
Using a Thermal Flow Sensor as a Thermal
Conductivity Sensor

Daniël Geert Bijsterveld

June 30, 2020



Bachelor Thesis

University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science

Research group: Integrated Devices and Systems

Assignment committee:
Dr.ir. R.J. Wiegerink
Prof.dr.ir. J.C.Lötters
Dr.ir. J. Groenesteijn

Dr.ir. R.A.R. van der Zee

1



Contents

1 Introduction 3

2 Theory 4
2.1 Thermal flow sensors in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 IQ+ Flow Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Thermal conductivity sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 The IQ+ Flow Sensor as Thermal Conductivity Sensor . . . . . . . . . . . . . . . . . . . . 5

3 Modelling the IQ+ Flow Sensor 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Modelling Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 2D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Simulating the IQ+ Flow Sensor 11
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Node Voltage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 2D Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 3D Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 3D Simulation with Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Thermal Conductivity Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Measurements 21
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Conclusion 27

7 Appendix 29
7.1 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Node Voltage Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 2D model Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4 3D Model Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.4.1 3D Model Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4.2 3D model Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.5 Complete Model Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.5.1 Flow as IQ+ Flow Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.5.2 Flow at a 90 degree angle Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5.3 Running The models and saving the Data . . . . . . . . . . . . . . . . . . . . . . . 42
7.5.4 Plotting and analyzing the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2



Chapter 1

Introduction
The goal of this Bachelor assignment is to see whether an IQ+ flow sensor [1] from Bronkhorst can be
used as a thermal conductivity sensor. The IQ+ flow sensor is a microchip thermal flow sensor which
consists of two heaters and three temperature sensors. One of the temperature sensors is sandwiched
between the heaters the others are upstream and downstream from the heaters. The flow is measured
by the difference in temperature of the upstream and downstream heaters. This is then adjusted with
the temperature sensor between the heaters to account for total temperature of the chip affecting the
temperature difference between the upstream and downstream heaters. This measurement is dependent
on the thermal properties of the measured medium. For this reason the gas and its thermal properties
being measured must be known. Adding a thermal conductivity sensor can be used to compensate for
the influence of the thermal conductivity. A thermal conductivity sensor can also possibly be used to
determine which gas is being measured so the correct thermal properties can be used. To use in addition
to the thermal flow sensor would require the thermal conductivity sensor to be able to determine the
thermal conductivity independent of flow.

In this thesis first some background information will be given. Then the microchip including the flow
channel will be modelled. First in two dimensions and in three dimensions without flow, then a model
for flow will be added to the 3D model. the models for the three scenarios (2D, 3D and 3D with flow)
will programmed in Matlab and be simulated this way. Using the simulation results it will be looked into
whether the IQ+ Flow sensor can be used as a thermal conductivity sensor. Some limited measurements
will be done and the results of these will be analyzed and compared to the results of the simulations.

Figure 1.1: The IQ+ Flow Module [1]

3



Chapter 2

Theory

2.1 Thermal flow sensors in general

A Thermal flow sensor is made to measure the mass flow of a gas. Thermal flow sensors consist of one
or more heaters and sensors. It is possible to combine a heater and sensor in one sensor element.

When using hot wire anemometry a single wire element is both the heater and thermal sensor. The
heated wire is cooled by the flowing gas and its temperature is measured. The temperature can be
measured as the resistance of the wire changes as its temperature does. By knowing the power input
and the temperature of the wire the amount of heat dissipated by the flowing gas can be calculated and
used to calculate the mass flow. [2]

It is also possible to have a structure that measures the flow velocity. This can be done by having
a heater upstream and a sensor downstream at a known distance from one another. The gas will be
heated in pulses by the heater. By measuring the time it takes for these pulses to arrive at the sensor
the flow velocity can be determined. [2]

Calorimetric flow sensors work by measuring the amount of energy needed to heat the flowing gas.
To do this at least a heater upstream and a sensor downstream is needed. Typically an extra sensor
upstream is added. This way the temperature difference of the two sensors can be compared to the power
that was supplied by the heater.[2]

2.2 IQ+ Flow Sensor

The IQ+ flow sensor is a microchip thermal flow sensor consisting of two heaters and three thermal sen-
sors. These are structured as a sensor upstream then the two heaters with a sensor positioned between
them and then the downstream sensor, so sensor—heater-sensor-heater—sensor. A schematic image can
be seen in figure 2.1. The IQ+ is a calorimetric flow meter in that it uses the difference in temperature of
its outer sensors to determine the mass flow. It uses it sensor that sits between the heaters to determine
the temperature of the heaters. This is used to correct for factors as the thermal conductivity of the
gas or power supplied by the heaters. These factors determine the absolute temperature at the heaters
which amplifies the temperature difference between the outer sensors.

The three thermal sensors are thermopiles referenced to the rim of the chip, this point of reference
can be seen as Trim in figure 2.1. This means the thermal sensors measure the temperature difference
between themselves and the rim of the chip. The thermal sensors and heaters are placed upon a rectan-
gular borosilicate glass membrame of 2500 by 3000 µm which forms a square of 2500 by 2500 µm with
on one side which has a 500 µm expansion to attach bondpads. The membrane has a thickness of 40 µm.
The chip rests on a silicon rim. The rim is placed along the outer edges of the borosilicate glass leaving
a square of 976 by 976 µm exposed to gas at the bottom of the membrane. The silicon rim is straight
at the edges but on the inside it taperes down with an angle of 35.3 degrees as seen normal vector from
the membrame. The chip is placed in a cavity in a flow channel. The cavity is made in a way that the
top of the flow channel sits flush with the walls of the flow channel. the flow channel is 200 µm high
and 6 mm deep for which the height is orthogonal to the surface of the chip and the depth is parallel to
the surface of the chip. This creates a cavity under the chip. There is connection between this cavity
and the flow channel which causes the cavity to be filled with the same gas as flows through the channel
after some time. The flow through this this cavity is negligible for other purposes. [3]

2.3 Thermal conductivity sensors

A thermal conductivity sensor is made to measure the thermal conductivity of a material. In this bach-
elor assignment however only the sensing of thermal conductivities of gases will be considered.

4



Figure 2.1: A schematic image of the IQ+ flow sensor (not to scale) [3]

This can be done by having two temperature sensors separated by a gas and a heater at on of the
temperature sensors. If both the temperature difference and the power supplied heater is known and
stable, the thermal conductivity of the gas can be determined.

Another way to determine the thermal conductivity is a thermal conductivity detector (TCD). The
thermal conductivity detector measures the heat dissipation through the gas by having a heated element
of which the temperature is sensed. This heated element is put into an enclosed channel to not have
outside influence and to allow a gas to be injected so it can be measured. By knowing the power pro-
vided to and the temperature of the heated element the thermal dissipation can be determined. If the
heat heat dissipation is known then the thermal conductivity of the gas can be determined. Usually the
thermal conductivity detector has gas flowing through it, to supply the gas to be measured, this flow
can also dissipate heat by means of convection. To compensate for the heat dissipation caused by flow
two identical channels with heated elements are used. Trough on channel a carrier gas carrying the gas
to be measured flows. Through the other channel only the carrier gas flows. The gases are supplied with
the same flow rate through both channels. This way the channel with the gas to be measured can be
referenced to the channel with only the carrier gas. Doing this the flow rate and thermal conductivity
of the carrier gas is being compensated for and the thermal conductivity of the gas which should be
measured can be measured. [4]

2.4 The IQ+ Flow Sensor as Thermal Conductivity Sensor

The goal of this bachelor thesis is to find whether the IQ+ flow sensor can be used as a thermal con-
ductivity sensor. The sensor has to be able to have a gas flowing through it and sense the thermal
conductivity, so it must be able to determine the thermal conductivity independent of the flow. To do
this three setups may be considered: The original chip with no modification, the chip rotated 90 degrees
in the flow channel and a series arrangement with the chip in its original orientation followed by the next
chip rotated 90 degrees. These scenarios can be seen in figure 2.2.

In an ideal scenario a signal that is independent of flow and can be used to determine the thermal
conductivity can be found. In this case only some readout electronics changes may need to be made.
This may allow to, with some changes in electronics, use an IQ+ flow module as both a flow sensor and
thermal conductivity sensor. This scenario is shown in figure 2.2a.

So the chip may be rotated 90 degrees. This way there is no flow induced difference between T1 and T3.
This makes sensing the thermal conductivity less complex as there is no longer a difference between T1
and T3 which has to compensated for. This way it is hoped that a flow independent signal that can be

5



used to determine the thermal conductivity can be found. If this can be found a modified IQ+ module
can be used as a thermal conductivity sensor. This scenario is shown in figure 2.2b.

Putting two chips in series may be done when a signal is found on the 90 degrees rotated chip which
can be used to determine the thermal conductivity but is dependent on the mass flow of the gas. In this
case a chip in its original orientation may be placed before or after the 90 degrees rotated chip. Signals
from the originally oriented chip may be used to compensate for the flow dependency of the signal from
the 90 degrees rotated chip. When the thermal conductivity is known this can even be used to get a
flow measurement from the originally rotated chip. If this configuration works an unmodified chip and
a modified chip in series can be used to determine the thermal conductivity and mass flow rate. This
scenario is shown in figure 2.2c.

(a) The chip in original configuration, the black
arrows represent the flow direction of the gas

(b) The chip in rotated 90 degrees, the black arrows
represent the flow direction of the gas

(c) The chip in original configuration and the chip rotated 90 degrees in series, the black arrows represent the
flow direction of the gas

Figure 2.2: Possible configurations of the IQ+ flow sensor chips to measure the thermal conductivity
(schematic and not to scale).

6



Chapter 3

Modelling the IQ+ Flow Sensor

3.1 Introduction

To determine whether the IQ+ flow sensor can be used as a thermal conductivity sensor, the IQ+ flow
sensor is first modelled. The modelling starts at 0 g/h mass flow and constant power supplied to the
heaters. This makes the temperature dependent on the heat conduction through the chip and gas. This
conduction is first modelled in a 2d model, refined and later expanded to a 3d model to refine it further.
When this 3d model is completed the effect of the mass flow will be modeled. All this modelling will first
model the chip as flow sensor as Velthuis has done.[3] All these models will be validated using Velthuis
measurements as this is the most complete data that can be used to validate the models. When this is
done an extra model will be made in which the direction of flow is rotated 90 degrees.

To do this the same dimensions of the chip will be used as Velthuis so the 2500 by 2500 µm square
will be trimmed at the edges to a 1700 by 1700 µm square. This loses some silicon of the original chip
and thus some heat conduction at the dges of the chip. As later will be seen the heat conduction of
the silicon rim is high enough to be like a short and the there will not be a significant heat difference
between the edges of the chip and the environment temperature.

The eventual complete models (The model with the original direction of flow and the one with the
90 degree rotated flow) will be used to find a theoretical expression for the the thermal conductivity
of the gas that flows trough the chip. This expression should only use signals from the chip so it can
practically be used to measure the thermal conductivity of a gas.

3.2 Modelling Heat Conduction

For the initial models heat conduction will fully define the behaviour of the chip. After convection is
introduced to the model the convection adds to the behaviour already defined by the heat conduction
throughout the chip. The heat conduction throughout the chip is modelled by an equivalent electrical
circuit. This was inspired by the modelling of the V-Grooved Pirani sensor by van Baar in his Thesis
[5].

The heat conduction throughout the chip can be modelled as an electrical equivalent conductance as heat
conduction is mathematically similar to electrical conduction. The equation for heat conduction can be
seen in equation 3.1. [6] where Q is the amount of heat conducted, A is the area it is being conducted
through and k is the material that conducts the heat. x is the path along which the heat is conducted.

