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ABSTRACT
The practice of estimating probability density functions
is well-known in the field of statistics and probability the-
ory, with commonly used techniques including histograms,
kernel estimators, orthogonal series and nearest-neighbor
methods. Furthermore, goodness-of-fit tests are being used
for evaluating the accuracy of a statistical model, based
on a provided set of observations. While these practices
have been widely used so far, they heavily rely on human
assumptions and deductions and. This causes them to
be susceptible to errors and bias. Techniques using evo-
lutionary algorithms - a metaheuristic optimization type
of algorithms - have had optimistic results in estimating
the parameters of an assumed distribution function and,
as later works have shown, determining the most probable
distribution type with its respective parameters. However,
recent work scarcely provide any discussions about the im-
portance of the design choices behind important aspects of
the evolutionary algorithm. With these facts in mind, the
goals of this paper are to explore the alternative of using
an evolutionary algorithm to not only estimate the param-
eters of a probability distribution but to also choose which
type of distribution shape would fit the observed data best
and to provide an in-depth discussion which will allow for
easier replicability.

Keywords
evolutionary algorithm, genetic algorithm, probability dis-
tributions, probability density functions, metaheuristics

1. INTRODUCTION
Complex real-world systems usually generate large quan-
tities of data points through multiple methods and require
carefully chosen metrics which help evaluate performance
and reliability. To exemplify, system component failures
could be measured as one time series and, in order to in-
vestigate the likelihood of the overall system failure, a like-
lihood of failure per system component is required. Hence,
the task at hand is to model each individual component’s
likelihood of error as a probability distribution. The distri-
bution of these random variables must be chosen carefully
since they influence the accuracy of the results and hence
their trustworthiness [1].
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The time-honored histogram is widely used among scien-
tists and others to represent, at least approximately, the
shape of the probability density function [2]. However,
while these methods have proven to be effective in produc-
ing accurate estimates, it is imperative to explore different
alternatives, with the hope of uncovering innovative and
improved techniques which could enhance, or even replace,
already existing ones.

One such alternative proposed in this paper is the us-
age of evolutionary algorithms, which are often viewed as
function optimizers, although the range of problems to
which these algorithms have been applied is quite broad
[3]. More than that, they are metaheuristic algorithms,
which attempt to combine basic heuristic methods to effi-
ciently and effectively explore the solution space [4]. Be-
ing characterized as ”approximate algorithms”, they guide
the search process in a non-deterministic manner, allowing
for near-optimal solutions to be found in rapid time. In
short, they sacrifice the guarantee of uncovering optimal
solutions, while focusing on producing good solutions in a
significantly reduced amount of time [4].

Thus, the proposed goal is to design, develop and fine-tune
an evolutionary algorithm which can be reliably used in
estimating probability distributions and, more than that,
encourage scholars to engage in researching and practic-
ing such algorithms in the future. Furthermore, one key
element that this paper emphasizes is the replicability of
the propsed approach, which will hopefully make it more
accessible for others to improve this work. Finally, the
paper attempts to answer the following research question:

By building on top of previous works, how should an evo-
lutionary algorihm for fitting probability distributions be
designed and to what extent can it be made accessible and
easy to replicate?

In order to fully explore this research question, attention
needs to be paid to the following underlying questions,
which help in shaping the overall design of the proposed
algorithm:

Q1 How should the input data be encoded in order to
build the genetic profile of a chromosome?

Q2 How should an accurate and reliable evaluation func-
tion be designed?

Q3 How should good partial solutions (chromosomes) be
selected for reproduction?

Q4 How should crossover and mutation rules be designed
in order to ensure genetic diversity and reliable con-
vergence?

Q5 What are the criterias that must be met in order to
terminate the algorithm?
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Q6 How can accessibility and replicabilty be achieved?

Q7 What are the issues when designing such an algo-
rithm and what possible solutions are there for them?

The paper is structured as follows: Section 2 provides some
information on regular fitting techniques and briefly dis-
cusses the current state of the art for the evolutionary al-
gorithm approach; Section 3 describes the design choices
and the implementation of the proposed evolutionary algo-
rithm; Section 4 evaluates the performance of the proposed
algorithm when tested against random data and a series of
real-life data; Section 5 provides some concluding remarks
and discusses possible future improvements of this work.

