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ABSTRACT
The task of translating visual design images into actual
websites is a task usually done by human developers, this
process can be slow, costly, and takes time away from im-
plementing the actual functionality. In this paper, we ad-
dress this problem by proposing a novel neural network
architecture named Design2Struct. It makes use of Bah-
danau Attention in an encoder-decoder structure to gen-
erate a sequence describing the website structure in a Do-
main Specific Language, which can then be compiled to
code. The experimental evaluation shows that the pro-
posed method outperforms the state-of-the-art methods
by a large margin. Auxiliary, we identify that the exist-
ing benchmark dataset is oversimplified, and we propose
a new benchmark dataset which is more realistic and one
order of magnitude larger than the existing one.

1. INTRODUCTION
Developing a website is a process that goes through many
phases, the first phase usually being designing the look of
the website. This can be done by professional developers,
but this is more often done by professional visual designers.
The translation of the design to actual code, however, is
a task that does still have to performed by developers,
taking away time from implementing actual functionality
and logic. In this paper, several contributions are proposed
that aim to help computers learn to perform this task,
allowing developers to spend their time more efficiently.

The first contribution is Design2Struct1, a novel approach
that uses neural networks to convert a Graphical User In-
terface (GUI) image to a structure describing the website,
which can then be compiled to code. The approach is
based on the model proposed by Beltramelli [2], which
used Convolutional and Recurrent Neural Networks to gen-
erate a such structures. The novelty of Design2Struct is
the introduction of Bahdanau Attention [1] to the previous
work.

The second contribution is the release of a large Common-
Crawl2 based dataset, filtered and transformed to be used
in the field of GUI to structure conversion. The dataset is

1https://github.com/mvelzel/Design2Struct
2https://commoncrawl.org
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publicly available3 for use in future research.

The methodology of the research was setup in a way to
answer three main research questions.

RQ1: Can machine learning be used to convert GUI
images to website structures?

RQ2: What neural network architecture is most suit-
able for converting GUI images to website structures?

RQ3: Is it possible to improve the performance of
pix2code [2] with state-of-the-art methods?

The first and third questions are mainly related to the
quality and performance of the work, while the second
question is more related to the design of the work.

2. RELATED WORK
The generation of code or structure of web application
from design images is a field of research not yet explored
thoroughly.

The most important contribution to this field is pix2code
by Beltramelli [2], who proposed a novel approach by ap-
plying techniques from the field of Image Captioning and
Natural Language Processing (NLP) to code generation by
generating a Domain Specific Language (DSL). This DSL
could then be further compiled to functioning code. Their
proposed method is based on Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs).

2.1 Image Captioning
A field very similar to the field explored by Design2Struct
and pix2code is the field of image captioning. Image cap-
tioning also involves converting images to language, albeit
natural language instead of DSLs.

Traditional and widely used image captioning methods
usually involve a CNN followed by an RNN, a well known
example being “NIC” by Vinyals et al. [17]. Other more
state-of-the-art methods involve attention mechanisms, which
have been shown to be very powerful at highlighting im-
portant parts of images. Some methods with advanced
attention mechanisms even forego the use of RNNs. The
current highest performing model in the “Image Caption-
ing Challenge” on the MSCOCO [12] dataset by Pan et al.
[13] makes abundant use of attention mechanisms.

2.2 Natural Language Processing
A field that very closely tied to image captioning, and
therefore also very relevant to this research, is the field of
Natural Language Processing (NLP).

3https://www.kaggle.com/meinevelzel/webcrawl-
bootstrap-compiled
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Figure 1: Overview of the Design2Struct architecture. The GUI image is encoded by the CNN based image encoder. Its
features are then highlighted by the subsequent attention mechanism, conditioned on the hidden state of the decoder after
the previous time step. The context sequence (a sequence of embedded tokens corresponding to DSL) is encoded by the
language encoder, consisting of a GRU layer. The two resulting vectors are then concatenated and fed into the decoder,
consisting of another GRU layer. Finally, softmax is used to sample one token at a time. In training it is compared to
the ground-truth token, in sampling it is appended back to the sequence until the <END> token is predicted.

Traditional NLP methods heavily involve the use of RNNs.
An example used for machine translation is by Cho et al.
[5] who first proposed the encoder-decoder network model,
using an RNN to encode the input sentence, followed by
an RNN to decode it to another language. In order to
improve such networks, attention mechanisms have widely
been adopted. One popular example is by Bahdanau et al.
[1], who proposed a novel attention mechanism to better
highlight relevant words from the input sentence when it
generates certain words.

