

1

EXTENDING THE SHUNTING PLAN GENERATOR OF
THE DUTCH RAILWAYS WITH NON-SERVICE TRAIN

TRAFFIC
Marie Klotz

University of Twente
PO Box 217, 7500 AE Enschede

the Netherlands

m.s.klotz@student.utwente.nl

ABSTRACT
Train traffic scheduling and shunting are complex logistical
problems facing numerous different constraints. The Dutch
railways, NS, created software to calculate the capacity of train
hubs to see where future expansion of the railroad network is
needed. This work describes the addition of non-service traffic
trains to the mixed-integer-programming-based Instance
Generator which creates traffic instances for train unit shunting
problems. It investigates the influence of train density at rail hubs
and the addition of non-service traffic on the feasibility and
validity of instances. This paper also analyses the maximum train
density at the rail hub of Heerlen, the Netherlands.

Keywords
Shunting Problems, Simulation, Optimization, Train traffic,
Mixed Integer Programming, Service traffic, Railroad, Rail hubs,

1. INTRODUCTION
The travellers’ branch of the Nederlandse Spoorwegen (Dutch
Railways/NS) works on the implementation of Deep
Reinforcement Learning for the solving of train unit shunting
problems (TUSP). The purpose of this is to calculate the
capacity of hubs for shunting train units within the Dutch railroad
network and make strategic decisions for the future expansion of
the network [6]. The TUSP solver that is based on Deep
Reinforcement Learning needs scenarios of train traffic as an
input. Those scenarios are created by an Instance Generator
which generates realistic 24h train traffic scenarios for a rail hub.
The Instance Generator chooses the arrival and departure time of
service trains based on arrival and departure distributions that
it receives as an input. Those multinomial distributions describe
the likelihood of the trains to depart or arrive within a certain
time interval of the day. In this paper, the term validity describes
whether the train traffic of an instance matches the input
distributions that were given to the Instance Generator. It
measures how well the generated traffic depicts the real train
traffic.
The purpose of this research is to add non-service traffic
—passenger trains and freight trains which pass through a hub
without any service tasks being performed— to the Instance
Generator by extending the current mixed integer programming
(MIP) problem. This way, the Instance Generator will regard all

traffic at a hub and allow for a more accurate calculation of the
capacity. The performance of the Instance Generator is then
measured by analysing the threshold of the three most relevant
variables —the number of service traffic trains, the number of
non-service traffic trains and the security distance between non-
service traffic trains— for which an acceptable instance can be
generated. Those three variables describe the train density. The
more service and non-service traffic trains and the less security
distance between trains, the higher the density at a rail hub.

Related work While there is no research specifically about the
instance generation for train unit shunting problems, a lot of
research about solution approaches has been performed. Van den
Broek describes the mixed-integer programming algorithm that
NS was using in 2016 and proposed Local Search as a new and
better method to solve TUSPs [8]. The paper also gives a detailed
explanation of constraints that need to be regarded at NS service
sites and illustrates the complexity of TUSP.
Sajedinejad et al. describe SIMARAIL, a software that was
designed for the Iranian railroad network, which uses discrete-
event-driven simulation paired with optimization through the use
of genetic algorithms to solve train scheduling problems [7]. The
paper illustrates why scheduling and train unit shunting solutions
are not universally applicable across railroad networks. The
Iranian railroad network and its constraints for planning and
scheduling problems differ largely from the Dutch network. Due
to old tracks, daily track maintenance slots need to be planned,
which negatively affects the capacity of hubs. In their scheduling
problems, the Iranian software also needs to regard religious
constraints that do not exist in the Netherlands. There are many
other papers that describe solution approaches or sub-problems
of train shunting and train scheduling problems, such as Freling
et al. [3], Hassannayebi et al. [4] and D’Ariano et al. [1].
Feasibility describes whether a generated instance complies with
the business rules of NS such as the defined minimum time
between two trains in the same direction. No related research can
be found regarding the feasibility of the generated instances as
this criterion is specific to NS. As the aforementioned example
of Iranian train traffic shows, railroad networks differ so much
that there is no research published about this because it would
not be generally applicable across countries or different rail
operators.
This paper will investigate the following research question and
its subquestions:
RQ1.: How does train density influence the solvability of rail
hub traffic instances for train unit shunting problems?
 RQ1.1: How to add non-service traffic to the mixed-
 integer-programming-based Instance Generator?
 RQ1.2: What is the impact of adding non-service
 traffic on the validity of instances?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
33rdTwente Student Conference on IT, July 3rd, 2020, Enschede, The
Netherlands. Copyright 2020, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

2

 RQ1.3: What is the maximum train density that can be
 dealt with at the rail hub in Heerlen, the Netherlands?
 RQ1.4: What is the impact of adding non-service
 traffic on the feasibility of generated instances?

