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Abstract

The Internet of Things is one of the newer developments
in the domain of the Internet. It is defined as a network
of connected devices and sensors, both physical and dig-
ital, that generate and exchange large amounts of data
without the need for human intervention. As a result
of eliminating the need for human operators, the IoT
(Internet of Things) can process more data than ever
before faster and more efficient.
This paper focuses on the security aspect of IoT net-
works by investigating the usability of machine learning
algorithms in the detection of anomalies found within
the data of such networks. It examines ML algorithms
that are successfully utilized in relatively similar situa-
tions and compares using a number of parameters and
methods.
This paper implements the following algorithms: Ran-
dom Forest (RF), Näıve Bayes (NB), Multi Layer
Perceptron (MLP), a variant of the Artificial Neural
Network class of algorithms, Support Vector Machine
(SVM) and AdaBoost (ADA). The best results were
achieved by the Random Forest algorithm, with a ac-
curacy or 99.5%.
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Introduction

First described in 1991 as the ‘Computer of the 21st
century‘ [19], the Internet of Things (abbreviated as
IoT) is the concept of connecting numerous devices
to a network which is used to transfer data between
them, all happening automatically, without the need
for human intervention [16]. While the idea is already
30 years old at this point, its true development only
started around 10 years ago, when the number of IoT
devices in the world became larger than the number
of people [6]. Since then, advancements in fields such
as cloud computing or data analytics, along with the

increase in hardware power have added new dimensions
to the concept, turning it into what it is today [16]. One
of the technologies that also benefits from these same
advancements is machine learning, the use of artificial
intelligence in order to create system that can learn by
themselves, without the need for explicit programming
[7].
At the moment, the biggest concern for more almost
a half of the potential users of IoT systems is secu-
rity [4]. Thus, in the last few years, researchers have
started looking into more advanced security measures
to tackle this issue. There are two main categories of
security measures: passive (e.g. passwords, encryption)
and active. One of those new measures is the use of
machine learning to detect attacks and classify them,
[20] as in theory, the two technologies seem well fit for
each other. Machine learning algorithms require large
quantities of data in order to build its detection model,
and IoT systems can provide them. Additionally, the
sheer number of types of attacks and their manifes-
tations makes identifying and categorising them near
impossible for human operators [20].
The main goal of this paper is to develop Machine
Learning algorithms to be used in network-based
anomaly detection in Internet of Things devices, and
then test them using the IoT-23 dataset [1], a new
dataset consisting of both malicious and benign net-
work captures from a number of IoT devices.
The research question that this paper will attempt to
answer is:

What are the best machine learning algorithms

for detecting anomalies produced by IoT de-

vices?

Additionally, the results of this research will be com-
pared to other similar research papers, so a secondary
research question is:

How do the algorithms tested on the IoT-

23 dataset fare in comparison with algorithms

tested on similar data sets?
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The following approach will be taken to for this pa-
per:

1. The dataset will be visualized, analysed and fitted
to the purposes of this paper

2. The algorithms will be implemented and tested on
the IoT-23 dataset

3. The final results will be discussed and compared
to similar studies

The structure of this study is as follows:

� Section 3 will review literature relevant to this
project.

� Section 4 will discuss the methods used to gather
results. The dataset section (4.1) will present the
data set and its features. Next, sections 4.2, 4.3
and 4.4 will discuss the way pre-processing of the
dataset was done. Section 4.5 describes the theory
behind the algorithms, while section 4.6 describes
the theory behind the metrics that will be used to
compare the results of the algorithms.

� Section 5 presents the results and discusses them.

� Section 6 will provide the conclusions of the re-
search, along with its limitations and will propose
future research ideas.

Literature Review

At the moment, the use of machine learning is still in
its incipient phases. So far, some frameworks have been
developed for this idea [20], while other research focused
on implementing and testing the idea [9]. According to
Zeadally and Tsikerdekis, 2019 [20], the idea of using
machine learning algorithms is relatively new and has
clear potential due to a multitude of factors: the de-
vices are less complex than traditional systems, which
in turn makes them more predictable and data is easy
to come by. There are, however, a few difficulties at
the moment, such as the portability of the algorithms.
There is also the general problem of simply bypassing
layers of security by exploiting other weaknesses in IoT
networks. In summary, machine learning should be seen
as another layer of security for IoT networks, not as a
general solution.
Also according to them, there are two major ways of
implementing ML algorithms in IoT networks, network
based, by using metadata from the IoT network, or host
based, by using the information present on the device.
This project will be focused on a network based imple-
mentation.

