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ABSTRACT

Emotion detection is a desirable feature for monitoring
systems in healthcare. Many data sources have been ex-
amined, like facial expressions, physiological signals, and
speech. A yet unused data source are sounds produced by
human behaviours. When human behaviour is related to
emotion, these behavioural sounds can be used for emo-
tion detection. In this study, a convolutional neural net-
work was trained to recognise seven different emotional
behaviours, based on a newly collected data set. The clas-
sification performance was evaluated in terms of class-wise
F1 scores, which ranged between 0.54 and 0.90. The study
demonstrates the feasibility of using behavioural sounds
for emotion detection and gives some first guidelines for
implementation. In particular behaviours with regular
patterns and impacts on hard surfaces lend themselves
well to detection, and the model performs better when
the distance between the recording device and the person
is short.
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1. INTRODUCTION

E-health is the area where healthcare and electronic sys-
tems meet [2]. It includes monitoring systems capable
of estimating the emotional state of patients. Emotional
wellbeing is vital in maintaining a healthy mental state
and dealing with negative events [11]. A monitoring sys-
tem can be used to keep track of a patient’s response to
their environment, condition, and treatment. This can
save human resources as well as allow monitoring while
leaving the patient undisturbed.

For a system to detect and classify emotions in a person,
it must examine data generated by the person as a result
of these emotions. Many different modalities have been
examined, most notably video in the form of facial ex-
pressions, audio in the form of speech, and physiological
signals [4].

One source of data which has gone unused so far is non-
speech audio, which this study addresses. Certain be-
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haviours which relate to a person’s emotional state, such
as pacing, finger tapping, or yawning [4] produce sounds.
Such sounds will henceforth be described as behavioural
sounds, and are the focus of this study, in which deep
learning is used to detect these emotional behaviours through
their corresponding sounds. Adding this modality to emo-
tion detection systems is beneficial, because multimodal
systems, which detect emotions based on multiple types
of data, have been shown to outperform unimodal ones
[12]. It is, therefore, worthwhile to examine all possible
sources of information and create systems which combine
them.

Behavioural sounds have advantages compared to other
modalities when it comes to privacy and obtrusiveness -
two closely linked issues that need to be considered in
the development of emotion detection systems. Monitor-
ing patients should not infringe on their privacy any more
than necessary, and the system that performs the detec-
tion should blend into the environment as much as possi-
ble, so patients do not feel 'watched’.

These issues influence the suitability of potential modali-
ties. For example, examining a person’s facial expression
necessitates processing video data of a person’s face, which
is a significant privacy issue, as the information it contains
can be used for much more than just emotion detection. A
system that analyses speech could also extract the mean-
ing of words, another privacy issue. Physiological signals
require sensor devices to be attached to the body, making
such a system very obtrusive.

Compared to other modalities, the issue is of privacy is eas-
ier to deal with when using behavioural sounds, as they
provide little information aside from the behaviour they
stem from. The microphones required to capture the data
can be small and placed out of sight, making it an unob-
trusive system.

2. RESEARCH QUESTIONS

The question this study seeks to answer is the following:

How can behavioural sounds be analysed using deep learn-
ing to detect behaviours that convey information regarding
a person’s emotional state?

Two sub-questions have been identified, laying out con-
crete goals and expected results.

e How do different behaviours and their acoustic prop-
erties affect the classification performance of the deep
learning models?

e How does the distance between a person and the record-
ing device affect the classification performance of the
deep learning models?



3. RELATED WORKS

In their survey from 2018, Jadhav and Sugandhi reviewed
the current state of the art in the field of emotion detec-
tion [4]. The studies they examined cover a wide range of
modalities and machine learning techniques. One of the
survey’s findings was that convolutional neural networks
and recurrent neural networks outperform deep neural net-
works and deep belief networks on average.

As a contribution to elderly care, Tariq et al. implemented
an IoT system that detects emotions from speech, using
a 2D convolutional neural network [10]. They reported a
maximum accuracy of 95%.

Jain et al. proposed a hybrid convolution-recurrent neural
network method for facial expression recognition [5]. The
model was tested on the JAFFE [7] and MMI datasets,
where it performed competitively with other state-of-the-
art methods, with 94.91% and 92.07% accuracy respec-
tively.