2. BACKGROUND & RELATED WORK
The task of estimating a probability density function can
be represented as follows: given a sequence of independent
identically distributed random variables
X1, X2, ..., Xn with common probability density function
f(x), how can one estimate f(x) [5]? In most traditional
approaches, this involves a three-step procedure: in the
first step, a specific family of distributions is hypothesized
[1], which usually includes well-known distributions, such
as the normal, exponential or Weibull distributions. The
second and third steps involve estimating the parameters
of the assumed distribution and performing goodness-of-fit
tests to determine the accuracy of results.

Nonparametric density estimation concerns the problem
of estimating f(x) when no formal parametric structure is
specified [6]. Hence, the term ”nonparametric” is ideally
a procedure which is valid irrespective of the type of dis-
tribution from which the sample is taken [2]. The most
notable example of estimating f would be the histogram,
which was shortly followed by kernel estimators, orthog-
onal series and nearest-neighbor methods [6]. However,
it must be mentioned that such procedures are valid only
for members of some fixed family of distributions and it is
the size of this family which distinguishes parametric from
nonparametric methods [2].

One of the most popular evolutionary algorithms, namely
the genetic algorithm, refers to a model introduced and
investigated by John Holland and his students in 1975 [3].
This algorithm is a stochastic global search method that
mimics the behaviour of natural biological evolution [1]. In
the common implementations, it generates a population of
(usually random) chromosomes and then evaluates these
structures and allocates reproductive opportunities in such
a way that those chromosomes which represent a better
solution are given more chances to ’reproduce’ [3]. This
approach was used by Strelen [1] to generate distribution
parameters which fit random samples of Weibull, Two-
Mode Weibull and Gamma distributions with remarkable
accuracy: Z-scores (number of standard deviations above
the expected results) of 0.0293, 0.024 and 0.031 respec-
tively. Other similar techniques, such as using a Breeder
Genetic Algorithm [7] or using continuous evolutionary al-
gorithms [8] were used for the same purpose, producing
promising results. Finally, a 1995 article showcased an
implementation of a genetic algorithm for Weibull param-
eter estimation which proved to be superior to the usually
used Newton-Raphson Algorithm [9].

Furthermore, Strelen used his genetic algorithm in an ex-
periment for differentiating between a Gamma and a Weibull
distribution [1]. His approach included a Weibull distri-
bution as input and attempted to fit the data to mixed

Weibull and Gamma distribution,

F (x) = p · F1(x) + (1− p) · F2(x)

where F1 is Weibull and F2 is Gamma [1]. The algorithm
outputed a value of p = 0.998, resulting in a consider-
ably high accuracy (Z-score of 0.047). Albeit successful,
his approach does not attempt to learn the ”structure” of
the data, as it merely compares partially generated solu-
tions against a human-made assumption - in other words,
it excludes the possibility of the result being anything else
other than a Weibull or Gamma distribution. Moreover,
one may wonder how scalable this approach is when con-
sidering a larger family of available distributions.

Finally, a 2010 work by Colla et al. [10] presented a ge-
netic algorithm which was capable of fitting six different
continuous probability distribution functions and estimate
their parameters. A couple of years laters, the authors
published a work which used a modified version of their
original algorithm, tasked to fit discrete distributions [11].
While their studies produced positive results when com-
pared to the popular ’Maximum likelihood estimation’ for
parameter estimation, the respective papers seem to lack
a thorough explanation of the design choices behind im-
portant aspects of the algorithm. Combined with a lack of
pseudocode, their papers do not allow for accessible repli-
cability. With these facts in mind, the following paper will
attempt to build upon (and, if possible, improve) previous
work in the field of distribution fitting using evolutionary
algorithms, with the goal of providing in-depth informa-
tion about the design aspects to be considered when de-
veloping such a tool.