Q

∆t
= −kAdT

dx
(3.1)

By defining ∆T to be the heat difference between two points and in the opposite direction of dT. Taking
the length L which is the distance between these two points and A the area between these points. Then
by settig k as the thermal conductivity constant of the material between these points we can write
equation 3.1 as equation 3.2 where Q̇ is the heat flux.

Q̇ =
kA

L
∆T (3.2)

This equation 3.2 can be rewritten as equation 3.3.

∆T =
L

kA
Q̇ (3.3)

Which is very similar to Ohms law which can be seen in equation 3.4.

V = RI (3.4)

7



This means the equivalent resistance of the thermal resistance between two points would be described
by equation 3.5. Where the heat flux would be considered as the current and the temperature difference
as the voltage.

R =
L

kA
(3.5)

All the models will be divided in to points in space of the chip and the flow channel. The equivalent
resistance as can be seen in equation 3.5 will be used to model the thermal conductances between these
points.

3.3 2D Model

The first model that is made is the two dimensional model. This model can be seen in figure 3.1. This
model has 9 nodes (points) and a reference node. The 9 nodes are the top and bottom walls of the
flow channel, the left Trim (as seen in the figure), T1, H1, T2, H2, T3, the right Trim (as seen in the
figure). The location of these points is taken exactly in the middle of where the Trim, T1, H1, T2, H2,
T3 are positioned on the chip, as all these take up up area on the actual chip. Between the walls of the
flow channel and the ground a voltage source is placed to force the wall nodes to be 293 K since it is
assumed that the wall nodes have the environment temperature which is set at 293 K. Between the top
wall and the nodes at the membrane (Trim Left, T1, H1, T2, H2, T3, Trim Right) there are resistances
modelling the thermal conductance from the membrane to the top wall trough the gas. These resistances
are denoted as variable as they are dependant on the thermal conductivity of the gas. The height of
the flow channel is taken as length for equation 3.5. For the area the width of the chip is multiplied
with the corresponding width of the node. The corresponding width of the node is measured as being
the length between the two halfway points to the neighbouring horizontal nodes. Between Trim Left,
T1, H1, T2, H2, T3 and Trim Right there are the resistances that model the membrane. To determine
these resistances the length between these points is filled in to equation 3.5, together with the area of
the membrane between these points which is the thickness of the membrane multiplied by the width
of the chip. Between the nodes at the membrane and the bottom wall there are resistances modelling
the thermal conductance of the silicon rim. The resistance from Trim (on both left and right side) to
the walls is different from the other nodes on the membrane in its connection to the walls. They have
a direct connection with the walls through the silicon and are modeled by taking the distance between
the bottom wall and the membrane as length and the average thickness of the silicon times the width of
the chip as area. The resistances between the other points of the membrane are harder to model. They
exist of two thermal resistances in series the first being the thermal resistance from the middle of the
membrane to the rim of the membrane and the second resistance being from the rim of the membrane
to the bottom wall. The resistances of the membrane are taken by taking the distance between the
middle of the membrane to the rim as length and the thickness of the membrane multiplied with the
corresponding node width as area. The resistance of the silicon rim are taken by taking the height of the
rim as length and the average thickness of silicon rim multiplied by the corresponding node width (of T1
etc) as area. When these resistances are modeled only one group of resistances is left. The resistances
modeling the gas between the membrane and the bottom wall. There are only resistances between T1,
H1, T2, H2 and T3 and the bottom wall as there is no cavity beneath the rim of the chip. These resistors
are modeled by taking the height of the silicon rim as length and the corresponding width of the node
(of T1 etc) multiplied with the width of the cavity as area. As last part two current sources are added,
one for each heater. both current sources are set at the same power and are set at a combined power
of 26mW as this corresponds to the power density that was used by Han Velthuis in his simulations [3].
All thermal conductivity constants used in equation 3.5 are the conductivities of the material that they
model.

All material properties used in the modelling in this thesis can be found in the appendix in section
7.1.

The 2d model is further refined after this by taking the resistances of the gas in the flow channel
and splitting them in two resistances in series between each point at the membrane and the top wall.
They are split evenly to create nodes in the middle of the flow channel. These nodes are connected with
resistances between each other to model the horizontal thermal conduction of the gas in the flow channel.
They are modeled by taking the distance between the points as length and the area between each other

8



Figure 3.1: The 2d model of the IQ+ flow sensor

as area and plugging this into equation 3.5 together with the thermal conductivity of the gas to calculate
the resistance.

3.4 3D Model

To make a more accurate model the chip is now modelled in three dimensions. This allows the addition
of the horizontal thermal conduction of the gas in the cavity and the horizontal thermal conduction of
silicon rim to the model. This requires an extra dimension as splitting the resistances in two does not
create the same nodes for the gas and the silicon rim. The silicon resistances do not connect to the same
nodes as the gas resistances. This creates an extra dimension. However it was decided not to stop there
but make a full 3D interpratation of the chip.

To make this full 3D interpratation first 7 nodes will be defined as the main nodes. These main nodes
form the structure of the 3D model. These nodes are Trim Left, T1, H1, T2, H2, T3 and Trim Right.
The nodes are the same nodes as their namesake in the 2D model. They lie when looking into the
depth of the chip (The dimension orthogonal to the paper in figure 3.1 and 2.1, this dimension will
from now on be called depth) in the middle of the chip. Then along to the depth we will also have
the same nodes shifted in to the paper to lie on the middle of the rim. These are called the [main
nodes] in. As the chip is symmetrical there will also be the same nodes shifted out alongside the depth
to lie on the middle of the rim. These are called [main nodes] out. Then the main nodes and their in
and out variants also have their variants but shifted up to halfway the flow channel. These are called
[main nodes] up, [main nodes] up in and [main nodes] up out. The same thing is done to create a lower
dimension. The main, in and out nodes also have a variant shifted down to halfway the height of the
silicon rim. These nodes are called [main nodes] down, [main nodes] down in and [main nodes] down out.

Now that the nodes are defined the resistances can be calculated. To do this the areas taken for re-
sistances must be defined. The areas for a node in the vertical direction of the middle nodes (in the
depth direction) will be defined as the width of the cavity (976 µm) times the distance between the
halfway points of its neighbours in the horizontal direction (This will be called node width). At the
edges it will be the distance between the edge and the halfway point of the neighboring node as seen
from the node at the edge (This will extend to node with). For the other areas in the vertical direction,
the width of the cavity will be replaced with the width of the silicon rim. For the areas in the horizontal
direction this will be divided into three parts, upper, membrane and down. The membrane areas will
be the thickness of the membrane times the cavity width for the middle (in the depth direction) area
and times the silicon rim width (at its maximum) for the inner and outer (also in the depth direction)
areas. The upper and down areas follow the previously mentioned areas replacing the thickness of the
membrane with the height of the flow channel for the upper areas and with the height of the silicon rim
for the down areas. For the down areas the width of the silicon rim at its maximum will be replaced
with the average width of the silicon rim. The lengths of the resistances will be the distance between
the nodes. The thermal conductivity will be taken as the thermal conductivity of the material between

9



the points. This leads to the complication that at the down level for the resistances between the points
in the rim and the points in the cavity. Part of the material between the points is silicon and part is
gas. This will be solved by calculating two resistances and adding them up. The resistances have the
original area but the length that corresponds with the length of the path that goes through one of the
two respective material, then the thermal conductivity constant of that material can be used.

3.5 Convection

Through the flow channel of the chip there may be a mass flow (as the chip is a flow sensor). The
influence of a mass flow in the flow channel is modelled by convection.

To model the convection it is assumed that the flow is laminar over the chip and that the chip has
a flat surface. It is also assumed that the gas properties are constant and do not change with tempera-
ture. Doing this makes it possible to use the formulas given by Y.A. Cengel in his textbook about heat
transfer [7]. This gives the equation for het transfer by convection:

Q = hAs∆T (3.6)

From this equation it can be seen, by using the same method as in section 3.2, that we get a thermal
resistance.

R =
1

hAs
(3.7)

To determine h Cengel gives the equation.

h =
k

L
Nu (3.8)

Where the Nusselt number is gotten by taking the average Nusselt number over the part of the surface
that h is determined for. The Nusselt number of which the average should be taking is also given by
Cengel.

Nux = 0.332Re0.5x Pr
1
3 (3.9)

As is the Reynolds number.

Rex =
ρV x

µ
(3.10)

Where ρ is the density of the gas and µ is the viscosity of the gas.

Using these equations the convection is modeled. This is done by taking the surface as the middle
nodes (in height) so the main and in and out nodes. For every one of these surface nodes there will be a
resistance to ground (as the gas is assumed to be at room temperature) to model the convection. Then
determining the flow direction as either coming from the left of the chip as can be seen in figure 2.1
or rotating the chip 90 degrees so that the flow would now be in the depth direction of the figure 2.1.
When the flow is determined the edge from which the flow enters will be considered x = 0 and x will
increase as the flow moves along the chip. Using this the Reynolds number and the Nusselt number can
be determined. Then for every node the average of the Nusselt number will be taken for every node for
the length corresponding with the node in the direction of flow. These lengths are in accordance to the
areas taken for every node to determine the resistance of the vertical resistance of the upper gas attached
to that node. The lengths are also used as length to calculate h where k is the thermal conductance. the
areas used for the resistance calculation are the previously mentioned areas corresponding to the nodes.

10



Chapter 4

Simulating the IQ+ Flow Sensor

4.1 Introduction

In this chapter the simulations will be discussed. It will go into how the simulations were done and in
what they resulted to conclude with using the results of the simulation to find an expression for the
thermal conductivity. The results of these simulations will be compared to the simulations carried out
by Han Velthuis [3] as these are the most complete reference data available at the time of doing the
simulations.

All the simulations were done using Matlab [8]. At first a script was written to determine the resis-
tance values for the 2d model. These resistances were then used to build the 2d model in LTspice [9],
after this a DC analysis was run in LTspice. The resulting voltages at the nodes represent the temper-
atures. This process however is very time consuming as for every change and different setting of gas a
certain number of resistance values have to be changed by hand in LTspice. To make the process less
time consuming a node voltage solver was programmed in Matlab. This way a resistor network could
be generated by a script and then solved by this node voltage solver. This method of first generating a
resistor network via a script after which this resistor network is handed to the node voltage solver to be
solved is also used for the 3D model and the 3D model with convection. These models are large enough
to make building these models in LTspice and inserting the values not a practically viable option. Both
models have more than 150 resistors which would need to be put into LTspice.

4.2 Node Voltage Analysis

To be able to both create and solve resistor networks in Matlab a simple circuit solver is made in Matlab.
As all models purely contain resistors and independent current sources this can be done by using the
node and creating a node admittance matrix. This admittance matrix has the form.[10]

Y11 Y12 ... Y1,n−1

Y21 Y22 ... Y2,n−1

: : ... :
Yn−1,1 Yn−1,2 ... Yn−1,n−1



V1
V2
:

Vn−1

 =


i1
i2
:

in−1

 (4.1)

Where n is the number of nodes not including the ground node and Y are the admittance values. The
indexes of of the admittance values show their relation to the nodes. The admittance values are the
negative sum of the admittances between the nodes described in their indexes so for the index 12 it is the
negative sum of admittances between the nodes 1 and 2. The diagonal nodes of course have admittances
no between their indexes (as they are the same nodes). To calculate these admittance value the positive
sum of all the admittances attached to the doubly described node should be taken. The currents of every
node are 0 unless a current source is attached to the node. If the current from the current source flows
into the node it is added to the node when it flows out of the node it is subtracted. [10]

To transfer this in to Matlab a function was written. This function takes as input the amount of
nodes of the network it has to solve, All resistors in an matrix containing for every resistor its resistor
value and the two nodes it is attached to and as last input it takes all the current sources also in an
array with for every current source its value and the nodes it is attached to. The resistor array is orga-
nized as follows Resistor Array(Number, Value, First node, Second Node). The current source array is
organized similarly Current Source Array(Source Number, Value, First Node, Second Node) where the
current direction is from the second node towards the first node. The numbers are the way to identify
individual resistors. When having these inputs the script calculates the admittance values for every
entry of the matrix as described in the previous paragraph. It then ads the current sources in the current
section as described as also described in the previous paragraph. When the admittance matrix and the
current vector are complete they are given as input to the linsolve function in Matlab. The output of
this function are is then the vector of voltages. These voltages are the solution of the network and thus
given as output. The code can be seen in section 7.2.