2. BACKGROUND
2.1 Train planning problems at the Dutch
Railways
The NS operates one of the busiest railroad networks in the world
[8]. This network contains hubs consisting of train stations and
service sites. Figure 1 shows one example of a hub within the
Dutch railroad network. This train hub in Heerlen contains two
platforms for passengers (marked in Fig. 1 with “Perron”), one
platform to perform cleaning tasks on the trains (marked in Fig.
1 with “Reinigingsperron”), multiple tracks for parking trains,
and a few single ended tracks.

The solid black lines represent electrified train tracks while the
lighter grey ones are tracks which are not electrified. The blue
dots indicate standard switches and the yellow dots indicate a
double slip switch. Those switches allow trains to transfer from
one track to another. The red dots describe crossovers. They
enable trains to switch from one track to another parallel track.
For those hubs, long-term train schedules and shunting plans are
being created. Shunting plans are needed to coordinate train
traffic and necessary service tasks, such as cleaning and
maintenance. They describe the incoming trains, the outgoing
trains, the performed service tasks and the movements that every
train coach makes within the hub. For those plans, a lot of
constraints need to be considered, such as the traffic schedules,
the available facilities to perform service tasks, the infrastructure
of the rail hubs and the availability of personnel.

The number of passengers and the utilization rate of the Dutch
railroad network have steadily increased over the last years [5].
Therefore, the NS needs to decide whether and where to expand
their existing facilities. The Research and Development Hub
Logistics of NS Reizigers created software which calculates the
capacity of NS’s service sites by generating and solving realistic
train unit shunting problems. The capacity of a service site is
hereby defined as the maximum number of train coaches for
which a realistic shunting plan can be constructed.

The TUSP-solving software is the software used to solve TUSP
problems later in the tool chain. It makes use of three different
methodologies. Currently, Local Search and Constraint
Programming are already implemented, while the possibilities of
Deep Reinforcement Learning are also being explored [6] [8].

The current solvers provide very different solutions to only
slightly differing TUSPs. The solver based on Deep
Reinforcement Learning promises to provide more general
solutions. Rather than adapting to every instance, it explores the
best general solution and will adapt that solution based on
changes in the TUSP. Hence, it will provide similar solutions to
similar instances which will be more comprehensible for human
planners and allows for easier rescheduling [6].

2.2 Instance Generation of traffic scenarios
One part of the described software is the Instance Generator. As
input, it receives the statistical distributions for the arrival and
departure time of trains, the combination of train coaches those
trains consist of, the service tasks that need to be performed, and
static values, such as the infrastructure of the service hub (see
Fig. 1) and information about the employee resources at the hub
such as the availability of maintenance employee teams.

The Instance Generator then outputs realistic traffic scenarios for
the shunting problems which shall be solved by the TUSP-
solvers.
A limitation of the current implementation of the Instance
Generator is that it takes only service traffic into account. Service
traffic comprises trains which need some sort of service at the
service site like cleaning or reparation or trains that need to park
in the shunting yard during off-peak hours.
To generate realistic instances, NS needs to extend this
generation and include non-service traffic. On their way through
the hub, non-service trains block a certain path which then cannot
be used by service traffic trains that want to enter or leave the
shunting yard of the rail hub. Therefore, service traffic trains
need to be scheduled accordingly, so that they do not interfere
with the non-service train traffic.

 2.3 Constraints to the addition of Non-
service traffic
There are two types of constraints that need to be regarded
when adding non-service traffic to the Instance Generator:

1. Route conflict constraints: Trains that enter a hub occupy a

certain route within that hub by blocking it for other trains.
There are specific crossing times that need to be regarded to
avoid conflicts between trains that take the same path within
a hub.

2. Continuity constraints: A scenario is generated for a 24h
period but not all trains that enter the hub leave it at the end
of the day. Therefore, some trains need to be already present

Figure 1. Schematic map of the rail hub in Heerlen, the Netherlands

3

at the beginning of a scenario. Continuity between those
trains needs to be ensured.