To the author’s best knowledge, emotion detection using
behavioural sounds has not been attempted. However,
non-speech audio has been used to detect other things with
success.

Mendoza et al. developed a wireless sensor network to de-
tect audio events [8]. They used convolutional neural net-
works and achieved an accuracy of 83.79% on the Urban8k
dataset [9] by extracting constant-Q transform features as
system inputs.

Jung and Chi developed a recognition model based on
sound for daily indoor activities [6]. These activities, such
as sleeping or showering, have a longer overall duration
than the behaviours examined in this study, which is re-
flected in the respective length of the used audio fragments
in each study. Jung and Chi used fragments of 10 seconds,
while this study uses fragments of 2 seconds. Jung et al.
used the Log Mel-filter bank energies methods for feature
extraction and trained a residual neural network with 34
convolutional layers, achieving an 87.6% accuracy.

In conclusion, there is a solid foundation in the litera-
ture for research into sound-based detection of behaviours
and activities. This study aims to provide the first step
in applying this type of detection to the field of emotion
recognition by investigating how and which emotionally
informative behaviours can best be detected using deep
learning.

4. DATA COLLECTION

For the study, audio data of a set of emotional behaviours
were collected, as there was no suitable pre-existing data
set. With the goal of an application in healthcare in mind,
the selection of behaviours was based on literature regard-
ing agitation in dementia patients [1][3]. Seven behaviours
were selected for study. Listed below are the behaviours’
labels and descriptions.

1. Shifting - Repeatedly shifting in a chair

2. Chair - Repeatedly getting up from and sitting down
in a chair

Fingers - Tapping fingers on a surface
Feet - Tapping feet on the ground
Pacing - Pacing back and forth

Palm - Slamming one’s palm on a surface

N ooe W

Door - Slamming a door shut

Participants | Age Range | Female/Male
11 16-76 2/9

Table 1: Dataset Metadata

Of the eleven participants, four participated in supervised
data collection. The other seven participants received de-
tailed instructions to collect the data in their own home en-
vironments. The instructions specified which behaviours
to perform and how to record them.

Participants were asked to perform each behaviour for a
duration of two and a half minutes. Participants received
guidelines explaining how each behaviour should be per-
formed. However, details such as the force with which the
participant slammed a door, or the exact speed at which
they paced were left up to the participants, to approxi-
mate a behaviour that felt natural to them. In addition to
the seven behaviours, participants were asked not to move
or speak for two and a half minutes, to obtain a baseline
of the noise in the environment.

For each of the behaviours and the baseline, two simul-
taneous recordings were made. One with a recording de-
vice next to the participant, and the other with another
recording device at a two-metre distance. The near and
far recordings each serve as a separate dataset. Partici-
pants used different smartphones, tablets and pc’s for the
sound and video recordings.

All data collection was video recorded, so that proper ad-
herence to the instructions could be verified. Metadata
about the data set is shown in table 1.

4.1 Data Pre-Processing

After reviewing the video recordings for adherence to the
instructions, the audio files were subsequently processed
into uniform shape. Since the data was collected on vary-
ing mobile phones, the collected data was spread across
multiple file types (mp3, m4a, wav) and number of chan-
nels (stereo, mono). All files were converted to mono-
channel wav files. The files were then split into fragments
of two seconds long. This duration was chosen so that
most fragments of the non-continuous behaviours - door
slamming and palm slamming - contain only one instance
of that behaviour. As a result, the near and far data sets
each consist of 6600 audio fragments, spread evenly across
the seven behaviours and the baseline.

5. METHODOLOGY

Using the PyTorch library, two convolutional neural net-
works were trained on the spectrogram images of the audio
fragments. Section 5.1 explains the spectrogram images,
section 5.2 describes the CNN architecture, and section
5.3 covers the training process and its parameters.

