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ABSTRACT

This study is an exploratory work into semantic segmen-
tation of rowing images. Rowing is a highly technical
sport, which is very suitable for automated analysis. How-
ever, not many systems are available for this yet, with the
ones that are available using inertial sensors. Being able
to analyse (old) rowing footage could help coaches fur-
ther improve their crew’s technique. This study aims to
take a first step towards visual automated analysis of the
rowing stroke. In this paper, we retrained a pre-trained
Deeplabv3+ model to segment rowers and their boats.
The performance of the model was evaluated similarly to
Microsoft’s COCO challenge, with the primary metric be-
ing the mean intersection over union and pitted against the
performance of the pre-trained model. The results show
an increase in performance of 14.5% in the primary met-
ric when using the retrained model, even though a very
limited amount of training was done. These results show
that there is potential in using machine learning to cre-
ate an automated video analysis system for application in
rowing.
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1. INTRODUCTION

Analysing sports is quickly gaining traction, both in track-
ing performance with apps such as Strava, as well as in
tracking technical aspects of (competitive) sports. Most
sports events are well-covered by video, but training ses-
sions are also filmed increasingly often. This leaves a
wealth of visual data that can be used to gain insight into
the movement of a sport. Being able to analyse old footage
to gain a better understanding of what made a great crew
so dominant in their heyday might also be beneficial to
advance technique for current day athletes. Rowing is a
sport that is highly dependent on a combination of tech-
nique, endurance, and power. Both power and endurance
can be measured fairly easily, for example by making use
of an indoor rowing machine such as the Concept2 indoor
rower. Technique, however, is more complicated to mea-
sure due to the differences in what movement is most effi-
cient for indoor rowing compared to rowing in a boat. For
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this reason, it is interesting to take an exploratory step in
automated image or video processing, with the final goal
being analysing movement patterns in rowing, to help sup-
port rowing coaches in improving their crew’s technique.

The current state-of-the-art in rowing video analysis is
without any use of machine learning [14]. The system
is fully based on mathematical equations and estimating
positions of rower body parts based on the previous video
frame. Due to this, it is very limited in its use, as it re-
quires very specific conditions under which the video was
shot. This makes such a system very inflexible in its use,
hence why it is relevant to propose a system that functions
under more natural circumstances.

In this paper, we explore a first step in machine learn-
ing for automated video analysis of rowing footage. Our
research question for this is as follows: Can machine learn-
ing be used to accurately perform semantic segmentation
on rowers and boats in images? To answer this, we adapt
a machine learning system to semantically segment row-
ers and their boats in images. This is done by retraining
a pre-trained state-of-the-art visual detection architecture
named Deeplabv3+ [9] using transfer learning. The re-
trained model used focal loss [12] as the loss function.
The dataset which we used in this paper consists of 100
unique images taken from a Stanford dataset [11] and a
database of rowing images taken by the Photo Commit-
tee of D.R.V. Euros [2]. All images were labelled and then
split in training, validation, and test sets, in 75%/5%/20%
partitions respectively. To evaluate performance, the same
metrics that are used in Microsoft’s COCO Stuff Chal-
lenge were used. The system was tested with and without
post-processing, to determine which version of the sys-
tem would be compared to the pre-trained model. Minor
post-processing by introducing a certainty threshold for
the predictions turned out to work better for both models.
Results showed a 14.5% improvement in performance over
the pre-trained model for the primary evaluation metric
when using the retrained model, as well as improvements
in all other metrics.

In short, during this research the following was achieved:

e A dataset was gathered and labelled

e A script to pre-process this labelled dataset was im-
plemented

e An existing Deeplabv3+ implementation was adapted
to suit the use case of this research

e A Deeplabv3+ model was trained that achieved a
14.5% performance increase over the pre-trained model
for the primary evaluation metric.

The rest of this paper is organised as follows: in Section 2,
related work and scientific background of this topic are dis-
cussed. In Section 3, we outline our research question. In
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Figure 1. A visualisation of the encoder-decoder architecture used by Deeplabv3-.

Section 4, an in depth explanation of the research method-
ology is given. In Section 5 we present our results, along
with an explanation of our findings based on these results.
Furthermore, in Section 6, the limitations and recommen-
dations that follow this research are described. Finally in
Section 7, we conclude on our research question.

