
BSc Thesis Applied Mathematics

Model order reduction on
FitzHugh-Nagumo model

Fleur van Alphen

Supervisor: Kathrin Smetana

June, 2020

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science



Preface

I would like to thank Kathrin Smetana for her support in this thesis. She helped me to
find a project on model order reduction with a model that was in my field of interest. She
always took the time to check the steps I had taken, and helped me find the next steps in
this research. Also, I would like to thank Miranda van der Bend for checking the spelling
and grammar of this report, and I would like to thank Ruben de Baaij, Fay van Alphen
and Lilian Spijker for their support.

Enschede, June, 2020.



Model order reduction on FitzHugh-Nagumo model

Fleur van Alphen∗

June, 2020

Abstract

A combination of proper orthogonal decomposition (POD) and the Galerkin projection
is used as a dimension reduction method, and is applied to the FitzHugh-Nagumo
model. This dimension reduction method is shown to be effective on the linear part
of the FitzHugh-Nagumo model, in the sense that far fewer variables are present, but
the complexity of evaluating the nonlinear term remains that of the original problem.
By applying this model order reduction to the FitzHugh-Nagumo model, the model
can become more relevant due to the improved rapidity of approximating the results,
without losing too much accuracy. The full order results are obtained by discretizing
the model with an Implicit-Explicit scheme. The reduced order model is obtained by
applying POD and a Galerkin projection to the full order results.

Keywords: Model order reduction, IMEX, POD, Galerkin projection, FitzHugh-
Nagumo model

1 Introduction

Differential equations play a prominent role in many fields, such as engineering and biology.
The solutions to differential equations often can not be found analytically, so numerical
methods are needed to approximate the solutions. However, these differential equations
can become very complex. Therefore it takes a lot of time and computer capacity to solve
them. It is important that mathematical models are fast and precise in order to be rele-
vant. Model order reduction can be used to this end [16].

Model order reduction is a method that reduces the computational complexity and com-
putational time of big dynamical systems. An approximation to the original model is
computed by reducing the model’s state-space dimensions. This approximation has a
much lower dimension but can nearly produce the same input/output characteristics [5].
In this thesis, model order reduction is applied to the FitzHugh-Nagumo model, a system
of two high dimensional nonlinear ordinary differential equations. The FitzHugh-Nagumo
model is a simplification of the Hodgkin-Huxley model, the nowadays considered classical
model for nerve signal propagation [17]. We must use a very accurate and high dimensional
discretization leading to a large system. To reduce the order of the system, model order
reduction can be used [5]. The reduction of the FitzHugh-Nagumo system can for instance
be used to create a precise personalized medication for patients.

Research has been done to model order reduction. ’Reduced Basis methods for Partial
Differential Equations’ [18] provides a basic mathematical introduction to reduced basis
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methods. Here, the theoretical properties, implementations aspects and errors are ana-
lyzed. Also in [19] is looked at reduced basis approximations and error estimation methods
for rapid and reliable evaluation. It focuses on linear output functions and linear elliptic
coercive partial differential equations, but the methods can be applied more generally. In
[9] is looked at elliptic coercive problems and at time dependent cases with corresponding
reduced basis formulations.

In this thesis, we discretize the FitzHugh-Nagumo model using the Implicit-Explicit Euler
(IMEX) method [2]. We apply proper orthogonal decomposition (POD) to the solutions
in order to reduce the dimensions of the system and use the Galerkin projection to create
a new system of equations. The combination of POD and the Galerkin projection is a
popular approach for constructing reduced-order models [5].

To obtain results, we have changed one variable of the FitzHugh-Nagumo model to be
able to model the problem. We have shown that it is possible to reduce the order of the
FitzHugh-Nagumo model using POD and a Galerkin projection without losing too much
accuracy. However, a lot of computation time is still needed due to the nonlinear term.