Figure 2. The Instance Generator and its in- and outputs

2.4Architecture of the Instance Generator
The current implementation of the Instance Generator is based
on two mixed-integer programming (MIP) problems as
illustrated in Fig. 2.
The first one, the so-called PreMIP, determines the composition
of each arriving and departing service-traffic train. The PreMIP
receives the possibilities for train compositions. Figure 3 displays
the arrival and departure ratio for a train containing exactly one
so-called “SLT4” unit. This is the data format which the PreMIP
receives as input. A train can consist of several units of different
types. Those ratios are given in integers. In order to determine
the probability for a certain train composition to be chosen for
the instance, its arrival ratio needs to be divided by the sum of
the arrival ratios of all possible compositions.

Figure 3. Train composition ratios.

When the arrival ratio of a train composition does not match its
departure ratio, this will lead to unit shunting between arrival and
departure trains. For example, if the arrival ratio of a train
composition is higher than its departure ratio, this means that
more arriving service trains will have this composition than
departing ones.
For each of the units that can compose a train, a ratio is given that
indicates the share of this unit type among all train unit types.
(Fig. 4, “arrivalRatio”). Besides that, the tasks that need to be
performed on the unit are being given. On a unit of type “SLT4”,
an internal cleaning needs to be performed every 86400 seconds,

so every day. This cleaning takes 540 seconds, as can be seen in
Fig. 4.

Figure 4. Input information about a SLT4 train unit

The composition of a train therefore determines its length and
therefore how much space it will occupy within the hub. It also
indicates which tasks need to be performed on the train. The more
tasks need to be performed and the longer the trains, the more
difficult it will be to generate a valid instance.

Figure 6. A non-service train within an instance

When the PreMIP has been solved successfully, the second MIP
(i.e. the MainMIP, see Fig. 2) receives the train compositions. It
then optimizes the movement times of all trains and selects the
parking and side-tracks of all service trains. The MainMIP also
determines which trains are present at the start of the day or
remain present at the hub at the end of the day. After solving
both, the Pre- and the MainMIP, the Instance Generator assigns
tasks such as a cleaning or maintenance to the trains and then
returns the instance (Fig. 5).
If the Instance Generator receives non-service traffic, it
disregards it when solving the MIP problems. It will simply
return the non-service traffic that it received together with the
generated service-traffic. This is a problem, because service
traffic trains could be scheduled on a track during a time where
it is already occupied by a non-service traffic train. Therefore,
the software needs to be adapted so that no instances with
overlapping trains will be generated anymore. To do so, the
constraints listed in subsection 2.3 need to be added to the
Instance Generator so that it regards non-service traffic trains.
Figure 6 shows a non-service traffic train in the format which is
used to pass them to the Instance Generator:

• “Members” consists of a list of trackpart-ids which
describe the path of a non-service train through the
hub.

"units":{ "SLT4": {
 "arrivalRatio": 28428,
 "taskTypes": [{
 "name":
"inwendige_reiniging",
 "period": 86400,
 "duration": 540,
 "exclusionGroup": 0,
 "exclusionPriority": 0
 },
}

{"nonServiceTraffic": [{

 "members": [

 "88","177","89","178",

 "115","135","71","190",

 "77","189","48","156",

 "29","28","147","15",

 "140","2","1"

],

 "arrival": "67940",

 "departure": "68120",

 "id": "Doorgaand-vr-3917"

 },

"trainCompositions": [{
 "unitCounts": {
 "SLT4": 1
 },
 "arrivalRatio": 16062.0,
 "departureRatio": 22784.0
},

4

• “Arrival” and “departure” describe the time in seconds
(since 0.00h) when a train enters or leaves the hub.

• The “id” is the identifier of the train, usually consisting

of the word doorgaand, Dutch for ongoing, two letters
describing the weekday and an integer for example
“vr-3988” for a train on a Friday (Dutch: vrijdag)

It is important to note that non-service traffic follows a
predetermined path through the hub, while the path of the service
traffic gets determined by the Instance Generator and the TUSP
solver. The Instance Generator determines the parking- track,
where the train parks at the hub and the side-track, the track that
leads to the parking track, of the service-traffic. The rest of the
path is determined when solving the shunting instance.

