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Abstract

In this thesis an overview is given of the current methods for theoretically deriv-
ing the conductance of a system constructed using topological insulators which can
both be magnetic or superconducting. A special system is analysed from which the
conductance is determined and put in context with the different variables used. The
system itself has Andreev bound states involved which greatly increase the conduct-
ance at certain Energy levels. In the system the phase added by the traveling wave is
also taken into account and analysed to see if this corresponds to the theory presented.
Keywords: Topological insulator, Superconductivity, Andreev bound states
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An analysis of Andreev bound states in a system of
topological insulators

William Schaarman ∗

29th June 2020

1 Introduction

In the last two decades a lot of advancements have been made in physics regarding material
science. One of the materials especially heavily studied is the topological insulator (TI).[1]
One of the main properties of this material is that it can only conduct charged particles at
the surface instead of in the bulk of the material. One of the major theoretical implications
this has is that Majorana bound states can potentially occur in these materials.[2] In sys-
tems like these the spin-orbit coupling, which is also responsible for effects like the Zeeman
effect, is a necessary ingredient for the Majorana fermions. These Majorana fermions can
then be used to lead to future scientific progress towards the quantum computer where
they can be applied to the qubits.

These Majorana bound states have already been demonstrated to exist in the past. A paper
by the university of Delft demonstrated this by finding a zero-bias conductance peak.[3]
This experiment was however preformed with a nanowire instead of topological insulators
this thesis will look at.

One of the major discoveries that may lead to finding these Majorana fermions is Andreev
reflection. The discovery of this effect together with the properties of topological insulators
brings systems to mind which realize this fermion. One of the more recent additions is
a paper on a system consisting of magnetic and superconducting topological insulators
(called MTI and STI respectively).[4]

The main contribution of this paper is to expand on a previously analysed system consisting
of an MTI and STI. More specifically a normal TI will be added between the MTI and STI
which gives a more general system when compared to previously analysed systems. This
extra TI gives rise to two new variables which can be tuned. One of these is the chemical
potential of the TI and the other is the length of the TI. The calculations of this system
will be presented with the necessary theory which is required to get a deeper insight into
the subject. Also a set of constraints is given for which the system is valid.

2 Theory

In the theory a certain baseline will be established which is necessary to understand the
results of the thesis. Firstly, in section 2.1 the BCS theory will be discussed which de-
scribes superconductivity in materials. Then, in section 2.2, Topological insulators will be
∗Email: w.a.schaarman@student.utwente.nl
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discussed and the properties of these materials which will be used in the thesis. Afterwards,
in section 2.3 and 2.4 the basic spinors of the system will be given using the Dirac notation
of the hamiltonians. The next theory that is discussed are Andreev bound states and their
properties, which will also be referred to as ABS. These can be found in section 2.5. The
last topic in the theory is a quick look at the phase materials can add to the wavefunction,
which can be found in section 2.6.

2.1 The theory of superconductivity

It was discovered that at low temperatures certain composites and metals get special
properties. One of these properties is the phenomenon called superconductivity. Super-
conductivity is the phenomenon where the resistance in a material decreases significantly
as function of the temperature near the critical temperature.

The first paper to model this phenomena clearly was the BCS paper.[5] This theory, de-
veloped by Bardeen, Cooper and Schrieffer, relies on electrons forming pairs called Cooper
pairs. Essentially, these pairs would then behave not as a two separate fermions but like
a boson. This change of behaviour allows the pairs to go into a lower energy state which
reduces the resistance of the material to zero, thus creating superconductivity.

To go into more detail, we consider an electron in state k in a metal at T = 0, which is
the absolute zero. This electron can go into another state k′ by creating a phonon q. This
gives us the equation k = k′ + q. This phonon can then be absorbed by another electron.
We can describe the total interaction by k1 + k2 = k′

1 + k′
2. In figure 1 you can see this

interaction displayed in a Feynman diagram.

Figure 1: Feynman diagram of the interacting electron pair. This interaction is
able to occur through the exchange of a phonon.[6]

Since an electron moves from one state to another, an oscillation in the electron density
is created at the frequency ω = (εk1 − εk1′)/~. These oscillations can create a negatively
charged area. Since the ions in the lattice are positively charged they will move towards
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this area. This area now becomes positively charged due to the presence of the ions. This
can be clearly seen in figure 2. Since the ions are too massive to travel back in a short
time, this now positive charged area attracts a second electron which together with the
first electron creates a Cooper pair.

Figure 2: Schematic overview of a cooper pair interacting. It can clearly be seen
that an after an electron passes through an area between positive ions, the ions will
create a positively charged area which in turn attracts a second electron. The two
electrons are called a cooper pair. [7]

Only if this vibration is smaller than the Debye frequency, so ω < ωD, atoms will be attrac-
ted to the, previously mentioned, positive area. The Debye frequency is the characteristic
frequency of the system. This gives us the identity that the electrons can only interact if
|εk − εf | ≤ ~ωD.