Figure 1. Flow chart of the proposed algorithm

3. THE GENETIC ALGORITHM
In this paper, a genetic algorithm approach for distribu-
tion fitting is presented, which has been built by following
the work of Colla et al. [10]. Although having a similar
goal, this paper presents new considerations towards the
evaluation function (see Section 3.3), selection procedure
(see Section 3.4) and reproduction rules (see Section 3.5).
Likewise, the aim is to design, build and evaluate a tech-

2



Gene #1 Gene #2 Gene #3 Gene #4 Gene #5
Gaussian Mean Standard deviation None None
Cauchy Shape Scale > 0 None None
Frechet Shape > 0 Scale > 0 Location None

Log-logistic Shape > 0 Scale > 0 Location None
Burr12 Shape 1 > 0 Shape 2 > 0 Scale Location
Dagum Shape 1 > 0 Shape 2 > 0 Scale > 0 Location

Table 1. Encoding of chromosomes

Gene #1 Estimator #2 Estimator #3 Estimator #4 Estimator #5
Gaussian Mean = Sample mean Standard deviation = Sample std None None
Cauchy Shape = Sample mean Scale = 0.5 · IQR None None
Frechet - Scale = (Sample max - Sample min) Location = (Sample Mean - Scale) None

Log-logistic - Scale =IQR Location = (Sample Mean - Scale) None
Burr12 - - Scale = (Sample max - Sample min) Location = (Sample Mean - Scale)
Dagum - - Scale = (Sample max - Sample min) Location = (Sample Mean - Scale)

Table 2. Estimators for distribution parameters

nique based on an evolutionary algorithm which accepts
as input a series of data points and can select a distribu-
tion type and its respective parameters that best fit the
observed input.

The following subsections will discuss the design choices
behind each core aspect of the proposed evolutionary al-
gorithm. Furthermore, figure 1 presents a flow chart of
the algorithm.

3.1 Problem encoding
The genetic algorithm requires a robust encoding of the
candidate solutions, represented as chromosomes with dis-
tinctive genetic profiles. Following the work of Colla et al.
[10, 11], the proposed algorithm uses a mixed encoding
operator: the first gene determines the distribution type
and the next four genes represent the parameter values,
for the respective distribution. Furthermore, the genetic
profile has a fixed length of 5 genes in order to solve the
problem caused by different distributions having a distinct
number of parameters. To exemplify, the Cauchy distri-
bution has 2 parameters (”shape” and ”scale”), while the
Dagum distribution has 4 parameters (”shape 1”, ”shape
2”, ”scale” and ”location”). Table 1 shows the encoding of
all the supported distributions.

3.2 Initial population
The genetic algorithm requires an initial population of in-
dividuals which are, usually, randomly generated - this
is the case for previous similar studies [1, 10, 11]. How-
ever, to achieve a faster convergence time, it is desirable
to balance the distribution of chromosomes over the pos-
sible solution space, such that the initial population is not
biased in any way.

The proposed algorithm achieves this via ‘seeding’ the first
generation, a process which involves making several sim-
ple parameter estimations based on the provided data set,
for all the supported distributions types. It is possible
to compute unbiased estimators for the Gaussian distri-
bution, using the sample mean and the sample standard
deviation, and for the Cauchy distribution, using the sam-
ple mean and half of the interquartile range. However,
for the remaining four probability distributions, the pro-
posed estimators have been chosen through experimental
trials and, hence, only help in reducing the possible solu-
tion to space to a smaller one. More than that, there are
several parameters for which no estimation can be made,
namely the first paramater of the Frechet and Log-logistic
distributions and the first two paramaters for the Burr12

and the Dagum distributions. Finally, after computing the
sample estimators for each type of parameter, the initial
individuals’ parameters are randomly chosen from an in-
terval centered around the sample estimator’s value. Table
2 showcases the chosen estimators for each type of distri-
bution, and its respective parameters.