Figure 5. A returned instance

3.ADDING NON-SERVICE TRAFFIC
3.1 Route conflict constraints (RQ 1.1)
The non-service traffic needs to be added to the Instance
Generator so that all traffic at a hub is being considered. The first
constraints to be regarded are route conflict constraints. While
passing through a hub, non-service traffic occupies track parts
within the hub. This leads to two subproblems. Firstly, the
physical constraint that a train track part can only be occupied by
one train at a time. Secondly, the safety regulation of having
minimum times in between train movements. Hence, even after
a train departs from a track, it still needs to stay free for a short
time. For service traffic this period varies, depending on whether
the two successive movements are going into the same or in
opposite directions. Due to non-service traffic not having two
separate movements, arriving and departing, like service trains,
this minimum time is assumed to be the same regardless of the
direction. Therefore, the interval during which a path is occupied
can be defined as:

OccupationTime = [arrivalTime - DT; departureTime + 	DT]

 where DT describes the security distance to be kept between a
non-service traffic and a service traffic train. For security
reasons, the entire path of a non-service traffic train is blocked
during the entire time that it is passing through a rail hub.
3.1.1 MIP problem extension
In order to add the route conflict constraint to the MainMIP,
parameters as shown in Table 1 and optimization variables as
shown in Table 2 have been defined. Additionally, it is necessary
to understand that service traffic trains are denoted “m-trains”
where “m” stands for movement and can be either an arrival
movement or a departure movement. In contrast, non-service
traffic trains are called “k-trains” in the following description of
constraints.
Table 1. Parameters for non-Service Traffic

Parameter Definition
𝑚𝑖𝑛! 	 ∈ 	ℝ"

#	

The security distance in seconds
between two movements where
one train is a non-service and
the other is a service train.

𝑎𝑟𝑟𝑖𝑣𝑎𝑙!	 ∈	ℕ Arrival time of non-service
traffic train k in seconds since
0.00h.

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒! ∈
	ℕ

Departure time of non-service
traffic train k in seconds since
0.00h.

𝑥	 ∈ 	ℝ"
#

 The middle of the interval
[𝑎𝑟𝑟𝑖𝑣𝑎𝑙!; 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒!]	which
is used to describe the
movement time for non-service
trains.

Δ! ∈	ℝ"
#

 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒! − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙!
2

+	𝑚𝑖𝑛!		

 Describing the time in seconds
 that a service train has to keep
 from the middle of the interval
 that a non-service train spends
 at the rail hub.

𝑢%! 	 ∈ 	 {0,1} Indicator whether track s is used
 by non-service train k.

nonServiceTraffic {
 members: [88, 177, 89, 178, 115, 135, 71,
 190, 77, 189, 48, 156, 29, 28, 147, 15, 140,
 2, 1]
 arrival: 67400
 departure: 67520
 id: "Doorgaand-za-3929"
}
in {
 time: 58534
 id: "4000"
 sideTrackPart: 42
 parkingTrackPart: 15
 members {
 id: "2401"
 typeDisplayName: "SLT4"
 tasks {
 type {
 other: "inwendige_reiniging"
 }
 duration: 540
 }
 tasks {
 type {
 other:
"technische_controle_B"
 }
 duration: 840
 }
 }
}

out {
 time: 76107
 id: "504000"
 sideTrackPart: 42
 parkingTrackPart: 15
 members {
 id: "****"
 typeDisplayName: "SLT4"
 }
}

5

𝑀	 ∈	ℝ"
#

 A large enough constant. In the
implementation the sum of the
length of a day in seconds and
𝑚𝑖𝑛!.

Table 2. Optimization variables

Optimization
variable

Definition

𝑥%,'! 	 ∈ {0,1}

Boolean variable indicating
whether non-service train t uses
track s to make its movement.

𝑆%,','!
(! ∈ {0,1} Boolean Variable indicating if

service-train t and non-service
train t’ both use track s.

𝜎',')(! 	 ∈ 	 {0,1} Boolean variable indicating if
service train t makes its
movement after non-service
train t’.

After the introduction of the parameters and optimization
variables for non-service traffic, the route conflict constraints
need to be formulated as linear constraints, similar to the linear
constraint for obeying minimum follow-up times between
service-traffic trains. The following constraints are implemented
for all service traffic trains, all train tracks and all non-service
traffic trains in the MainMIP.
Variable 𝑆%,','!

(! 	 indicates if service-train t and non-service train
t’ both use track s. It should be equal to one if both trains t and t’
use track s. So, the relation between 𝑆%,','!

(! and 𝑥%,')! and 𝑥%,'(is
the following:
 𝑆%,','!
(! = 1	𝑖𝑓	𝑥%,')! =	𝑥%,'(= 1	 and 𝑆%,','!

