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ABSTRACT 
Train traffic scheduling and shunting are complex logistical 
problems facing numerous different constraints. The Dutch 
railways, NS, created software to calculate the capacity of train 
hubs to see where future expansion of the railroad network is 
needed. This work describes the addition of non-service traffic 
trains to the mixed-integer-programming-based Instance 
Generator which creates traffic instances for train unit shunting 
problems. It investigates the influence of train density at rail hubs 
and the addition of non-service traffic on the feasibility and 
validity of instances. This paper also analyses the maximum train 
density at the rail hub of Heerlen, the Netherlands. 
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1. INTRODUCTION 
The travellers’ branch of the Nederlandse Spoorwegen (Dutch 
Railways/NS) works on the implementation of Deep 
Reinforcement Learning for the solving of train unit shunting 
problems (TUSP). The purpose of this is to calculate the 
capacity of hubs for shunting train units within the Dutch railroad 
network and make strategic decisions for the future expansion of 
the network [6]. The TUSP solver that is based on Deep 
Reinforcement Learning needs scenarios of train traffic as an 
input. Those scenarios are created by an Instance Generator 
which generates realistic 24h train traffic scenarios for a rail hub. 
The Instance Generator chooses the arrival and departure time of 
service trains based on arrival and departure distributions that 
it receives as an input. Those multinomial distributions describe 
the likelihood of the trains to depart or arrive within a certain 
time interval of the day. In this paper, the term validity describes 
whether the train traffic of an instance matches the input 
distributions that were given to the Instance Generator. It 
measures how well the generated traffic depicts the real train 
traffic. 
The purpose of this research is to add non-service traffic  
—passenger trains and freight trains which pass through a hub 
without any service tasks being performed— to the Instance 
Generator by extending the current mixed integer programming 
(MIP) problem. This way, the Instance Generator will regard all 

traffic at a hub and allow for a more accurate calculation of the 
capacity. The performance of the Instance Generator is then 
measured by analysing the threshold of the three most relevant 
variables —the number of service traffic trains, the number of 
non-service traffic trains and the security distance between non-
service traffic trains— for which an acceptable instance can be 
generated. Those three variables describe the train density. The 
more service and non-service traffic trains and the less security 
distance between trains, the higher the density at a rail hub. 
 
Related work While there is no research specifically about the 
instance generation for train unit shunting problems, a lot of 
research about solution approaches has been performed. Van den 
Broek describes the mixed-integer programming algorithm that 
NS was using in 2016 and proposed Local Search as a new and 
better method to solve TUSPs [8]. The paper also gives a detailed 
explanation of constraints that need to be regarded at NS service 
sites and illustrates the complexity of TUSP.  
Sajedinejad et al. describe SIMARAIL, a software that was 
designed for the Iranian railroad network, which uses discrete-
event-driven simulation paired with optimization through the use 
of genetic algorithms to solve train scheduling problems [7]. The 
paper illustrates why scheduling and train unit shunting solutions 
are not universally applicable across railroad networks. The 
Iranian railroad network and its constraints for planning and 
scheduling problems differ largely from the Dutch network. Due 
to old tracks, daily track maintenance slots need to be planned, 
which negatively affects the capacity of hubs. In their scheduling 
problems, the Iranian software also needs to regard religious 
constraints that do not exist in the Netherlands. There are many 
other papers that describe solution approaches or sub-problems 
of train shunting and train scheduling problems, such as Freling 
et al.  [3], Hassannayebi et al. [4] and D’Ariano et al. [1]. 
Feasibility describes whether a generated instance complies with 
the business rules of NS such as the defined minimum time 
between two trains in the same direction. No related research can 
be found regarding the feasibility of the generated instances as 
this criterion is specific to NS. As the aforementioned example 
of Iranian train traffic shows, railroad networks differ so much 
that there is no research published about this because it would 
not be generally applicable across countries or different rail 
operators.  
This paper will investigate the following research question and 
its subquestions: 
RQ1.: How does train density influence the solvability of rail 
hub traffic instances for train unit shunting problems? 
  RQ1.1: How to add non-service traffic to the mixed-
 integer-programming-based Instance Generator? 
  RQ1.2: What is the impact of adding non-service 
 traffic on the validity of instances? 
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  RQ1.3: What is the maximum train density that can be 
 dealt with at the rail hub in Heerlen, the Netherlands? 
  RQ1.4: What is the impact of adding non-service 
 traffic on the feasibility of generated instances? 
 