11



4.3 2D Simulation

To simulate the 2D model of section 3.3 a Matlab script was written. This script can be seen in section
7.3. It changes the model as described by removing the voltage sources and setting the ground at the
walls of the channel which become one node. This means that the reference for the temperature difference
now has to be the environment temperature which is 293 K. First it declares all the chip properties so
these can be changed without going through the entire chip. It has the thermal conductance properties
of the gases N2, Ar, CO2, He, H2, Kr, Ne and Xe to accommodate convenient switching between these
gases. Then it gives every node a number. It generates the resistor network by generating resistors per
group. Every resistor has its resistance value calculated as described in the modelling section and is then
assigned the nodes it is connected to. This resistor network is given as input to the Node voltage solver.
The output of the node voltage solver is then converted to temperature in Kelvin and the relevant nodes
are taken and then plotted. The plot for the gas N2 can be seen in figure 4.1. The power of the chip is
set at 26 mW as this corresponds to the power density used by Han Velthuis in his report.

Figure 4.1: The temperature distribution of the 2D model for N2 at 26 mW heater power, the dots
represent the nodes (Trim Left, T1, H1, T2, H2, T3, Trim Right)

12



The Result of the 2d model which can be seen in figure 4.1 show the temperature distribution over
the chip. It can be seen that at the heaters the chip is hottest and it cools down towards the edges which
is expected. The temperature of the chip seems to be slightly colder, around 10K, than the results of
Velthuis in earlier simulations. As the model will still be expanded to three dimensions this was deemed
acceptable.

4.4 3D Simulation

For the 3D model a function was created which did the same as the script for the 2D model with some
changes. The function also has the parameters of the chip and declares this however it gets the ther-
mal conductivity as input. It also does not plot the relevant nodes but gives these as output. Then a
main function was written which lets the function run for the multiple gases (by setting their thermal
conductivity as input of the function) and plots the results. These plots can be seen in figure 4.2 and 4.3.

Figure 4.2: Results of the 3D model, The temperature distribution of the chip is shown, the dots represent
the nodes (Trim Left, T1, H1, T2, H2, T3, Trim Right), the combined heater power is 26 mW

13



In figure 4.2 the temperature distribution over the is shown. It can be seen that with the gases that have
a higher thermal conductivity the chip runs hotter as less heat is dissipated through the gas. It can also
be seen that for the gases with low thermal conductivity the temperature distribution from the heaters
to the edge is more linear than for the gases with high thermal conductivity. The linearity is caused
by the heat dissipation through the membrane which is a resistor divider along the position of the chip
and has a constant resistance per length as its thickness and material properties are constant. The gas
however dissipates the most heat where the heat is highest (so in the middle of the chip) this gives rise
to the heat conduction of the gas to cause nonlinear behaviour for the temperature distribution of the
chip. As the membrane remains constant in the chip the heat conduction through the gas can make the
heat distribution from heater to edge either more or less linear. Where higher thermal conductivity of
the gas causes more heat conduction through the gas and thus less linearity.

In figure 4.3 The temperatures of different nodes and expressions of these are shown.It can be seen
that most nodes decrease in temperature depending on the thermal conductivity. It can also be seen
that when looking at the ratio between (T2 - Trim)/(T1 - Trim) it is linearly dependent on the thermal
conductivity. This can be explained by the fact that the non linearity of the temperature distribution is
caused by the heat conduction of the gas which increases linear with the thermal conductivity. So look-
ing at the ratio of T2/T4 referenced to the edge of the chip (which tends to be around the environment
temperature) which shows the linearity or non linearity of the temperature distribution gives a result
dependent on the thermal conductivity.

4.5 3D Simulation with Convection

To simulate the 3D model with convection two functions were used. One function having the flow as
shown in figure 2.1 and on with the flow rotated 90 degrees. Both functions are the function of the 3D
model with convention added to it. For the convection to be added the function needs extra gas properties
as input. It needs as extra properties the density of the gas, the viscosity of the gas, the Prandtl number
of the gas and it needs the flow velocity of the gas. Using these parameters the resistances modelling the
convection can be added as described in section 3.5. These functions are called in the main function for
the gases Xe, Kr, CO2, Ar, N2, Ne, He and H2. These gases are each run for a range of flow velocities of
0 to 30 m/s with 0.1 m/s increments, each gas is subjected to the entire range of velocities. This data
is then saved to a file. Running both functions 8 x 301 = 2408 times when changing some plot settings
or doing analysis on the data is impractical. A plotting function then reads the data from the file and
plots it. The plots can be seen in figure 4.4 and 4.5. In these plots a point T4 can be seen. This isn’t a
real point, it is the average of T1 and T3 so T4 = T1+T3

2 . It most also be noted that to simulate the real
signals the chip gives, all signals are referenced to Trim. This is done because the real chip does this.
Trim is in every case around between 293K and 294K as it is almost thermally shorted to the flow channel
walls which are 293K. To compare it to the other measurements 293K must thus be added to the signals.

In figure 4.4 the results with the flow in the original direction are shown. When comparing this to
the model of Velthuis T2 has similar values (370 K at 0 m/s and 340 K at 30 m/s for N2 and having
added 293K to the model to compensate for the reference point). So the total heat dissipation of the
flow seems to have been modelled correctly. It can be seen that T3-T1 however has a difference with the
model of Velthuis of a factor of around 4 but still has the same behaviour. This indicates that modelling
the flow purely by convection is not sufficient to model the local temperature differences.

When looking at figure 4.5 which has the flow rotated 90 degrees it became clear that with the ex-
ception of T1-T3 and what dependant on this the results where exactly the same. T4 has the exact same
value as the previous model. As T1 and T3 are more than half of the length of the flow length over the
chip this is more likely to depend on the total dissipation trough convection and thus being modelled
correctly. This would indicate that T4 in the previous model was also correct and only the distribution
of temperature over T3 and T1 was incorrect.

It can be seen that T2/T4 (which is already referenced to the edge of the chip in this model) gives
a again its linear relation with the thermal conductivity. The flow however also has an influence on this.
It works in the same way as the thermal conduction does for the gas however its dissipation increases in

14



a square root form with the flow.

4.6 Thermal Conductivity Sensing

The 3D model with convection will be used to find a way to determine the the thermal conductivity of
the gas using only the temperature signals of the thermal sensors. All signals from the thermal piles in
the model are referenced to Trim to simulate the actual signals the chip will put out.

A starting point to determine would be taking T4/T2 as this is already has a linear dependence on
the thermal conductivity. However just linearly fitting this signal and creating a conversion formula us-
ing this fit will be dependent on flow since T4/T2 is dependent on flow. So a correction for flow must be
made. To do this T3-T1/T2 is taken to represent flow (and will be called F from now on). This function
is the function that is taken as signal for the flow calculations by Han Velthuis and is a square root de-
pendent on flow. Simply multiplying this signal with T2/T4 however does not yield the hoped result of a
mostly flow independent signal that is dependent on the thermal conductivity. This is caused by the fact
that the signal is dependent on the membrane, the gas and the flow. So (T2/T4)(1-aF) was tried where a
is just a constant that can be set. The 1 takes care of the signal caused by the membrane and gas while a
times F adjusts for the influence of flow on the signal. As both the signal (T2/T4) and F are square root
dependent on the flow F can be plugged in without correcting for the square root dependence. By trial
and error the factor 5 was taken for a. This made the function mostly independent of flow. To determine
the thermal conductivity using this signal the known thermal conductivity of the gasses was linearly fit-
ted to the signal. Then using the fit the estimated thermal conductivity was calculated from the function.

A first method to determine the thermal conductivity was created with trial and error to determine
its constant a. It was decided to determine a in a more precise way. The function (T2/T4)(1-aF) was
taken again. and k was fitted again to this function and using this fit an estimated k value for the signal
(T2/T4)(1-aF) was made. This time however a was varied from 0.01 to 20 with steps of 0.01. Then
the sum of the error squared where the error is the difference between the estimated and actual thermal
conductivity was taken. The value of a for which this sum was lowest is considered the best value for a
which was 5.01 which is almost exactly the same as the outcome of the trial and error. This signal and
the estimated thermal conductivities can be seen in figure 4.6. It must be noted that since T3-T1 differs
considerably from the values of Velthuis that the factor a will probably differ from the actual factor that
should be used with a real flow sensor.

To determine that (T2/T4)(1 − aF ) is the correct form to use, some other forms where tested. These
forms where (T2/T4)(1− a

√
(F )), (T2/T4)(1− aF − bF 2) and (T2/T4)(1− aF − b

√
(F )). The param-

eters of these functions where found in the same way as a was determined in the previous paragraph.
The lowest sum of square errors was also taken for each signal and compared to the sum of square
errors of (T2/T4)(1 − aF ). No improvement was found. The signals (T2/T4)(1 − aF − bF 2) and
(T2/T4)(1 − aF − b

√
(F )) got equal performance to (T2/T4)(1 − aF ) while (T2/T4)(1 − a

√
(F )) had

worse performance (higher sum of square errors). This means that (T2/T4)(1− aF ) is the best signal of
these tested signals as all signals getting equal performance are more complicated and the other signal
performed worse.

The magnitude of the error of the estimated thermal conductivity (using the best fitted signal: (T2/T4)(1−
5.01F )) was plotted as percentage of the correct value for the thermal conductivity in figure 4.6. It can
be seen that for low mass flow and small thermal conductivities the error is considerable. As the best
fit signal was taken over the entire range of flows the extreme ends are expected to show more error.
Since the influence of the flow follows a square root relation this make the difference in the low flows the
largest resulting in more error for the low flows. This could be improved by making a special fit for low
flows or having logarithmic steps for the flow when determining the fit. The larger error for low thermal
conductivities is caused by the fact that the same error in thermal conductivity is a larger relative error
in thermal conductivity.

The simulations indicate that the unmodified chip can be used to determine the thermal conductiv-
ity independent of flow. Using the signal (T2/T4)(1 − 5.01(T3−T1

T2 )) and linearly fitting the thermal
conductivity to this a function for the thermal conductivity can be created that is independent of flow.

15



Measurements will have to be done to test whether this holds in reality. As the difference between T3-T1
is most likely incorrect, the value 5.01 will most likely have to be adjusted based on the measurements.
Interesting in measurements would be whether the temperature T4 is independent of the mass flow di-
rection (at a 90 degree angle). If T4 is independent of flow direction one flow sensor module with the
flow in the original direction can be used as thermal conductivity sensor. If T4 is in measurements not
independent of flow direction it might be necessary to have an unmodified flow sensor in series with a 90
degrees rotated chip.

16



Figure 4.3: Results of the 3D model, the temperatures and functions of these temperatures are shown
against the thermal conductivity, the combined heater power is 26 mW

17



Figure 4.4: The results from the 3D model with convection with flow from the original direction as can
be seen in figure 2.1, Heater power at 26mW

18



Figure 4.5: The results from the 3D model with convection with the flow direction rotated 90 degrees
from the original flow direction. Heater power at 26mW

19



Figure 4.6: The signal used to determine the thermal conductivity

20



Chapter 5

Measurements
There were measurements done to test how accurate the models are. These measurements are not
enough to fully test the models as a standard IQ+flow module with its standard read-out electronics was
used. The standard readout electronics only read out the temperature at T2 referenced to Trim and the
temperature difference between T1 and T3. The other data the IQ+ module gives is its measurement
which will not be that useful as we are interested in the temperatures of the chip.