(! = 0	otherwise.

First 𝑆%,','!	
(! is enforced to equal zero whenever 𝑥%,')! = 0 or

𝑥%,'(= 0:

(1) 𝑆%,','!
(! 	≤ 	 𝑥%,'(

(2) 𝑆%,','!
(! 	≤ 	 𝑥%,'!

! 									

(3) 𝑥%,')! =	𝑢%!															

It is then possible to force 𝑆%,','!

(! to equal one whenever

𝑥%,')! =	𝑥%,'(= 1 with the following constraint:

(4) 𝑥%,'!

! +	𝑥%,'(≤ 1 +	𝑆%,','!	
(!

 The choice of constraint 3 and the use of the parameter 𝑢%!	and
the optimization variable 𝑥%,')! (that are always set equal to each
other) is due to the implementation of this constraint in the
Instance Generator. Here, a Java function, that adds the
constraints which describe whether two service traffic trains use
the same track, is being reused for defining the same relationship
for non-service and service traffic trains. For both trains, this
function needs an optimization variable as an input, despite the
fact that the arrival track of a non-service traffic train should not
be optimized but is fixed. This issue could be solved by adding
constraint 3.

The newly introduced variable 𝑆%,','!
(! 	can now be used to enforce

the minimum time between a service train movement and a non-
service train movement on the same track.
The following constraints ensure that any service train movement
performed has enough security distance from all movements of
non-service trains.
(5) 𝑥	 −	𝑇'(≥	Σ%∆!𝑆%,','!

(! −𝑀𝜎',')(!

(6) 	𝑇'(− 𝑥	 ≥ 	Σ%∆!𝑆%,','!
(! −𝑀(1 − 𝜎','!

(!)

Note that in constraints 5 and 6, x describes the middle of the
Time Interval [arrivalk; departurek] that non-service train k spends
at the hub. It is chosen as movement time for non-service traffic
train k because then the distance (in seconds) that needs to be
kept from that movement is equal on both sides of x. Additionally
𝜎','!
(!	 describing the relation between the service-train movement
𝑇'(
and x, can be defined unambiguously. If one would look at
	𝑎𝑟𝑟𝑖𝑣𝑎𝑙!	 and 	𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒! as two separate movements like it
is being done for service trains, 𝜎','!

(! could not be defined
unambiguously for cases where the instance generator checks
whether a service train could move between the arrival and
departure of a non-service train.
Constraints 5 and 6 make use of a so-called big-M term. The M
in those constraints is defined as a sufficiently large constant
(based on 𝜎','!

(!), to ensure that one of the two constraints will
give an upper or lower bound to the service train movement
 𝑇'(, while the other constraint is always fulfilled. In the
implementation, M equals the sum of the day length (in seconds)
and 	𝑚𝑖𝑛!. So, depending on which train comes before the other,
either Constraint 5 or Constraint 6 ensure that the distance ∆! is
being kept between the two trains.
The use of a big-M term is sometimes being discouraged if it is
difficult to choose a good value for the constant [2]. This is no
problem here, as the maximum and minimum values for all
movement times are clearly bound by the number of seconds in
a day and therefore a good value can be chosen for M.

3.1.2 The objective function
Due to the scope of this paper, it is not possible to describe the
entire MainMIP with all of its constraints. In order to understand
the test results and how the additional constraints impact the
objective value, the objective function of the MainMIP is given
as eq. (7).
Table 3. Objective function parameters

Parameter Definition
𝒄𝐭𝐫𝐚𝐜𝐤 Penalty coefficient for deviating from the

desired number of movements on each track.
𝒄𝐭𝐢𝐦𝐞 Penalty coefficient for deviating from the

desired target times.

Table 4. Objective function optimization parameters

Optimization
variable

Definition

𝜺𝒔,𝒎𝐭𝐫𝐚𝐜𝐤 ∈ ℝ Captures the difference between the desired
number of m-movements and the actual
number of m-movements performed on track
s.

6

𝜺𝒕,𝒎𝐭𝐢𝐦𝐞 ∈ ℝ Captures the difference between the target
time of m-train t and the actual time at which
this train makes its movement.