2. RELATED WORK

2.1 Rowing analysis

As mentioned earlier, sports analysis is becoming wide-
spread nowadays. This field of study is not very old, the
first research started in the late 20" century [4]. Biome-
chanics are highly significant for rowing, as it is a highly
technical sport to which many biomechanical concepts ap-
ply, with a movement which can be modelled mathemati-
cally due to the repetitive, restricted motion patterns [10].
Currently, there exist two types of systems available for
analysis of rowing technique. The first uses sensors, the
second uses video. Sensor-based systems often use a va-
riety of sensors, such as accelerometers, GPS and force
sensors [16]. Systems that utilise sensors, however, will al-
ways require extra hardware to be mounted on the boat or
oars, or the rowers themselves. They also can only provide
data on sessions during which the hardware was mounted.
The second type, video-based systems, are more popular.
Filming has become common practice among coaches [15].
The reason is that smartphones nowadays are cheap, yet
effective for allowing athletes to review their movements at
a later time, from a different perspective. Currently, there
is a need for a video processing tool that caters specifically
to the needs of rowing coaches.

Aside from the sensor versus video-based systems, there
is also a distinction between systems that provide direct
feedback and those that allow for post-session evaluation.
An example of a direct feedback system would be Sofirow,
a system that can give acoustic feedback based on various
metrics [13].

The current state-of-the-art in visual motion detection ap-
pears to be a method to estimate body positions while
rowing, proposed by G. Sziics and B. Tam4ds [14]. Their
method could extract the position of the head, shoulder,
elbow, wrist, hip, knee, and ankle. All of these anchor
points are relevant for evaluating rowing technique. The
system turned out to be highly accurate, but also strongly
dependent on the quality of the video and the circum-

stances in the video, such as lighting, background, and
shadows. The research did not use any machine learn-
ing, which could explain why the background subtraction
required a rather complex system already.

2.2 Visual object detection

Visual object detection, and more specifically semantic
segmentation can be done using a variety of methods. The
architecture that was chosen for this research is Deeplabv3+-.
Deeplabv3+ is a state-of-the-art architecture for semantic
segmentation and is the latest version in the Deeplab se-
ries of detectors. It is an improvement upon Deeplabv3,
which in turn superseded Deeplabv2 and Deeplabvl.
Deeplabvl was introduced in 2015 to combat the problem
existing Deep Convolutional Neural Networks (DCNNs)
had in the final layer with localising responses well enough
for accurate segmentation [6]. Over a year later, a second
iteration was proposed. Deeplabv2 made us of a new tech-
nology called Atrous Spatial Pyramid Pooling (ASPP), on
top of the Atrous Convolution and Conditional Random
Field (CRF) that were carried over from v1 [7].

For Deeplabv3, the entire structure of the system was
rethought. The system no longer made use of CRF as
a post-processing step, but improved on the ASPP mod-
ule by using batch normalisation and image-level features.
Aside from this, modules that use Atrous Convolution in
cascade or parallel to handle multiple-scale segmentation
of objects were implemented. The system achieved similar
performance to other state-of-the-art models due to these
improvements over the previous versions [8].

Finally, Deeplabv3+ is the most recent Deeplab version.
Deeplabv3+ makes use of an Encoder-Decoder architec-

ture, in which Deeplabv3 functions as the encoder. Deeplabv3+

extends Deeplabv3 by adding the decoder section of the ar-
chitecture. The goal of this was to combine the strong fea-
tures of both spatial pyramid pooling modules and encoder-
decoder structures for DCNNs. More specifically, being
able to encode multi-scale contextual information like a
spatial pyramid pooling system, while also being able to
capture sharper object boundaries like an encoder-decoder
system. This architecture can be seen below in Figure 1.
The system achieved state-of-the-art performance on the
PASCAL VOC2012 semantic segmentation benchmark, out-
performing systems like PSPNet and ResNet-38 and the
original Deeplabv3 model [9].
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Figure 2.
augmentation performed.

3. PROBLEM STATEMENT

As discussed in the previous section, the current state-of-
the-art in rowing video processing does not use any form
of machine learning and is very restricted in terms of the
usable footage. This study aims to determine whether a
Deeplabv3+ model trained using transfer learning is well
suited to detect the rower and the boat correctly in a va-
riety of circumstances so such a system can be used in a
wide range of video footage. The main research question
is formulated as follows:

Can machine learning be used to accurately perform se-
mantic segmentation on rowers and boats in images?