Attention mechanisms have been shown to be very power-
ful, to the point that most state-of-the art Natural Lan-
guage models now make exclusive use of these attention
mechanisms. These models, dubbed“transformer”models,
were first introduced by Vaswani et al. [16], and were fur-
ther used by OpenAI in their GPT-2 [15] and GPT-3 [3]
models.

3. DESIGN2STRUCT
In this section, we present our novel proposed model, De-
sign2Struct. Design2Struct consists of an aforementioned
encoder-decoder network. A CNN is used as the encoder,
and an RNN as the decoder. Such a model was first ap-
plied to GUI structure generation by pix2code [2]. Such an
encoder-decoder network was improved by Xu et al. [18]
with the use of the attention mechanism proposed by Bah-
danau et al. [1]. Design2Struct combines both approaches
to end up with a novel architecture in the field of GUI
structure generation.

3.1 Image Encoder
CNNs are currently the method of choice for many vision
problems because of their powerful ability to identify im-
portant features of the images they are trained on. A CNN
is used in the model to encode an input image as a set of
F vectors pi, i ∈ {0...F} of size U , or the matrix P F×U ,
corresponding to the features extracted at different image
locations. These are then fed further in the model, as is
shown in Figure 1.

The input images are resized to 299 × 299 pixels (aspect-
ratio not preserved) with the pixel values normalized be-
fore being fed into the CNN. To encode each image as
fixed-length vectors, 3× 3 receptive fields convolved with
stride 1 were used. These operations are applied once be-
fore dimensionality reduction with the same fields but with

stride 2. The width of the first convolutional layer is 16,
followed by a layer of width 32, then width 64, and finally
width 128.

3.2 Language Encoder
In order to describe the structure of simple websites, a
DSL was designed based on the DSL used by pix2code [2].
This DSL is illustrated in Figure 2. The current work is
only interested in the layout and elements of the design;
thus the textual value of the elements is ignored. The size
of the vocabulary and its specific elements can be found
in Appendix A.

The tokens in the vocabulary are encoded using an Embed-
ding layer and can be further encoded by an RNN encoder,
as is shown in Figure 1. Design2Struct encodes the tokens
with both an Embedding and an RNN layer, but models
without this RNN layer were also tested. Results will be
discussed in Section 4.

In the DSL an element is declared with an opening to-
ken; if several elements are contained within a block, a
closing token is also needed for the compiler. In the case
where several children elements are contained within a par-
ent element, the model has to keep track of long-term
dependencies in order to close an opened block. Tradi-
tional RNN architectures suffer from vanishing or explod-
ing gradients when dealing with such long-term dependen-
cies, therefore Hochreiter and Schmidhuber [9] proposed
the Long Short Term Memory (LSTM) architecture to ad-
dress this problem. While pix2code [2] opted for this archi-
tecture, Design2Struct makes use of the Gated Recurrent
Unit (GRU) [5]. This is an architecture based LSTMs,
but uses less gates and is therefore less computationally
expensive, while its performance stays roughly the same
[6].

The GRU encoding layer is implemented as a single GRU
layer with 128 cells.

3.3 Attention Mechanism
An attention mechanism is a mechanism that gives weights
to features of an image, depending on the token parsed at a
certain time step. This allows a model to learn what parts
of a context image are more or less relevant, depending on
the parsed token.

The attention mechanism used in Design2Struct was first
introduced by Bahdanau et al. [1] for use in machine trans-



(a) Bootstrap GUI screenshot
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(b) Code describing the GUI written in the DSL

Figure 2: An example of a simple Bootstrap based website written in the pix2code based DSL

lation. The mechanism was then applied to the field of im-
age captioning by Xu et al. [18]. This mechanism generates
a context vector ct, which is a dynamic representation of
the relevant parts of a context image at time t. The con-
text vector is computed from the feature matrix P F×U

resulting from parsing a context image through the CNN
encoder.

For each feature extracted at different image locations, a
positive weight ai is generated, which can be interpreted as
the probability that location i is the right location to pay
attention to. The weights ai, i ∈ {0...F} for the feature
matrix P F×U are computed by an attention model fatt
which is implemented as a Multilayer Perceptron (MLP)
conditioned on the decoder RNN’s previous hidden state
ht−1. The architecture of the MLP can be found in Figure
7.
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Figure 3: Diagram of the fatt Multilayer Perceptron used
in the attention mechanism.