3.3 Evaluation function
Once the problem is encoded, every generation of the pop-
ulation (and its respective individuals) will be evaluated
with the help of the evaluation function. As such, this
function has to be determined in such a way that the ge-
netic algorithm was able to rank chromosomes based on
how well they fit the provided input. To achieve this,
previous works relied on using a modified version of a
Maximul Absolute Error (MAE) score [1, 10, 11] and a
Kolmogorov-Smirnov (KS) test statistic [10, 11]. The pro-
posed algorithm builds on these previous approaches and
adds a third score function, namely the Anderson-Darling
(AD) goodness-of-fit test statistic. The results of each
score function were linearly combined in order to compute
a single score for each individual. More specifically:

fitness(x) = w1 ·MAE +w2 ·KS +(1−w1−w2) ·AD , (1)

0 ≤ w1 + w2 ≤ 1 (2)

where x is the chromosome to be tested and w1, w2 are
weighting factors, which values can be changed in order to
assign more relevance/importance to the different scoring
functions.

3.3.1 Maximum Absolute Error (MAE)
The MAE tests how well a candidate solution fits the ob-
served data. In more detail, it averages the distance be-
tween the predicted values of a chromosome and a normal-
ized histogram generated from the provided data set. The
number of bins for the generated histogram was chosen as

k = d
√
ne (3)

where k is the number of bins and n is the number of
points in the data set. This number of bins provides suffi-
cient accuracy in computing the MAE score while, at the
same time, reducing the total time complexity of the score
computation. Following this, the algorithm computes a set
MID consisting of x-coordinates for the middle of each bin.
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Finally, the formula for computing the MAE score for a
given chromosome is:

MAE =
1

k
·

k∑
i=1

| h(MID(i))− f(MID(i)) | (4)

where h(x) is the value of the histogram in point x and
f(x) is the value of the candidate probability distribution
function in point x.

3.3.2 Kolmogorov-Smirnov goodness-of-fit test
The KS test [12] has been designed to test the hypothe-
sis that a given data set has been sampled from a given
distribution. It operates by making comparisons between
the empirical cumulative distribution function, computed
from the provided data points, and the cumulative distri-
bution function of the assumed distribution. The result
of the KS test statistic is the maximum absolute distance
found between the two CDFs. This test statistic value can
range between 0, indicating that the data set was most
likely sampled from the tested distribution, and 1, in the
complete opposite scenario.

3.3.3 Anderson-Darling goodness-of-fit test
The AD test [13] is a modified version of the KS test,
which allows for a better analysis of a distribution’s tails.
Since, for some distributions, the KS test is rather unsen-
sitive to values found outside the body of the distribution,
the AD test statistic is used to determine the relevance of
the KS score. Unlike the KS test statistic, the AD score
ranges between 0 and ∞. Hence, distributions which fit
the data better will have scores closer to 0 and, in the op-
posite scenario, the AD score will linearly increase when
the tested distribution does not fit the data - albeit mostly
the worst solutions will have score larger than 1. In the
scenario where the KS test wrongly ranks one chromosome
as a good solution, a large value of the AD test will be able
to more accurately determine the respective chromosome’s
validty.

3.4 Selection procedure
After the chromosomes have been ranked, they must un-
dergo a selection procedure based on their fitness scores.
The chosen chromosomes will become ‘parents’, with the
goal of breeding new chromosomes via recombination. Pre-
vious works use a straight-forward fitness-based propor-
tional selection procedure [1] or seem to omit to discuss
their selection procedure designing [10, 11].

In order to reduce bias and give weaker chromosomes a
chance to be chosen, the proposed algorithm uses the“stochas-
tic universal sampling” (SUS) [14] technique, introduced
by James Baker. It operates by using a “roulette wheel se-
lection” with multiple pointers, as it can be seen in Figure
2. Whenever a pointer falls onto a chromosome, then it
will be selected for reproduction. Finally, the number of
chromosomes selected for reproduction is determined by
the crossover rate parameter.

3.5 Reproduction
Furthermore, since this approach is generation dependent,
there are several other considerations to be held in mind.
After several generations, selection may drive most of the
individuals to a similar state. If this happens without
the genetic algorithm converging to a satisfactory solu-
tion, then the algorithm has prematurely converged [3].
Techniques such as crossover and mutation are to be used
in order to preserve genetic diversity among the popula-

Figure 2. Stochastic Universal Sampling procedure

tion while minimizing their disruptive effects. These tech-
niques are commonly applied to individuals which have
been highly ranked by the evaluating function. A new
generation will be created from these highly ranked in-
dividuals, by combining the genetic profile of their par-
ents, with the additional option of making random small
changes to certain genes.

