be replaced by their symbolic coun-
terparts. Sets are modelled as a function over vector ~x. For
a parity game with |V | = 8, a vector ~x consisting of Boolean

variables with |~x| = 3 is used. ~x has 2|~x| = 8 possible val-
ues, so V can be represented using the Boolean function
V(~x) = true because all variable assignments of ~x corre-
spond to a vertex in V . In the case that there is no n ∈ N
4https://github.com/olijzenga/
bdd-parity-game-solver
5https://github.com/tulip-control/dd
6https://github.com/pyutils/line_profiler

3

https://github.com/olijzenga/bdd-parity-game-solver
https://github.com/olijzenga/bdd-parity-game-solver
https://github.com/tulip-control/dd
https://github.com/pyutils/line_profiler

for which 2n = |V |, we take |~x| = min{n ∈ N | 2n ≥ |V |}.
Then, to reduce the possible values of ~x for which V holds
true to 6, we treat ~x as a binary number and replicate
the (< |V |) operation as a Boolean function. For example,
|V | = 6 would yield the function V(~x) = ¬(~x2 ∧ ~x3) where
|~x| = 3.

If we want to update some set of vertices represented by
BDD S by adding all elements of the set represented by T ,
we can do this by creating a new BDD. S ∨ T is equivalent
to set S ∪ T , thus we can add T to S by doing S ← S ∨ T .
Conversely we can remove T from S by doing S ← S ∧¬T .
The BDD package then reduces the updated BDDs to their
compact, canonical form. It is important to keep these
reductions in mind because a poor application order of
BDD-operations can severely increase the time required
for reducing a BDD, whereas a good application order can
massively improve it [20].

Using function V which represents all vertices V in a parity
game, the partition of V3 and V2 over V can be defined
using BDDs. We define V3(~x) = f(~x) ∧ V(~x) and V2(~x) =
¬f(~x) ∧ V(~x), where f represents vertices controlled by
player Even.

A parity game has d priorities. Each vertex is symbolically
mapped to a priority by defining a BDD for each priority,
where each BDD represents all vertices with that priority:
P(~x)i∈{1...d} = fi(~x)∧V(~x) where f partitions V by vertex
priorities.

Finally, to model edges E, a symbolic mapping or a set of
tuples E is required. Vector ~x′ is introduced which repre-
sents a set of successor vertices. In E , ~x and ~x′ represent
start and destination vertices respectively. Thus, we have
an edge from ~x to ~x′ iff E(~x, ~x′). To demonstrate its func-
tionality, edges with their destination vertex in the set
represented by U(~x) can be computed by substituting ~x
with ~x′ to obtain U(~x′), and consequently computing U ∧E
which is equivalent to {~x, ~x′ | U(~x′) ∧ E(~x, ~x′)}.

4.1.3 Procedures
Besides interchanging the explicit data structures with their
symbolic counterparts, some parts of explicit algorithms
have to be changed to better suit BDDs. All occurrences
of iteration through a set (i.e. foreach loops) have to
be replaced with BDD-operations which avoid iteration
through satisfying assignments (SAT) of a BDD. Such com-
putation is very time-consuming. The power of symbolic
(i.e. implicit) data structures lies it the fact that it is a
lazy representation of an entire set, and we operate on that
entire set instead of its individual elements. If during the
entire algorithm we can avoid eager element-wise opera-
tions (i.e. SAT computations), then we can exclusively
operate on compact (lazy) representations of entire sets.
Eager operations on BDDs completely nullify the advan-
tages of a symbolic data structure because it means that
the compact implicit data structure is decompressed into
its explicit counterpart.

We concluded that symbolic data structures are manip-
ulated and evaluated in an entirely different way from
explicit ones. For this reason, some procedures might
not transfer as well to symbolic ones. This is especially
noticeable when using an explicit map (i.e. hashmap). Im-
plementations like the hashmap can be read in O(1) in
most cases. Such mappings are used in parity games to
map vertices to their priorities, and in DFI to map vertices
to the priority that they are frozen at. Depending on the
usage of the hashmap in the explicit parity game algorithm,
finding an efficient symbolic counterpart can be quite dif-

ficult. Vertices of priority i can be obtained using P(~x)i,
but to obtain the priority of some vertex, the BDDs for
each priority need to be traversed until one is found that
intersects. Such a symbolic representation of the hashmap
can be significantly less efficient depending on the way it is
used. For this reason, some explicit implementations might
not translate as well into a symbolic one. As an example,
it is not guaranteed that performance improvements for
explicit algorithms, like freezing in DFI, translate well into
a symbolic implementation.