Now we can analyse the case k1 + k2 = k′
1 + k′

2 more clearly. Because of conservation
of momentum electrons which start at k can only scatter to a set amount of states for a
given q. This can be schematically give by figure 3 below.
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Figure 3: Schematic overview of the number of states an electron pair can scatter
to (Dark area). k1 and k2 represent the initial state of the electrons and q represents
the phonon which is exchanged between the two. 2∆k is the area in which is close
enough to the Fermi level such that scattering can occur.[6]

Now we are ready to look at a new function of k, which is v2
k. This function gives the

probability that the state (k,−k) is occupied. Using this function we can also define
u2
k = 1 − v2

k which gives the probability that the state (k′,−k′) is occupied. These
constants can later be found back in the hamiltonian and spinors of the system.

One of the aspects of a superconductor that was explained by the BCS theory is the
superconducting gap. This gap in the band structure of a superconductor is a certain set
of states which cannot be occupied around the Fermi level. This has as result that particles
will not be able to enter this state and thus reflect in some way of the material.

2.2 Topological Insulators

As said in the introduction of this thesis topological insulators are materials which have
the property of only allowing conduction on the surface of the material and not inside the
material. This gives the material interesting properties with regards to the states of the
particles in this material. One of the consequences is that the dispersion curves of these
materials are linear instead of quadratic, which is usually the case normal conductors.[1]

Among the topological insulators (in short TIs) there are different kinds. One distinction
which can easily be made are the 2D and 3D topological insulators. A 3D topological
insulator is insulated in the bulk of the material but is able to conduct particles at the
surface. A 2D topological insulator insulates the states on the surface and will only be
able to conduct particles on the edges of the material. This gives rise a 2D and 1D system
respectively for the conducting states.

Another distinction can be made when looking at TIs with extra properties. Two of these
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are the magnetic TI[8] (MTI) and the superconducting TI (STI). The MTI has a built in
magnetic field which can interact with the electrons and holes in the material. The STI
has all the properties of a superconducting material with the addition that the material is
only able to conduct electrons and holes on the surface.

The linear dispersion relation in a TI is also named a Dirac cone. These cones describe a
linear relation between the k and the energy E of the particles. The dirac cones cross each
other at a certain point. The value at this point is given by the chemical potential µ and
this point is called the Dirac point. In MTIs and STIs these Dirac cones are not linear any
more. An overview of the dispersion relation of all three materials with their respective
constants can be seen in figure 4 below.

Figure 4: Here the dispersion relation in given for the different topological insulat-
ors. Also the definition of the different constants used in the paper are given. This
system already represents the system that will be analysed except that it misses an
TI on the left side of the MTI.

The dispersion relations are described by specific formulas which can easily be found when
solving the hamiltonian. The Hamiltonians which should be solved to give these equations
is found in section 2.4. To give an overview of the dispersion relations you can look in
equation 1, 2 and 3 .

TI: E = ~vf |k| − µ (1)

MTI: E =
√

(~vf |k|)2 +M2 − µm (2)

STI: E =
√

∆2 + (~vf |k| − µs)2 (3)
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In the latter two cases we can see that if |k| is sufficiently large in comparison to the other
variables then they reduce to the the normal TI case which is linear. Also in these cases it
is considered that µ, µS , µm > E for simplicity. This gives us the case where our particles
will always be far above the Dirac point. The calculations of the dispersion relations are
done in the sections going more in depth in the system.

2.3 Representation of the states

In this paper the Dirac notation will be used for wave functions. This implies that the
wave function will be described by spinors. These spinors consist wave functions which
each move in a direction. From these spinors a basis can be established which describes
the whole system. For this thesis the basis 4 will be used.

Ψ =

 ψ↑
ψ↓
ψ∗↑
ψ∗↓

 (4)

To give a bit more clarification on the basis. The two upper parts resemble an electron
with a spin up and down component while the lower two parts are a hole with a spin up
and down component. For the TI and MTI case we have the electrons and holes have
separate wave functions which are not connected with each other while in the STI case
they are connected.

2.4 The system

In this paper we will look at the properties of a system composed of three different Topo-
logical insulators, the MTI, TI and STI. Since topological insulators can only conduct a
current on the surface it is sufficient to analyse this system in 2D. A schematic overview
of the exact system with described distances is given in figure 5
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Figure 5: A total overview of the system where b and d describe the width of the
MTI and TI respectively. The origin of the system will be chosen at the TI/STI
interface. The system extends to infinity in all directions.

In this system it is important to notice that the barriers are parallel to the x-axis. This
implies that any spinor in the x-direction must be evanescent while it is always wavelike
in the y-direction. This implies that a test function of the form

ψ(x, y) =

(
a
b
c
d

)
eik̂xeikyy (5)

would be sufficient in describing all wave functions as long as k̂ is considered purely real
for a conducting phase and k̂ is purely imaginary in a barrier.