3.5.1 Cross-breeding
Chromosomes selected via SUS (see Section 3.4) will un-
dergo the cross-breeding operation, generating a new set
of chromosomes for the following generation. The pro-
posed algorithm randomly groups the ‘parents’ into pairs
of two and generates two new children for each such pair.
Initially, the children are exact copies of the parents. In
order to cross-breeed, the algorithm uses a uniform cross-
breeding operator, which makes use of a randomly gen-
erated crossover mask to determine which genes will be
swapped between the children.

The mask is an array with a fixed size equal to the number
of genes in the chromosome encoding, which elements can
have a value of 1 or 0. A value of 1 indicates that the
respective gene will be swapped, while a value of 0 will
keep the gene in place. The algorithm does not take into
account the value of the first element since the first gene
determines the distribution type and, hence, should not
be considered for crossover. Finally, the newly generated
chromosomes will replace the lowest scoring individuals in
the current population. Figure 3 depicts an example of
the cross-breeding procedure between two chromosomes.

Figure 3. Example of cross-breeding between two ’Frechet’
chromosomes; genes #2 and #3 have been swapped accord-
ing to the generated crossover mask
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Distribution type Parameter #1 Parameter #2 Parameter # 3 Parameter #4
Gaussian µ = 4 σ = 2 None None
Cauchy x0 = 3 γ = 2 None None
Frechet α = 10 s = 1.5 location = 4 None

Log-logistic β = 3 α = 1 location = 2 None
Burr12 c = 10 k = 4 scale = 1 location = 0
Dagum p = 7 a = 3 b = 1 location = 2

Table 3. Choice of distributions for random input generation.

3.5.2 Mutation
Building on the approach of previous works [1, 10, 11], the
mutation process is randomly applied to newly generated
chromosomes, with a starting chance of 0.01 per individual
gene – with the exception of the first gene, which will not
be chosen for mutation, as to not ruin the genetic integrity
of a chromosome. However, in order to preserve genetic
diversity and to allow for more accurate convergence, the
proposed algorithm makes use of an adaptive mutation
operator and mutation rate.

In more detail, the mutation rate will increase by 0.001 for
each successive generation. Likewise, the mutation opera-
tor will allow for larger mutations at the beginning and, as
the generation counter increases, will limit the size of the
mutations in order to allow for small refinements of the
candidate solutions. The proposed algorithm starts with
mutation changes of ±50% to the gene value and linearly
decrease the size of change down to ±10% of the gene
value. Hence, the size of the change is computed at each
generation i, by using the following formula:

size of change(i) = − 0.4

generation cap
· i+ 0.5 (5)

3.5.3 Issues with regular cross-breeding techniques
As seen in Section 3.1, different types of distributions sup-
port between 2 and 4 parameters, thus rendering ineffec-
tive any simple cross-breeding techniques. To exemplify, a
possible scenario can involve 2 chromosomes which have a
different number of parameters, such as a Gaussian distri-
bution and a Frechet one. By simply copying genes from
their parents using the crossover mask, the resulting chil-
dren can be ‘corrupted’ if, in this example, a child Frechet
distribution will have less than 3 parameters. Figure 4
depicts such a scenario.

It is clear that, in such a scenario, the cross-breeding op-
erator will make no progress towards generating better
candidate solutions. Since previous works which use simi-
lar chromosome encodings [10, 11] seem to overlook these
issues, the proposed algorithm allows for 2 different solu-
tions that help in mitigating these problems:

(a) Special rules & integrity checker
The cross-breeding operator will be adapted to not
copy any genes that might affect the validity of a
chromosome’s genetic profile. Applying this to the
previous example, a ‘None’ type gene will not be
copied to any of the first three gene slots of the
Frechet chromosome. Lastly, an integrity checker
evaluates each child’s genetic integrity, by verifying
that all the genes are in their corresponding value
range (see Table 1). While this solution ensures that
newly generated chromosomes are valid, it also in-
creases the time complexity of the proposed algo-
rithm by quite a margin.