On the other hand, some parts of a symbolic implementa-
tion might be significantly more efficient than their explicit
counterparts. For example, P(~x)i represents all vertices
of priority i, but obtaining the same set from a hashmap
which maps vertices to their priority is rather cumbersome.

Another point of interest for symbolic parity game algo-
rithms is the way decisions are made. Symbolic algorithms
perform operations on BDDs in order to achieve their re-
sult. They avoid accessing elements of sets represented
by BDDs because it requires expensive SAT computations
while negating the benefits in memory efficiency of BDDs.
Still, all parity game algorithms need to make decisions
at some point. Both the DFI and FPJ algorithm check
whether their estimation of winning vertices is updated
or not, and the behaviour of the algorithms change ac-
cordingly. Both discussed checks are, or can be converted
to, a comparison to another BDD. Packages like CUDD
order BDDs in such a way that they can be compared in
O(1) because only the root node of the BDD needs to be
compared. The O(1) BDD comparison allows for control-
ling the flow of parity game algorithms depending on the
contents of a set represented by a BDD while avoiding SAT
computations.

We previously discussed the successor functions 3 and 2

as defined in formula’s 1 and 2 respectively. Both DFI
and FPJ use these functions. First we define the subst

function which renames occurrences of variable names of ~x
to their respective names in ~x′. For example:

subst(V(~x)) = V(~x′) (3)

This allows the 3 and 2 functions to be implemented
symbolically as follows:

3X(~x) = {~x | ∃~x′ : E(~x, ~x′) ∧ subst(X)(~x′)} (4)

2X(~x) = {~x | ∀~x′ : E(~x, ~x′) =⇒ subst(X)(~x′)} (5)

Both the existential and universal quantifier are available
as a BDD operation in most widely used BDD packages.
Thus, no SAT computations are required. Note that the
function of equation 5 can also be implemented only using
the existential quantifier instead of the universal quantifier.
This approach has not been used or evaluated, but could
potentially lead to improved performance.

4.2 DFI Implementation
Algorithm 1 outlines a symbolic implementation of DFI.
The DFI algorithm uses three data structures. Namely, the
current estimation of distraction vertices Z, the mapping
F : V → {−, 0, . . . , d} of vertices to the priority that they
are frozen at, and partial strategy S. Z is a subset of V
which can easily be modelled by BDD Z(~x) which deter-
mines if vertex ~x is a distraction or not. The function Z
will be updated throughout the runtime of the algorithm to
include or exclude particular vertices. F operates similarly
to P, where Fi∈{0...d}(~x) represents all vertices frozen at

4

priority i, and F−(~x) = ¬(F0(~x) ∨ . . . ∨ Fd(~x)) represents
vertices which are not frozen. Partial strategy S is repre-
sented by BDD S which defines a subset of E , of the edges
which are good moves for the player that owns that vertex.

Some procedures have been redesigned to better suit a
symbolic implementation. Lines 9-16 is the symbolic coun-
terpart of an explicit iteration through the set of vertices X.
For each vertex in X, the explicit algorithm uses onestep

to evaluate a single vertex and computes a good move if
available. For symbolic implementations it is desirable to
perform such operations on an entire set. For this reason,
onestep only computes new distractions, but does this for
all vertices in X at once (lines 9-12). Then in lines 14-16,
old moves from vertices in X are deleted from S, and new
moves are added. Note that all correct moves from vertices
in X are added to (partial) strategy S whereas explicit
DFI only stores one move for each vertex. Computing
and storing all correct moves is much easier (and faster)
to do symbolically, than it would be explicitly. Addition-
ally, computing only one correct move with BDDs is not
desirable because it would require an SAT computation.
Finally, the Boolean functions for onestep, even and odd

are equivalent to the modal µ-calculus notations of these
functions as provided by Van Dijk et al. [19].