2. BACKGROUND 
2.1 Train planning problems at the Dutch 
Railways 
The NS operates one of the busiest railroad networks in the world 
[8]. This network contains hubs consisting of train stations and 
service sites. Figure 1 shows one example of a hub within the 
Dutch railroad network. This train hub in Heerlen contains two  
platforms for passengers (marked in Fig. 1 with “Perron”), one 
platform to perform cleaning tasks on the trains (marked in Fig. 
1 with “Reinigingsperron”), multiple tracks for parking trains, 
and a few single ended tracks. 

 
 
The solid black lines represent electrified train tracks while the 
lighter grey ones are tracks which are not electrified. The blue 
dots indicate standard switches and the yellow dots indicate a 
double slip switch. Those switches allow trains to transfer from 
one track to another. The red dots describe crossovers. They 
enable trains to switch from one track to another parallel track. 
For those hubs, long-term train schedules and shunting plans are 
being created. Shunting plans are needed to coordinate train 
traffic and necessary service tasks, such as cleaning and 
maintenance. They describe the incoming trains, the outgoing 
trains, the performed service tasks and the movements that every 
train coach makes within the hub. For those plans, a lot of 
constraints need to be considered, such as the traffic schedules, 
the available facilities to perform service tasks, the infrastructure 
of the rail hubs and the availability of personnel.  
 
The number of passengers and the utilization rate of the Dutch 
railroad network have steadily increased over the last years [5]. 
Therefore, the NS needs to decide whether and where to expand 
their existing facilities. The Research and Development Hub 
Logistics of NS Reizigers created software which calculates the 
capacity of NS’s service sites by generating and solving realistic 
train unit shunting problems. The capacity of a service site is 
hereby defined as the maximum number of train coaches for 
which a realistic shunting plan can be constructed.  
 
The TUSP-solving software is the software used to solve TUSP 
problems later in the tool chain. It makes use of three different 
methodologies. Currently, Local Search and Constraint 
Programming are already implemented, while the possibilities of 
Deep Reinforcement Learning are also being explored [6] [8]. 

The current solvers provide very different solutions to only 
slightly differing TUSPs. The solver based on Deep 
Reinforcement Learning promises to provide more general 
solutions. Rather than adapting to every instance, it explores the 
best general solution and will adapt that solution based on 
changes in the TUSP. Hence, it will provide similar solutions to 
similar instances which will be more comprehensible for human 
planners and allows for easier rescheduling [6]. 
 

2.2 Instance Generation of traffic scenarios 
One part of the described software is the Instance Generator. As 
input, it receives the statistical distributions for the arrival and 
departure time of trains, the combination of train coaches those 
trains consist of, the service tasks that need to be performed, and 
static values, such as the infrastructure of the service hub (see 
Fig. 1) and information about the employee resources at the hub 
such as the availability of maintenance employee teams.  
 

 
 
The Instance Generator then outputs realistic traffic scenarios for 
the shunting problems which shall be solved by the TUSP-
solvers.  
A limitation of the current implementation of the Instance 
Generator is that it takes only service traffic into account. Service 
traffic comprises trains which need some sort of service at the 
service site like cleaning or reparation or trains that need to park 
in the shunting yard during off-peak hours.  
To generate realistic instances, NS needs to extend this 
generation and include non-service traffic. On their way through 
the hub, non-service trains block a certain path which then cannot 
be used by service traffic trains that want to enter or leave the 
shunting yard of the rail hub. Therefore, service traffic trains 
need to be scheduled accordingly, so that they do not interfere 
with the non-service train traffic. 

 
 2.3 Constraints to the addition of Non-
service traffic 
There are two types of constraints that need to be regarded 
when adding non-service traffic to the Instance Generator: 
 
1. Route conflict constraints: Trains that enter a hub occupy a 

certain route within that hub by blocking it for other trains. 
There are specific crossing times that need to be regarded to 
avoid conflicts between trains that take the same path within 
a hub.  

2. Continuity constraints: A scenario is generated for a 24h 
period but not all trains that enter the hub leave it at the end 
of the day. Therefore, some trains need to be already present 

Figure 1. Schematic map of the rail hub in Heerlen, the Netherlands 
 



 

3 
 

at the beginning of a scenario. Continuity between those 
trains needs to be ensured. 