Figure 4. Example of cross-breeding between two chromo-
somes with different number of parameters; genes #2 and
#4 have been swapped according to the generated crossover
mask, resulting in a ’corrupted’ child

(b) Chromosome islands
As a slightly more efficient solution, the proposed al-
gorithm can separate parent chromosomes based on
their first gene, which indicates the assumed distri-
bution type. Thus, several distinct groups of chro-
mosomes will be created, which can be thought of as
‘chromosome islands’ in a given population. Finally,
cross-breeding will only be allowed between chromo-
somes from the same island, thus removing any pos-
sibility of a potential genetic corruption. While this
solution is less complex than the previous one, it
reduces the genetic diversity of the children chromo-
somes.

3.6 Stopping conditions
Similar to most genetic algorithms, the proposed algo-
rithm specifies two distinct stopping conditions: termi-
nate when the total number of generation has reached the
generation cap or, if a sufficiently good solution has been
found, terminate at generation i < generation cap. Ini-
tially, the algorithm was tested without any early stop-
ping conditions in order to determine a favorable stopping
threshold by observing the results after full convergence.
Hence, a most favorable threshold determined through ex-
perimental observation is a maximum aggregate fitness
score of 0.05, for the best evaluated chromosome in the
current generation.

4. RESULTS
The proposed algorithm has been developed and tested
using the Python programming language, more specifically
the stable version 3.8. Python offers a wide varieties of pre-
existing modules for generating random data, deploying
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statistical tests and plotting of results - which all fall under
the scope of this research. Furthermore, it is appealing due
to its accessibility, portability and extensibility.

Access to the proposed algorithm’s implementation can be
found on the following public repository: https://git.

snt.utwente.nl/s1922629/GA-PDF-fitting.

4.1 Testing with random input
The algorithm’s behavior was initially tested with ran-
domly generated data sets. Between 1,000 and 10,000 data
points were sampled from a list of predefined distributions.
This section showcases one example of fitting each type of
supported probability distribution. The choice of distribu-
tions and their respective parameters can be seen in Table
3. A sample list of more tests can be found in Appendix
A.

4.1.1 Fitting a Gaussian distribution
The input data consists of 1000 data points sampled from
a Gaussian distribution with mean µ = 4 and standard
deviation σ = 2. Weights assigned for the evaluation
function are w1 = 1

3
, w2 = 1

3
. The algorithm ran with

a generation cap of 100 and a crossover rate of 0.6. The
best ranked chromosome was a Gaussian distribution with
mean µ = 4.010 and standard deviation σ = 1.760.

4.1.2 Fitting a Cauchy distribution
The input data consists of 1000 data points sampled from
a Cauchy distribution with shape x0 = 3 and scale γ =
2. Weights assigned for the evaluation function are w1 =
1
3
, w2 = 1

3
. The algorithm ran with a generation cap of 100

and a crossover rate of 0.6. The best ranked chromosome
was a Cauchy distribution with shape x0 = 3.335 and scale
γ = 2.230.

4.1.3 Fitting a Frechet distribution
The input data consists of 2500 data points sampled from
a Frechet distribution with shape α = 10, scale s = 1.5 and
location 4. Weights assigned for the evaluation function
are w1 = 1

3
, w2 = 1

3
. The algorithm ran with a generation

cap of 100 and a crossover rate of 0.6. The best ranked
chromosome was a Frechet distribution with shape α =
11.912, scale s = 1.746 and location 3.754.

4.1.4 Fitting a Log-logistic distribution
The input data consists of 10000 data points sampled from
a Frechet distribution with shape β = 3, scale α = 1 and
location 2. Weights assigned for the evaluation function
are w1 = 1

3
, w2 = 1

3
. The algorithm ran with a generation

cap of 100 and a crossover rate of 0.6. The best ranked
chromosome was a Frechet distribution with shape β =
2.663, scale α = 0.871 and location 2.221.