4. RESEARCH METHODOLOGY

The research was conducted in four phases. The first phase
consisted of labelling the images in the dataset manually,
as accurately as possible.

Phase two was writing the script for converting the data
generated in the labelling process, to a format that was
compatible with the Deeplabv3+ implementation.

In phase three, the Deeplabv3+ script was adapted to
work with the rowing dataset and the various loss func-
tions and metrics were implemented.

Finally phase four consisted of training the model using
the chosen hyperparameters, applying final post-processing
and evaluating the model using the test dataset. This eval-
uation was done for two variants of the retrained model
with post-processing as well as a variant without post-
processing. The best performing variant was then com-
pared to a similarly post-processed pre-trained Deeplabv3-+
model.

4.1 Resources

The resources necessary for this research were all digital.
Keras is the Python library on which the Deeplabv3+ im-
plementation was built. Keras is a high-level neural net-
works API, using TensorFlow as its back-end. Aside from
this, a dataset from Stanford [11] as well as several taken
by the Photo Committee of D.R.V Euros [2] were used and
labelled manually, to train the system to correctly detect
rowers and boats in an image. These photo sets contain
numerous images of rowing activities, at various distances
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An example of the augmentations performed. The captions above each subplot show the

from the camera. The lighting and camera angle also vary.
Finally, a data pre-processing script by Matterport [3] was
used as a base for writing a dataset conversion script and
a TensorFlow-based Deeplabv3+ implementation [17] was
used as the base script for training the network.

4.2 Data annotation and processing

The total number of unique images in our dataset was
100. This dataset was split in parts of 756%/5%/20% for
the training, validation and testing respectively. This is
slightly different from the rule of thumb saying the dataset
should be split 80%/10%/10%, but the training set could
be augmented and the test set being diverse was deemed to
be more important than the validation set being diverse.
To build the dataset during phase one, the labelling tool
”"COCOAnnotator” was used [5]. This tool was chosen be-
cause the export format was in JSON, following the exact
polygon coordinate list format that is used for the COCO
dataset as well. To make this output compatible with
Deeplabv3+, a script was written to load either the train-
ing, test or validation data, convert this from JSON poly-
gon coordinate list format to NumPy arrays representing
the correct pixel values for both the original image and
the masks, augment the data if required and save it in a
Deeplabv3+ compatible file. The conversion from JSON
to NumPy arrays was done using a pre-existing script from
the Mask-RCNN implementation by Matterport [3] that
was adapted for this use case. The images were resized to
512x512 pixels, with padding if the aspect ratio was not
square, to prevent memory size issues. Masks were saved
in 512x512x3 NumPy arrays, making them 3D NumPy
arrays with each third dimension containing a 512x512
mask for one of the three classes: background (0), boat
(1) or rower (2). To counter the issue of having only
75 training images, the training images were augmented
in various ways. For each original image, a horizontally
flipped version was generated, as well as five augmenta-
tions that were randomly rotated within a range of —5° to
5° and/or shifted horizontally by 0% to 10% left or right.
For the horizontal shift, the non-existing pixels opposite to
the shift direction were added using the nearest-neighbour
principle. Examples of this can be seen below in Figure 2.
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This process brought the number of training images up to
525. The validation and test data were not augmented.

4.3 Evaluation metrics

Seeing how semantic segmentation falls under the scope
of COCO Stuff, the performance of all techniques were
evaluated using the same four metrics used in Microsoft’s
COCO Stuff challenge: mean intersection over union, fre-
quency weighted intersection over union, mean accuracy,
and pixel accuracy [1]. The primary metric is the mean
IoU, or mloU. This metric gives a good idea about the
performance of the model, as it takes calculates how well
the predicted mask fits the ground truth mask, while only
counting true negatives within the ground truth mask area.
It is calculated by taking the intersection of the predicted
mask and the ground truth mask, and dividing it by the
union of those two, as shown in Figure 3. This is done for
every class separately, and the mean is taken as the final
result. Aside from the mIoU, the frequency weighted IoU,
or fwloU, is also used. This metric is similar to the mIoU,
but with a weight assigned to each class based on how
many pixels belong to the class within the ground truth
mask. Finally, we have the mean accuracy (mAcc) and the
pixel accuracy (pAcc). The mAcc is a metric that is calcu-
lated by calculating the accuracy for each class and then
taking the average of these accuracy values. The main
difference with the IoU based metrics, is that this counts
all true negatives towards the performance of the model,
regardless of whether those true negatives are within the
ground truth mask area or not. The pAcc is calculated by
simply dividing all correctly predicted pixels, so both true
positives and true negatives, by the total number of pixels
in the image.