More explicit iterations of sets of vertices have been re-
moved for the symbolic DFI algorithm. At lines 18-22 of
algorithm 1, the set of vertices X is computed beforehand.
Then BDDs Fp and Z are updated using X. In the explicit
algorithm, the set X is explicitly iterated over, updating F
and Z with elements of X one by one. A similar adaptation
was made for line 25 where the algorithm thaws vertices
frozen at lower priorities.

In the empirical evaluation of the symbolic DFI algorithm,
two variants of DFI are evaluated. The second DFI imple-
mentation, dfi-ns, works the same as DFI, but does not
compute winning strategies. This algorithm was obtained
by removing all occurrences of strategy S from DFI. If
we find an advantage in leaving out strategy computation,
then dfi-ns is useful for realisability problems which do
not require strategy derivation.

4.3 FPJ Implementation
The symbolic implementation of FPJ is shown in algorithm
2. Only two data-structures are used. Z represents all
vertices which are currently estimated to be won by player
Even. This is easily replaced by a BDD which defines
a subset over V. Justification J is a set of edges. J is
modelled very similarly to E , where we define a mapping
from ~x to ~x′. The set of unjustified vertices is denoted by
U(J).

On the procedural side of the symbolic FPJ implemen-
tation, there are only few significant adaptations. Com-
pared to DFI, the symbolic implementation of FPJ is much
more similar to its original explicit counterpart because
the pseudo-code provided by Lapauw et al. [15] is based
on set-operations. Therefore no major overhauls were re-
quired. Only the strategy3 was changed because the
explicit algorithm iterates over all vertices in U in order
to differentiate behaviour depending on the winner of the
vertex, and whether the winner also owns the vertex. This
corresponds to the symbolic implementation of lines 36-38
of algorithm 2. BDDs are first computed for all three cases
(Even controls and wins, Odd controls and wins, Even or
Odd controls and loses). Then the algorithm proceeds to
compute winning moves for vertices that are controlled and
won by the same player, and compute all outgoing edges for
vertices lost by the player which controls it. Furthermore,

1 def dfi(PG):
2 Z ← ∅
3 F0 ← ∅, . . . , Fd ← ∅
4 S ← ∅
5 p← 0
6 while p ≤ d do
7 α← p mod 2
8 X ← Pp ∧ F− ∧ ¬Z
9 if α is even then

10 Z′ ← V ∧ ¬onestep0(X,Z)
11 else
12 Z′ ← onestep0(X,Z)
13 Z ← Z ∨ Z′
14 S ← (S ∧ ¬X)
15 ∨ (X ∧ V3 ∧ E ∧ subst(even(Z)))
16 ∨ (X ∧ V2 ∧ E ∧ subst(odd(Z)))
17 if Z′ 6= ∅ then
18 X ← V<p ∧ F−
19 if α is even then W ← even(Z);
20 else W ← odd(Z);
21 Fp ← (X ∧ ¬W) ∨ Fp
22 Z ← ¬W ∧ Z
23 p← 0

24 else
25 Fp ← Fp ∧ ¬V<p
26 p← p+ 1

27 W3 ← even(Z)
28 W2 ← odd(Z)
29 S3 ←W3 ∧ V3 ∧ S
30 S2 ←W2 ∧ V2 ∧ S
31 return W3,W2, S3, S2

32 def onestep0(X,Z):
33 return (X3 ∧3even(Z)) ∨ (X2 ∧ 2even(Z))
34 def even(Z):
35 return (V0 ∧ ¬Z) ∨ (V1 ∧ Z)
36 def odd(Z):
37 return (V0 ∧ Z) ∨ (V1 ∧ ¬Z)

Algorithm 1: The DFI algorithm using BDDs

line 31 uses a modified version of the 3 operator with J
as its transition relation instead of E .

4.4 Optimisations
A few optimisations were attempted and evaluated using
LineProfiler. LineProfiler allows for profiling specific
functions, and creates an overview of time spent on each
line of Python code. This allows for easy analysis of small
variations in code.