4.1.5 Fitting a Burr type XII distribution
The input data consists of 5000 data points sampled from
a Burr type XII distribution with shape parameters c = 10
and k = 4, scale 1 and location 0. Weights assigned for the
evaluation function are w1 = 1

3
, w2 = 1

3
. The algorithm

ran with a generation cap of 100 and a crossover rate of
0.6. The best ranked chromosome was a Burr type XII
distribution with shape parameters c = 8.307 and k =
2.307, scale 0.621 and location 0.301

4.1.6 Fitting a Dagum distribution
The input data consists of 5000 data points sampled from
a Dagum distribution with shape parameters p = 7 and
a = 3, scale 1 and location 2. Weights assigned for the
evaluation function are w1 = 1

3
, w2 = 1

3
. The algorithm

ran with a generation cap of 100 and a crossover rate of 0.6.

The best ranked chromosome was a Dagum distribution
with shape parameters p = 6.407 and a = 2.957, scale
0.989 and location 1.978

Figure 5. Fitted Gaussian distribution

Figure 6. Fitted Cauchy distribution

Figure 7. Fitted Frechet distribution
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Figure 8. Fitted Log-logistic distribution

Figure 9. Fitted Burr type XII distribution

4.2 Testing with real-life data
As a case scenario, the proposed algorithm was used on
three distinct data sets for the purpose of distribution
fitting and parameter estimation. These data sets con-
cern the development of the COVID-19 outbreak in The
Netherlands during the 27th of February 2020 - 25th of
June 2020 period [15]. More specifically, they track the
number of new cases, closed cases and, respectively, hos-
pitalised cases, on a daily basis. Due to its nature, the
COVID-19 virus should have seen a large, constant in-
crease in the total number of each type of cases over time.
However, the results of the societal measured imposed
soon after the sudden spike in number of case can be seen
in each of the three data sets. In each of the data sets, the
large number of data points near the origin seem to indi-
cate that the number of new daily cases has capped. As a
consequence, the tail of each distribution should actually
decrease in size as time passes - granted that the societal
measures remain honored. Based on these remarks, the
assumption is that all of the three data sets are either
Log-logistic or Frechet distributed.

Finally, the results of the proposed algorithm can be seen
in Figure 11. Each data set was fitted with a Log-logistic
distribution, confirming the previous assumption. The
best fit found for each data set can be seen in Table 4.

Figure 10. Fitted Dagum distribution

Data set Gene #1 Gene #2 Gene #3 Gene #4 Gene #5
New cases Log-logistic 1.511 258.412 -26.322 None
Closed cases Log-logistic 1.569 35.592 -7.853 None
Hospitalised cases Log-logistic 1.780 56.647 -20.798 None

Table 4. Results of COVID-19 data set fitting

5. CONCLUSION AND FUTURE WORK
This paper has showcased a proposed in-depth approach
for probability distribution fitting and parameter estima-
tion using genetic algorithms. By building on some core
concepts of previous similar works, it was possible to ex-
periment with new design choices in a rapid manner. Ad-
ditionally, by making notes of these design decision, the
paper presents and discusses a detailed approach for un-
derstanding and replicating the proposed algorithm. As
far as the scope of this research is concerned, the hope
is that the discussions of Section 3 have successfully pre-
sented possible answers for questions Q1-Q5. On a sim-
ilar note, these discussions should make the reader feel
more comfortable in understanding how such an algorithm
works and how it can be implemented, by providing a
prototype example. Thus, the expectation is that the ap-
proach of this paper acts as a good example for answering
Q6. However, the proposed algorithm still has some un-
solved issues, which should be discussed in order to prop-
erly answer question Q7:

I1 As seen in Table 2, the proposed algorithm did not
succeed in ’seeding’ all types of probability distribu-
tions. Future works could include finding new esti-
mators or improving the already existing ones. Oth-
erwise, this algorithm will require a broader coverage
of the possible solution space in order to tackle more
complex input data sets.

I2 The example implementation’s time complexity is
heavily affected by the standard implementation of
the Anderson-Darling test. In order to achieve faster,
more reliable results, attention needs to be paid to
improving the computation time of the AD test statis-
tic.