5.1 Data Representation

Each two-second audio fragment was converted to a spec-
trogram of featuring time on the x-axis and frequency on
the y-axis, and intensity being represented through colour.
The images, initially having a pixel resolution of 515x389,
were resized to squares. Four different image resolutions
were considered: 64x64, 128x128, 256x256, and 512x512.
A comparison in terms of F1 scores (averaged across the
classes) and training duration was performed to determine
the most suitable size. Table 2 shows that models trained
on images of 256x256 pixels achieved the highest F1 scores
in the shortest amount of time. This resolution was used
in the experiments refining the architecture and training
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Figure 1: Spectrogram Images

Spectrogram Size | Average F1

64x64 0.65 2555
128x128 0.67 3448
256x256 0.69 3213
512x512 0.61 5420

Table 2: Comparison of Models Trained on Differ-
ently Sized Spectrograms

parameters, described in sections 5.2 and 5.3.

A representative spectrogram from the far dataset for each
of the classes is shown in Figure 1. The spectrograms
from the near dataset are similar in regard to discernible
patterns, differing mainly on intensity. The spectrogram
images were then used to train a convolutional neural net-
work to classify the behaviours.

5.2 Model Architecture

The initial architecture was based on the sequential CNN
in the work of Mendoza et al. [8], which was also used
to classify sounds based on spectrogram images. By ex-
perimenting with different variations of the architecture,
in terms of the number of convolutional layers (1-4) and
kernel sizes (3x3, 5x5, 7x7), the architecture was refined
to achieve the maximum classification performance.

The final architecture is visualised in Figure 2. It consists
of three convolutional layers with a 7x7 kernel and a stride
of 1x1, each followed by a rectified linear unit and max
pooling with a 5x5 kernel and a stride of 1x1. The results
of the convolutional layers are subsequently fed through
two linear layers, reducing the number of features to 96 in
the first layer, and classifying those into the eight classes
in the second layer.

5.3 Training Parameters

The full dataset was divided into a training set and a val-
idation in an 8:2 ratio. This ratio led to higher classifica-
tion performance than alternatives with a larger or smaller
validation set. The contents of each set were sampled ran-
domly from the full set (without replacement).

The optimal training parameters were obtained experi-
mentally. The number of epochs was chosen by evaluating
the training and validation loss , as well as the average
of the class-wise F1 scores after each epoch. Batch sizes
of 4, 8 and 16 were tested, and evaluated by the average
F1 score. Learning rates of le-2, le-4, le-5, and 5e-5 were

Training Time (s)

Class Far Near
Baseline 0.77 0.86
Chair 0.40 0.56
Door 0.74 0.86
Feet 0.47 0.82
Fingers 0.77 0.89
Pacing 0.61 0.69
Palm 0.84 0.87
Shifting  0.55 0.58

Table 3: Class-Wise F1 Scores on the Far and Near
Datasets

tested in the same manner. Because training times never
became prohibitive, the impact of the varying parameters
on it was not evaluated explicitly.

The best results were obtained by training the network for
40 epochs using a batch size of 8, the cross-entropy loss
function, and a stochastic gradient descent optimiser with
a be-5 learning rate and 0.9 momentum. The training was
performed on an NVIDIA Geforce RTX 2080, and took
approximately one hour to finish.

6. RESULTS

The classification performance of the models was evalu-
ated in terms of class wise F'1 scores and normalised con-
fusion matrices. Table 3 shows the class-wise F1 scores for
both the far and near datasets. Figures 3a and 3b show
the confusion matrices for the far and near datasets.

Table 3 shows that the F1 scores diverge substantially be-
tween classes. In the far dataset, the behaviours ’'chair’,
'feet’, and ’shifting’ have low F1 scores, while ’baseline’,
’door’, "fingers’, and 'palm’ have high scores, with 'pacing’
being in between those groups.

Table 3 also shows that the F1 scores are higher for the
near dataset than the far dataset for every class. For
‘'palm’ and ’shifting’ the score improvement is minor, for
"baseline’, ’chair’, ’door’, 'fingers’, and ’pacing’ it is sub-
stantial, and for ’feet’ it is enormous, placing ’feet’ in the
group of well detected classes.

The confusion matrix of the far data set (Figure 3a) shows
that, the model has great difficulty in telling apart ’shift-
ing’ and ’chair’. Additionally, 'pacing’ is often misclassi-
fied as ’chair’. The predictions for samples belonging to
the feet’ class vary widely, with the largest share of mis-
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Figure 3: Confusion Matrices on the Far (a) and Near (b) datasets

interpretations being predicted as 'fingers’.