The weights are then computed as follows:

ai = fatt(P F×U ,ht−1), i ∈ {0...F} (1)

Once the weights (which after softmax sum to one) are
computed, the context vector ct is computed as a weighted
sum by:

ct =

F∑
i=1

aipi (2)

3.4 Decoder
The model is trained in a supervised manner with an image
I and a context sequence x of T token embeddings E ·
xt, t ∈ {0...T − 1} as inputs. The output vectors of the
image and language encoders are concatenated and then
fed into the decoder. It then decodes this information as
an output token, learning the relationships between the
context image and sequence.

The decoder is implemented as a single GRU layer with 256
cells, followed by a softmax layer the size of the vocabulary,
which is used to sample single tokens at a time.

The entire architecture can be expressed mathematically
as follows:

P F×U = CNN(I) (3)

qt = GRU(E · x1:t) (4)

ai = fatt(P F×U ,ht−1), i ∈ {0...F} (5)

ct =

F∑
i=1

aipi (6)

rt = (qt, ct) (7)

wt,ht = GRU ′(rt) (8)

yt = softmax(wt) (9)

xt+1 = yt (10)

3.5 Training
The length T of the context sequences used for training is
important to model long-term dependencies. A length T of
1 was used in the model by Xu et al. [18], this was possible
because of the powerful attention mechanism, combined
with the fact that image descriptions do not hold as many
long-term dependencies. A length T of 1 and 64 were both
tested with experiments which will be discussed in Section
4. Design2Struct uses a length T of 64, meaning a sliding
window of length 64, during training.

While the context sequence of tokens used for training is



updated for each new token by sliding the window, the
same image I is used for each window in the same se-
quence.

There are two extra special tokens, <START> and<END>,
used to respectively prefix and suffix the token sequences
in order to indicate their start and end.

Training is performed by computing the partial derivatives
of the loss function with respect to the whole network’s
weights, calculated using backpropagation to minimize the
loss function. The multiclass log loss used for training the
network is as follows:

L(xt+1, yt) = −
N∑
t=1

xt+1 log(yt) (11)

With xt+1, yt, and N , being the predicted token, the ex-
pected token, and the vocabulary size, respectively. The
model is optimized end-to-end so loss L is minimized with
respect to all model parameters, this includes the encoders,
the attention mechanism, and the decoder. The training
was done with the Adam [10] optimizer with the learning
rate set to 1e− 3.

To prevent overfitting, dropout regularization was used
both in the CNN and RNN networks. In the CNN a 20%
dropout layer was used after each dimension reducing layer.
The GRU layers also used a dropout of 20%, which was
only applied to the non-recurrent connections. The model
was trained with batches of 8 image-sequence pairs.

The full process of a single training step for Design2Struct
is described by Algorithm 1.

4. EXPERIMENTS AND RESULTS
In this section first the different datasets used in the ex-
periments will be discussed. Followed by the methodology
shaped around the research questions. Finally the actual
results of all experiments will be presented and discussed.

4.1 Datasets
All datasets used were made to conform to a uniform style,
which was the default style of the CSS framework Boot-
strap 44. GUI images were generated by compiling the
DSL to a simple HTML and CSS page with the default
Bootstrap 4 style. The algorithm for this compilation is
the same algorithm used by pix2code [2], but with a differ-
ent DSL-Class to HTML-Node mapping. No real text was
used in the compiled websites and images, instead random
words and paragraphs generated with Lorem Ipsum were
used.

4.1.1 pix2code based
The dataset used for most experiments is the same dataset
used by pix2code [2], with a couple transformations ap-
plied. First, the DSLs used by the pix2code [2] dataset
were translated to the DSL defined by this paper using the
simple mapping described by Appendix B. Then, screen-
shots were generated with the new DSLs by using the
previously mentioned algorithm to create the new image-
sequence pairs. The details of the dataset can be found in
Table 4.

4.1.2 CommonCrawl based
The newly created dataset was made by first filtering through
the large, publicly available, CommonCrawl dataset. Af-
ter filtering, the data was transformed by converting the

4https://getbootstrap.com

source HTML to the Design2Struct DSL by using the al-
gorithm described in Appendix C.

The dataset was filtered based on a couple criteria:

1. The website was listed as being in English.

2. The website contained a reference to either bootstrap.css
or bootstrap.min.css in its <head>.

3. The DSL resulting from converting the source HTML
was a maximum length of 512.

From the generated DSLs two datasets were created. The
first dataset contains the original GUI screenshots paired
with the generated DSLs. The second contains new screen-
shots, generated by compiling the DSLs, paired with the
generated DSLs. The details of the resulting datasets are
both found under “CommonCrawl” in Table 4.