As previously mentioned, the order of application of BDD
operations can influence their performance. In lines 8, 18
and 25 of algorithm 1, some BDD (A) is combined with
another BDD (B) which is a combination of many smaller
BDDs (B0 . . .Bi) (i.e. V<p and F−). In practice, this is
done by adding BDDs B0 . . .Bi to A one by one. This
avoids combining two large BDDs at once by adding smaller
BDDs to one large BDD instead. Using LineProfiler, we
found performance improvements of 11, 20 and 41 percent
for lines 8, 18 and 25 of algorithm 1 respectively for the
full arbiter unreal 3 case from the empirical evaluation in
section 5, which is the second largest BDD of the used
benchmark sets. These optimisations were not applied to
FPJ due to time constraints.

In lines 4, 12 and 13 of algorithm 2 we compute of the
set U(J). Within each iteration, the result of U(J) is the
same, so in practice the result of U(J) on line 4 is passed
onto the next function and thus used on lines 12 and 13.

5

1 def fpj(PG):
2 Z ← V0
3 J ← ∅
4 while U(J) 6= ∅ do
5 Z, J ← next(Z, J)
6 W3 ← Z
7 W2 ← V ∧ ¬Z
8 S3 ← J ∧ V3 ∧W3

9 S2 ← J ∧ V2 ∧W2

10 return W3,W2, S3, S2

11 def next(Z, J):
12 p← min{ p | Pp ∧ U(J) = ∅}
13 U ← Pp ∧ U(J)
14 Upd ← (phi(Z)∆Z) ∧ U
15 if Upd 6= ∅ then
16 R← reaches(J, Upd)
17 if p is even then
18 Zr ← (Z ∧ ¬R1) ∧ V<p
19 else
20 Zr ← (Z ∨R0) ∧ V<p
21 Z′ ← (Z ∧ V>p) ∨ (Zp∆Upd) ∨ Zr
22 J ′ ← (J ∧ ¬R) ∨ strategy3(Z′, Upd)

23 else
24 Z′ ← Z
25 J ′ ← J ∨ strategy3(Z′, U)

26 return Z′, J ′

27 def reaches(J, X):
28 X ′ ← ∅
29 while X ′ 6= X do
30 X ′ ← X
31 X ← X ∨ (J ∧3X)

32 return X

33 def phi(Z):
34 return (X3 ∧3Z) ∨ (X2 ∧ 2Z)
35 def strategy3(Z, U):
36 X0 ← U ∧ V3 ∧ Z
37 X1 ← U ∧ V2 ∧ ¬Z
38 Xd ← U ∧ ¬(X0 ∨X1) ∧ V
39 Z′ ← subst(Z)
40 return (X0 ∧ Z′ ∧ E)
41 ∨ (X1 ∧ ¬Z′ ∧ E)
42 ∨ (Xd ∧ E)

Algorithm 2: The FPJ algorithm using BDDs

Furthermore, using LineProfiler we found that the order
of application of BDD operations on line 36-38 are the
most optimal ones.

5. EMPIRICAL EVALUATION
The empirical evaluation aims to study the performance
of discussed, symbolic, dfi, dfi-ns and fpj implementa-
tions, hopefully giving us a better understanding of the
implications of using symbolic data structures and tools
to derive winning strategies. We compare the performance
of these algorithms to the performance of the symbolic
implementation of Zielonka’s recursive algorithm [22] (zlk)
provided by Sanchez et al. [16].

The discussed algorithms are evaluated using the bench-
mark sets from the pgame realisability track of SYNT-
COMP 2020. More detailed information on these bench-
marks can be found in [10]. All benchmark sets consist of
parity automatons which were converted to explicit par-
ity games in PGSolver [8] format using Knor7. A naive
binary encoding was used to create symbolic parity games

7https://github.com/trolando/knor

from these explicit games. As a result, variable ordering of
BDDs was not optimised. First all variables x0 . . . xn were
added, followed by x′0 . . . x

′
n.