The confusion matrix of the near data set (Figure 3b)
shows that the model still has trouble telling apart ’shift-
ing’ and ’chair’, even though the recording has been done
from a short distance. It still often misclassifies 'pacing’
as ’chair’. However, confusion is lower across all cate-
gories, and especially ’feet’ is much more accurately clas-
sified than when recording is done from farther away.

7. DISCUSSION

From the results, it can be deduced that the distance be-
tween the recording device and the person performing the
behaviours has a significant effect on the classification per-
formance of the model. This is probably because at a
higher distance, the volume of the recorded audio is lower,
resulting in spectrograms with less distinctive sound pat-
terns of a behaviour due to the lack of differentiation in
intensity between frequencies.

The behaviours that are most accurately detected by the
model share two apparent properties. Firstly , they involve
impacts on hard surfaces, often with significant force. This
applies to finger tapping, pacing, door slamming and palm
slamming, all of which score high in the near dataset. Sec-
ondly, they involve a regular pattern, observable in each
spectrogram. This applies to finger tapping, pacing, door
slamming, palm slamming, and the baseline, all of which
have high F1 scores in the near dataset. The behaviours
with the lowest F1 scores - ’chair’ and ’shifting’ - have
irregular patterns and do not involve impacts on hard sur-
faces.

7.1 Comparison to Literature

Since this study is focused on detection of emotional be-
haviours from sound and did not extend to the detection
of concrete emotions from these behaviours, a direct com-
parison of classification performance with emotion detec-
tion models is not useful. However, it can be noted that
translating detected behaviours to emotions is likely to
result in a loss of classification performance. Given that
the accuracies of state of the art emotion detection al-
ready exceed 90% [10][5], behaviour detection will need to
be almost perfect to compensate the loss of classification
performance incurred by mapping behaviours to emotions
and still be competitive with other modalities.

The comparison with sound-based activity recognition, on
the other hand, is more straightforward. Jung and Chi
[6] report F1 scores between 0.786 and 0.937 for each of
their activity classes. In this study, such high scores are
achieved for only one of the behaviours on the far dataset,
and four of the behaviours on the near dataset.

Mendoza et al. [8] do not explicitly report F1 scores,
though they can be derived from their confusion matrix.
Doing so reveals that the F1 scores range between 0.83
and 0.92 for most of the classes. Two classes have lower
scores, 0.66 and 0.71. A similar disparity between the the
F1 scores of classes is also found in the results of this study.

8. CONCLUSIONS

This study set out to investigate how behavioural sounds
can be analysed using deep learning, to detect emotional
behaviours, to explore the potential of non-speech audio
as a modality for emotion detection.



The results show that the behaviours which are best de-
tected involve impacts on hard surfaces and regular pat-
terns, exemplified by behaviours such as finger tapping
and slamming doors. Behaviours consisting of sliding mo-
tions and/or involving soft surfaces, such as shifting in a
chair and repeatedly getting up and sitting down in one,
do not lend themselves well to detection by their sounds.

Furthermore, the results show that the overall performance
of the model is substantially influenced by the distance of
the recording device to the source of the sound. For all
researched behaviours, classification performance is higher
when the distance is smaller. In some cases, the pattern
of a behaviour may be completely undetectable beyond a
certain distance.

In conclusion, this study shows the feasibility of detecting
emotional behaviours using deep learning techniques, as
the classification performance is in line with those of earlier
sound-based activity recognition studies.

9. LIMITATIONS AND FUTURE WORK

This study is limited to detecting certain emotional be-
haviours from their corresponding sounds. To develop be-
havioural sounds as a full-fledged modality for emotion
detection, the connection between behaviours and emo-
tions (either in discrete or dimensional terms) needs to be
established, so that a system may translate a detected be-
haviour into a prediction regarding a person’s emotional
state.

Future work should also seek to improve the classifica-
tion performance for the behaviours, to ensure that be-
havioural sounds are either competitive with or a worth-
while contribution to existing modalities. Investigating
more complex CNN architectures, other neural network
architectures, and data representations would be a logical
step in this direction.

This study did not test detection in a real-world setting. In
such a setting, multiple people may be producing sounds
simultaneously, strong background noise may be present,
and behaviours may not be performed exactly as expected.
The extent to which such factors hinder proper detection
will have to be investigated so that they may be mitigated.
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