5.1 Setup

Three gases were taken to be used for the measurements: N2, Ar and He. These gases were put through
a Coriolis flow controller. This flow controller controls the flow and this flow is fed to the IQ+ flow
sensor. The IQ+ flow sensors output is left open so the gas flows into the measurement lab. So it is
the gas supply supplies the Coriolis flow controller which supplies the IQ+ sensor which outputs the gas
into the environment. A thermal sensor is placed on the base plate of the IQ+ module to measure the
absolute temperature. This temperature should be close to Rim temperature of the chip to which all the
temperature signals from the IQ+ sensor are referenced. The Coriolis flow controller and the IQ+ flow
sensor were controlled from a script in python. This script first flushes the the setup 2 minutes with the
gas the measurements will be taken with to get rid of any residue gas of previous measurements with the
setup. Then in steps a range of mass flows is measured. Starting at 0 g/h to the maximum maximum
mass flow that the Coriolis mass flow sensor can reach. The measurement data is saved by this script
and later loaded in Matlab for analysis.

5.2 Results

The measurement results were loaded in Matlab so some analysis could be done. The mass flow mea-
surement of the Coriolis flow controller was considered to be the mass flow. For comparison the flow
velocity in m/s was calculated from the mass flow. The first seconds of the N2 and Ar measurements still
showed effects from the flushing of the chip so the first 5 seconds of these measurements were removed.
The results were then plotted as can be seen in figure 5.1, 5.2 and 5.3. The theoretical values of T2 and
T3-T1 were plotted against the same flow range as the measured values to make comparison easier, these
plots can be seen in figure 5.4.

5.3 Discussion

It can be seen that the measured temperature of T2 at 0 m/s flow is very similar to the simulation
for both N2 (84 K vs 80 K)(measurement vs simulated) and Ar (90 K vs 90 K) but not for He (41 K
(first value in time was taken) vs 28K). This could be caused by helium warming up the top wall of
the flow channel causing less heat conduction. When looking at the temperature difference at maximum
flow to zero flow this is for N2(6 K vs 11), Ar(6 K vs 12 K) and He(5 K vs 5 K). It can be seen that
the predicted temperature decrease caused by convection is off by a factor 2 for both N2 and Ar but is
correct for He. When looking at T3-T1 it can be seen that for N2(2.75 K vs 1.25 K) and Ar(2.5 K vs 1.25
K) the theoretical prediction was half the measured value however He(3 K vs 0.5 K) has the simulated
prediction being 6 times lower than the actual measured value. Helium is in all these cases the outlier,
as only three gases where tested more gases should be tested to see whether this is helium is truly an
outlier or that the model is by coincidence off by the same factors for Ar and N2. When looking at Ar
and N2 the heat dissipation dissipation through convection is two times higher in the simulations than it
should be. The difference in temperature of T1 and T3 however is two times lower in simulations than
it should be.

As T1 and T3 could not be read out by the read-out electronics T2/T4 and (T2/T4)(1 − aF ) could
not be tested. Instead T2 was plotted against the thermal conductivity as can be seen in figure 5.5.
Both signals show the same type of behaviour (logarithmic decay) but with the simulated values having

21



a greater response to the change in thermal conductivity. It was tried to fit the thermal conductivity
to two measured values of T2 (at 0 m/s flow) using an exponential function a · eb·k (where k is the
thermal conductivity and a and b are fit parameters). The values of argon and helium were taken, as
they have the largest difference of temperature and thermal conductivity, to minimize the influence of
noise on the fit. Then this fit was used to estimate the thermal conductivity value of N2. The estimated
thermal conductivity value was 0.0212 W/mK where the known thermal conductivity value of N2 is
0.024 W/mK. This is an error of 11.5% between the estimated and known value of N2. When having
more data with which such a fit can be made the influence of noise on the fit should decrease and thus
the error should also decrease. There is another factor which also contributes to the error. The known
thermal conductivity values are valid at 293 K, the temperature of the gases in the chip are considerably
higher (up to around 90 K higher) this affects the thermal conductivity of the gases and to get the error
down the thermal conductivity of the gases should be taken as function of temperature.

Figure 5.1: The measurement results of the gas N2

22



Figure 5.2: The measurement results of the gas Ar

23



Figure 5.3: The measurement results of the gas He

24



Figure 5.4: The results of the simulation for comparison, dT is T3-T1

25



Figure 5.5: The temperature of T2 at zero flow for measured and simulated values plotted against the
thermal conductivity

26



Chapter 6

Conclusion
The goal of this project was to find whether an IQ+ flow sensor could be used as a thermal conductivity
sensor. Where the thermal conductivity sensor is independent of flow.

When looking at the results of the simulation the thermal conductivity can be determined indepen-
dent of flow. This can be done with a IQ+ Flow module with only the readout electronics changed. This
is the ideal case scenario as described in section 2.4. This could be done by taking the ratio of T2/T4
and compensating this for the flow by multiplying this with (1− 5.01T3−T1

T2 ) to compensate for the heat
dissipation caused by the flow resulting in a signal that is linearly dependent on the thermal conductivity
but independent of flow. Considering this correct the only changes that would need to be made to the
IQ+ module would be adding readout electronics to read out T1 and T3.

There is a disparity between the limited measurement results and the simulated results. This dis-
parity indicates that the signal as described would need at least its parameter 5.01 changed. The type
of behaviour for every signal was correct however indicating that with this change of parameter it is
possible to use the IQ+ flow sensor as a flow independent thermal conductivity sensor. To determine
whether this is the case more extensive measurements should be done.

27



Bibliography
[1] Bronkhorst, “Iq+flow ultra compact mass flow meters / controllers,” 27-06-2020. [Online].

Available: https://www.bronkhorst.com/int/products/gas-flow/iq-flow/

[2] D. F. Reyes Romero, “Development of a medium independent flow measurement technique based on
oscillatory thermal excitation,” Ph.D. dissertation, Albert-Ludwigs-Unversität Freiburg, July 2014.

[3] H. Velthuis, Flowconversie IQ+ module. TNO, March 2009.

[4] A. N. Abarca Prouza, “High precision flow compensated thermal conductivity detector for gas
sensing with read-out circuit,” Master’s thesis, Technische Universiteit Delft, September 2015.

[5] J. J. van Baar, “Distributed thermal micro sensors for fluid flow,” Ph.D. dissertation, Universiteit
Twente, November 2002.

[6] D. V. Schroeder, An Introduction to Thermal Physics. San Francisco, CA: Addison Wesley Long-
man, 2000.

[7] Y. A. Cengel, Heat Transfer: A Practical Approach. 2nd Edition. New York: McGraw Hill, 2002.

[8] MathWorks, “Matlab r2020a,” 24-06-2020. [Online]. Available:
https://nl.mathworks.com/products/matlab.html

[9] A. Devices, “Ltspice xvii,” 24-06-2020. [Online]. Available: https://www.analog.com/en/design-
center/design-tools-and-calculators/ltspice-simulator.html

[10] “Node voltage method,” 25-06-2020. [Online]. Available:
https://inst.eecs.berkeley.edu/ ee100/fa04/lecture notes/EE100supplementarynoteweek03-2.pdf

28



Chapter 7

Appendix

7.1 Material Properties

Gas ρ [kg/m3] k [W/mK] µ [Pa·s] Cp[J/Kg] Pr [-]

Ar 1.623 0.016 2.125E-5 520.64 0.7
CO2 1.788 0.015 1.37E-5 840.37 0.794
He 0.163 0.152 1.99E-5 5193 0.68
H2 0.082 0.167 0.8411E-5 14280 0.719
Kr 3.404 0.0087 2.5E-5 284.14 0.816
Ne 0.82 0.047 3.13E-5 1030 0.694
N2 1.138 0.024 1.663E-5 1041 0.715
Xe 5.333 0.0052 2.28E-5 158.4 0.695

Table 7.1: The physical properties of the gases at environment temperature [3]

Solid k [W/mK

Borosilicate Glass 1
Si 150

Table 7.2: The Thermal conductivity of the solid materials at environment temperature [3]

7.2 Node Voltage Matlab

function nodes = nodal(amount_nodes, resistance, current_source)
A = zeros(amount_nodes, amount_nodes);

for i = 1:amount_nodes
list_1_i = find(resistance(:,1) == i);
list_2_i = find(resistance(:,2) == i);

for j = 1:amount_nodes
list_1_j = find(resistance(:,1) == j);
list_2_j = find(resistance(:,2) == j);
cross_list_1 = intersect(list_1_i, list_2_j);
cross_list_2 = intersect(list_2_i, list_1_j);
Q = 0;

for k = 1:length(cross_list_1)
Q = Q+1/resistance(cross_list_1(k),3);

end

for k = 1:length(cross_list_2)
Q = Q+1/resistance(cross_list_2(k),3);

end

if Q ~= 0
A(i,j) = -Q;
end

end
end

for i = 1:amount_nodes
current(i) = 0;
list_1_current = find(current_source(:,1) == i);
list_2_current = find(current_source(:,2) == i);
list_1_resistance = find(resistance(:,1) == i);
list_2_resistance = find(resistance(:,2) == i);
for k = 1:length(list_1_current)

current(i) = current(i) + current_source(list_1_current(k),3);
end
for k = 1:length(list_2_current)

current(i) = current(i) - current_source(list_2_current(k),3);
end

29



for k = 1:length(list_1_resistance)
A(i,i) = A(i,i) + 1/resistance(list_1_resistance(k),3);

end
for k = 1:length(list_2_resistance)

A(i,i) = A(i,i) + 1/resistance(list_2_resistance(k),3);
end

end

current = current';

nodes = linsolve(A,current);

end

7.3 2D model Matlab

close all;
clear all;

%% chip parameters

Lu = 200*10^-6; % stroomkanaal in M
Ld = 525*10^-6; % holte onder chip in M
Bchip = 1*10^-3; % in meter assumptie van 1mm breed
thicknes_pyrex = 40*10^-6;
Am = Bchip*thicknes_pyrex; % oppervlakte membraan in M^2
angle = 35.3*(2*pi/360);
Overstaand = Ld*atan(angle);
Effect_Thickness_Silic = (Overstaand/2 + (850 - 976/2 - Overstaand))*10^-6; % correcting for the angle of the silicon rim
total_power = 26*10^-3; % totaal vermogen verstookt door de chip in W

%% thermal conductivities
% all in W/Km

k_N2 = 0.024;
k_Ar = 0.016;
k_CO2 = 0.015;
k_He = 0.152;
k_H2 = 0.167;
k_Kr = 0.0087;
k_Ne = 0.047;
k_Xe = 0.0052;

k_pyrex = 1;
k_silicon = 150;
k_gas = k_N2;

%% lengtes tussen de nodes

Lm1 = 354*10^-6; % in meter
Lm2 = 225*10^-6; % in meter
Lm3 = 90*10^-6; % in meter
Ledge = 181*10^-6;

Lm(1) = Lm1;
Lm(2) = Lm2;
Lm(3) = Lm3;
Lm(4) = Lm3;
Lm(5) = Lm2;
Lm(6) = Lm1;

%% wijdtes bovenplaat gassen
Wu1 = Ledge + Lm1/2;
Wu2 = Lm1/2+Lm2/2;
Wu3 = Lm2/2 + Lm3/2;
Wu4 = Lm3;

Wu(1) = Wu1;
Wu(2) = Wu2;
Wu(3) = Wu3;
Wu(4) = Wu4;
Wu(5) = Wu3;
Wu(6) = Wu2;
Wu(7) = Wu1;