Metrics of the used benchmark sets are shown in table
1. For the parity games in each set we have the average
and highest number of vertices, priorities and the average
outgoing degree. The average outgoing degree is the av-
erage of |E|/|V | for each parity game, and weights based
on number of vertices in each game were not incorporated.
The last two columns of table 1 show the average number
nodes, and the number of satisfying assignments of the
symbolic parity games. Comparing these two metrics gives
an indication of the compression ratio of the BDDs. For
example, the AMBA benchmark set has a high compression
ratio because only few BDD nodes are used to represent
relatively many vertices and edges. The SAT count equals
the count of V , three partitions on V (owner, parity, prior-
ity) and edges E and therefore equals 4|V |+ |E| for each
parity game. Generally speaking, games that have a vertex
count close, or equal to some 2x have a relatively high
compression ratio due to the fact that only few variable
assignments of ~x have to be excluded in V to represent V .

Only benchmarks from formal verification and synthesis
problems were used for the empirical evaluation. Random
parity games were not used for this empirical evaluation.
There is no clear reason as to why randomly generated
parity games can be a good representative of parity games
used for real model checking and synthesis cases. Ran-
domly generated parity games were only used to provide
a reasonable indication of correctness of the parity game
algorithms by comparing the winning areas computed by
each algorithm, using zlk as a source of truth. Note that
this does not prove the correctness of the evaluated dfi,
dfi-ns and fpj implementations. The results of the bench-
mark sets were also cross-validated in the same manner.
Furthermore, derived winning strategies passed a quick
sanity check which makes sure that each strategy covers
all vertices owned and won by the same player, and that
no moves go to the winning area of the other player. This
does not guarantee that the strategy is correct, as there
exist losing moves to the winning area of the same player,
but its a rough indication that no big errors exist. For
correctness of the symbolic algorithms, we rely on the cor-
rectness of their explicit counterparts and absence of errors
in conversion to a symbolic algorithm.

In tables 2 and 3, we see the results for all benchmark sets.
The provided times are cumulative for the entire benchmark
set. The relative standard deviation (shown in parenthesis)
is computed as a percentage of the mean time per parity
game, and displayed as an average for each benchmark
set. Testing was done on an Intel Core i7-7700HQ CPU
@ 2.80GHz in conjunction with 16Gb of RAM, running
Python 3.6.9 on Ubuntu 18.04. None of the algorithms
used multi-threading. The best result for an algorithm
that computes a winning strategy is highlighted in green,
and the best result without computing a winning strategy
is highlighted in blue. Note that the recorded times do not
include the time for conversion from the original explicit
parity game to symbolic. Furthermore, the explicit parity
games were optimised by Oink [17]. This includes the
removal of self-cycles and trivial cycles, and renumbering
priorities (removing gaps in priorities so that all priorities
0...d are used).

As one might expect, dfi-ns and zlk, which do not com-
pute winning strategies, were almost always faster than
their counterparts which do compute winning strategies.
The only exception being fpj performing better than both

6

https://github.com/trolando/knor

Set #games avg. n max. n priorities avg. ∆ avg. #bdd nodes avg. SATs

Lily 23 409 3047 3-8 1.47 1064 2315
AMBA 8 2461 18635 3-4 1.43 1780 13495
ltl2dba 58 921 31717 4-7 1.49 1876 5208
Arbiters 15 2650 20928 4 1.65 6068 15067
Detector 2 98 120 4 1.47 373 533
Buffer 2 14 17 4 1.30 72 72
Load balancer 11 1149 4712 3-8 1.65 2589 6620

Table 1. Statistics of benchmark sets used for empirical evaluation where n is the number of vertices, and
∆ is the out degree

Set strategy no strategy
dfi fpj dfi-ns zlk

Lily 0.37981 (8.1) 0.54191 (10.0) 0.18991 (6.3) 0.38784 (10.8)

AMBA 0.38570 (4.5) 0.69732 (4.0) 0.29235 (3.7) 0.63022 (9.4)

ltl2dba 21.10625 (11.4) 16.12822 (10.5) 14.62706 (12.6) 15.07688 (12.0)

Arbiters 48.16686 (2.8) 23.98140 (2.7) 32.48197 (5.0) 17.53781 (7.8)

Detector 0.00660 (5.3) 0.00682 (4.3) 0.00455 (3.6) 0.00465 (8.5)

Buffer 0.00082 (4.2) 0.00058 (5.6) 0.00052 (5.2) 0.00057 (7.6)

Load-
balancer

0.49547 (2.5) 0.90731 (7.1) 0.37213 (13.4) 0.62326 (3.1)

Table 2. Cumulative time in sec. average over 5 runs used to solve all games (left), and average standard
deviation of results per parity game (right, in parenthesis) as a percentage of the mean time.