The mathematical formulas for all metrics used can be
found in Table 1, where n;; is the number of pixels of
class i predicted to belong in class j, ne is the number of
classes being evaluated and t; = Zj n;; is the total num-
ber of pixels in class .

All of these metrics were implemented newly or adapted
from existing (partial) implementations, to suit the data
format used by the Deeplabv3+ script.

4.4 Architecture

The Deeplabv3+ implementation that was adapted in this
research used pre-trained PASCAL VOC2012 weights. To
adapt the model to this use case, a softmax activation
layer was added to accommodate the focal loss function
and all layers except the final 5 layers were frozen and
made untrainable. This allowed the model to use all of its
pre-learned structures to compensate for the small amount
of training data that it had to learn from. The input shape
of the tensors was set to 512x512x3, the number of classes
to 3 and the backbone used was xception. The output
stride of the model was set to 16, because 8 would lead to
memory problems due to the size of the feature vector.

4.5 Model training

The optimizer used for training was Keras’ Adam, with
all parameters left default. The focal loss function used a
gamma of 2 and an alpha of 0.25, as suggested to be best
in most cases in the original paper [12].

Area of intersection

Area of union

Figure 3. A visualisation of the intersection over
union.

The loss used in this research was focal loss. This loss
function is well suited to unbalanced datasets and data in
which there is a lot of background pixels, as it is specifi-
cally designed to combat foreground-background class im-
balance in dense detectors [12]. This loss function can be
defined using the following formula:

L =—ai(1—p:)"0log(pe) (1)

where 7 is a prefixed positive scalar value, « is a weighting
factor to balance positive and negative predicted pixels in
a range between [0, 1] and

P ify=1
bt = . (2)
1 —p otherwise

In equation 2, the y specifies the ground-truth class, and
p is the probability for the class with label y = 1 as es-
timated by the model. In terms of notation, a: can be
written similarly to p;.

The model was trained for 50 epochs with a batch size
of 5. The model was evaluated with two post-processing
options, the first being a certainty threshold of 0.2 for the
predictions and the second being a certainty threshold of
0.3. The model without post-processing was also evalu-
ated as a baseline.

The pre-trained Deeplabv3+ model was the original PAS-
CAL VOC2012-trained model. With the exception of the
number of classes, all other hyperparameters were the same
as the retrained model. This was due to the retrained
model containing only 3 classes, whereas PASCAL VOC2012
contains 21 classes, of which the fourth is a class for boats
and the fifteenth for persons. For our comparison, we used
these classes as our boat and rower classes respectively.
This model was post-processed using the same threshold
that performed best for the retrained model for the com-
parison between the two.



S. RESULTS

The results of the research are split in three parts. The
first section discusses the validation performance of the
new model briefly, to give an insight into the training
progress made by the model. The second section contains
a comparison between various versions of the retrained
model. The third section shows a comparison between a
pre-trained Deeplabv3+ model and our retrained variant.
These final sections will be more extensive as these results
will lead to an answer to our research question.

5.1 Validation performance

The validation loss, depicted in Figure 5, is not as smooth
a line as the training loss shown in Figure 4. The same
trend is visible however, with the loss initially decreas-
ing significantly. It then started oscillating, as the overall
trend still slightly decreased. The validation loss after the
final epoch was 0.68. The decreasing trend shows that
it was unlikely that overfitting occurred in the model, so
it is suitable for testing. The reason why the validation
loss had a lot more undulations in the value is most likely
due to the limited size of the validation dataset. It is likely
that there are images on which the model performed better
than others. Variations could be caused by an aggregation
of images the model segments with above-average quality
in one epoch followed by a below-average segmentation
quality batch in the next epoch. This makes sense from
the perspective of the training loss as well, as this does not
have this problem because the training loss is calculated
over a factor 21 more images per epoch.