Shafiq, Tian, Sun et al., 2020 [17] tested 44 features
trying to find a framework model for testing attack
detection algorithms. For that, they used the Bot-IoT
dataset [10]. Their final results were that the best
four metrics are the true positives rate (TPRate), the
precision, the accuracy and the time taken to build the
model. By using those metrics and the Bot-IoT dataset,
an implementation of Näıve Bayes was the best algo-
rithm according to their framework.
After discussing how the use of machine learning for
anomaly detection is faring so far, and how measur-
ing the results of its use should be done, next up a
few projects similar to this research will be discussed
for comparative analysis. Hasan, Islam, Zerif et al.,
2019 [9] have performed somewhat similar work to this
project, but went one step further, by using machine
learning algorithms first to detect whether the system
is performing abnormally, and if it is, they are using
algorithms to detect the type of attack the device is
under. For their research, they used the open-source
DS2OS dataset [13]. In their case, the Random For-
est algorithm was the best choice, with an accuracy of
99.4%, followed by an artificial neural network with the
same percentage, but lower scores on other metrics.
Anthi, Williams and Burnap, 2018 [2] proposed a novel
model for a network-based real-time malware detection
system called Pulse. In their research, an implemen-
tation of Näıve Bayes served as the most performing
classifier for the proposed model with a precision be-
tween 81% and 97.7%, depending on the type of attack.
Lastly, Revathi and Malathi [14] discuss the results they
obtained using the NSL-KDD dataset [18] in 2013. In
their paper, the Random Forest algorithm obtained by
far the most consistent results.
By doing some meta-analysis of this literature review,
it can be seen that the use of machine learning on IoT
networks is a very recent development, with all the
papers being less than 3-years old. Also, it should be
noted that even when more complex algorithms, such as
neural networks, are used, most of the studies found the
best results are coming from algorithms such as Näıve
Bayes and Random Forest.

Methods

This part of the paper concerns the data set, the way it
was pre-processed, and theoretical discussions about the
algorithms and the measurements used in this project.
The first big step is data preprocessing, which consists
of data selection, data visualization, data formatting,
statistical correlation and data splitting. These steps
processed the data so it could be fed into the algorithms.
The data was split randomly in a 80-20 ratio, with the
20 percent becoming the training data and the 80 per-
cent becoming the testing data. All the algorithms are
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of the type multi-class. Lastly, the algorithms were com-
pared on accuracy, the f1-score, the recall score and the
support score.

4.1 Dataset

The data set used in this project is IoT-23 [1], a dataset
created by the Avast AIC laboratory. The dataset con-
tains 20 malware captures from various IoT devices, and
3 captures for benign anomalies. The data was collected
in partnership with the Czech Technical University in
Prague, with the data being captured between 2018 and
2019 [1]. The dataset in its complete form contains:
.pcap files, which are the original network capture files,
conn.log.labeled files, which are created by running the
network analyser called Zeek,
various details and information about each of the cap-
tures
Due to the fact that it is easier to work exclusively
with the conn.log.labeled files, only those were used in
this project. The .pcap files are created by the network
capture program Wireshark and can only be opened
using it, working with them proved unnecessary dif-
ficult for this project, so they were discarded. This
approach also seems to be embraced by the creators of
the dataset, which offer two download options for it, the
complete version, which contains all the file presented
above, and a lighter version, which only contains the
conn.log.labeled files and the information. The latter
was chosen for this project.
The data set contains a total of 325,307,990 captures,
of which 294,449,255 are malicious. The data set regis-
tered the following types of attacks:

Table 1: The types of attacks present in the data set

Type of at-
tack

Explanation

Attack
the generic label that is attributed
to anomalies that cannot be identi-
fied

Benign
generic label for a capture that is not
suspicious

C&C

control and command, a type of at-
tack which takes control of the de-
vice in order to order it to perform
various attacks in the future

C&C- File-
Download

the server that controls the infected
device is sending it a file

C&C- Mirai
the attack is performed by the Mirai
bot network

C&C- Torii
the attack is performed by the Torii
bot network, a more sophisticated
version of the Mirai network

DDoS
the infected device is performing a
distributed denial of service

C&C- Heart-
Beat

the server that controls the infected
device sends periodic messages the
check the status of the infected de-
vice, this is captured by looking for
small packages being sent periodi-
cally from a suspicious source

C&C- Heart-
Beat -Attack

the same as above, but the method
is not clear, only the fact that the
attack is coming periodically from a
suspicious source

C&C- Heart-
Beat -
FileDownload

the check-up is done via a small file
being sent instead of a data packet

C&C-
PartOfA-
Horizontal-
PortScan

the network is sending data pack-
ages in order to gather information
for a future attack

Okiru
the attack is performed by the Okiru
bot network, a more sophisticated
version of the Mirai network

Okiru-
Attack

the attacker is recognized as the
Okiru bot network, but the method
of attack is harder to identify