 

Figure 2. The Instance Generator and its in- and outputs 

 
2.4Architecture of the Instance Generator 
The current implementation of the Instance Generator is based 
on two mixed-integer programming (MIP) problems as 
illustrated in Fig. 2.  
The first one, the so-called PreMIP, determines the composition 
of each arriving and departing service-traffic train. The PreMIP 
receives the possibilities for train compositions. Figure 3 displays 
the arrival and departure ratio for a train containing exactly one 
so-called “SLT4” unit. This is the data format which the PreMIP 
receives as input. A train can consist of several units of different 
types. Those ratios are given in integers. In order to determine 
the probability for a certain train composition to be chosen for 
the instance, its arrival ratio needs to be divided by the sum of 
the arrival ratios of all possible compositions. 
 

Figure 3. Train composition ratios.    
 
When the arrival ratio of a train composition does not match its 
departure ratio, this will lead to unit shunting between arrival and 
departure trains. For example, if the arrival ratio of a train 
composition is higher than its departure ratio, this means that 
more arriving service trains will have this composition than 
departing ones.  
For each of the units that can compose a train, a ratio is given that 
indicates the share of this unit type among all train unit types. 
(Fig. 4, “arrivalRatio”). Besides that, the tasks that need to be 
performed on the unit are being given. On a unit of type “SLT4”, 
an internal cleaning needs to be performed every 86400 seconds, 

so every day. This cleaning takes 540 seconds, as can be seen in 
Fig. 4.  

Figure 4. Input information about a SLT4 train unit 
 
The composition of a train therefore determines its length and 
therefore how much space it will occupy within the hub. It also 
indicates which tasks need to be performed on the train. The more 
tasks need to be performed and the longer the trains, the more 
difficult it will be to generate a valid instance. 

 
 
 
       

Figure 6. A non-service train within an instance 
 
When the PreMIP has been solved successfully, the second MIP 
(i.e. the MainMIP, see Fig. 2) receives the train compositions. It 
then optimizes the movement times of all trains and selects the 
parking and side-tracks of all service trains. The MainMIP also 
determines which trains are present at the start of the day or 
remain present at the hub at the end of the day. After solving 
both, the Pre- and the MainMIP, the Instance Generator assigns 
tasks such as a cleaning or maintenance to the trains and then 
returns the instance (Fig. 5). 
If the Instance Generator receives non-service traffic, it 
disregards it when solving the MIP problems. It will simply 
return the non-service traffic that it received together with the 
generated service-traffic. This is a problem, because service 
traffic trains could be scheduled on a track during a time where 
it is already occupied by a non-service traffic train. Therefore, 
the software needs to be adapted so that no instances with 
overlapping trains will be generated anymore. To do so, the 
constraints listed in subsection 2.3 need to be added to the 
Instance Generator so that it regards non-service traffic trains. 
Figure 6 shows a non-service traffic train in the format which is 
used to pass them to the Instance Generator: 

• “Members” consists of a list of trackpart-ids which 
describe the path of a non-service train through the 
hub.  

"units":{ "SLT4": { 
  "arrivalRatio": 28428, 
  "taskTypes": [{ 
    "name": 
"inwendige_reiniging", 
    "period": 86400, 
    "duration": 540, 
    "exclusionGroup": 0, 
    "exclusionPriority": 0 
  }, 
} 
 

 

{"nonServiceTraffic": [{ 

    "members": [ 

      "88","177","89","178", 

      "115","135","71","190", 

      "77","189","48","156", 

      "29","28","147","15", 

      "140","2","1" 

    ], 

    "arrival": "67940", 

    "departure": "68120", 

    "id": "Doorgaand-vr-3917" 

  }, 

 
 

 

"trainCompositions": [{ 
  "unitCounts": { 
    "SLT4": 1 
  }, 
  "arrivalRatio": 16062.0, 
  "departureRatio": 22784.0 
},  
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• “Arrival” and “departure” describe the time in seconds 
(since 0.00h) when a train enters or leaves the hub.  