I3 It can be seen in Appendix A that most of the best
fitted distributions are Cauchy, which can be ex-
plained by how easily it manages to overfit the data.
While the proposed evaluation function was designed
as to avoid overfiting, by using three different scor-
ing approaches, it seems that future works have to
be made in order to improve the current solution.
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Figure 11. Log-logistic fitting for three distinct COVID-19 data sets
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APPENDIX
A. SAMPLE RESULTS FOR DIFFERENT WEIGHTING FACTORS

Test No. Gene #1 Gene #2 Gene #3 Gene #4 Gene #5 W1 W2 W3 Fit #1 Fit #2 Fit #3 Fit #4 Fit #5
1 Gaussian 4 2 None None 0.33 0.33 0.33 Gaussian 4.010 1.760 None None
2 Gaussian 4 2 None None 1 0 0 Cauchy 4.149 1.544 None None
3 Gaussian 4 2 None None 0 1 0 Cauchy 3.893 1.298 None None
4 Gaussian 4 2 None None 0 0 1 Cauchy 4.348 1.214 None None
5 Gaussian 4 2 None None 0.5 0.5 0 Cauchy 4.260 1.480 None None
6 Cauchy 3 2 None None 0.33 0.33 0.33 Cauchy 3.335 2.223 None None
7 Cauchy 3 2 None None 1 0 0 Cauchy 5.639 3.823 None None
8 Cauchy 3 2 None None 0 1 0 Cauchy 2.239 2.155 None None
9 Cauchy 3 2 None None 0 0 1 Cauchy 2.650 1.739 None None
10 Cauchy 3 2 None None 0.5 0.5 0 Cauchy 2.856 2.078 None None
11 Frechet 10 2 4 None 0.33 0.33 0.33 Frechet 11.912 1.746 3.754 None
12 Frechet 10 2 4 None 1 0 0 Log-logistic 12.536 1.587 3.969 None
13 Frechet 10 2 4 None 0 1 0 Frechet 13.222 3.580 2.960 None
14 Frechet 10 2 4 None 0 0 1 Log-logistic 6.035 0.660 4.922 None
15 Frechet 10 2 4 None 0.5 0.5 0 Frechet 8.932 1.634 3.899 None
16 Log-logistic 3 1 2 None 0.33 0.33 0.33 Log-logistic 2.663 0.871 2.221 None
17 Log-logistic 3 1 2 None 1 0 0 Cauchy 2.990 0.358 None None
18 Log-logistic 3 1 2 None 0 1 0 Log-logistic 1.825 0.643 2.307 None
19 Log-logistic 3 1 2 None 0 0 1 Gaussian 3.126 0.728 None None
20 Log-logistic 3 1 2 None 0.5 0.5 0 Cauchy 3.076 0.319 None None
21 Burr12 10 4 1 0 0.33 0.33 0.33 Burr12 8.307 2.307 0.621 0.301
22 Burr12 10 4 1 0 1 0 0 Cauchy 0.849 0.090 None None
23 Burr12 10 4 1 0 0 1 0 Cauchy 0.828 0.074 None None
24 Burr12 10 4 1 0 0 0 1 Cauchy 0.844 0.066 None None
25 Burr12 10 4 1 0 0.5 0.5 0 Cauchy 0.866 0.116 None None
26 Dagum 7 3 1 2 0.33 0.33 0.33 Dagum 6.407 2.957 0.989 1.978
27 Dagum 7 3 1 2 1 0 0 Frechet 5.902 1.083 2.077 None
28 Dagum 7 3 1 2 0 1 0 Cauchy 3.246 0.131 None None
29 Dagum 7 3 1 2 0 0 1 Log-logistic 4.180 0.750 2.455 None
30 Dagum 7 3 1 2 0.5 0.5 0 Frechet 5.426 1.022 2.130 None

Table 5. Comparison of results for different weighting factors

Table 5 showcases 30 experiments ran with different values for the weighting factors. Rows number 1, 6, 11, 16, 21 and
26 are the experiments presented in Section 4. It can be seen that most of the other experiments end up in overfitting the
input data by evaluating the Cauchy distribution as the most viable solution.
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