In the whole system only a few specific cases will be considered which should be the most
interesting. To get Andreev bound states, it is necessary that the MTI serves as a barrier.
This implies thatM > µm. Apart from that only calculations above the Dirac cone will be
taken into account. This in turn implies µ > E for the MTI, STI and TI. Also we want to
consider the case that ∆ > |E|. This implies that the superconducting gap is larger than
the energies considered implying that we have no conducting spinor in the STI without
an evanescent part. This specific configuration is chosen to focus on the Andreev bound
states.

2.4.1 Normal TI

By using the Dirac notation we can write the Hamiltonian for the electrons in a TI like
given in formula 6.[9]

ĤTI(k) = vf (σ̂x
~
i

∂

∂x
+ σ̂y

~
i

∂

∂y
)− µ1 (6)
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In this equation σx and σy are the Pauli matrices of the form

σx =

(
0 1
1 0

)
and

σy =

(
0 −i
i 0

)
The solution to this hamiltonian is needed for 4 cases in total. We need a solution for
electrons traveling in the positive and negative x direction. We also need a solution for
holes traveling in the positive and negative x direction. The hamiltonian above is however
only given for electrons. For holes we need to use the hamiltonian −Ĥ∗TI(−k) to describe
the specific properties of the holes. We can thus describe the total system as

H =

(
Ĥ(k) 0

0 −Ĥ∗(−k)

)

As can be seen we can divide this system into two separate parts each described by one
hamiltonian. One system describes the electrons while the other describes the holes. The
eigenvectors of each of these systems will describe the solutions to the system.

Using the identity Ĥψ = Eφ, we can solve this system by using a test function ψ(x, y) =(
Φ
χ

)
eikxxeikyy. We take this test function as a simplification of the aforementioned function

5.

For electrons traveling in the positive direction we get the solution. ψ(x, y) = 1√
2

(
1
eiθ

)
eikxxeikyy.

For electrons traveling in the negative x direction we get ψ(x, y) = 1√
2

(
1

−e−iθ
)
e−ikxxeikyy.

This does require an additional identity to be established which is ~vf |k| − µ = E which
is quickly recognised as the dispersion relation of a TI. We also have θ = tan(ky/kx) and
|k| =

√
k2
x + k2

y.

For holes we can do exactly the same method and we will arrive at the same solutions with
one difference, the identity is ~vf |k|+ µ = E.

2.4.2 Magnetic TI

For the MTI a similar approach can be taken as for the TI. The hamiltonian for the MTI
is given by

ĤMTI = vf (σ̂x
~
i

∂

∂x
+ σ̂y

~
i

∂

∂y
) +Mσ̂z − µm1 (7)

Here σz is a Pauli matrix described by

σz =

(
1 0
0 −1

)

In this thesis only the case where M > µm is taken into account. The implications of
this is that the MTI will serve as a barrier where only evanescent waves can be present,
i.e. there are no traveling waves in the x direction in the MTI. This means it is more
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advantageous to start with a different test function compared to the TI. The test func-
tion which is used is ψ(x, y) =

(
Φ
χ

)
eκxeikyy, we get the normalised solutions ψ(x, y) =

1√
A+

(
E+µm+M

i~vfκe+i~vfky

)
e−κexeikyy and ψ(x, y) 1√

A−
=
(

E+µm+M
−i~vfκe+i~vfky

)
eκexeikyy, with A± =

(E + µm + M)2 + (~vfκe ± ~vfky)2. You can also derive the identity (E + µm)2 =
M2 + (~vfky)2 − (~vfκe)2 which gives the dispersion relation in the MTI.

The wave function for the holes in this material are calculated in a similar manner in
comparison to the TI. Again, if we take as hamiltonian −Ĥ∗(−k) and the same test func-
tion as previously we find ψ(x, y) = 1√

B−

(
E−µm−M

i~vfκh−i~vfky

)
e−κhxeikyy and ψ(x, y) 1√

B+
=(

E−µm−M
−i~vfκh−i~vfky

)
eκhxeikyy with the identity (E − µm)2 = M2 + (~vfky)2 − (~vfκh)2 and

B± = (E − µm −M)2 + (~vfκh ± ~vfky)2.

2.4.3 Superconducting TI

The STI will be evaluated such that |E| < ∆. This implies that particles will be used which
have an energy lower than the superconducting band gap. In this range no conducting state
is possible so we get a special case where the wave function is a combination of a traveling
wave and an evanescent wave.

The hamiltonian for the STI is given by[10]

ĤSTI =

(
ĤTI(k) ∆̂

−∆̂ −Ĥ∗TI(−k)

)

Where ∆̂ = i∆σy

In contrast to the previous two hamiltonians, there is a clear connection between electrons
and holes in this hamiltonian.