To improve the dimension reduction efficiency of POD further, we advise using an emper-
ical interpolation method (EIM), for example the discrete empirical interpolation method
(DEIM). The idea of EIM is to approximate a given nonlinear valued function by a func-
tion that is rapidly computable [22, 3]. The EIM has sucessfully been applied to several
nonlinear problems [4]. The effectiveness of the DEIM is already demonstrated in far
more complex applications, for example the Hodgkin-Huxley model of realistic spiking
neurons [11]. DEIM is also applied to the Fitzhugh-Nagumo model, and is demonstrated
to be a promising approach to overcome the deficiencies of POD and to further reduce
the dimension for time dependent and/or nonlinear Partial differential equations like the
FitzHugh-Nagumo model [5].

In chapter 2 of this paper, we discuss methods for time discretization and we give an
explanation of our choice of the IMEX method. In chapter 3 we discretize the FitzHugh-
Nagumo model. The model order reduction is explained and an overview of steps is given
in chapter 4. In appendix A we discretize the heat equation to check if all steps of the dis-
cretization of the FitzHugh-Nagumo model are correct. We present the results of our model
in chapter 5, i.e. the solution of the heat equation, the solution of the FitzHugh-Nagumo
model and the solution of the reduced order model of the FitzHugh-Nagumo model. The
conclusions, limitations and further research possibilities are stated in chapter 6.

2 Time discretization schemes

Differential equations are used to describe the dynamics of a system. When an analytic
solution to the differential equation can not be found, discretization to model the system
is often used. Different methods can be used to discretize a differential equation. In this
thesis, we have used the IMEX method, a combination of the Forward Euler and the
Backward Euler method. In this section, we will give a description of the forward Euler
method and the backward Euler method and compare these two methods. We will also
present the IMEX method.
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2.1 Forward Euler method

The forward Euler method is an explicit method for time discretization. It is a method
to solve differential equations. Let u ∈ C1([t0, T ]) be a continuous, differentiable function
with t0 ≤ T ∈ R, u0 ∈ R and f : [t0, T ]× R→ R [15, 21]. Given an initial value problem

u̇(t) = f(t, u(t)) u(t0) = u0

with t ∈ [t0, T ], we can calculate the derivative as

u̇(t) = lim
h→0

u(t+ h)− u(t)

h
.

By choosing h sufficiently small, we can approximate this derivative numerically. Using this
numerical approximation, we can approximate the differential equation u̇(t) = f(t, u(t))
by

u(t+ h)− u(t)

h
≈ f(t, u(t)).

This can be rewritten as

u(t+ h) ≈ u(t) + hf(t, u(t)). (1)

We have arrived at an equation where we can approximate a value of u at time t+ h if we
know the value of u at time t.
Introducing a grid of time steps t0 < t1 < ... < tN with tn+1 = tn + h where h > 0 and
defining un = u(tn), we can rewrite equation (3) as

un+1 ≈ un + hf(tn, un).

This is called the forward Euler method [1].

2.2 Backward Euler method

The backward Euler method is an implicit method for time discretization. It is also used
to solve differential equations, but has other stability properties than the forward Euler
method. We will discuss the backward Euler method since it is part of the IMEX method
that we use to discretize our model. We define u(t), u0 and f(t, u(t) as in chapter 2.1. For
t ∈ [t0, T ], the initial value problem

u̇(t) = f(t, u(t)) u(t0) = u0

is given. We know the derivative can be calculated as

u̇(t+ h) = lim
h→0

u(t+ h)− u(t)

h
. (2)

Notice that this derivative is slightly different from the derivative in the forward Euler
method. By choosing h sufficiently small, we can approximate this derivative numerically.
Using equation (2), we approximate the differential equation ẏ(t+ h) = f(t+ h, y(t+ h))
by

u(t+ h)− u(t)

h
≈ f(t+ h, u(t+ h)).
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This can be rewritten as

u(t+ h) ≈ u(t) + hf(t+ h, u(t+ h)). (3)

We now introduce a grid of time steps t0 ≤ t1 ≤ ...tN with tn+1 = tn + h. When we define
un = u(tn), we can rewrite equation (3) as

un+1 ≈ un + hf(tn+1, un+1)

This method is called the backward Euler method. Notice that the function f is calculated
at a different time step in the forward Euler method than in the backward Euler method.
With this equation it is possible to estimate a value of u at time t+ h if the value of u at
time t is known. However, it is much more difficult to solve this equation than the equation
of the forward Euler method. This is because the input for f , un+1 is not known yet when
we want to calculate un+1. If f is nonlinear, we have to find the roots at each time step
to find a solution [24].