Set strategy no strategy
dfi fpj dfi-ns zlk

Lily 41647 51747 37431 44595
AMBA 34299 36261 28143 34729
ltl2dba 212242 263743 183830 326327
Arbiters 172235 231625 153008 218382
Detector 1400 1393 1211 1427
Buffer 244 244 222 253
Load-
balancer

50411 66389 44407 60264

Table 3. Average Peak Live BDD Nodes (peak
nodes per algorithm run)

dfi and dfi-ns for the parameterized arbiter specifications.
More specifically, fpj consistently outperformed all other
algorithms for the full arbiter cases, including one of 20928
vertices. This leads us to believe that mechanisms of the
fpj algorithm specifically suit these cases very well.

To give an idea of the memory usage of the evaluated algo-
rithms, the peak number of live BDD nodes was recorded
for each solve. Memory usage was not explicitly recorded
because it is hard to do this accurately without potentially
influencing results. Peak live node count is always recorded
by CUDD internally, so this information can safely be used.
To give a rough indication of memory usage in practice,
CUDD reported 16.814536 MB memory usage after con-
structing BDDs of 49 nodes altogether, and 28.217544 MB
after constructing BDDs of 46804 nodes in total. In table
3, we see that dfi-ns consistently used the least amount
of BDD nodes. More interestingly, dfi used fewer BDD
nodes than zlk for all benchmark sets. Zielonka constructs
subgames which are copies of the original games, which
causes Zielonka’s algorithm to be less memory efficient de-
spite not computing winning strategies. fpj also uses fewer
BDD nodes than zlk for some cases, but this difference is
neither as consistent nor as significant as it is between dfi

and zlk. We can conclude that a symbolic implementation
of dfi might be a suitable choice when memory-usage must
be as low as possible.

To obtain insight into where dfi, dfi-ns and fpj spend
most of their time, LineProfiler was again used. This
showed that all profiled algorithms were consistently using
90-99% of their time on preimage computations. Both
DFI and FPJ use such computations to update their es-
timate of the winning area (onestep and phi functions
respectively), and to compute winning moves. Preimage
computations consist of several steps, all resulting in in-
termediate BDDs rather than doing all computations at
once and then producing one final optimised and reordered
result.

In general, the dfi-ns algorithm performs best across most
of the evaluated benchmark sets. This shows that DFI
can be a good alternative to Zielonka for both explicit
(as shown in [19]) and symbolic parity games. For the
strategy derivation algorithms dfi and fpj there is no
clear winner. Both dfi and dfi-ns have shown to be most
memory efficient, especially when compared to Zielonka.
In terms of time efficiency, it is hard to draw any major
conclusions from our empirical evaluation as it remains
hard to predict when an algorithm will out-perform the
other, and different benchmark sets have entirely different
properties and structures.

6. DISCUSSION
The empirical evaluation of the implemented algorithms
shows that deriving winning strategies for parity games
using symbolic solvers is possible. This does come at a cost
however. Strategy derivation makes these algorithms a bit
slower in comparison to their counterparts. Many com-
putations produce intermediate BDDs which are could be
avoided (e.g. preimage, V<p, F−). Implementing custom
low-level BDD operators to minimise the number of un-
necessary intermediate BDDs could further refine symbolic
parity game algorithms, improving their performance.

In addition, performance of symbolic parity game algo-
rithms using BDDs could be improved by optimising their
encoding. In the empirical evaluation, no advantage was
taken of improved variable orderings to more efficiently rep-
resent structures and patterns in parity games. More com-

7

pact symbolic encodings of parity games further improve
the memory efficiency of their algorithms. Additionally,
more compact BDDs could potentially improve time perfor-
mance of symbolic algorithms due to smaller input sizes for
BDD operations. However, compact symbolic encodings
of explicit parity games are hard to obtain. If symbolic
parity games are used in practice, it might be desirable to
directly convert the source of the specification (e.g. LTL)
to a symbolic parity game instead, possibly maintaining
structures from the original specification rather than trying
to recognise them in explicit games.