This will result in two relevant solutions which are ψ(x, y) =

(
a
b
c
d

)
eik̂xeikyy where k̂ =

kx + iκ with kx > 0. We have kx > 0 since the waves can only travel in the positive
x-direction. Using this test function and the given restriction we get the two solutions

ψe(x, y) = 1
2


1

eiθS

−χ
2
e

∆
eiθS

χ2
e

∆

 eik̂exeikyy and ψh(x, y) = 1
2


1

eiθS

−χ
2
h

∆
eiθS

χ2
h

∆

 eik̂hxeikyy.

In the above spinors we have defined χi =
√
E + µs − ~vf |ki| with ke = µ +

√
E2 −∆2

and kh = µ−
√
E2 −∆2. We also define θS = arctan(

ky
kx

)

This also results in the identity (~vf |k̂| − µS)2 + ∆2 = E2 which can rewritten as k =
±µ±i

√
∆2−E2

~vf . If we compare that to a previous expression k̂ = kx + iκ and consider that

we do not necessarily need to take |k̂| real but as an imaginary number. Then we find that
kx = ±µS/~vf and κ = ±

√
∆2 − E2/~vf .

2.5 Andreev bound states

Andreev reflection is a phenomenon occurring at an interface between a superconductor
and a conductor. If you would consider a wave function describing an electron traveling
towards the interface from the TI, then instead of scattering back into an electron in the
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opposite direction it can scatter back as a hole. If we consider this situation with particles,
we can view it as one electron entering the STI and pairing up with an electron in the STI.
However because of conservation of charge this implies that a hole is created which travels
in the opposite direction.

Figure 6: Andreev reflection with a normal metal (N) and a superconductor (S)
[11]

When consider a larger system, say an STI/TI/STI system with Andreev reflection on
both interfaces. We can imagine a particle interacting with one interface and returning a
hole in the opposite direction. On the other interface this hole can interact such that a
hole pair is created in the superconductor which returns an electron again. This loop is
called an Andreev bound state.

In the system that is analysed an Andreev bound state can also be observed. However
instead of the second STI/TI interface the one STI/TI interface is considered twice in one
loop since the MTI will serve as a barrier from which electrons and holes can reflect.

For an Andreev bound state to be able to exist it is important that the phase received
by the wave function in the bound state is of the magnitude 2πn with n any integer.
The phase a wave function receives is defined as tan(α) = Im(r)

Re(r) where r is the reflection
constant and α is the phase. This is only correct if Re(r) > 0 otherwise an extra phase of
π must be added.

2.6 Resonance in materials

As was just explained in the system the ABS will be especially interesting. However, the
interfaces are not the only way for a wavefunction to gain a phase. A phase can also be
gained by a wave by traveling through the material. These phases can be clearly seen by
looking at the different spinors. If you consider the exponent after each of the spinors then
you can conclude that for a exponent which is not close to 0, the wavefunction gains a
measurable phase.
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The added phase is easily calculated as αd = arg(eikxx). In our system the distance is d
however since the wavefunction of an ABS reflects 4 times of a surface and thus travels 4
times the distance. This implies that a length of 4d needs to be considered instead.

Using the above phase formula we can determine for what distances d we should have a
phase which does not contribute to the overall phase. This is however only useful for the
1D case as in 2D case the distance is not just determined by the thickness of the TI but
also by the angle the particle travels with in comparison to the interface. In 1D we have
2πn = 4dkx. With the approximation that for E << µ we have that dµ

~vf = nπ
2 .

Another resonances which is possible in this system is an electron or hole reflecting between
the MTI/TI interface and TI/STI interface without Andreev reflection. For this reflection
to be dominant it is necessary that Andreev reflection occurs less than the normal reflection.
A similar equation can be established for this case. Since this resonance only requires two
reflections the distance is 2d instead of 4d. This implies that we get dµ

~vf = nπ.

3 Method

To actually analyse the system two variants will be taken into account, one 1D and one
2D. First of the limits of the system will need to be analysed which is done in 3.1. These
systems can be divided into two parts. For each, the calculations of the Andreev bound
states will be done using the phase of the different reflection constants, an explanation of
this is given in section 3.2. The other approach which is taken is that the whole system
will be analysed at once. This implies a system of equations that needs to be solved which
is given in section 3.3.4. For both methods the programs Matlab and Mathematica will
be used. The first one is mainly used for numeric calculations while the latter is used to
easily find analytic expressions. In the sections 3.3.3 and 3.3.2 an overview is given on how
the scattering equations are set up using the proper defenitions.

3.1 Numerical variables

To make the numerical program easier to work with and use it was chosen that ~ = 1 and
vf = 1, which are Planck’s constant and the Fermi velocity respectively. As said before
we will also only look at the case where µm, µS , µ ≥ ∆ > |E|, M > µm > 0, µ > 0 and
µS > 0. This is done such that the MTI serves as a barrier. Also the STI does not conduct
the electrons without some evanescent wave being present. Also, to simplify the system
the chemical potential of the two TIs is taken equal.

Another subtle change is that all variables except d, b, θ and θS will be made dimensionless
by dividing them by ∆. In the text these variables will be referred to with a tilde above
their respective symbol. An example is Ẽ = E/∆.