%% nodes

gnd = 0;
TrimL = 1;
T1 = 2;
H1 =3;
T2 = 4;
H2 = 5;
T3 = 6;

30



TrimR = 7;
% 8 - 14 trimL_up to TrimR_up

amount_nodes = 14;

%% heaters

I(1, :) = [H1, gnd, total_power/2];
I(2, :) = [H2, gnd, total_power/2];

%% start the resistors

%% resistor counter initialization
n_R = 1;

%% the membrame resitors

for i = 1:6
R(n_R,:) = [i, i+1, Lm(i)/(k_pyrex*Am)];
n_R = n_R + 1;

end

%% Resistors Silicium

R(n_R, :) = [1, gnd, Ld/(k_silicon*Bchip*Effect_Thickness_Silic)];
n_R = n_R+1;
for i = 2:6

Rtemp = Ld/(k_silicon*Wu(i)*Effect_Thickness_Silic)+(Bchip/2)/(k_pyrex*thicknes_pyrex*Wu(i));
R(n_R, :) = [i, gnd, Rtemp/2];
n_R = n_R + 1;

end
R(n_R, :) = [7, gnd, Ld/(k_silicon*Bchip*Effect_Thickness_Silic)];
n_R = n_R+1;

%% resistors gas beneden

for i = 1:5
R(n_R, :) = [i+1, gnd, Ld/(k_gas*Bchip*Wu(i+1))];
n_R = n_R+1;

end

%% resistors gas boven verticaal

for i = 1:7
R(n_R, :) = [i, i+7, Lu/(2*k_gas*Bchip*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+7, gnd, Lu/(2*k_gas*Bchip*Wu(i))];
n_R = n_R+1;

end

%% resistors boven horizontaal

Au = Bchip*Lu;
for i = 1:6

R(n_R, :) = [i+7, i+8, Lm(i)/(k_gas*Au)];
n_R = n_R+1;

end

%% nodal

nodes = nodal(amount_nodes, R, I);
temperatures = nodes + 293;

%% plot
x = [-669 -315 -90 0 90 315 669];
T = temperatures(1:7, 1);

figure;
plot (x,T, '-o');
xlabel('position in um');
ylabel('temperature in Kelvin');
title('results model 4 (26mW)');

7.4 3D Model Matlab

7.4.1 3D Model Function

function y = model_6_fun(k_input)

%% chip parameters

Lu = 200*10^-6; % stroomkanaal in M
Ld = 525*10^-6; % holte onder chip in M

31



BchipMin = 976*10^-6; % exclusief rim
BchipMax = 850*2*10^-6; % inclusief rim
thicknes_pyrex = 40*10^-6;
% Overstaand = Ld*atan(pi/4);
SiRimMax = (850-976/2)*10^-6;
% Effect_Thickness_Silic = Overstaand/2 + (850 - 976/2 - Overstaand);
total_power = 26*10^-3; % totaal vermogen verstookt door de chip in W

%% thermal conductivities
% all in W/Km

k_pyrex = 1;
k_silicon = 150;
k_gas = k_input;

%% lengtes tussen de nodes

Lm1 = 354*10^-6; % in meter
Lm2 = 225*10^-6; % in meter
Lm3 = 90*10^-6; % in meter
Ledge = 181*10^-6;
%Bchip = 2*(Lm1+Lm2+Lm3);

Lm(1) = Lm1;
Lm(2) = Lm2;
Lm(3) = Lm3;
Lm(4) = Lm3;
Lm(5) = Lm2;
Lm(6) = Lm1;

Ldepth = Lm(1)+Lm(2)+Lm(3);

%% wijdtes bovenplaat gassen
Wu1 = Ledge + Lm1/2;
Wu2 = Lm1/2+Lm2/2;
Wu3 = Lm2/2 + Lm3/2;
Wu4 = Lm3;

Wu(1) = Wu1;
Wu(2) = Wu2;
Wu(3) = Wu3;
Wu(4) = Wu4;
Wu(5) = Wu3;
Wu(6) = Wu2;
Wu(7) = Wu1;

%% nodes

gnd = 0;
TrimL = 1;
T1 = 2;
H1 =3;
T2 = 4;
H2 = 5;
T3 = 6;
TrimR = 7;
offset_in = 8 - 1; % 8 - 14 trimL_in to TrimR_in
offset_out = 15 - 1; % 15 - 21 trimL_out to TrimR_out
offset_up = 22 - 1; % 22 - 28 trimL_up to TrimR_up
offset_up_in = 29 - 1; % 29 - 35 trimL_up_in to TrimR_up_in
offset_up_out = 36 - 1; % 36 - 42 trimL_up_out to TrimR_up_out
offset_down = 43 - 1; % 43 - 49 trimL_down to TrimR_down
offset_down_in = 50 - 1; % 50 - 56 trimL_down_in to TrimR_down_out
offset_down_out = 57 - 1; % 57 - 63 trimL_down_in to TrimR_down_out

amount_nodes = 63;

%% heaters

I(1, :) = [H1, gnd, total_power/2];
I(2, :) = [H2, gnd, total_power/2];

%% start the resistors

%% resistor counter initialization
n_R = 1;

%% the membrame resitors horizontal
Am = BchipMin*thicknes_pyrex; % oppervlakte membraan in M^2
Am_in = (BchipMax - BchipMin)*thicknes_pyrex/2; % oppervlakte membraan in M^2
Am_out = (BchipMax - BchipMin)*thicknes_pyrex/2; % oppervlakte membraan in M^2
% n_R
for i = 1:6

R(n_R,:) = [i, i+1, Lm(i)/(k_pyrex*Am)];
n_R = n_R + 1;
R(n_R,:) = [i+offset_in, i+offset_in+1, Lm(i)/(k_pyrex*Am_in)];
n_R = n_R + 1;

32



R(n_R,:) = [i+offset_out, i+offset_out+1, Lm(i)/(k_pyrex*Am_out)];
n_R = n_R + 1;

end

%% the membrame resitors depth
% n_R
for i = 1:7

R(n_R,:) = [i, i+offset_in, Ldepth/(k_pyrex*thicknes_pyrex*Wu(i))];
n_R = n_R + 1;
R(n_R,:) = [i, i+offset_out, Ldepth/(k_pyrex*thicknes_pyrex*Wu(i))];
n_R = n_R + 1;

end

%% Resistors Silicium verticaal
% correcting for the angle of the silicon rim
angle = 35.3*(2*pi/360);
Overstaand = (Ld/2)*atan(angle);
Effect_Thickness_Silic_up = SiRimMax - Overstaand/2;
Effect_Thickness_Silic_down = SiRimMax - 3*Overstaand/2;

% n_R
R(n_R, :) = [1, 1 + offset_down, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_up)];
n_R = n_R+1;
R(n_R, :) = [1 + offset_down, gnd, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_down)];
n_R = n_R+1;
for i = 1:7

Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_up);
R(n_R, :) = [i+offset_in, i+offset_down_in, Rtemp];
n_R = n_R + 1;
Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_down);
R(n_R, :) = [i+offset_down_in, gnd, Rtemp];
n_R = n_R + 1;

Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_up);
R(n_R, :) = [i+offset_out, i+offset_down_out, Rtemp];
n_R = n_R + 1;
Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_down);
R(n_R, :) = [i+offset_down_out, gnd, Rtemp];
n_R = n_R + 1;

end
R(n_R, :) = [7, 7+offset_down, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_up)];
n_R = n_R+1;
R(n_R, :) = [7+offset_down, gnd, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_down)];
n_R = n_R+1;

%% Resistors Silicium Horizontaal

Overstaand = Ld*atan(angle);
Effect_Thickness_Silic = SiRimMax - Overstaand/2;
for i = 1:6

Rtemp = Lm(i)/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [i+offset_down_in, i+offset_down_in+1, Rtemp];
n_R = n_R + 1;
Rtemp = Lm(i)/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [i+offset_down_out, i+offset_down_out+1, Rtemp];
n_R = n_R + 1;

end

%% Resistors silicium diepte

Rtemp = Ldepth/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [1+offset_down, 1+offset_down_in, Rtemp];
n_R = n_R + 1;
R(n_R, :) = [1+offset_down, 1+offset_down_out, Rtemp];
n_R = n_R + 1;
R(n_R, :) = [7+offset_down, 7+offset_down_in, Rtemp];
n_R = n_R + 1;
R(n_R, :) = [7+offset_down, 7+offset_down_out, Rtemp];
n_R = n_R + 1;

%% resistors gas beneden verticaal

for i = 1:5
R(n_R, :) = [i+1, i+offset_down+1, (Ld/2)/(k_gas*BchipMin*Wu(i+1))];
n_R = n_R+1;
R(n_R, :) = [i+offset_down+1, gnd, (Ld/2)/(k_gas*BchipMin*Wu(i+1))];
n_R = n_R+1;

end

%% resistors gas beneden horizontaal

Rtemp = (Lm(1) - Effect_Thickness_Silic + Ledge)/(k_gas*BchipMin*Ld) + (Effect_Thickness_Silic - Ledge)/(k_silicon*BchipMin*Ld);
R(n_R, :) = [1+offset_down, 2+offset_down, Rtemp];
n_R = n_R+1;

33



for i = 1:4
R(n_R, :) = [i+offset_down + 1, i+offset_down+2, Lm(i+1)/(k_gas*BchipMin*Ld)];
n_R = n_R+1;

end
R(n_R, :) = [6+offset_down, 7+offset_down, Rtemp];
n_R = n_R+1;

%% resistors gas beneden diepte

Rtemp = (Ldepth - Effect_Thickness_Silic + Ledge)/(k_gas*BchipMin*Ld) + (Effect_Thickness_Silic - Ledge)/(k_silicon*BchipMin*Ld);
R(n_R, :) = [1+offset_down, 1+offset_down_out, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;
R(n_R, :) = [1+offset_down, 1+offset_down_in, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;
for i = 1:5

R(n_R, :) = [i+offset_down + 1, i+offset_down_in+1, Rtemp];
n_R = n_R+1;
R(n_R, :) = [i+offset_down + 1, i+offset_down_out+1, Rtemp];
n_R = n_R+1;

end
R(n_R, :) = [7+offset_down, 7+offset_down_in, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;
R(n_R, :) = [7+offset_down, 7+offset_down_out, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;

%% resistors gas boven verticaal

for i = 1:7
R(n_R, :) = [i, i+offset_up, (Lu/2)/(k_gas*BchipMin*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up, gnd, (Lu/2)/(k_gas*BchipMin*Wu(i))];
n_R = n_R+1;

R(n_R, :) = [i+offset_in, i+offset_up_in, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up_in, gnd, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;

R(n_R, :) = [i+offset_out, i+offset_up_out, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up_out, gnd, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;

end

%% resistors gas boven horizontaal

for i = 1:6
R(n_R, :) = [i+offset_up, i+offset_up+1, Lm(i)/(k_gas*BchipMin*Lu)];
n_R = n_R+1;

R(n_R, :) = [i+offset_up_in, i+offset_up_in+1, Lm(i)/(k_gas*SiRimMax*Lu)];
n_R = n_R+1;

R(n_R, :) = [i+offset_up_out, i+offset_up_out+1, Lm(i)/(k_gas*SiRimMax*Lu)];
n_R = n_R+1;

end

%% resistors gas boven diepte

for i = 1:7
R(n_R, :) = [i+offset_up, i+offset_up_in, Ldepth/(k_gas*Lu*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up, i+offset_up_out, Ldepth/(k_gas*Lu*Wu(i))];
n_R = n_R+1;

end

%% nodal

nodes = nodal(amount_nodes, R, I);

%% results
temperatures = nodes + 293;
T = temperatures(1:7, 1);
y = T;
end

7.4.2 3D model Main

close all;
clear all;

k_Xe = 0.0052;
k_Kr = 0.0087;