 
• The “id” is the identifier of the train, usually consisting 

of the word doorgaand, Dutch for ongoing, two letters 
describing the weekday and an integer for example 
“vr-3988” for a train on a Friday (Dutch: vrijdag) 

 
It is important to note that non-service traffic follows a 
predetermined path through the hub, while the path of the service 
traffic gets determined by the Instance Generator and the TUSP 
solver. The Instance Generator determines the parking- track, 
where the train parks at the hub and the side-track, the track that 
leads to the parking track, of the service-traffic. The rest of the 
path is determined when solving the shunting instance.  
 

Figure 5. A returned instance 
 

3.ADDING NON-SERVICE TRAFFIC 
3.1 Route conflict constraints (RQ 1.1) 
The non-service traffic needs to be added to the Instance 
Generator so that all traffic at a hub is being considered. The first 
constraints to be regarded are route conflict constraints. While 
passing through a hub, non-service traffic occupies track parts 
within the hub. This leads to two subproblems. Firstly, the 
physical constraint that a train track part can only be occupied by 
one train at a time. Secondly, the safety regulation of having 
minimum times in between train movements. Hence, even after 
a train departs from a track, it still needs to stay free for a short 
time. For service traffic this period varies, depending on whether 
the two successive movements are going into the same or in 
opposite directions. Due to non-service traffic not having two 
separate movements, arriving and departing, like service trains, 
this minimum time is assumed to be the same regardless of the 
direction. Therefore, the interval during which a path is occupied 
can be defined as: 

OccupationTime = [arrivalTime - DT; departureTime + 	DT] 

 where DT describes the security distance to be kept between a 
non-service traffic and a service traffic train. For security 
reasons, the entire path of a non-service traffic train is blocked 
during the entire time that it is passing through a rail hub. 
3.1.1 MIP problem extension 
In order to add the route conflict constraint to the MainMIP, 
parameters as shown in Table 1 and optimization variables as 
shown in Table 2 have been defined. Additionally, it is necessary 
to understand that service traffic trains are denoted “m-trains” 
where “m” stands for movement and can be either an arrival 
movement or a departure movement. In contrast, non-service 
traffic trains are called “k-trains” in the following description of 
constraints. 
Table 1. Parameters for non-Service Traffic 

Parameter Definition 
𝑚𝑖𝑛! 	 ∈ 	ℝ"

#	
  

The security distance in seconds 
between two movements where 
one train is a non-service and 
the other is a service train. 

𝑎𝑟𝑟𝑖𝑣𝑎𝑙!	 ∈	ℕ Arrival time of non-service 
traffic train k in seconds since 
0.00h. 

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒! ∈
	ℕ             

Departure time of non-service 
traffic train k in seconds since 
0.00h. 

𝑥	 ∈ 	ℝ"
#

 The middle of the interval 
[𝑎𝑟𝑟𝑖𝑣𝑎𝑙!; 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒!]	which 
is used to describe the 
movement time for non-service 
trains. 

Δ! ∈	ℝ"
#

 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒! − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙!
2

+	𝑚𝑖𝑛!		 
 
         Describing the time in seconds 
         that a service train has to keep 
         from the middle of the interval 
         that a non-service train spends  
         at the rail hub. 

𝑢%! 	 ∈ 	 {0,1}  Indicator whether track s is used 
 by non-service train k. 

nonServiceTraffic { 
  members: [88, 177, 89, 178, 115, 135, 71,             
    190, 77, 189, 48, 156, 29, 28, 147, 15, 140,  
     2, 1] 
  arrival: 67400 
  departure: 67520 
  id: "Doorgaand-za-3929" 
} 
in { 
  time: 58534 
  id: "4000" 
  sideTrackPart: 42 
  parkingTrackPart: 15 
  members { 
    id: "2401" 
    typeDisplayName: "SLT4" 
    tasks { 
      type { 
        other: "inwendige_reiniging" 
      } 
      duration: 540 
    } 
    tasks { 
      type { 
        other: 
"technische_controle_B" 
      } 
      duration: 840 
    } 
  } 
} 
 
out { 
  time: 76107 
  id: "504000" 
  sideTrackPart: 42 
  parkingTrackPart: 15 
  members { 
    id: "****" 
    typeDisplayName: "SLT4" 
  } 
} 
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𝑀	 ∈	ℝ"
#

 A large enough constant. In the 
implementation the sum of the 
length of a day in seconds and 
𝑚𝑖𝑛!. 
 