The objective function is a weighted sum over all ‘deviation’
variables given in Tables 3 and 4. It describes how much an
instance differs from the arrival and departure distributions for
service trains and the ratios for track usage that were given as
input to the Instance Generator. The objective value can hence
be seen as a measure for the validity, the closeness to reality, of
an instance.
(7) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒							𝑍 = 	Σ((Σ'	𝑐'567!𝜀',('567! +	Σ%𝑐'8(9𝜀%,('8(9)

Adding the non-service traffic is expected to increase the
objective value because service traffic trains need to be planned
around the non-service traffic trains, thus making them more
likely to deviate from the desired track or target time and
therefore increasing the solution to eq. (7).

3.2 Adding non-service traffic: Continuity
constraints
An instance generated by the Instance Generator spans 24 hours
of train traffic. A train might enter the hub at the end of the day
without leaving it again. Therefore, some trains might be present
in the morning without entering the hub. It is important to ensure
continuity between those trains. Since an instance only spans 24
hours and instances are generated independently from each other,
it is not possible to have a train appear only in the next generated
instance —so to say the next morning. Therefore, it is assumed
that every instance has the same train schedule and if a train does
not leave at the end of the day, the same train must have remained
the previous day as well. Hence, the train should be already
present at the hub in the morning.
This constraint cannot be formulated as a constraint for the
MainMIP because the aim is to depict reality and therefore the
arrival times of non-service traffic trains should not be changed.
Instead, a function was implemented to check the arrival and
departure times and ensure continuity before passing the non-
service traffic on to the MainMIP.

3.3 Testing
After the non-service traffic has been added, the performance of
the Instance Generator will be tested and measured using the train
hub of Heerlen as testing location. Comparing the Instance
Generator after the implemented changes to its previous
performance does not give any valuable information since the old
implementation would not react on non-service traffic. Instead
the different test cases will be assessed based on criteria
describing the validity (RQ1.2), the train density (RQ1.3) and
feasibility (RQ1.4) of an instance.

• Solvability: Does the MainMIP find a solution for the
input within 120 seconds and if yes, is the solution
optimal?

• Objective value of the MainMIP, see eq. (7)
• Feasibility of the instance: Does the instance pass the

instance checker by complying with the NS business
rules?

During all tests, unless explicitly stated differently, the following
follow-up and crossing times are assumed for the train hub in
Heerlen: The follow-up time between two service traffic trains in
the same direction (both trains arriving or both trains departing)
is assumed to be 180 seconds, the cross-over time between two
service traffic trains in opposite directions (one arriving and one
departing) is assumed to be 360 seconds. The time between a

non-service traffic train and a service traffic train is assumed to
be 360 seconds independent of the direction of the service traffic
train. It is also assumed that all service traffic and non-service
traffic trains use the same tracks to enter the rail hub.

4. RESULTS AND DISCUSSION
4.1 The impact of adding non-service traffic
on the validity of instances (RQ 1.2)
The validity of an instance is determined by its closeness to
reality. The less deviation between a generated instance and the
target distributions that the Instance Generator receives, the more
valid the instance. The best measure for this is the objective value
of the MainMIP’s objective function. An ideal instance has an
objective value of 0 which indicates that it matches the input
distributions. A high objective value indicates that service trains
had to be scheduled at different times and different tracks than
intended. There is no specific objective value which can be seen
as a threshold for valid instances. Every generated instance that
is feasible and complies with all constraints is acceptable but the
lower the objective value the better it depicts reality. Therefore,
a low objective value is desirable.
Figure 7 depicts the effect of adding non-service trains while
keeping the service trains at a stable count of 10. For every
datapoint 5 test runs were executed. This means that for every
run, the arrival times and the departure times of the trains differ.
Figure 7 shows that initially the objective value increases but
then it remains constant (at an objective value of 51.5556) for all
values between 9 and 24 non-service traffic trains except for 15
and 20 where slightly better solutions can be found.

Figure 7. Increasing the number of non-service traffic trains
Figure 8 illustrates the complementary test, where the number of
non-service traffic trains is kept stable at 10 while service-traffic
trains are being added. It pictures a relatively constant increase
of the objective value. The average objective values for more
than 20 service-traffic trains are above 100 while 55.5556 was
the maximum value in Fig. 7.

Figure 8. Increasing the number of service traffic trains

7

This illustrates that adding non-service trains to the instance has
a much smaller impact on the validity of instances than adding
more service traffic trains. This can be explained by the fact that
the movement of service trains consists of arrival and departure.
During both of those individual movements, security distance
needs to be kept. A service train therefore blocks a train track for
a longer period of time making it more difficult to schedule other
trains. A non-service traffic train passes through a hub within a
few minutes in one single movement. Hence, its path only has to
be blocked for the Occupation time as defined in section 3.1.