34



k_CO2 = 0.015;
k_Ar = 0.016;
k_N2 = 0.024;
k_Ne = 0.047;
k_He = 0.152;
k_H2 = 0.167;
k = [k_Xe k_Kr k_CO2 k_Ar k_N2 k_Ne k_He k_H2];

x = [-669 -315 -90 0 90 315 669];
for i = 1:length(k)

T(i,:) = model_6_fun(k(i));
end

T2 = T(:, 4);
T1 = T(:, 2);
Trim = T(:, 1);

figure;
for i = 1:length(k)

plot(x,T(i,:), '-o');
hold on

end
xlabel('position in um');
ylabel('temperature in Kelvin');
title('results model 6 (26mW)');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');

figure;
subplot(3,2,1)
plot(k,T2);
xlabel('k in W/mK');
ylabel('temperature in Kelvin');
title('T2');

subplot(3,2,2)
plot(k,T1);
xlabel('k in W/mK');
ylabel('temperature in Kelvin');
title('T1');

subplot(3,2,3)
plot(k,Trim);
xlabel('k in W/mK');
ylabel('temperature in Kelvin');
title('Trim');

subplot(3,2,4)
plot(k,T2-T1);
xlabel('k in W/mK');
ylabel('temperature in Kelvin');
title('T2-T1');

subplot(3,2,5)
plot(k,T2./T1);
xlabel('k in W/mK');
title('T2/T1');

subplot(3,2,6)
plot(k,(T2-Trim)./(T1-Trim));
xlabel('k in W/mK');
title('(T2-Trim)/(T1-Trim)');

7.5 Complete Model Matlab

7.5.1 Flow as IQ+ Flow Function

function y = model_8_fun(k_input, Cp, rho, mu, Pr, V)

%% chip parameters

Lu = 200*10^-6; % stroomkanaal in M
Ld = 525*10^-6; % holte onder chip in M
BchipMin = 976*10^-6; % exclusief rim
BchipMax = 850*2*10^-6; % inclusief rim
thicknes_pyrex = 40*10^-6;
SiRimMax = (850-976/2)*10^-6;
total_power = 26*10^-3; % totaal vermogen verstookt door de chip in W

%% thermal conductivities
% all in W/Km

35



k_pyrex = 1;
k_silicon = 150;
k_gas = k_input;

%% lengtes tussen de nodes

Lm1 = 354*10^-6; % in meter
Lm2 = 225*10^-6; % in meter
Lm3 = 90*10^-6; % in meter
Ledge = 181*10^-6;

Lm(1) = Lm1;
Lm(2) = Lm2;
Lm(3) = Lm3;
Lm(4) = Lm3;
Lm(5) = Lm2;
Lm(6) = Lm1;

Ldepth = Lm(1)+Lm(2)+Lm(3);

%% wijdtes bovenplaat gassen
Wu1 = Ledge + Lm1/2;
Wu2 = Lm1/2+Lm2/2;
Wu3 = Lm2/2 + Lm3/2;
Wu4 = Lm3;

Wu(1) = Wu1;
Wu(2) = Wu2;
Wu(3) = Wu3;
Wu(4) = Wu4;
Wu(5) = Wu3;
Wu(6) = Wu2;
Wu(7) = Wu1;

%% nodes

gnd = 0;
TrimL = 1;
T1 = 2;
H1 =3;
T2 = 4;
H2 = 5;
T3 = 6;
TrimR = 7;
offset_in = 8 - 1; % 8 - 14 trimL_in to TrimR_in
offset_out = 15 - 1; % 15 - 21 trimL_out to TrimR_out
offset_up = 22 - 1; % 22 - 28 trimL_up to TrimR_up
offset_up_in = 29 - 1; % 29 - 35 trimL_up_in to TrimR_up_in
offset_up_out = 36 - 1; % 36 - 42 trimL_up_out to TrimR_up_out
offset_down = 43 - 1; % 43 - 49 trimL_down to TrimR_down
offset_down_in = 50 - 1; % 50 - 56 trimL_down_in to TrimR_down_out
offset_down_out = 57 - 1; % 57 - 63 trimL_down_in to TrimR_down_out

amount_nodes = 63;

%% heaters

I(1, :) = [H1, gnd, total_power/2];
I(2, :) = [H2, gnd, total_power/2];

%% start the resistors

%% resistor counter initialization
n_R = 1;

%% the membrame resitors horizontal
Am = BchipMin*thicknes_pyrex; % oppervlakte membraan in M^2
Am_in = (BchipMax - BchipMin)*thicknes_pyrex/2; % oppervlakte membraan in M^2
Am_out = (BchipMax - BchipMin)*thicknes_pyrex/2; % oppervlakte membraan in M^2
% n_R
for i = 1:6

R(n_R,:) = [i, i+1, Lm(i)/(k_pyrex*Am)];
n_R = n_R + 1;
R(n_R,:) = [i+offset_in, i+offset_in+1, Lm(i)/(k_pyrex*Am_in)];
n_R = n_R + 1;
R(n_R,:) = [i+offset_out, i+offset_out+1, Lm(i)/(k_pyrex*Am_out)];
n_R = n_R + 1;

end

%% the membrame resitors depth
% n_R
for i = 1:7

R(n_R,:) = [i, i+offset_in, Ldepth/(k_pyrex*thicknes_pyrex*Wu(i))];
n_R = n_R + 1;
R(n_R,:) = [i, i+offset_out, Ldepth/(k_pyrex*thicknes_pyrex*Wu(i))];
n_R = n_R + 1;

36



end

%% Resistors Silicium verticaal
% correcting for the angle of the silicon rim
angle = 35.3*(2*pi/360);
Overstaand = (Ld/2)*atan(angle);
Effect_Thickness_Silic_up = SiRimMax - Overstaand/2;
Effect_Thickness_Silic_down = SiRimMax - 3*Overstaand/2;

% n_R
R(n_R, :) = [1, 1 + offset_down, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_up)];
n_R = n_R+1;
R(n_R, :) = [1 + offset_down, gnd, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_down)];
n_R = n_R+1;
for i = 1:7

Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_up);
R(n_R, :) = [i+offset_in, i+offset_down_in, Rtemp];
n_R = n_R + 1;
Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_down);
R(n_R, :) = [i+offset_down_in, gnd, Rtemp];
n_R = n_R + 1;

Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_up);
R(n_R, :) = [i+offset_out, i+offset_down_out, Rtemp];
n_R = n_R + 1;
Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_down);
R(n_R, :) = [i+offset_down_out, gnd, Rtemp];
n_R = n_R + 1;

end
R(n_R, :) = [7, 7+offset_down, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_up)];
n_R = n_R+1;
R(n_R, :) = [7+offset_down, gnd, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_down)];
n_R = n_R+1;

%% Resistors Silicium Horizontaal
% n_R
Overstaand = Ld*atan(angle);
Effect_Thickness_Silic = SiRimMax - Overstaand/2;
for i = 1:6

Rtemp = Lm(i)/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [i+offset_down_in, i+offset_down_in+1, Rtemp];
n_R = n_R + 1;
Rtemp = Lm(i)/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [i+offset_down_out, i+offset_down_out+1, Rtemp];
n_R = n_R + 1;

end

%% Resistors silicium diepte

Rtemp = Ldepth/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [1+offset_down, 1+offset_down_in, Rtemp];
n_R = n_R + 1;
R(n_R, :) = [1+offset_down, 1+offset_down_out, Rtemp];
n_R = n_R + 1;
R(n_R, :) = [7+offset_down, 7+offset_down_in, Rtemp];
n_R = n_R + 1;
R(n_R, :) = [7+offset_down, 7+offset_down_out, Rtemp];
n_R = n_R + 1;

%% resistors gas beneden verticaal
% n_R
for i = 1:5

R(n_R, :) = [i+1, i+offset_down+1, (Ld/2)/(k_gas*BchipMin*Wu(i+1))];
n_R = n_R+1;
R(n_R, :) = [i+offset_down+1, gnd, (Ld/2)/(k_gas*BchipMin*Wu(i+1))];
n_R = n_R+1;

end

%% resistors gas beneden horizontaal
% n_R
Rtemp = (Lm(1) - Effect_Thickness_Silic + Ledge)/(k_gas*BchipMin*Ld) + (Effect_Thickness_Silic - Ledge)/(k_silicon*BchipMin*Ld);
R(n_R, :) = [1+offset_down, 2+offset_down, Rtemp];
n_R = n_R+1;
for i = 1:4

R(n_R, :) = [i+offset_down + 1, i+offset_down+2, Lm(i+1)/(k_gas*BchipMin*Ld)];
n_R = n_R+1;

end
R(n_R, :) = [6+offset_down, 7+offset_down, Rtemp];
n_R = n_R+1;

%% resistors gas beneden diepte
% n_R
Rtemp = (Ldepth - Effect_Thickness_Silic + Ledge)/(k_gas*BchipMin*Ld) + (Effect_Thickness_Silic - Ledge)/(k_silicon*BchipMin*Ld);
R(n_R, :) = [1+offset_down, 1+offset_down_out, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;

37



R(n_R, :) = [1+offset_down, 1+offset_down_in, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;
for i = 1:5

R(n_R, :) = [i+offset_down + 1, i+offset_down_in+1, Rtemp];
n_R = n_R+1;
R(n_R, :) = [i+offset_down + 1, i+offset_down_out+1, Rtemp];
n_R = n_R+1;

end
R(n_R, :) = [7+offset_down, 7+offset_down_in, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;
R(n_R, :) = [7+offset_down, 7+offset_down_out, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;

%% resistors gas boven verticaal
% n_R
for i = 1:7

R(n_R, :) = [i, i+offset_up, (Lu/2)/(k_gas*BchipMin*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up, gnd, (Lu/2)/(k_gas*BchipMin*Wu(i))];
n_R = n_R+1;

R(n_R, :) = [i+offset_in, i+offset_up_in, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up_in, gnd, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;

R(n_R, :) = [i+offset_out, i+offset_up_out, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up_out, gnd, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;

end

%% resistors gas boven horizontaal
% n_R

for i = 1:6
R(n_R, :) = [i+offset_up, i+offset_up+1, Lm(i)/(k_gas*BchipMin*Lu)];
n_R = n_R+1;

R(n_R, :) = [i+offset_up_in, i+offset_up_in+1, Lm(i)/(k_gas*SiRimMax*Lu)];
n_R = n_R+1;

R(n_R, :) = [i+offset_up_out, i+offset_up_out+1, Lm(i)/(k_gas*SiRimMax*Lu)];
n_R = n_R+1;

end

%% resistors gas boven diepte
% n_R
for i = 1:7

R(n_R, :) = [i+offset_up, i+offset_up_in, Ldepth/(k_gas*Lu*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up, i+offset_up_out, Ldepth/(k_gas*Lu*Wu(i))];
n_R = n_R+1;

end

%% add flow resitors

x = [1:1:1700];
x = x.*10^-6;
Re = (rho*V.*x)/mu;
Nu = 0.332*nthroot(Pr,3).*sqrt(Re);
h = (Nu.*k_gas)./x;
for i = 1:7

Lmin = 0;
for j = 1:7

if j < i
Lmin = Lmin + Wu(j)*10^6;

end
end
Lmin = int32(Lmin)+1;
Lmax = int32(Lmin + Wu(i)*10^6)-1;
h_avg(i) = trapz(x(Lmin:Lmax),h(Lmin:Lmax));

end

Qmiddle = h_avg.*BchipMin;
Qedge = h_avg.*SiRimMax;

for i = 1:7
R(n_R, :) = [i, gnd, 1/Qmiddle(i)];
n_R = n_R+1;
R(n_R, :) = [i+offset_in, gnd, 1/Qedge(i)];
n_R = n_R+1;
R(n_R, :) = [i+offset_out, gnd, 1/Qedge(i)];
n_R = n_R+1;

end

38



%% nodal

nodes = nodal(amount_nodes, R, I);
temperatures = nodes + 293;