 
Table 2. Optimization variables 
 

Optimization 
variable 

Definition 

𝑥%,'! 	 ∈ {0,1}  

 
  

Boolean variable indicating 
whether non-service train t uses 
track s to make its movement. 

𝑆%,','!
(! ∈ {0,1} Boolean Variable indicating if 

service-train t and non-service 
train t’ both use track s. 

𝜎',')(! 	 ∈ 	 {0,1} Boolean variable indicating if 
service train t makes its 
movement after non-service 
train t’.  

 
After the introduction of the parameters and optimization 
variables for non-service traffic, the route conflict constraints 
need to be formulated as linear constraints, similar to the linear 
constraint for obeying minimum follow-up times between 
service-traffic trains. The following constraints are implemented 
for all service traffic trains, all train tracks and all non-service 
traffic trains in the MainMIP. 
Variable  𝑆%,','!

(! 	 indicates if service-train t and non-service train 
t’ both use track s. It should be equal to one if both trains t and t’ 
use track s. So, the relation between  𝑆%,','!

(!  and 𝑥%,')!  and 𝑥%,'(  is 
the following: 
 𝑆%,','!
(! = 1	𝑖𝑓	𝑥%,')! =	𝑥%,'( = 1	  and 𝑆%,','!

(! = 0	otherwise. 

First 𝑆%,','!	
(!  is enforced to equal zero whenever 𝑥%,')! = 0 or 

𝑥%,'( = 0: 

(1) 𝑆%,','!
(! 	≤ 	 𝑥%,'( 												 

(2) 𝑆%,','!
(! 	≤ 	 𝑥%,'!

! 									 

(3) 𝑥%,')! =	𝑢%!															 

 
It is then possible to force 𝑆%,','!

(! to equal one whenever  

𝑥%,')! =	𝑥%,'( = 1 with the following constraint: 

 
(4) 𝑥%,'!

! +	𝑥%,'( 	≤ 1 +	𝑆%,','!	
(!   

 
 The choice of constraint 3 and the use of the parameter 𝑢%!	and 
the optimization variable 𝑥%,')! (that are always set equal to each 
other) is due to the implementation of this constraint in the 
Instance Generator. Here, a Java function, that adds the 
constraints which describe whether two service traffic trains use 
the same track, is being reused for defining the same relationship 
for non-service and service traffic trains. For both trains, this 
function needs an optimization variable as an input, despite the 
fact that the arrival track of a non-service traffic train should not 
be optimized but is fixed. This issue could be solved by adding 
constraint 3. 

The newly introduced variable 𝑆%,','!
(! 	can now be used to enforce 

the minimum time between a service train movement and a  non-
service train movement on the same track.  
The following constraints ensure that any service train movement 
performed has enough security distance from all movements of 
non-service trains.  
(5)  𝑥	 −	𝑇'( ≥	Σ%∆!𝑆%,','!

(! −𝑀𝜎',')(!  

(6) 	𝑇'( − 𝑥	 ≥ 	Σ%∆!𝑆%,','!
(! −𝑀(1 − 𝜎','!

(!) 

     
Note that in constraints 5 and 6, x describes the middle of the 
Time Interval [arrivalk; departurek] that non-service train k spends 
at the hub. It is chosen as movement time for non-service traffic 
train k because then the distance (in seconds) that needs to be 
kept from that movement is equal on both sides of x. Additionally  
𝜎','!
(!	 describing the relation between the service-train movement 
𝑇'(  
and x, can be defined unambiguously. If one would look at 
	𝑎𝑟𝑟𝑖𝑣𝑎𝑙!	 and 	𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒! as two separate movements like it  
is being done for service trains, 𝜎','!

(!  could not be defined 
unambiguously for cases where the instance generator checks 
whether a service train could move between the arrival and 
departure of a non-service train.  
Constraints 5 and 6 make use of a so-called big-M term. The M 
in those constraints is defined as a sufficiently large constant 
(based on 𝜎','!

(!), to ensure that one of the two constraints will 
give an upper or lower bound to the service train movement 
 𝑇'(  , while the other constraint is always fulfilled. In the 
implementation, M equals the sum of the day length (in seconds) 
and 	𝑚𝑖𝑛!. So, depending on which train comes before the other, 
either Constraint 5 or Constraint 6 ensure that the distance ∆! is 
being kept between the two trains.  
The use of a big-M term is sometimes being discouraged if it is 
difficult to choose a good value for the constant [2]. This is no 
problem here, as the maximum and minimum values for all 
movement times are clearly bound by the number of seconds in 
a day and therefore a good value can be chosen for M. 