4.2 The maximum train density at the rail
hub Heerlen (RQ 1.3)
In order to determine the maximum train density that the train
hub in Heerlen can cope with, empirical data of actual train traffic
at the rail hub was used to create the input ratios and distributions
for the instance generator. Based on this, 63 non-service traffic
trains were assumed to pass through the hub out of which 50%
use the same tracks as the service traffic trains to enter the hub.
This represents the amount of non-service traffic in Heerlen on a
weekday.
It was then tested how many service trains could be added to an
instance before the train density would exceed the threshold
where an acceptable instance for the rail hub can be found. In
order to test how much the security distance, the time between
non-service and service traffic trains, contributes to this
maximum train density, three different security distances were
tested. For every datapoint 10 test runs were executed.

Figure 9. The maximum train density at the rail hub Heerlen
The maximum train density is reached when no valid instances
can be found for a certain combination of security distance,
number of non-service trains and number of service trains. Figure
9 depicts this threshold when the Instance Generator MIP solver
is given 120 seconds to solve the MainMIP. It shows how the
threshold is reached with 27 trains at a security distance of 240
seconds and 25 non-service trains at a security distance of 360
and 480 seconds.
It can be seen that the graphs, especially the one for a security
distance of 480s, are not monotonous against the expectation that
a higher number of trains should always be more difficult to
solve. In reality, the rail hub does not fit 19 service traffic trains
more easily within 24 hours than 18, despite the fact that the
graph might lead to this assumption. Instead, the cause for the
lack of monotonicity is most likely the computational time that
was given to the Instance Generator in this test setting. When
given more computational time, one can expect monotonically
decreasing graphs and also a small shift of the threshold where
acceptable instances can be found to the right. This effect is the
biggest for a security distance of 480s because when more
distance needs to be kept, it is more difficult to fit all service
trains and the MIP becomes harder to solve.

Determining the security distance that needs to be kept between
trains is a complex matter which depends on the type of train, its
location within the hub and the possible conflicts with other
trains that need to be avoided. Hence, choosing which value to
use when generating shunting plan instances is not always
straightforward. Therefore, it is interesting to consider the effect
that different security distances have on the maximum train
density. As seen in Fig. 8, the smallest security distance of 240
seconds allows for more trains than 360 and 480 seconds because
if less distance needs to be kept between trains, more trains can
fit into the rail hub. It stands out that doubling the security
distance from 240 to 480 seconds, reduces the number of service
trains that fit into a hub only by two trains and that no difference
between the threshold for the two larger security distances could
be found. Thus, these tests suggest that the security distance
between non-service and service traffic trains has only a small
impact on the maximum train density.

4.3 The feasibility of train instances with
non-service traffic (RQ 1.4)
The feasibility of an instance is evaluated by the instance
checker, a tool in the NS tool chain which tests whether instances
generated by the Instance Generator comply with NS business
rules e.g. for the use of facilities or human resources at a rail hub.
If negative, the result of the instance checker warns which rule is
being violated by the instance.
In order to test the impact of the addition of non-service traffic to
the Instance Generator on the feasibility of instances, 400 test
runs with (sample 1) and 400 test runs without (sample 2) added
non-service trains were performed. For every test run, a valid
instance was generated and checked by the instance checker. The
number of service traffic trains was kept at 20. For every test run
in sample 1, a number of non-service trains between 10 and 20
was drawn randomly from a uniform distribution.
As can be seen by the frequencies cross-tabulated in Table 5, the
Chi-square test gives a p-value of 0.816391 meaning that there is
no significant relationship between added non-service train
traffic and feasibility at alpha(p <.05). More concretely, the result
of the chi-square test statistic at a sample size of 800 and with 1
degree of freedom is equal to 0.816391. X2 (1, N = 800) =
0.5051. p = .816391.

Table 5. Feasibility testing results

With non-

service
traffic

Without
non-service

traffic
Total

Instance
Feasible 391 390 781

Instance
not feasible 9 10 19

Total 400 400 800

This shows that the extension of the Instance Generator with non-
service traffic trains did not have a negative impact on the
feasibility of generated instances. Through the addition of non-
service train traffic, more realistic instances can be generated
without compromising on the feasibility of the generated
instances.