T = temperatures(1:7, 1);
y = T;
end

7.5.2 Flow at a 90 degree angle Function

function y = model_9_fun(k_input, Cp, rho, mu, Pr, V)

%% chip parameters

Lu = 200*10^-6; % stroomkanaal in M
Ld = 525*10^-6; % holte onder chip in M
BchipMin = 976*10^-6; % exclusief rim
BchipMax = 850*2*10^-6; % inclusief rim
thicknes_pyrex = 40*10^-6;
SiRimMax = (850-976/2)*10^-6;
total_power = 26*10^-3; % totaal vermogen verstookt door de chip in W

%% thermal conductivities
% all in W/Km

k_pyrex = 1;
k_silicon = 150;
k_gas = k_input;

%% lengtes tussen de nodes

Lm1 = 354*10^-6; % in meter
Lm2 = 225*10^-6; % in meter
Lm3 = 90*10^-6; % in meter
Ledge = 181*10^-6;

Lm(1) = Lm1;
Lm(2) = Lm2;
Lm(3) = Lm3;
Lm(4) = Lm3;
Lm(5) = Lm2;
Lm(6) = Lm1;

Ldepth = Lm(1)+Lm(2)+Lm(3);

%% wijdtes bovenplaat gassen
Wu1 = Ledge + Lm1/2;
Wu2 = Lm1/2+Lm2/2;
Wu3 = Lm2/2 + Lm3/2;
Wu4 = Lm3;

Wu(1) = Wu1;
Wu(2) = Wu2;
Wu(3) = Wu3;
Wu(4) = Wu4;
Wu(5) = Wu3;
Wu(6) = Wu2;
Wu(7) = Wu1;

%% nodes

gnd = 0;
TrimL = 1;
T1 = 2;
H1 =3;
T2 = 4;
H2 = 5;
T3 = 6;
TrimR = 7;
offset_in = 8 - 1; % 8 - 14 trimL_in to TrimR_in
offset_out = 15 - 1; % 15 - 21 trimL_out to TrimR_out
offset_up = 22 - 1; % 22 - 28 trimL_up to TrimR_up
offset_up_in = 29 - 1; % 29 - 35 trimL_up_in to TrimR_up_in
offset_up_out = 36 - 1; % 36 - 42 trimL_up_out to TrimR_up_out
offset_down = 43 - 1; % 43 - 49 trimL_down to TrimR_down
offset_down_in = 50 - 1; % 50 - 56 trimL_down_in to TrimR_down_out
offset_down_out = 57 - 1; % 57 - 63 trimL_down_in to TrimR_down_out

amount_nodes = 63;

%% heaters

39



I(1, :) = [H1, gnd, total_power/2];
I(2, :) = [H2, gnd, total_power/2];

%% start the resistors

%% resistor counter initialization
n_R = 1;

%% the membrame resitors horizontal
Am = BchipMin*thicknes_pyrex; % oppervlakte membraan in M^2
Am_in = (BchipMax - BchipMin)*thicknes_pyrex/2; % oppervlakte membraan in M^2
Am_out = (BchipMax - BchipMin)*thicknes_pyrex/2; % oppervlakte membraan in M^2
% n_R
for i = 1:6

R(n_R,:) = [i, i+1, Lm(i)/(k_pyrex*Am)];
n_R = n_R + 1;
R(n_R,:) = [i+offset_in, i+offset_in+1, Lm(i)/(k_pyrex*Am_in)];
n_R = n_R + 1;
R(n_R,:) = [i+offset_out, i+offset_out+1, Lm(i)/(k_pyrex*Am_out)];
n_R = n_R + 1;

end

%% the membrame resitors depth
% n_R
for i = 1:7

R(n_R,:) = [i, i+offset_in, Ldepth/(k_pyrex*thicknes_pyrex*Wu(i))];
n_R = n_R + 1;
R(n_R,:) = [i, i+offset_out, Ldepth/(k_pyrex*thicknes_pyrex*Wu(i))];
n_R = n_R + 1;

end

%% Resistors Silicium verticaal
% correcting for the angle of the silicon rim
angle = 35.3*(2*pi/360);
Overstaand = (Ld/2)*atan(angle);
Effect_Thickness_Silic_up = SiRimMax - Overstaand/2;
Effect_Thickness_Silic_down = SiRimMax - 3*Overstaand/2;

% n_R
R(n_R, :) = [1, 1 + offset_down, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_up)];
n_R = n_R+1;
R(n_R, :) = [1 + offset_down, gnd, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_down)];
n_R = n_R+1;
for i = 1:7

Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_up);
R(n_R, :) = [i+offset_in, i+offset_down_in, Rtemp];
n_R = n_R + 1;
Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_down);
R(n_R, :) = [i+offset_down_in, gnd, Rtemp];
n_R = n_R + 1;

Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_up);
R(n_R, :) = [i+offset_out, i+offset_down_out, Rtemp];
n_R = n_R + 1;
Rtemp = (Ld/2)/(k_silicon*Wu(i)*Effect_Thickness_Silic_down);
R(n_R, :) = [i+offset_down_out, gnd, Rtemp];
n_R = n_R + 1;

end
R(n_R, :) = [7, 7+offset_down, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_up)];
n_R = n_R+1;
R(n_R, :) = [7+offset_down, gnd, (Ld/2)/(k_silicon*BchipMin*Effect_Thickness_Silic_down)];
n_R = n_R+1;

%% Resistors Silicium Horizontaal
% n_R
Overstaand = Ld*atan(angle);
Effect_Thickness_Silic = SiRimMax - Overstaand/2;
for i = 1:6

Rtemp = Lm(i)/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [i+offset_down_in, i+offset_down_in+1, Rtemp];
n_R = n_R + 1;
Rtemp = Lm(i)/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [i+offset_down_out, i+offset_down_out+1, Rtemp];
n_R = n_R + 1;

end

%% Resistors silicium diepte

Rtemp = Ldepth/(k_silicon*Ld*Effect_Thickness_Silic);
R(n_R, :) = [1+offset_down, 1+offset_down_in, Rtemp];
n_R = n_R + 1;
R(n_R, :) = [1+offset_down, 1+offset_down_out, Rtemp];
n_R = n_R + 1;

40



R(n_R, :) = [7+offset_down, 7+offset_down_in, Rtemp];
n_R = n_R + 1;
R(n_R, :) = [7+offset_down, 7+offset_down_out, Rtemp];
n_R = n_R + 1;

%% resistors gas beneden verticaal
% n_R
for i = 1:5

R(n_R, :) = [i+1, i+offset_down+1, (Ld/2)/(k_gas*BchipMin*Wu(i+1))];
n_R = n_R+1;
R(n_R, :) = [i+offset_down+1, gnd, (Ld/2)/(k_gas*BchipMin*Wu(i+1))];
n_R = n_R+1;

end

%% resistors gas beneden horizontaal
% n_R
Rtemp = (Lm(1) - Effect_Thickness_Silic + Ledge)/(k_gas*BchipMin*Ld) + (Effect_Thickness_Silic - Ledge)/(k_silicon*BchipMin*Ld);
R(n_R, :) = [1+offset_down, 2+offset_down, Rtemp];
n_R = n_R+1;
for i = 1:4

R(n_R, :) = [i+offset_down + 1, i+offset_down+2, Lm(i+1)/(k_gas*BchipMin*Ld)];
n_R = n_R+1;

end
R(n_R, :) = [6+offset_down, 7+offset_down, Rtemp];
n_R = n_R+1;

%% resistors gas beneden diepte
% n_R
Rtemp = (Ldepth - Effect_Thickness_Silic + Ledge)/(k_gas*BchipMin*Ld) + (Effect_Thickness_Silic - Ledge)/(k_silicon*BchipMin*Ld);
R(n_R, :) = [1+offset_down, 1+offset_down_out, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;
R(n_R, :) = [1+offset_down, 1+offset_down_in, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;
for i = 1:5

R(n_R, :) = [i+offset_down + 1, i+offset_down_in+1, Rtemp];
n_R = n_R+1;
R(n_R, :) = [i+offset_down + 1, i+offset_down_out+1, Rtemp];
n_R = n_R+1;

end
R(n_R, :) = [7+offset_down, 7+offset_down_in, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;
R(n_R, :) = [7+offset_down, 7+offset_down_out, Ldepth/(k_silicon*Effect_Thickness_Silic*Ld)];
n_R = n_R+1;

%% resistors gas boven verticaal
% n_R
for i = 1:7

R(n_R, :) = [i, i+offset_up, (Lu/2)/(k_gas*BchipMin*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up, gnd, (Lu/2)/(k_gas*BchipMin*Wu(i))];
n_R = n_R+1;

R(n_R, :) = [i+offset_in, i+offset_up_in, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up_in, gnd, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;

R(n_R, :) = [i+offset_out, i+offset_up_out, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up_out, gnd, (Lu/2)/(k_gas*SiRimMax*Wu(i))];
n_R = n_R+1;

end

%% resistors gas boven horizontaal
% n_R

for i = 1:6
R(n_R, :) = [i+offset_up, i+offset_up+1, Lm(i)/(k_gas*BchipMin*Lu)];
n_R = n_R+1;

R(n_R, :) = [i+offset_up_in, i+offset_up_in+1, Lm(i)/(k_gas*SiRimMax*Lu)];
n_R = n_R+1;

R(n_R, :) = [i+offset_up_out, i+offset_up_out+1, Lm(i)/(k_gas*SiRimMax*Lu)];
n_R = n_R+1;

end

%% resistors gas boven diepte
% n_R
for i = 1:7

R(n_R, :) = [i+offset_up, i+offset_up_in, Ldepth/(k_gas*Lu*Wu(i))];
n_R = n_R+1;
R(n_R, :) = [i+offset_up, i+offset_up_out, Ldepth/(k_gas*Lu*Wu(i))];
n_R = n_R+1;

end

41



%% add flow resitors

x = [1:1:1700];
x = x.*10^-6;
x_index1 = int32(SiRimMax*10^6);
x_index2 = int32(SiRimMax*10^6+BchipMin*10^6);
x_index3 = int32(BchipMax*10^6);
Re = (rho*V.*x)/mu;
Nu = 0.332*nthroot(Pr,3).*sqrt(Re);
h = (Nu.*k_gas)./x;
h1 = trapz(x(1:x_index1),h(1:x_index1));
h2 = trapz(x(x_index1:x_index2),h(x_index1:x_index2));
h3 = trapz(x(x_index2:x_index3),h(x_index2:x_index3));
for i = 1:7

Q1(i) = h1*Wu(i);
Q2(i) = h2*Wu(i);
Q3(i) = h3*Wu(i);

end

for i = 1:7
R(n_R, :) = [i+offset_in, gnd, 1/Q1(i)];
n_R = n_R+1;
R(n_R, :) = [i, gnd, 1/Q2(i)];
n_R = n_R+1;
R(n_R, :) = [i+offset_out, gnd, 1/Q3(i)];
n_R = n_R+1;

end

%% nodal

nodes = nodal(amount_nodes, R, I);
temperatures = nodes + 293;

T = temperatures(1:7, 1);
y = T;

end

7.5.3 Running The models and saving the Data

close all;
clear all;

%% gas values
k_Xe = 0.0052;
k_Kr = 0.0087;
k_CO2 = 0.015;
k_Ar = 0.016;
k_N2 = 0.024;
k_Ne = 0.047;
k_He = 0.152;
k_H2 = 0.167;

Cp_Xe = 158.4;
Cp_Kr = 284.14;
Cp_CO2 = 840.37;
Cp_Ar = 520.64;
Cp_N2 = 1041;
Cp_Ne = 1030;
Cp_He = 5193;
Cp_H2 = 14280;