Loss value
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Figure 4. A graph of the training loss over epochs.
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Figure 5. A graph of the validation loss over

epochs.

5.2 Test results

The test results for the retrained model were evaluated
with and without out certainty thresholds on the predicted
values. A bar graph visualising the differences between
these versions is shown in Figure 6. The blue bar is the
baseline, which is using no certainty threshold. It is clearly
visible how the post-processed models leapfrog the base
variant in performance in all metrics except the accuracy
based metrics. We can also see that while the IoU based
metric scores are not incredibly high for any variant, the
accuracy based ones are near perfect. This is most likely
because accuracy is a metric that is strongly biased to-
wards true negative predictions. As such, due to the small
size of most masks in comparison to the entire image, the
amount of ground truth negatives is very high, which in
turn boosts the accuracy scores significantly. Even if the
prediction would be negative for all pixels, it is likely that
these scores would approach 85% accuracy. The metrics
were included in the research because they are part of
the COCO stuff challenge metrics, but the significant bias
must certainly be taken into account when looking at the
scores in these metrics.

Performance comparison between models
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Figure 6. A bar plot of the performance of various
retrained model variants.

Table 2. Test results of retrained Deeplabv3+
models with or without post-processing.

Certainty threshold | mIoU | fwloU | mAcc | pACC
0.0 0.348 | 0.347 | 0.987 | 0.978
0.2 0.521 | 0.515 | 0.980 | 0.968
0.3 0.536 | 0.531 | 0.985 | 0.976

The exact results of the tests can be seen above in Table
2. The large performance increase for IoU based metrics
is more clearly defined here. The 0.2 confidence threshold
model achieved a 49.7% improvement and the 0.3 thresh-
old achieved a 54.0% improvement over the baseline, for
the mean IoU metric. For the frequency weighted IoU,
the increase is comparable, but slightly smaller at 48.4%
and 53.0% respectively. In the table it is also visible that
the accuracy based metrics actually decrease compared to
the base model. However, this decrease in performance is
1.0% at the highest, whereas the performance increase in
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Figure 7. Predictions for the two classes with all three retrained model variants shown separately.

the more relevant metrics is 48.4% at least. Making this
trade-off appears merely logical, considering the difference
in significance and the higher significance of the IoU based
metrics.

Figure 7 shows an random batch of images from the test
dataset, along with their segmentation output of each tested
variant. As is visible, the reason why the 0.3 threshold
variant seems to perform better is due to a smaller amount
of false negatives. This is especially visible in the differ-
ence between the 0.2 and 0.3 threshold segmentations in
the second column. In the 0.2 threshold image we see that
the stroke rower (the second person from the left) does
not have a separately segmented arm. In the 0.3 thresh-
old image, this is the case. Similarly, for the first column,
the 0.2 threshold model classifies much more boat pixels
in places where there should not be a boat compared to
the 0.3 threshold model.

5.3 Model comparison

Based on the best performing post-processing variant of
the retrained model, a similarly post-processed variant of
the pre-trained model was evaluated to serve as a baseline
and compared. In this case, both models used a certainty
threshold of 0.3 as this performed best, following the re-
sults from the previous section. Once again, the results
have been plotted in a bar chart, visible in Figure 8. We
can see a significant increase in performance for the IoU
based metrics when compared to the pre-trained model.
Similarly to the comparison between retrained model vari-
ants, we see very high accuracy based metric scores for

both models. As described in the previous section, we
should look these values with caution due to the strong
bias toward true negatives in accuracy based metrics.
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Figure 8. A bar plot comparing the pre-trained
and retrained model performance.
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Figure 9. Predictions for the two classes by both tested models shown separately.