3.1.2 The objective function 
Due to the scope of this paper, it is not possible to describe the 
entire MainMIP with all of its constraints. In order to understand 
the test results and how the additional constraints impact the 
objective value, the objective function of the MainMIP is given 
as eq. (7).  
Table 3. Objective function parameters 

Parameter Definition 
𝒄𝐭𝐫𝐚𝐜𝐤 Penalty coefficient for deviating from the 

desired number of movements on each track. 
𝒄𝐭𝐢𝐦𝐞 Penalty coefficient for deviating from the 

desired target times. 
 
Table 4. Objective function optimization parameters 

Optimization 
variable 

Definition 

𝜺𝒔,𝒎𝐭𝐫𝐚𝐜𝐤 ∈ ℝ Captures the difference between the desired 
number of m-movements and the actual 
number of m-movements performed on track 
s. 
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𝜺𝒕,𝒎𝐭𝐢𝐦𝐞 ∈ ℝ Captures the difference between the target 
time of m-train t and the actual time at which 
this train makes its movement. 

 
The objective function is a weighted sum over all ‘deviation’ 
variables given in Tables 3 and 4. It describes how much an 
instance differs from the arrival and departure distributions for 
service trains and the ratios for track usage that were given as 
input to the Instance Generator. The objective value can hence 
be seen as a measure for the validity, the closeness to reality, of 
an instance.  
(7)   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒							𝑍 = 	Σ((Σ'	𝑐'567!𝜀',('567! +	Σ%𝑐'8(9𝜀%,('8(9	) 

 
Adding the non-service traffic is expected to increase the 
objective value because service traffic trains need to be planned 
around the non-service traffic trains, thus making them more 
likely to deviate from the desired track or target time and 
therefore increasing the solution to eq. (7). 

3.2 Adding non-service traffic: Continuity 
constraints 
An instance generated by the Instance Generator spans 24 hours 
of train traffic. A train might enter the hub at the end of the day 
without leaving it again. Therefore, some trains might be present 
in the morning without entering the hub. It is important to ensure 
continuity between those trains. Since an instance only spans 24 
hours and instances are generated independently from each other, 
it is not possible to have a train appear only in the next generated 
instance —so to say the next morning. Therefore, it is assumed 
that every instance has the same train schedule and if a train does 
not leave at the end of the day, the same train must have remained 
the previous day as well. Hence, the train should be already 
present at the hub in the morning.  
This constraint cannot be formulated as a constraint for the 
MainMIP because the aim is to depict reality and therefore the 
arrival times of non-service traffic trains should not be changed.  
Instead, a function was implemented to check the arrival and 
departure times and ensure continuity before passing the non-
service traffic on to the MainMIP. 

3.3 Testing 
After the non-service traffic has been added, the performance of 
the Instance Generator will be tested and measured using the train 
hub of Heerlen as testing location. Comparing the Instance 
Generator after the implemented changes to its previous 
performance does not give any valuable information since the old 
implementation would not react on non-service traffic. Instead 
the different test cases will be assessed based on criteria 
describing the validity (RQ1.2), the train density (RQ1.3) and 
feasibility (RQ1.4) of an instance. 

• Solvability: Does the MainMIP find a solution for the 
input within 120 seconds and if yes, is the solution 
optimal? 

• Objective value of the MainMIP, see eq. (7) 
• Feasibility of the instance: Does the instance pass the 

instance checker by complying with the NS business 
rules? 

During all tests, unless explicitly stated differently, the following 
follow-up and crossing times are assumed for the train hub in 
Heerlen: The follow-up time between two service traffic trains in 
the same direction (both trains arriving or both trains departing) 
is assumed to be 180 seconds, the cross-over time between two 
service traffic trains in opposite directions (one arriving and one 
departing) is assumed to be 360 seconds. The time between a 

non-service traffic train and a service traffic train is assumed to 
be 360 seconds independent of the direction of the service traffic 
train. It is also assumed that all service traffic and non-service 
traffic trains use the same tracks to enter the rail hub. 