PartOfA
Horizontal-
PortScan

information is gathered from a de-
vice for a future attack

PartOfA
Horizon-
talPort
Scan-Attack

the same as above, but methods
that cannot be identified properly
are used

Each of the conn.log.labelled files contain 23 columns
of data, whose types are presented in table 1. These
columns are:
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Table 2: The types of information in the data set

Column Description Type

ts
the time when the cap-
ture was done, expressed
in Unix Time

int

uid the ID of the capture str

id_orig.h
the IP address where the
attack happened, either
IPv4 or IPv6

str

id_orig.p the port used by the re-
sponder

int

id_resp.h
the IP address of the de-
vice on which the capture
happened

str

id_resp.p

the port used for the re-
sponse from the device
where the capture hap-
pened

int

proto the network protocol used
for the data package

str

service the application protocol str

duration
the amount of time data
was traded between the
device and the attacker

float

orig_bytes the amount of data sent to
the device

int

resp_bytes the amount of data sent by
the device

int

conn_state the state of the connection str

local_orig whether the connection
originated locally

bool

local_resp whether the response orig-
inated locally

bool

missed_bytes number of missed bytes in
a message

int

history the history of the state of
the connection

str

orig_pkts number of packets being
sent to the device

int

orig_ip_bytes number of bytes being
sent to the device

int

resp_pkts number of packets being
sent from the device

int

resp_ip_bytes number of bytes being
sent from the device

int

tunnel_parents the id of the connection, if
tunnelled

str

label the type of capture, be-
nign or malicious

str

detailed_label
if the capture is malicious,
the type of capture, as de-
scribed above

str

The column conn-state is a variable specific to Zeek
and represents the state of the connection between two
devices. As an example, S0 means a connection is at-
tempted by a device, but the other side is not replying.
In this dataset, all values that were missing from any
of the entries were marked with a dash (“-”), except
for the IP address, which were marked with two-colons
(“::”).

4.2 Data visualization

Before being able to visualize the data, the dataset was
converted into text files in order to make it readable
for Python. The fig. 3 shows the distribution of each
anomaly in the files Malware-17,34,60 and Honeypot-4
of the dataset.

As it can be seen, the files titled ‘Honeypot-x‘ all
contain only benign captures, as they are meant to show
how normal traffic should look like for a IoT device.

4.3 Data formatting

The files were then converted from .txt to .csv (a type
of text file where values are delimited by commas) in or-
der to solve compatibility issues with some of Python’s
libraries.
Next, the ‘label‘ and the ‘detailed-label‘ columns where
merged into just one, and then numerically encoded
according to the following table:
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of the internal state, also called bias, and the sum of
all the values received from all the other neurons it is
connected to in the previous layer. The formula in this
case is:

n
∑

i=1

(xi ∗ wi) + bias

Where:

� n is the number of neurons that the target neuron
is connected to,

� xi is the information from the neuron i,

� wi is the weight given to the connection between
the target neuron and the neuron i,

� bias is the internal state of the target neuron,
given by its internal state parameters

The result of this calculation is then sent to an ac-
tivator:

f(x) =

{

1 if
∑

n

i=1
(xi ∗ wi) + bias > 0

0 otherwise

Depending on the value of the activator, the neuron
will then send its output ŷ to the next layer of neurons.
This project uses a type of neural network called Multi
Layer Perceptron (MLP), which is one of the most sim-
ple types of networks, being just a network comprised
of multiple layers of neurons.

4.5.6 AdaBoost

AdaBoost is a classifier which fits a number of weak
meta-classifiers (slightly better than chance) on a
dataset, and then continues fitting additional classifiers
on the dataset, but with adjusted weights to the cases
where the previous classifiers were wrong [8]. Thus, the
algorithm is better suited datasets where the values are
harder to classify.
This algorithm is efficient due to the fact that the al-
gorithm only iterates over the cases which have not yet
been classified.

4.6 Analysis Methods

In order to evaluate the algorithms described above, the
metrics presented below were used. The discussion of
these metrics in the context of this project is done in
the ‘Results‘ section.

There are four concepts which have to be presented
before the metrics are discussed:

� TP is the number of actual positives that were
correctly identified

� TN is the number of actual negatives that were
correctly identified

� FP is the number of actual positives that were
identified as negatives

� FN is the number of actual negatives that were
identified as positives

4.6.1 Confusion Matrix

A confusion matrix is a table that allows for the visual-
ization of the performance of a model by showing which
values the model thought belong to which classes. It
has a N×N size, where n is the number of classes, with
the columns representing the actual classes and the rows
the predicted classes.