3.2 Andreev bound states

As was said in more detail in the section Andreev bound states in the theory, for an Andreev
bound state to exist the condition must hold that the phase of a loop is 2πn with n an
integer. In the whole system there is one such loop where an Andreev bound state could
arise. This bound state arises in between the MTI/TI interface and the TI/STI interface.
The whole bound state is described by the following loop: An electron can have Andreev
reflection on the TI/STI surface. Then the resulting hole reflects of the MTI/TI interface.
After this Andreev reflection can take place again at the TI/STI interface after which the

11



electron can reflect at the MTI/TI interface again. This whole loop can be described by 4
reflection constants which are respectively, reh, rhh, rhe and ree.

As was described before it is necessary for the calculations of the phase of the wave function
that these reflection constants are known. Each of these constants can be calculated by
considering just the one interface at x=0 as the place of the interface does not influence
the phase of the wave function. Then for each of the reflection constants we can calculate
the phase and add them together and see for what conditions they are a multiple of 2π.
This gives us the formula

2πn = αee + αeh + αhe + αhh (8)

where αij describes a particle i before the reflection and j after the reflection. Notice that
in this case the phase gained by the wave function traveling through the TI is not taken
into account.

Figure 7: A schematic overview of the Andreev bound state in the system. The
solid black line describes the electron moving while the dashed line describes the
holes and their direction. In the figure the definition of θ is also given for both the
electrons and holes.

3.3 General system

3.3.1 Definition of the angles

In figure 7 the definition of the angles used can be found. In this definition of θ the result
for the holes and electrons is different. This is the result of the reversed k vector described
in the hamiltonian of the holes. This implies that an electron traveling in the negative
x-direction is described by ψe(π − θ) while a hole traveling in the negative x-direction
is described by ψh(θ). In the positive direction these would be ψe(θ) and ψh(π − θ)
respectively. Since there is no traveling wave in the MTI no angle will be considered here
however in the STI an angles does need to be defined. In the STI we get for the electron-like
particle ψ(θS) while for the hole-like particle we get ψ(π − θ).
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3.3.2 Example construction of TI/STI interface

To do the calculations of the system it is necessary to construct the scattering equations
at each interface. Here a quick overview will be given on how to construct these equations
for the TI/STI interface for an incoming electron.

First we start of by considering the particles which interact with the interface. Since there
is an incoming electron we can expect a reflected electron or a reflected hole in the TI. In
the STI both a hole-like and electron-like state will need to be considered. Considering
the wave of incoming electron has a amplitude of 1 and that the wave functions must be
continuous at the interface we get the following equality.

ψe(θ) + rehψh(θ) + reeψe(π − θ) = teeψe(θ) + tehψh(π − θ) (9)

In this equation to the left of the equality sign spinors in the TI are considered while on the
right of the equality sign spinors in the STI are considered. Using the spinors established
in section 2.4 we can construct the total scattering equation.
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In the above equation the interface is considered to be at x=0. Since there are 4 equations
with 4 unknowns this system can be solved for reh which gives the coefficient of the Andreev
reflection. Afterwards the argument of this reflection constant can be taken to determine
the phase that is added by the reflection.

3.3.3 Example construction of MTI/TI interface

On the MTI/TI interface the approach is the same as with the TI/STI interface however
this interface is considerably easier. First off, if we consider an incoming electron then
either the electron reflects back or it tunnels through the MTI. This implies that we only
need to consider two extra spinors and thus solve a system with two unknowns instead of
four. As before, we can describe the spinors at the interface in terms of the angles. This
gives us the following equation.

ψe(π − θ) + rψe(θ) = tψMTI,e (11)

Here we consider the amplitude of the wavefunction for the incoming electron to be one.
Using this equation and considering that the interface lies at x=0, we can describe the
entire interface with the spinors from section 2.4 to give us
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)
(12)
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3.3.4 Total system

The whole 2D system can however not be described by just the Andreev bound state. To
actually get results on the conductivity of the system it is necessary to take the whole
system into account.

To do the calculations for the total system each interface of two materials needs to be taken
into account. At every point in the system the wave function must be continuous. This
gives a set of 12 scattering equations with 12 unknown variables which are the amplitudes
of the different parts of the wave function. Since the exponent of the STI is the most
complicated the TI/STI interface is chosen as the origin as to eliminate it. The total
system is given below.
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This system is given in 2D but will also be calculated in 1D. To transform these equations
to the 1D case it is necessary that θ = 0 and ky = 0. This gives a new set of equations
which are easier to solve.

3.3.5 Conservation of momentum

When the expressions of the different constants are determined a lot of different vari-
ables will define them. To reduce the number of variables describing these equations the
conservation of certain variables should be considered.

Firstly, ky will always be conserved across the TI, MTI and STI. This is the consequence
of particles not changing their velocity in the y-direction as the interface is parallel in this
direction. This implies we can take the ky defined by the TI for all ky in the solution as
this one is the easiest to define.