Table 3 contains the exact metric scores for both models.
The bottom row shows the difference between the scores.
From this, we see the increase in performance is around
15% for the IoU based metrics. The difference in accuracy
scores is negligible, with a maximum difference of 0.3%.
Interestingly, the pre-trained model’s performance does
not come close to the performance it achieved on the PAS-
CAL VOC2012 test. In that instance, it reached a mean
ToU score 87.8% for the best performing model on that
case [9]. This is most probably due to the difference in
positions of rowers compared to walking or standing peo-
ple, which is a more frequent situation in the PASCAL
VOC2012 dataset. As for the boats, this might be due
to the "atypical” shape of a rowing shell compared to a
motorised boat which the pre-trained model has trained
on significantly more. Even though it was expected that
the pre-trained model would not perform as well as it did
for the PASCAL VOC2012 test, it is remarkable that the
performance discrepancy is so large.

Table 3. Test results of pre-trained and retrained
Deeplabv3+ models.

Model mloU | fwloU | mAcc | pACC
Pre-trained | 0.468 | 0.460 | 0.985 | 0.973
Retrained | 0.536 | 0.531 | 0.985 | 0.976
Difference | 14.5% | 15.4% | 0.0% | 0.3%

Finally, Figure 9 shows a visual comparison between the
retrained model’s segmentations and the pre-trained model’s
segmentations. The images are the same four used in 7,
to keep things equal. In most images, we see that the pre-
trained model struggles heavily with detecting the boat.
The leftmost column does not even contain a boat in the
pre-trained model’s prediction. We also see a difference
in accuracy, which is visible in column 2. The retrained
model shows a more precise shape with a separate arm for
the stroke rower as described in the last section as well,

whereas the pre-trained model groups this entire area un-
der the rower instance. It is likely that these false posi-
tives were part of the reason for the lower scores of the
pre-trained model.

6. DISCUSSION

The dataset size was certainly the biggest limiting factor
in this research. The labelling process was a lot more time
consuming than expected, which led to a much lower num-
ber of labelled training images than generally considered
sufficient to train a model on. This was partly countered
by making use of transfer learning to leverage the already
learned structures in the pre-trained model, but the ex-
pectation is that performance could be greatly improved
further by expanding the size of the raw dataset by a factor
3 or higher. According to the theory described in Section
5.1, doing so might also result in a smoother validation
loss graph, assuming the usual 80%/10%/10% partitioning
would be adapted, rather than the current 75%/5%/20%
division.

The dataset size problem may also have had an influence
on the need for certainty thresholds as post-processing
methods. The model still had difficulties filtering out
some very low-certainty pixels if no certainty threshold
was used. The exact reason for this is unsure, but we
can speculate that the small training set led to the model
having a low certainty for many pixels. As such, a recom-
mendation to find out whether this is the case would be
to repeat the tests with a much larger dataset to train the
retrained model on.

Other recommendations for future work are in advancing
the model towards a usable system for automatic video
analysis. A first step could be training the model to dif-
ferentiate between bystanders and rowers, possibly using
some form of post-processing to relate the position of the
candidate rower to the position of a boat. The initial
training would require a very large dataset, because the



system would have to be able to distinguish between dif-
ferent “types” of people: rowers and regular persons. As
mentioned, post-processing by filtering out predicted row-
ers that are not in the vicinity of a boat might help, as it
is unlikely that a person without a boat nearby is a rower
and more likely they are a bystander. An important re-
quirement for this is that the boat segmentation is mostly
correct, as random artefacts or poor segmentations would
render this system unusable. Furthermore, it would also
have to be able to do distinguish between rowing boats
from other types of boats. Such post-processing would
also introduce many new challenges, such as camera an-
gles making bystanders appear almost equally close to a
boat as an actual rower, which would need to be solved
one by one.

Another big step towards an automatic analysis system
would be segmenting separate body parts, such as the
arms, legs and trunk of a rower. These three form the
three main body parts from which the rowing stroke fol-
lows. If those could be separately segmented properly, at
a speed which facilitates (real-time) segmenting of video
footage, a body part tracking system would be close, al-
though achieving this would require a very large amount
of data. Combining these two would lead to a system that
track the body parts of rowers only, which in turn would
allow the development of a system that takes this tracking
information and tests the movements of the rower against
their desired rowing stroke’s movements.

7. CONCLUSION

Our results allow us to answer the research question: can
machine learning be used to accurately perform semantic
segmentation on rowers and boats in images? This study
shows that using machine learning for semantic segmen-
tation of rowers and boats is moderately accurate, cer-
tainly making it promising. Strong improvement is re-
quired, however, to be able to apply such a system to
video analysis.
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