Pr_Xe = 0.695;
Pr_Kr = 0.816;
Pr_CO2 = 0.794;
Pr_Ar = 0.7;
Pr_N2 = 0.715;
Pr_Ne = 0.694;
Pr_He = 0.68;
Pr_H2 = 0.719;

mu_Xe = 2.28*10^-5;
mu_Kr = 2.5*10^-5;
mu_CO2 = 1.37*10^-5;
mu_Ar = 2.125*10^-5;
mu_N2 = 1.663*10^-5;
mu_Ne = 3.13*10^-5;
mu_He = 1.99*10^-5;
mu_H2 = 0.8411*10^-5;

density_Xe = 5.333;

42



density_Kr = 3.404;
density_CO2 = 1.788;
density_Ar = 1.623;
density_N2 = 1.138;
density_Ne = 0.82;
density_He = 0.163;
density_H2 = 0.082;

k = [k_Xe k_Kr k_CO2 k_Ar k_N2 k_Ne k_He k_H2];
mu = [mu_Xe mu_Kr mu_CO2 mu_Ar mu_N2 mu_Ne mu_He mu_H2];
Pr = [Pr_Xe Pr_Kr Pr_CO2 Pr_Ar Pr_N2 Pr_Ne Pr_He Pr_H2];
density = [density_Xe density_Kr density_CO2 density_Ar density_N2 density_Ne density_He density_H2];
Cp = [Cp_Xe Cp_Kr Cp_CO2 Cp_Ar Cp_N2 Cp_Ne Cp_He Cp_H2];

% membrame positions
x1 = [-669 -315 -90 0 90 315 669];

% gas speeds
V = [0:0.1:30];

for j = 1:length(k)
for i = 1:length(V)

T9(j,i,:) = model_9_fun(k(j), Cp(j), density(j), mu(j), Pr(j), V(i));
T8(j,i,:) = model_8_fun(k(j), Cp(j), density(j), mu(j), Pr(j), V(i));

end
j
end
save('model10_var', 'T9', 'T8', 'k', 'V', 'x1');

7.5.4 Plotting and analyzing the data

close all;
clear all;

A = load('model10_var.mat');

T9 = A.T9;
T8 = A.T8;
V = A.V;
k = A.k;
x1 = A.x1;

error = sum(sum(sum(T9 - T8)));

Trim_9 = 0.5*(T9(:, :, 1) + T9(:, :, 7));
T1_9 = T9(:, :, 2) - Trim_9;
T2_9 = T9(:, :, 4) - Trim_9;
T3_9 = T9(:, :, 6) - Trim_9;
T4_9 = 0.5*(T1_9 + T3_9);

Trim_8 = 0.5*(T8(:, :, 1) + T8(:, :, 7));
T1_8 = T8(:, :, 2) - Trim_8;
T2_8 = T8(:, :, 4) - Trim_8;
T3_8 = T8(:, :, 6) - Trim_8;
T4_8 = 0.5*(T1_8 + T3_8);

%% plotting M9

figure;
sgtitle('Model 9');
subplot(3,2,1);
for i = 1:length(k)
plot(V,T3_9(i,:)-T1_9(i,:));
hold on
end
title('T3-T1');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,2);
for i = 1:length(k)
plot(V,T2_9(i,:));
hold on
end
title('T2');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,3);
for i = 1:length(k)
plot(V,(T3_9(i,:)-T1_9(i,:))./(T2_9(i,:)));
hold on
end
title('(T3-T1)/(T2)');

43



legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,4);
for i = 1:length(k)
plot(V,T4_9(i,:));
hold on
end
title('T4');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,5);
for i = 1:length(k)
plot(V,(T2_9(i,:))./(T4_9(i,:)));
hold on
end
title('(T2)/(T4)');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,6);
for i = 1:50:length(V)
plot(k,(T2_9(:,i))./(T4_9(:,i)));
hold on
end
title('(T2)/(T4)');
legend('0 m/s', '5 m/s', '10m/s', '15 m/s', '20 m/s', '25 m/s', '30 m/s');
xlabel('k in W/mK');

%% plotting M8
figure;
sgtitle('Model 8');
subplot(3,2,1);
for i = 1:length(k)
plot(V,T3_8(i,:)-T1_8(i,:));
hold on
end
title('T3-T1');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,2);
for i = 1:length(k)
plot(V,T2_8(i,:));
hold on
end
title('T2');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,3);
for i = 1:length(k)
plot(V,(T3_8(i,:)-T1_8(i,:))./(T2_8(i,:)));
hold on
end
title('(T3-T1)/(T2)');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,4);
for i = 1:length(k)
plot(V,T4_8(i,:));
hold on
end
title('T4');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,5);
for i = 1:length(k)
plot(V,(T2_8(i,:))./(T4_8(i,:)));
hold on
end
title('(T2)/(T4)');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(3,2,6);
for i = 1:50:length(V)
plot(k,(T2_8(:,i))./(T4_8(:,i)));
hold on
end
title('(T2)/(T4)');
legend('0 m/s', '5 m/s', '10m/s', '15 m/s', '20 m/s', '25 m/s', '30 m/s');
xlabel('k in W/mK');

44



%% Surface plot
Z = (T2_9)./(T4_9);

Y = (T3_8-T1_8)./(T2_8);

%% some more trying

for i = 1:2000
diff = 1 + (-0.01*i).*Y;

Temp = Z.*diff;
Temp_avg = mean(Temp');
k_fit = polyfit(Temp_avg, k, 1);
k_estimated = k_fit(1).*Temp + k_fit(2);
for m = 1: length(V)
errortemp(m,:) = (k - k_estimated(:,m)').^2;
end
error_lin(i) = sum(sum(errortemp));
least_error_lin = min(error_lin);
best_coefficient_lin = -0.01*find(error_lin == min(error_lin));
end

for i = 1:200
diff = 1 + (-0.01*i).*sqrt(Y);

Temp = Z.*diff;
Temp_avg = mean(Temp');
k_fit = polyfit(Temp_avg, k, 1);
k_estimated = k_fit(1).*Temp + k_fit(2);
for m = 1: length(V)
errortemp(m, :) = (k - k_estimated(:,m)').^2;
end
error_sqrt(i) = sum(sum(errortemp));
least_error_sqrt = min(error_sqrt);
best_coefficient_sqrt = -0.01*find(error_sqrt == min(error_sqrt));
end

for i = 1:200
for j = 1:200

diff = 1 + (-0.1*i).*(Y) + (-0.1*j).*(Y).^2;

Temp = Z.*diff;
Temp_avg = mean(Temp');
k_fit = polyfit(Temp_avg, k, 1);
k_estimated = k_fit(1).*Temp + k_fit(2);
for m = 1: length(V)

errortemp(m,:) = (k - k_estimated(:,m)').^2;
end
error_poly(i,j) = sum(sum(errortemp));

least_error_poly = min(min(error_poly));
[best_coefficient_poly_i, best_coefficient_poly_j] = find(error_poly == min(min(error_poly)));
test = error_poly(best_coefficient_poly_i, best_coefficient_poly_j);
best_coefficient_poly_i = (-0.1*best_coefficient_poly_i);
best_coefficient_poly_j = (-0.1*best_coefficient_poly_j);

end
end

%% plotting

diff = 1 + best_coefficient_sqrt.*sqrt(Y);
Temp = Z.*diff;
Temp_avg = mean(Temp');
k_fit = polyfit(Temp_avg, k, 1);
k_estimated = k_fit(1).*Temp + k_fit(2);

figure;
sgtitle('sqrt');
subplot(2,2,2);
for i = 1:50:length(V)
plot(k,Temp(:,i));
hold on
end
title('(T2/T4)*(1-5*((T3-T1)/T2))');
xlabel('k in W/mK');
legend('0 m/s', '5 m/s', '10m/s', '15 m/s', '20 m/s', '25 m/s', '30 m/s');
subplot(2,2,1);
for i = 1:length(k)
plot(V,Temp(i,:));
hold on
end
title('(T2/T4)*(1-5*((T3-T1)/T2))');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');

45



xlabel('V in m/s');

subplot(2,2,4);
for i = 1:50:length(V)
plot(k,k_estimated(:,i));
hold on
end
title('fitted to k (T2/T4)*(1-5*((T3-T1)/T2))');
xlabel('k in W/mK');
ylabel('estimated k in W/mK');
legend('0 m/s', '5 m/s', '10m/s', '15 m/s', '20 m/s', '25 m/s', '30 m/s');
subplot(2,2,3);
for i = 1:length(k)
plot(V,k_estimated(i,:));
hold on
end
title('fitted to k (T2/T4)*(1-5*((T3-T1)/T2))');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');
ylabel('estimated k in W/mK');

diff = 1 + best_coefficient_lin.*Y;
Temp = Z.*diff;
Temp_avg = mean(Temp');
k_fit = polyfit(Temp_avg, k, 1);
k_estimated = k_fit(1).*Temp + k_fit(2);

figure;
sgtitle('Determining the Thermal Conductivity');
subplot(2,2,2);
for i = 1:50:length(V)
plot(k,Temp(:,i));
hold on
end
title('(T2/T4)*(1-5*((T3-T1)/T2))');
xlabel('k in W/mK');
legend('0 m/s', '5 m/s', '10m/s', '15 m/s', '20 m/s', '25 m/s', '30 m/s');
subplot(2,2,1);
for i = 1:length(k)
plot(V,Temp(i,:));
hold on
end
title('(T2/T4)*(1-5*((T3-T1)/T2))');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(2,2,4);
for i = 1:50:length(V)
plot(k,k_estimated(:,i));
hold on
end
title('converted to k (T2/T4)*(1-5*((T3-T1)/T2))');
xlabel('k in W/mK');
ylabel('estimated k in W/mK');
legend('0 m/s', '5 m/s', '10m/s', '15 m/s', '20 m/s', '25 m/s', '30 m/s');
subplot(2,2,3);
for i = 1:length(k)
plot(V,k_estimated(i,:));
hold on
end
title('converted to k (T2/T4)*(1-5*((T3-T1)/T2))');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');
ylabel('estimated k in W/mK');

diff = 1 + best_coefficient_poly_i.*Y + best_coefficient_poly_j.*(Y).^2;
Temp = Z.*diff;
Temp_avg = mean(Temp');
k_fit = polyfit(Temp_avg, k, 1);
k_estimated = k_fit(1).*Temp + k_fit(2);

figure;
sgtitle('poly');
subplot(2,2,2);
for i = 1:50:length(V)
plot(k,Temp(:,i));
hold on
end
title('(T2/T4)*(1-5*((T3-T1)/T2))');
xlabel('k in W/mK');
legend('0 m/s', '5 m/s', '10m/s', '15 m/s', '20 m/s', '25 m/s', '30 m/s');
subplot(2,2,1);
for i = 1:length(k)
plot(V,Temp(i,:));
hold on
end
title('(T2/T4)*(1-5*((T3-T1)/T2))');

46



legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');

subplot(2,2,4);
for i = 1:50:length(V)
plot(k,k_estimated(:,i));
hold on
end
title('fitted to k (T2/T4)*(1-5*((T3-T1)/T2))');
xlabel('k in W/mK');
ylabel('estimated k in W/mK');
legend('0 m/s', '5 m/s', '10m/s', '15 m/s', '20 m/s', '25 m/s', '30 m/s');
subplot(2,2,3);
for i = 1:length(k)
plot(V,k_estimated(i,:));
hold on
end
title('fitted to k (T2/T4)*(1-5*((T3-T1)/T2))');
legend('Xe', 'Kr', 'CO2', 'Ar', 'N2', 'Ne', 'He', 'H2');
xlabel('V in m/s');
ylabel('estimated k in W/mK');

47