Another consequence of the conservation of momentum in the y-direction is that at the
TI/STI interface an expression for θS can be defined as function of θ. This equation is
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given in equation 14.

sin (θ)µ = µS sin (θS) (14)

This implies the reflection constant can be defined by the variables µS , µm, µ, ∆, θ, E, d
and b.

Applying equation 14 does imply that we must conclude that it is uncertain if the answer
is correct for µS

µ < 1. By using a numerical example like θ = π/2 and µS
µ = 1

2 we can see
that sin (θS) = 2 which is not possible for θS ∈ [−π/2, π/2]. This issue is solved by not
taking the reflection into consideration when this is the case.

3.3.6 Conductance

The variables C1 and C12 are especially interesting as they can easily define the current.
The constant |C1|2 gives us the probability of a reflected electron while |C12|2 gives the
probability of a reflected hole in the left TI. Since the current must be the same in all
planes we can use this to calculated the conductance in the whole system.

As we have a wave incoming with an amplitude of 1 we can describe the conductance of
the system by the formula [12]

G =
1

Rn
(1− |C1|2 + |C12|2) (15)

Here Rn (in Ω) is a constant not dependent on the energy of the particles.

This formula has the interpretation that for a wave function of amplitude 1 describing an
electron with a negative charge we get a wave function with amplitude |C12|2 back with
a positive charge and |C1|2 with a negative charge. Thus if we look at the total charge
traveling from the left to the right we get 1 − |C1|2 + |C12|2 which is proportional to the
conductance.

In a 2D situation the angle of the particle also plays a role when determining the current.
To calculate the current in a system like that the following function can be applied.

G = Rn

∫ π/2

π/2
N(θ)(1− |C1(θ)|2 + |C12θ)|2)dθ (16)

In formula 16 an integral is taken over θ. This combined with an appropriate weight
function N(θ) will give the current. Since in our system the material in the y-direction
always goes from −∞ to ∞ it is appropriate that N(θ) = 1. This is an approximation as
for real world cases there will be more particles which travel in a perpendicular direction
to the interface in comparison to a parallel direction to the interface.

Since the formulas for C1 and C12 are both complicated the integral mentioned above
will not be used. Instead a Riemann sum is used to approximate the integral to save on
computing time.
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4 Results

As said before the system can be analysed in two different ways. One of the ways is
calculating the phase of the system and the other is solving the whole system at once. In
section 4.1 the 1D phase equations at each interface are given. In section 4.2 the system is
solved for θ = 0 with some results shown in the graphs. The 2D systems are worked out in
sections 4.3 and 4.4 for the phase calculations and total system calculations respectively.
The last part of the results, section 4.5, gives an overview of the predicted conductance of
the system which can be verified using measurements.

4.1 1D phase calculations

In section 3.3.3 and 3.3.2 systems were given with which two of the four reflection con-
stants can be calculated. After doing all calculations the following reflection constants are
obtained.

rhh = κh−i(E−M−µm)
−κh−i(E−M−µm)

ree = −κe−i(E+M+µm)
κe−i(E+M+µm)

reh = ∆
E+i
√

∆2−E2

rhe = −∆
E+i
√

∆2−E2

(17)

In the above equation we can see that reh = −rhe. This implies that the phase gained by
the electron from the reflection at the STI cancels out with the phase the hole gains at the
STI. This in turn implies that for an ABS we have arg(ree) + arg(rhh) = 0. This only be
the case for E = 0eV so the ABS is always located at E = 0eV for the 1D situation.

4.2 1D total system

To partly verify the system, the 1D system is analysed. This system should give insight
into the function of the different variables of the system which dictate the position of the
ABS. Later on this system will be expanded to a 2D system by including the variable for
the angle the particle makes with the normal of the interface.

First of, the values for the constants were chosen in such a way that there is a clear Andreev
bound state. This implies that M̃ >> 0, bM ≈ 1, dµ < 1, µ̃m ≈ µ̃ ≈ 0 and µ̃S > 0 if not
specified in some other way.
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Figure 8: In the figure above 3 different value for ˜µTI were chosen. We have
d=0.001.

In figure 8 it can be seen that by changing the chemical potential of the two TIs the peak
shifts. This is likely a result of resonance in the TI. The thickness of the TI in this case
is 0.001 m. For µ̃ = 200 we can see that dµ = 0.2 which is a significant addition to the
phase calculations of an ABS. This implies that the peaks are at different energies because
of the phase the wave function gains by traveling through the TI.

4.3 2D phase calculations

In this section and the sections which follow the variables used in calculations will have
a set value. These values are M̃ = 100, µ̃S = 100, µ̃m = 2, µ̃ = 100, d = 0.0005m and
b = 0.01m unless otherwise specified. Also, when a reference is made to µ̃ this always
implies the chemical potential in the TI. In these calculations in this section the thickness
of the TI and MTI was not taken into account. Here the ABS are calculated using only
the phases the wave function gains at the interfaces.
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Figure 9: In the figure above 7 different value for µ̃ were chosen. This figure
corresponds to the figure represented in [4]. The legend and title are supposed to
refer to the dimensionless variables µ̃ and µ̃S .