4. RESULTS AND DISCUSSION 
4.1 The impact of adding non-service traffic 
on the validity of instances (RQ 1.2) 
The validity of an instance is determined by its closeness to 
reality. The less deviation between a generated instance and the 
target distributions that the Instance Generator receives, the more 
valid the instance. The best measure for this is the objective value 
of the MainMIP’s objective function. An ideal instance has an 
objective value of 0 which indicates that it matches the input 
distributions. A high objective value indicates that service trains 
had to be scheduled at different times and different tracks than 
intended. There is no specific objective value which can be seen 
as a threshold for valid instances. Every generated instance that 
is feasible and complies with all constraints is acceptable but the 
lower the objective value the better it depicts reality. Therefore, 
a low objective value is desirable. 
Figure 7 depicts the effect of adding non-service trains while 
keeping the service trains at a stable count of 10. For every 
datapoint 5 test runs were executed. This means that for every 
run, the arrival times and the departure times of the trains differ. 
Figure 7 shows that initially the objective value increases but 
then it remains constant (at an objective value of 51.5556) for all 
values between 9 and 24 non-service traffic trains except for 15 
and 20 where slightly better solutions can be found.  

 

Figure 7. Increasing the number of non-service traffic trains  
Figure 8 illustrates the complementary test, where the number of 
non-service traffic trains is kept stable at 10 while service-traffic 
trains are being added. It pictures a relatively constant increase 
of the objective value. The average objective values for more 
than 20 service-traffic trains are above 100 while 55.5556 was 
the maximum value in Fig. 7.  

 

Figure 8. Increasing the number of service traffic trains 
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This illustrates that adding non-service trains to the instance has 
a much smaller impact on the validity of instances than adding 
more service traffic trains. This can be explained by the fact that 
the movement of service trains consists of arrival and departure. 
During both of those individual movements, security distance 
needs to be kept. A service train therefore blocks a train track for 
a longer period of time making it more difficult to schedule other 
trains.  A non-service traffic train passes through a hub within a 
few minutes in one single movement. Hence, its path only has to 
be blocked for the Occupation time as defined in section 3.1. 

4.2 The maximum train density at the rail 
hub Heerlen (RQ 1.3) 
In order to determine the maximum train density that the train 
hub in Heerlen can cope with, empirical data of actual train traffic 
at the rail hub was used to create the input ratios and distributions 
for the instance generator. Based on this, 63 non-service traffic 
trains were assumed to pass through the hub out of which 50% 
use the same tracks as the service traffic trains to enter the hub. 
This represents the amount of non-service traffic in Heerlen on a 
weekday.  
It was then tested how many service trains could be added to an 
instance before the train density would exceed the threshold 
where an acceptable instance for the rail hub can be found. In 
order to test how much the security distance, the time between 
non-service and service traffic trains, contributes to this 
maximum train density, three different security distances were 
tested. For every datapoint 10 test runs were executed. 

Figure 9. The maximum train density at the rail hub Heerlen 
The maximum train density is reached when no valid instances 
can be found for a certain combination of security distance, 
number of non-service trains and number of service trains. Figure 
9 depicts this threshold when the Instance Generator MIP solver 
is given 120 seconds to solve the MainMIP. It shows how the 
threshold is reached with 27 trains at a security distance of 240 
seconds and 25 non-service trains at a security distance of 360 
and 480 seconds.  
It can be seen that the graphs, especially the one for a security 
distance of 480s, are not monotonous against the expectation that 
a higher number of trains should always be more difficult to 
solve. In reality, the rail hub does not fit 19 service traffic trains 
more easily within 24 hours than 18, despite the fact that the 
graph might lead to this assumption. Instead, the cause for the 
lack of monotonicity is most likely the computational time that 
was given to the Instance Generator in this test setting. When 
given more computational time, one can expect monotonically 
decreasing graphs and also a small shift of the threshold where 
acceptable instances can be found to the right. This effect is the 
biggest for a security distance of 480s because when more 
distance needs to be kept, it is more difficult to fit all service 
trains and the MIP becomes harder to solve.  