During the implementation of the discussed algorithms,
(psuedo) random parity games were used for a rough indi-
cation of performance and correctness. Initially, dd’s pure
Python BDD backend was used. Switching to the well-
optimised and established CUDD package as the backend
for the dd package using Cython bindings, resulted in a
massive improvement in performance of at least ×10. This
shows how both a difference in quality of implementation,
and programming language (Python is known to be slower
than C/C++ if used properly) can impact the performance
of algorithms. Therefore, empirically evaluating our DFI
and FPJ implementations by comparing them to parity
game solvers like Oink[17] or PGSolver[8] might not be
very valuable.

Another interesting point of discussion is how easily dfi

can be transformed to dfi-ns. Leaving out the computa-
tion of winning strategies for DFI is quite trivial because
the functionality of DFI does not rely on strategy com-
putations. This makes DFI a bit more versatile because
it we can leverage the improved performance of dfi-ns

when a winning strategy is not needed. On the other hand,
FPJ relies on justification J and the reaches function to
reset lower vertices. As a result, we cannot simply exclude
the computation of winning strategies from the algorithm.
This would require an entirely different mechanism for
resetting lower vertices which most likely results in an
entirely different algorithm.

Furthermore, symbolic DFI is relatively memory efficient as
found in the empirical evaluation. This is further improved
when excluding strategy computation. Zielonka’s algorithm
performs poorly when it comes to memory usage due to
the many copies of subgames. FPJ also uses more memory
than DFI in most cases. FPJ’s justification graph uses
more memory than DFI’s strategy because it also stores
all outgoing edges of vertices which are lost by their owner.
This seems result in more additional memory usage than
DFI’s set of frozen vertices does. An even more memory
efficient version of dfi-ns could potentially be obtained
by removing the freezing mechanism at the cost of worse
time performance.

Finally, a substantial benefit to deriving winning strategies
using BDDs was found. It is natural for BDDs to produce a
multitude of winning strategies. As a result, we may often
obtain multiple variations of a strategy. Some applications
of parity games might be able to take advantage of this if
it has some preference of structure in a winning strategy.
Despite obtaining multiple winning strategies, a single
winning strategy can trivially be derived by picking a move
from each vertex from the strategy at random.

7. CONCLUSION
This paper has set another step in research on symbolic
parity games. More specifically, we studied symbolic parity
game algorithms which derive winning strategies. Empiri-
cal evaluation showed that strategy derivation for symbolic

algorithms is definitely possible, but does introduce some
performance drawbacks. We also discovered that there is
still a lot of room for improvement for symbolic parity game
solvers, as many intermediate BDDs are generated but not
used. This leaves potential for improved time and memory
efficiency of symbolic parity game algorithms. The next
step in research on symbolic parity games is to experiment
with pure BDD-based model checking or synthesis tools,
avoiding cumbersome and inefficient conversion between
explicit and symbolic parity games.

8. REFERENCES
[1] M. Bakera, S. Edelkamp, P. Kissmann, and C. D.

Renner. Solving µ-calculus parity games by symbolic
planning. In D. A. Peled and M. J. Wooldridge,
editors, Model Checking and Artificial Intelligence,
pages 15–33, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[2] M. Benerecetti, D. Dell’Erba, and F. Mogavero.
Solving parity games via priority promotion. In
S. Chaudhuri and A. Farzan, editors, Computer
Aided Verification, pages 270–290, Cham, 2016.
Springer International Publishing.

[3] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and
F. Stephan. Deciding parity games in
quasipolynomial time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, page 252–263, New York,
NY, USA, 2017. Association for Computing
Machinery.

[4] A. Di Stasio, A. Murano, and M. Y. Vardi. Solving
parity games: Explicit vs symbolic. In C. Câmpeanu,
editor, Implementation and Application of Automata,
pages 159–172, Cham, 2018. Springer International
Publishing.

[5] R. Drechsler and B. Becker. Binary Decision
Diagrams - Theory and Implementation. Springer,
1998.