4.6.2 Precision

The precision is a metric that evaluates the model by
calculating the fraction of correctly identified positives.
Its formula is:

Precision =
TP

TP + FP

4.6.3 Accuracy

The accuracy is a metric that evaluates the model by
calculating the fraction of correct predictions over the
total number of predictions. Its formula is:

Accuracy =
TP + TN

TP + TN + FP + FN

4.6.4 Recall Score

The recall score is a metric that evaluates the model
by calculating the fraction of actual positives that were
correctly identified. Its formula is:

Recall =
TP

TP + FN

4.6.5 Support score

The support score is the number of occurrences of a
class in the total number of predictions. It is used as
part of the F1 - micro-average metric.
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Network are an interesting result. From also looking
at the confusion matrix, it seems that the model had
a bias for the categories with the largest number of
occurrences and tended to choose the others rarely. A
possible explanation for this might be the configuration
of the neurons, with the bias in their weight function
favouring not being large enough to allow the flexibility
necessary for correct predictions on rare occurrences to
be made. Again, this cause of this lack of accuracy is
not clear and should be further investigated.
The worst results were generated by the Support Vec-
tor Machine algorithm, with an accuracy of only 60%.
Meanwhile, the recall score and the F-1 score were
actually higher than NB and ANN, which indicate a
relatively low number of true positives, but a higher
number of false negatives. Again, this indicates that
the algorithm was better at predicting the classes with
more occurrences. This can also be seen in the confusion
matrix, where only three classes had correct predictions,
with those three being the biggest malware categories.
Interestingly, the algorithm was never able to predict
benign comportment, which means that benign cap-
tures cannot have a hyperplane drawn such that they
will be separated from the other anomalies. A possible
explanation might be that benign captures simply do
not have features that distinguish them clearly from dif-
ferent types of attacks, so they are simply categorized
as the attack that resembles them the most.
Lastly, the poor results obtained by Näıve Bayes likely
stem form the fact that the data is not independent, so
the naive assumption is in this case wrong
Regarding the classes that the algorithms had to clas-
sify, one of the clear problems was that none of the
algorithms could identify Mirai attacks. This can be at-
tributed to the fact that there are only 16 occurrences of
it in the entire data set, so around 4 per file on average.
The same problem was present in the case of the Torii
botnet, although in this case, some algorithms obtained
at least some results. For the largest categories, all the
algorithms were able to predict them with at least 69%
accuracy, so the problem with the detection of smaller
classes of attack are in their proportion within the data
set.

5.3 Comparison with other studies

Table 4: The results of other similar studies

Study Data set
Best Al-
gorithm

Metric

Shafiq, Tian,
Sun et al. [17]

Bot-IoT
Näıve
Bayes

Precision
= 0.99

Hasan, Islam,
Zerif et al. [9]

DS2OS
Random
Forest

Accuracy
= 0.994

Anthi, Williams
and Burnap [2]

Custom
data set

Näıve
Bayes

Accuracy
= 0.977

Revathi and
Malathi [14]

NSL-
KDD

Random
Forest

Accuracy
= 0.998

This project IoT-23
Random
Forest

Precision
= 0.995

The five studies above were chosen such that each
one presents the implementation of machine learning
algorithms on another data set, in order to have some
diversity when comparing this project with other similar
approaches. All of them use multi-class classification.
For this part, the lower bound of 0.995 was chosen. As
it can be seen, the results of this research are in line
with other similar projects.
It is also interesting that even when more complex al-
gorithms were tested, such as artificial neural networks,
simpler algorithms have always had some kind of edge
over the more complex ones. The same is also true for
this project.
Again, as discussed above, the reason why Näıve Bayes
performs badly in this experiment is because not all the
columns are independent.

Conclusions

6.1 General conclusions

In conclusion, the Random Forest algorithm is the best
choice for anomaly detection and classification in the
context of the IoT-23 dataset. While the reasons behind
this conclusion are not fully understood, this algorithm
scored the highest in all metrics and it presented itself
as the best choice overall.
To answer the secondary research question, the results
of this study are in line with what other similar works
found as well.

6.2 Limitations and future research

Most of the limitations of this project were of techni-
cal nature. The data set had to be split into smaller
parts and the data had to be encoded in such a
way as to have less categories, as using all the ini-
tial one would create computational problems. Thus,
it is recommended that at a future date this exper-
iment be redone by using all the data at once, with
the labels as they were in their original format.
Statistical correlation had to be run on each of the
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files in the data set, which may have skewed the re-
sults. Additionally, only the data that had no sta-
tistical correlation with the column to be predicted
was eliminated. Of course, even more data can be
eliminated from the data set. Thus, another possibil-
ity for future research is to find out what the min-
imum amount of data from the IoT-23 data set is
such that the implemented models are still accurate.
Also, as mentioned in the Result Analysis sec-
tion, the reason behind the high accuracy of
the Decision Tree classifier should be investigated.
Lastly, this project used a Multi Layer Perceptron
with mixed results. Possible future research would
be to use more advanced types of Artificial Neural
Networks and see whether they get different results.
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