5. CONCLUSIONS AND FUTURE WORK
This paper aimed to show the implementation of adding non-
service traffic trains to the Mixed-Integer-Programming-based

8

Instance Generator and its effects on the validity and feasibility
of instances. It also investigated the maximum train density at the
rail hub of Heerlen, the Netherlands.
It was shown that the influence of non-service traffic trains on
the validity of instances is low as compared to the impact of
service trains on the same measure. Therefore, when using the
implemented changes in order to generate instances for the TUSP
solver methods of NS, one should not expect a big deviation in
calculated hub capacity as compared to the previous
implementation of the software. Moreover, no significant impact
of the added non-service traffic on the feasibility of instances
could be found.
Based on an empirical-data-based scenario it was found that
under the assumption that 50% of non-service trains use the same
rail infrastructure as service-trains, the maximum train density of
the rail hub in Heerlen will be 25 to 27 service trains on a
weekday.
The described implementation of the Instance Generator after
adding non-service traffic trains can be used by the Research and
Development Engineers of NS to more accurately calculate the
capacity of rail hubs in the Netherlands in the future. The
engineers at the NS Research and Development Logistics hub
point out that adding the non-service traffic, as described in this
paper, is an important step towards generating realistic instances.
In the future, one could go one step further and simulate
disturbances of the non-service train traffic. This would give an
even more realistic picture since trains do not always arrive
according to their scheduled times. The effect of disturbances on
generated train instances and a rail hub’s capacity to deal with
disturbances are interesting topics to investigate in the future.
The Research and Development engineers are also planning to
look into how non-service traffic can be adjusted to increase the
capacity of rail hubs in cases where conflicts with service traffic
trains arise.
Besides that, it would be interesting to repeat the tests as
described in section 3.3 with a bigger rail hub than the hub in
Heerlen as testing location. This could provide even better
insights into the effects of the extension of the instances with
non-service train traffic. The impact of security distance on
maximum train density could also be investigated further by
analysing more values than the three that were chosen for this
research.

ACKNOWLEDGMENTS
I would like to thank the R&D Hub logistics at the Nederlandse
Spoorwegen. Especially my supervisor Wan-Jui Lee for all her
guidance, encouragement and support, Demian de Ruijter for the

extensive explanations on the Dutch railroad network, and Bob
Huisman for providing me with this research task at his
department. My sincere gratitude also goes to Doina Bucur and
Carlos Budde, my supervisors at the University of Twente, for
all the valuable feedback, interesting discussions and advice
along the way.

6. REFERENCES
[1] D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2007). A branch
and bound algorithm for scheduling trains in a railway network.
European Journal of Operational Research, 183(2), 643–657.
https://doi.org/10.1016/j.ejor.2006.10.034

[2] Björkqvist, J., & Westerlund, T. (1999). Automated
reformulation of disjunctive constraints in MINLP
optimization. Computers & Chemical Engineering, 23, S11–
S14. https://doi.org/10.1016/s0098-1354(99)80004-0

[3] Freling, R., Lentink, R. M., Kroon, L. G., & Huisman, D.
(2005). Shunting of passenger train units in a railway station.
Transportation Science, 39(2), 261–272.
https://doi.org/10.1287/trsc.1030.0076

[4] Hassannayebi, E., Sajedinejad, A., & Mardani, S. (2014).
Urban rail transit planning using a two-stage simulation-based
optimization approach. Simulation Modelling Practice and
Theory, 49, 151–166.
https://doi.org/10.1016/j.simpat.2014.09.004

[5] NS. (2020). Nederland duurzaam bereikbaar. Voor iedereen.
Retrieved from
https://www.ns.nl/binaries/_ht_1582797451971/content/assets/n
s-nl/over-ns/nederland-duurzaam-bereikbaar.pdf

[6] Peer, Evertjan & Menkovski, Vlado & Zhang, Yingqian &
Lee, Wan-Jui. (2018). Shunting Trains with Deep Reinforcement
Learning.

[7] Sajedinejad, A., Mardani, S., Hasannayebi, E., K., S. A. R.
M. M., & Kabirian, A. (2011). SIMARAIL: Simulation based
optimization software for scheduling railway network.
Proceedings - Winter Simulation Conference, 3730–3741.
https://doi.org/10.1109/WSC.2011.6148066

[8] van den Broek, R. (2016). Train shunting and service
scheduling: an integrated local search approach. Master’s thesis,
Utrecht University