Algorithm 1: Design2Struct Single Training Step

Input: Maximum sequence length M
Maximum context length T
Optimizer function foptimizer

Model weights and biases W
Input image I
Ground-truth sequence y1:M

Output: New model weights and biases θnew

1 Loss = 0
2 x1 =< START >
3 Set the context sequence beginning indicator s = 1
4 Pad the context sequence xs:1 to length T
5 Initialize h0 to all zeros
/* Calculate the image feature matrix. */

6 P F×U = CNN(I)
7 for t← 1 to M do

/* Use the rest of Design2Struct to

predict the next token. */

8 qt = GRU(E · xs:t)
9 ai = fatt(P F×U ,ht−1), i ∈ {0...F}

10 ct =
∑F

i=1 aipi

11 rt = (qt, ct)
12 wt,ht = GRU ′(rt)
13 xt+1 = softmax(wt)

/* Calculate the loss and update the

context sequence for t+ 1. */

14 Loss = Loss+ L(xt+1, yt)
15 xs:t+1 = (xs:t, yt)
16 s = max(1, t− T + 1)
17 Pad sequence xs:t+1 to length T

/* Calculate the gradients and update the

weights and biases accordingly. */

18 Calculate gradients ∇WLoss
19 W new = foptimizer(∇WLoss,W )
20 Return W new

4.2 Methodology
The experiments were designed to properly provide an-
swers to the three research questions.

To answer the first and the third research questions, proper
evaluation of results is needed. For machine learning to be
usable in converting GUI images to website structures, the
model needs to achieve usable results. For the model to be
a constructive contribution to the field, it must outperform
past contributions like pix2code [2].

To answer the second research question, many architec-
tures were tested and compared to determine the most
suitable architecture.

https://getbootstrap.com


Table 1: Model Results after 20 Epochs. The naming scheme of the unnamed models can be interpreted as follows: {En-
coder with or without added RNN} {Decoder RNN} {Sequence to word or word to word} {Optional Bahdanau Attention
[1] following CNN}.

Model Loss Val. Loss BLEU ROUGE-1 ROUGE-2 ROUGE-L

Design2Struct 0.0649 0.0617 0.8286 0.8600 0.8318 0.9928
pix2code [2] based 0.0642 0.0613 0.8433 0.8866 0.8628 0.9962
cnn rnn s2w att 0.0660 0.0617 0.8420 0.8782 0.8603 0.9986
cnn rnn s2w 0.0619 0.0708 0.8400 0.8724 0.8454 0.9951
cnnrnn rnn w2w att 0.3403 0.3357 0.4851 0.6452 0.6078 0.8575
cnnrnn rnn w2w 1.2797 1.2760 0.0616 0.6070 0.1686 0.7207
Xu et al. [18] based 0.0970 0.0936 0.6400 0.7101 0.6791 0.9868
cnn rnn w2w 1.279 1.268 0.0653 0.6173 0.1729 0.7175

Table 2: Model Results after 50 Epochs. The naming scheme of the unnamed models can be interpreted as follows: {En-
coder with or without added RNN} {Decoder RNN} {Sequence to word or word to word} {Optional Bahdanau Attention
[1] following CNN}.

Model Loss Val. Loss BLEU ROUGE-1 ROUGE-2 ROUGE-L

Design2Struct 0.0207 0.0196 0.9534 0.9737 0.9830 1.0000
pix2code [2] based 0.0615 0.0608 0.8542 0.8939 0.8707 0.9936
cnn rnn s2w att 0.0456 0.0434 0.8679 0.8712 0.8621 0.9988
cnn rnn s2w 0.0602 0.0601 0.8508 0.8913 0.8657 0.9937
Xu et al. [18] based 0.0955 0.0936 0.7115 0.7534 0.7214 0.9806

Table 3: Model results after 11 Epochs on the CommonCrawl based dataset.

Model Loss Val. Loss BLEU ROUGE-1 ROUGE-2 ROUGE-L

Design2Struct 0.3077 0.3951 0.3244 0.5128 0.3965 0.7132
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(a) Validation losses for preliminary experiments over 20 epochs.
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Figure 4: Validation loss plots from the experiments ran on the pix2code [2] based dataset.