[6] R. Drechsler and D. Sieling. Binary decision diagrams
in theory and practice. International Journal on
Software Tools for Technology Transfer, 3(2):112–136,
May 2001.

[7] J. Fearnley, S. Jain, B. de Keijzer, S. Schewe,
F. Stephan, and D. Wojtczak. An ordered approach
to solving parity games in quasi-polynomial time and
quasi-linear space. volume 21, pages 325–349, Jun
2019.

[8] O. Friedmann and M. Lange. The pgsolver collection
of parity game solvers. University of Munich, pages
4–6, 2009.

[9] P. HOU, B. DE CAT, and M. DENECKER. Fo(fd):
Extending classical logic with rule-based fixpoint
definitions. Theory and Practice of Logic
Programming, 10(4-6):581–596, 2010.

[10] S. Jacobs, N. Basset, R. Bloem, R. Brenguier,
M. Colange, P. Faymonville, B. Finkbeiner,
A. Khalimov, F. Klein, T. Michaud, G. Pérez, J.-F.
Raskin, O. Sankur, and L. Tentrup. The 4th reactive
synthesis competition (syntcomp 2017): Benchmarks,
participants results. Electronic Proceedings in
Theoretical Computer Science, 260:116–143, 11 2017.

[11] M. Jurdziński. Deciding the winner in parity games is
in up ∩ co-up. Information Processing Letters,
68(3):119 – 124, 1998.

[12] G. Kant and J. van de Pol. Generating and solving
symbolic parity games. In Proceedings 3rd Workshop
on GRAPH Inspection and Traversal Engineering

8

(GRAPHITE 2014), Electronic Proceedings in
Theoretical Computer Science, pages 2–14. EPTCS, 4
2014. 10.4204/EPTCS.159.2.

[13] J. J. A. Keiren. Benchmarks for parity games. In
M. Dastani and M. Sirjani, editors, Fundamentals of
Software Engineering, pages 127–142, Cham, 2015.
Springer International Publishing.

[14] O. Kupferman and M. Y. Vardi. Weak alternating
automata and tree automata emptiness. In
Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 224–233, 1998.

[15] R. Lapauw, M. Bruynooghe, and M. Denecker.
Improving parity game solvers with justifications. In
D. Beyer and D. Zufferey, editors, Verification, Model
Checking, and Abstract Interpretation, pages 449–470,
Cham, 2020. Springer International Publishing.

[16] L. Sanchez, W. Wesselink, and T. A. Willemse. A
comparison of bdd-based parity game solvers.
Electronic Proceedings in Theoretical Computer
Science, 277:103–117, Sep 2018.

[17] T. van Dijk. Oink: An implementation and evaluation
of modern parity game solvers. In D. Beyer and
M. Huisman, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 291–308,
Cham, 2018. Springer International Publishing.

[18] T. van Dijk. Lecture notes on parity games. Available
at: http:

//tvandijk.nl/pdf/2019softwarescience.pdf,
2019.

[19] T. van Dijk and B. Rubbens. Simple Fixpoint
Iteration To Solve Parity Games. In GandALF,
EPTCS, 2019.

[20] T. van Dijk and J. van de Pol. Multi-core symbolic
bisimulation minimisation. International Journal on
Software Tools for Technology Transfer,
20(2):157–177, Apr 2018.

[21] I. Walukiewicz. Monadic second order logic on
tree-like structures. In C. Puech and R. Reischuk,
editors, STACS 96, pages 399–413, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

[22] W. Zielonka. Infinite games on finitely coloured
graphs with applications to automata on infinite trees.
Theoretical Computer Science, 200(1):135 – 183, 1998.

9

http://tvandijk.nl/pdf/2019softwarescience.pdf
http://tvandijk.nl/pdf/2019softwarescience.pdf

	Introduction
	Preliminaries
	Parity games
	Binary Decision Diagrams
	Fixpoint Iteration
	DFI
	FPJ

	Related Work
	BDDs and parity games
	Symbolic Parity Game Algorithms
	Tooling
	Data Structures
	Procedures

	DFI Implementation
	FPJ Implementation
	Optimisations

	Empirical Evaluation
	Discussion
	Conclusion
	References