Determining the security distance that needs to be kept between 
trains is a complex matter which depends on the type of train, its 
location within the hub and the possible conflicts with other 
trains that need to be avoided. Hence, choosing which value to 
use when generating shunting plan instances is not always 
straightforward. Therefore, it is interesting to consider the effect 
that different security distances have on the maximum train 
density. As seen in Fig. 8, the smallest security distance of 240 
seconds allows for more trains than 360 and 480 seconds because 
if less distance needs to be kept between trains, more trains can 
fit into the rail hub. It stands out that doubling the security 
distance from 240 to 480 seconds, reduces the number of service 
trains that fit into a hub only by two trains and that no difference 
between the threshold for the two larger security distances could 
be found. Thus, these tests suggest that the security distance 
between non-service and service traffic trains has only a small 
impact on the maximum train density. 

4.3 The feasibility of train instances with 
non-service traffic (RQ 1.4) 
The feasibility of an instance is evaluated by the instance 
checker, a tool in the NS tool chain which tests whether instances 
generated by the Instance Generator comply with NS business 
rules e.g. for the use of facilities or human resources at a rail hub. 
If negative, the result of the instance checker warns which rule is 
being violated by the instance. 
In order to test the impact of the addition of non-service traffic to 
the Instance Generator on the feasibility of instances, 400 test 
runs with (sample 1) and 400 test runs without (sample 2) added 
non-service trains were performed. For every test run, a valid 
instance was generated and checked by the instance checker. The 
number of service traffic trains was kept at 20. For every test run 
in sample 1, a number of non-service trains between 10 and 20 
was drawn randomly from a uniform distribution. 
As can be seen by the frequencies cross-tabulated in Table 5, the 
Chi-square test gives a p-value of 0.816391 meaning that there is 
no significant relationship between added non-service train 
traffic and feasibility at alpha(p <.05). More concretely, the result 
of the chi-square test statistic at a sample size of 800 and with 1 
degree of freedom is equal to 0.816391.  X2 (1, N = 800) = 
0.5051. p = .816391. 
 
Table 5. Feasibility testing results 

 
With non-

service 
traffic 

Without 
non-service 

traffic 
Total 

Instance 
Feasible 391 390 781 

Instance 
not feasible 9 10 19 

Total 400 400 800 

 
This shows that the extension of the Instance Generator with non-
service traffic trains did not have a negative impact on the 
feasibility of generated instances. Through the addition of non-
service train traffic, more realistic instances can be generated 
without compromising on the feasibility of the generated 
instances. 
 

5. CONCLUSIONS AND FUTURE WORK 
This paper aimed to show the implementation of adding non-
service traffic trains to the Mixed-Integer-Programming-based 
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Instance Generator and its effects on the validity and feasibility 
of instances. It also investigated the maximum train density at the 
rail hub of Heerlen, the Netherlands. 
It was shown that the influence of non-service traffic trains on 
the validity of instances is low as compared to the impact of 
service trains on the same measure. Therefore, when using the 
implemented changes in order to generate instances for the TUSP 
solver methods of NS, one should not expect a big deviation in 
calculated hub capacity as compared to the previous 
implementation of the software. Moreover, no significant impact 
of the added non-service traffic on the feasibility of instances 
could be found.  
Based on an empirical-data-based scenario it was found that 
under the assumption that 50% of non-service trains use the same 
rail infrastructure as service-trains, the maximum train density of 
the rail hub in Heerlen will be 25 to 27 service trains on a 
weekday. 
The described implementation of the Instance Generator after 
adding non-service traffic trains can be used by the Research and 
Development Engineers of NS to more accurately calculate the 
capacity of rail hubs in the Netherlands in the future. The 
engineers at the NS Research and Development Logistics hub 
point out that adding the non-service traffic, as described in this 
paper, is an important step towards generating realistic instances. 
In the future, one could go one step further and simulate 
disturbances of the non-service train traffic. This would give an 
even more realistic picture since trains do not always arrive 
according to their scheduled times. The effect of disturbances on 
generated train instances and a rail hub’s capacity to deal with 
disturbances are interesting topics to investigate in the future. 
The Research and Development engineers are also planning to 
look into how non-service traffic can be adjusted to increase the 
capacity of rail hubs in cases where conflicts with service traffic 
trains arise. 
Besides that, it would be interesting to repeat the tests as 
described in section 3.3 with a bigger rail hub than the hub in 
Heerlen as testing location. This could provide even better 
insights into the effects of the extension of the instances with 
non-service train traffic. The impact of security distance on 
maximum train density could also be investigated further by 
analysing more values than the three that were chosen for this 
research. 
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