In figure 9 it can be seen that for a relatively large magnetization M compared to the
chemical potential that the ABS stay around 0. However for a large chemical potential the
ABS stay around θ = 0.

These can be explained by looking at the formulas for the phase. At the TI/STI, for
Ẽ = 0 interface the phase is −π+ 2θ for µ̃S = µ̃ and for relatively large M̃ at the MTI/TI
interface the phase can be approximated by π− 2θ for small θ. This implies that for small
theta we and Ẽ = 0 we have a phase of 0 and thus an ABS.

The latter result can be explained in the same way. For µ̃ = µ̃S and θ = 0 the phase of
the STI cancels as was explained in the 1D calculations. However for a large µ̃ the phase
gained at the MTI is almost 0 for all E thus resulting in an ABS at all energies for θ = 0.
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Figure 10: Here 7 different values for µ̃ were chosen and µ̃S was chosen to be
100. The lines which abruptly stop do so because of a numerical issue described
in section 3.3.5. The legend and title are supposed to refer to the dimensionless
variables µ̃ and µ̃S .

In figure 10 only the µ̃ was adjusted. This implies that the angles θ is not necessarily equal
to θS . The consequence of this can easily be spotted for the cases µ̃ = 2000, µ̃ = 400 and
µ̃ = 200. In these cases we have that µ̃S

µ̃ < 1 so θS is undefined for certain angles. In the
other cases where µ̃S

µ̃ > 1 the function behaves just fine.

In the case where µ̃ is chosen small it seems the function approaches the line Ẽ = 0.
This can be explained by considering that for a small µ̃ θS ≈ 0. This results in the same
explanation as the figure before. For a small µ̃ we have a phase added of about π− 2θ and
at the STI/TI interface the added phase is close to −π + 2θ. Note that I’m considering
the total phase at an interface and not just one reflection.
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4.4 2D system calculation

Figure 11: This plot has the same values as for plot 9. It only shows the plot
for µ̃ = 100. It can be seen that the highest conductance is at the place where the
ABS was predicted to be. Conductance per angle is found on the z-axis.

Figure 11 shows a case where the ABS phase calculations and the calculations of the total
system coincide. You can see in the contour plot that around the ABS the conductance de-
creases. This shows the ABS is not a small spike around the ABS but instead a continuous
function with a maximum at the ABS.
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Figure 12: In this plot a low µ̃ was chosen. The plots seems to describe a large
ABS in the middle of the plot with a large conductance.

In figure 12 it can be seen that there is an Andreev bound state at Ẽ = 0. It was predicted
by the previous phase calculations that all the ABS should be around Ẽ = 0 however we
can see that while this seems to be the case, at high theta the conductance per angle is
too low to show this state.
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Figure 13: In this plot µ̃M was increased. A similar figure can be seen as 11
however this one decreases less around the conductance peaks and curves slightly
differently.

When comparing figure 11 and 13 we can see that increasing the chemical potential in the
MTI has the effect of pulling the ABS more towards the line Ẽ = 0. This effect can be
seen in its extreme form in the next figure.
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Figure 14: Here the same plot was made as in figure 13 however with µ̃M = 98.
This is thus a more extreme version of the previous plot.

In figure 14 a more extreme plot of figure 13 can be seen. Here it becomes clear that a
high µ̃M has the same effect as a low µ̃. If we plug a high µ̃M in the phase equations for
the MTI/TI interface then it is quickly determined that the phase added by this interface
is π − 2θ for small θ. Again, around Ẽ = 0 the phase added by the TI/STI interface is
−π + 2θ thus canceling each other.
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Figure 15: In this graph the distance d was chosen such that dµ = π/2.

In figure 15 the distance is chosen such that dµ = π/2. This should imply that at θ = 0
there is an ABS at Ẽ = 0. As can be seen in the figure this is indeed the case. Apart from
this the figure seems to have shifted. This is expected as an increase in distance not only
adds a phase to the ABS at θ = 0 but to all θ. The added phase is however different for
all angles which is why the plot does not directly correspond to figure 12.

4.5 System conductance

In the following section a look is taken at the conductance. The conductance as given in
equation 16. A Riemann sum is taken with 100 intervals to approximate the conductance
itself.
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Figure 16: Here µ̃ = 2 this implies it resembles the conductance of the figure 12.
d is taken small to avoid resonance in the TI.

In figure 16 a clear curve can be seen with a maximum at Ẽ = 0. This can be explained
by considering that at Ẽ = 0 the largest ABS is located. Around this bound state the
transmission of the electron reduces less in comparison to other energies. This gives a peak
at Ẽ = 0 which decreases with different energies.