(a) Groundtruth GUI screenshot

(b) GUI screenshot predicted with Design2Struct.
The only discrepancy is the lack of a second Subti-
tle, Paragraph, Button combination in the last row.

Figure 5: Experiment samples from the pix2code [2] based dataset

Table 4: Dataset sizes.

Dataset Total Size
Instances

Training Validation Test

pix2code 212MB 1225 175 350
CommonCrawl 5.56GB 10995 1570 3143
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Figure 6: Losses for the larger dataset experiments over
11 epochs.

4.2.1 Architecture Design
To determine the most suitable neural network architec-
ture, various different architecture varieties were combined
and tested. A combination of the following architecture
designs were tested:

• A Language Encoder with or without an added RNN
layer over the initial embedding layer.

• A word-to-word or a sequence-to-word method, in
other words, a context sequence length T of 1 or 64.

• An Image Encoder with or without a Bahdanau At-
tention [1] mechanism following the CNN.

All combinations of these varieties give a total of 23 = 8
models to be tested and compared.

4.2.2 Evaluation
All models were tested with metrics used commonly in
the fields of image captioning and NLP. The exact metrics

used were BLEU [14] and ROUGE [11]. For all ROUGE
metrics the F1 score was used.

Both the BLEU [14] and ROUGE [11] metrics evaluate
predicted sequences by comparing them against several
reference sequences. They compare sequences by using n-
gram overlap, n-grams being all subsequences of length
n. Both metrics have a minimum score of 0 and a maxi-
mum of 1. BLEU [14] uses the precision of 4-gram over-
lap between the predicted sequence and the reference se-
quences. ROUGE-1 and ROUGE-2 [11] use 1-gram and
2-gram overlap, respectively. They use the F1 score in-
stead of precision, with the F1 score being the harmonic
mean of precision and recall.

These metrics are sufficiently representative of the model’s
relative performance, though one has to keep in mind that
these metrics were designed for natural languages and not
DSLs. For better evaluation, one could look at metrics
for comparing graph structures, as the DSLs can be inter-
preted as a tree. This was, however, out of the scope of
this research.

4.3 Results
4.3.1 Preliminary Experiments
For the first round of experiments, all 8 models were run
for 20 epochs on the pix2code [2] based dataset. The valida-
tion loss plots can be found in Figure 4a and the evaluation
results can be found in Table 1.

The results show very similar results among the models
with a T of 64, whereas the models with a T of 1 generally
performed much worse. It can be seen, however, that the
model based on Xu et al. [18] performed much better than
the others in that category. In the models with a T of
1 it very clearly shows that an attention mechanism is
needed to capture long-term dependencies, whereas with
the models with a T of 64 show no substantial difference,
with pix2code barely ending on top.

4.3.2 In-depth Experiments
The second round of experiments was only done with the 5
most promising models due to time and computing power
constraints. Each model this round was ran for 50 epochs
on the pix2code [2] based dataset. The validation loss plots
can be found in Figure 4b and the evaluation results can
be found in Table 2.

The results clearly show that the Design2Struct architec-
ture outperforms all other architectures by quite a large
margin. The model based on Xu et al. [18] hits a clear



plateau, as can be seen in Figure 4b, most likely due to
its lack of long-term dependencies. The models without
attention also hit a clear plateau as shown by Figure 4b.

However, Design2Struct and the other model with atten-
tion did not hit such a plateau, and were therefore able
to learn much more and perform better. Since loss curves
have not hit a plateau yet, and the models have not yet
started overfitting, it is entirely possible that they could
perform even better if given more time. Only once the
validation loss starts diverging from the training loss, the
model will have started overfitting.

4.3.3 Larger Dataset Experiments
The final round of experiments was done only with the
Design2Struct architecture on the larger CommonCrawl
dataset. This was also due to time and computing con-
straints. The model was trained for roughly 70 hours and
it reached 11 epochs. The evaluation results can be found
in Table 3.

The results show that the performance of Design2Struct
on a larger, more complex, dataset is substantially less,
given less training time. This is mainly due to the large
difference in relative complexity between the pix2code [2]
and CommonCrawl based datasets. Evidence of this can
be seen in the pix2code [2] to Design2Struct DSL map-
ping in Appendix B. The resulting classes used after the
mapping are far fewer than the the classes used in the
CommonCrawl based dataset, all of which can be found in
Appendix A. This could be fixed in future research by cre-
ating a more one-to-one DSL mapping between pix2code
[2] and Design2Struct.

It can also be seen, however, that the Design2Struct model
can definitely still improve on this dataset given more time.
This is because the loss plot in Figure 6 clearly shows a
continuing downwards trend, with no sign of a plateau.
Moreover, when comparing the training loss to the valida-
tion loss in Table 3, it can be seen that the model has not
yet started overfitting.

5. CONCLUSION
In this paper Design2Struct was presented, an improve-
ment over existing methods by introducing Bahdanau At-
tention [1] to the field GUI structure generation. The
work demonstrates an improvement over previous meth-
ods, however the results could be even further improved
with prolonged training over an improved CommonCrawl
based dataset.

The quality of the results shows that it is clearly possible
to convert GUI images to website structures, at least for
simple, well-defined cases.

Experiments show that out of all tested architectures, De-
sign2Struct performed the best, and is thus the most suit-
able neural network architecture out of the others.

The results of the experiments in this research cannot di-
rectly be compared with the results from the pix2code [2]
paper, as the DSLs were different and the dataset was
transformed. The architecture proposed by Beltramelli [2],
however, was faithfully implemented and compared with
the same DSL and datasets, and results show that De-
sign2Struct outperforms pix2code [2] on all used metrics.

6. FUTURE WORK
The architecture could possibly further be improved with
the use of more recent state-of-the art techniques in the
fields of image captioning and NLP.

Generative Adversarial Networks (GANs) [8] have been
shown to be very powerful at generating images and se-
quences. Use of such networks already has precedence in
the field of image captioning [7, 4]. Applying such tech-
niques to the field of structure generation is a not well
researched as of yet. GANs could be used on their own, or
as an improvement to the current Design2Struct encoder-
decoder architecture, as was suggested by Chen et al. [4].

As mentioned in the state-of-the art, transformer models
have now largely become the standard in NLP and have
replaced RNN based architectures. Such models could
replace the RNN structure that Design2Struct currently
uses for a possible improvement on more complex use-
cases. Application of transformer models to the field of
GUI structure generation is also a research area not yet
explored.
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APPENDIX
A. DSL CLASSES
The different classes that the DSL can use to define the
structure of a visual design image. They are split into
layout classes, basic elements, and form elements. Not all
of these classes are made use of in the pix2code [2] dataset,
but all are used in the CommonCrawl dataset.

A.1 Layout Classes
Body Root of the visual part of the page, also always the

root of the tree.

Block A section of information related to each other, can
often be an image with a related paragraph and maybe
some links or buttons.

Container A layout class that contains page general page
content.

Row A layout class that defines rows in a page structure.

Column A layout class that defines columns in rows in a
page structure.

Header A section of a page usually at the top that could
contain a title and usually several navigation links.

Footer A section of a page usually at the bottom that
usually contains some links to other related websites
and possibly contact information.

A.2 Basic Elements
Paragraph A simple block of text.

Image An image.

Button A button, usually with a square shape that looks
more defined than a link.

Subtitle A small heading.

Title A large heading.

Link A simple hyperlink.

A.3 Form Elements
TextBox A box that can be used for any sort of text

input.

CheckBox A box or item with two states, usually checked
or unchecked.

RadioBox A box or item usually part of a list of other
radio boxes where only one box in that list can be
selected.

Range An element, usually a slider of some sort, that can
be used to define a range.

B. MAPPING FROM PIX2CODE DSL TO
DESIGN2STRUCT DSL

body

header

btn-inactive

btn-active

btn-green

btn-orange

btn-red

row

single

double
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big-title

small-title

text

Body

Header

Link

Button

Row
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Title
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Paragraph

Figure 7: A mapping from classes in the pix2code [2] Boot-
strap DSL to the Design2Struct DSL.

C. ALGORITHM FOR HTML SOURCE TO
DSL CONVERSION

Algorithm 2: HTML to DSL conversion

Input: HTML tree root R
Mapping M from HTML Node to Class

Output: Formatted DSL String
1 Function ParseNode(Node N , Parent Node P):
2 Get Class C from M
3 if No Class C found for N in M then
4 Children Parent CP = P

5 else
6 Children Parent CP = C

7 if C is the same as P then
8 C is No Class

9 Result String RS = “ ”
10 for Child Node CH of N do
11 RS = RS + ParseNode(CH, CP ) + “ ”;

12 if C is No Class then
13 Return RS

14 if RS is “ ” then
15 Return C + “ { ” + RS + “}”
16 Return C

17 Return ParseNode(R)
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