Figure 17: In this graph we have µ̃S = µ̃ = 20 which is considerable lower than
the magnetization M which is 100. d is taken small to avoid resonance in the TI.

In figure 17 you can see a similar curve compared to figure 16. The curve is however not
as smooth, as the ABS are located in very specific points along the θ-axis and decrease
rapidly around that. It is also clear that there is a maximum at Ẽ = 0 because of many
bound states close to Ẽ = 0 as could be concluded from figure 9.
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Figure 18: In this graph we have µ̃ = µ̃S = M = 100. Apart from this the
distance d is taken small.

In figure 18 the conductance is given. The conductance is relatively high for a large number
of energies. This is the result of the ABS which is present in equal amounts along the whole
graph for µ̃ = 100, just like in 9 and 11.

Figure 19: In this graph the conductance as a function of the energy is shown.
The calculations were done for dµ = π/2 and µ̃S = µ̃ = M̃ = 100.

In figure 19 a graph is plotted of the theoretical conductance for dµ = π/2. The result shows
an asymmetric conductance instead of a symmetric one shown in the previous conductance
graphs. This asymmetry is a direct result of the added phase by the TI. As the shift was
exactly 2π for Ẽ = 0 the peak is still expected to be at Ẽ = 0. However at different
energies an asymmetry is expected as there is no clear symmetry in the added phases by
the reflection constants which does not rely on an added phase in the TI.
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5 Discussion

In this section a few points will be addressed. Firstly, a look will be taken at the calculations
to see what is mathematically and physically not represented. Then suggestions will be
made for further expansion of the model.

5.1 Limitations of the model

Throughout the thesis multiple restrictions have already been given which influence what
can be checked with this model and what can’t. The restrictions which were noticed early
on are that M > µm > 0, µS , µ > 0, ∆ ≥ |E|. These all have to do with the spinors which
were determined in the theory section. If values which differ from these values are chosen
there is little certainty that the theory is accurate.

However that is not the only limitation of the model. To arrive at the equations in the
theory θS was approximated to be θS = arctan(

ky
kx

) however in the STI there is also
an evanescent wave present. This causes the previous equation not to be true for all θ
but instead approximates it. The degree in which this approximation is correct was not
investigated.

During the derivation of the spinors of the STI the assumption was made that if the spinor
was solved for E > 0 this would also apply to E < 0. This assumption should be checked
for future work with this basis. Also, when the spinors were determined the Andreev
Approximation was used which can be made if ∆, E << εf . While this assumption is true
for the model, it is an approximation nonetheless.

Later on it was noticed that while Mathematica can calculated specific functions easily,
when using large functions this takes a lot of time, especially regarding contour plots. In
these contour plots around the lines θ = π/2 and θ = −π/2 some anomalies can be seen
in multiple plots. These exists as instabilities in the plotting algorithm for Mathematica
and do have real values as expected however on the lines themselves this is not necessarily
the case.

5.2 Expansion of the model

There are ample ways to expand this model into something that reflects reality better.
One major improvement is the calculation of the conductance in a 2D situation. In this
thesis a Riemann sum was used to approximate the integral, however if this integral could
be directly calculated or a more accurate Riemann sum could be taken this would already
improve the result.

Also, in the calculations of the conductance N(θ) was taken to be 1 for all θ. In reality
this is not accurate as a weighed function with weights such that N(θ) attains it maximum
at θ = 0 and its minimum for θ = π/2 or θ = π/2.

6 Conclusion

By using the theory now established for Topological insulators it is possible to create a
complex model in which the conductance in a 2D situation can be calculated. While the
exact results still need to be empirically verified this system is promising case in which
ABS can be used to get a specific conductance at a certain voltage. The locations of the
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ABS can be easily predicted by a phase calculation however to get the actual conductance
all variables need to be calculated in the whole system.

7 Future experiments

As was said before the results of this thesis will need to be verified. This can be done
by constructing a setup using the different TIs described in this thesis and measuring the
conductance of this system. If this proofs to be correct the model could be developed
further with even more generalizations.
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Nomenclature

α Phase of the reflection

q A phonon

∆ Superconducting Gap

εf Fermi energy

~ Planck constant

µ Chemical potential of the TI

µm Chemical potential of the MTI

µS Chemical potential of the STI

ωD Debye frequency

Ψ Basis of the system

ψ Spinor in the system

θ Angle the particle makes compared to the normal vector of the interface

θS The angle of the particle in the STI compared to the normal to the interface

Ẽ Energy normalised, for others see section 3.1

E Energy of the particle compared to the fermi energy

H Hamiltonian of the material

kx Wave vector in the x-direction

ky Wave vector in the y-direction

M Magnetization of the MTI

Rn Normal resistance

uk, u Squareroot of the change of a hole occupying the referred to state

vk, v Squareroot of the change of a hole occupying the referred to state

ABS Andreev bound state

b Width of the MTI

d Width of the middle TI

MTI Magnetic topological insulator
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STI Superconducting topological insulator

TI Topological Insulator
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