2.3 Comparing Forward and Backward Euler method

As mentioned before, the forward Euler method is easier to implement than the backward
Euler method as we do not have to solve a (non)linear system of equations in every time
step. The forward Euler method is also faster and takes less memory. However, the biggest
advantage of the backward Euler method is that it has greater stability properties. This
means that smaller time steps have to be chosen for the forward Euler method in order to
result a stable solution [23].

This difference in stability is especially noticeable for stiff problems. These kind of prob-
lems are reasonably handled by the backward Euler method, where the forward Euler
method fails because prohibitevely small time steps have to be used. The stiffness causes
that small variations at time t result in very big variations at time t + 1. This difference
is also shown in Fig. 1.

Stability of the forward and backward Euler method

Figure 1: Left: forward Euler method applied to u′(t) = −21u(t) + e−t; Right:
backward Euler method applied to u′(t) = −21u(t) + e−t [10].
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The deviating results of the forward Euler method can be explained using the vector field.
To calculate the value u(t+ 1), the derivative of u(t) is used. In this example, the vector
field above the solution points almost vertically downwards, and the vector field below the
solution points almost vertically upwards. This causes the zigzagging motion [10].

2.4 IMEX

The IMEX method is a combination of the forward Euler and the backward Euler method.
It uses the stability of the backward Euler method, and combines it with the speed of the
forward Euler method. It is particularly appealing for our purposes, as we can then dis-
cretize the ’stiff’ part of the FitzHugh-Nagumo model implicitly, and the computationally
demanding nonlinear part explicitly.

We define u ∈ C1[t0, T ] to be a continuous differentiable function, p : R→ R and q : R→ R.
Consider the differential equation

du

dt
= p(u) + q(u) (4)

When we discretize this in an explicit way with the forward Euler scheme, we obtain

un+1 − un

h
= p(un) + q(un) (5)

and when we discretize this in an implicit way with the backward Euler scheme, we obtain

un+1 − un

h
= p(un+1) + q(un+1). (6)

An IMEX scheme is obtained for instance by applying a forward Euler method to p(u) and
a mix of forward and backward Euler method in q(u). This results in:

un+1 − un

h
= p(un) + (1− γ)q(un) + γq(un+1) (7)

with 0 ≤ γ ≤ 1.
Choosing γ = 0.5 results in a scheme called the Crank-Nicolson scheme. In this thesis we
will choose γ = 1, which simplifies the equation to

un+1 − un

h
= p(un) + q(un+1). (8)

This scheme is also known as a semi-implicit backward differentiation formula scheme.
Usually when this scheme is applied, the nonlinear term is defined as p(u) and is thus
treated explicitly and the linear term is defined as q(u) and is treated implicitly. This
choice combines the stability of the linear term caused by the implicit method, and the
low computational costs of the explicit scheme for the nonlinear term [2, 13].

3 Discretization of the FitzHugh-Nagumo model with Finite
differences.

In order to find solutions to the FitzHugh-Nagumo model, it is important to discretize the
model. The FitzHugh-Nagumo model is a simplified model of activation and deactivation
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dynamics in a spiking neuron. It is given by the equations{
ε δv(x,t)δt = ε2 δ

2v(x,t)
δx2

+ v(x, t)(v(x, t)− a)(1− v(x, t))− w(x, t) + c,
δw(x,t)
δt = bv(x, t)− γw(x, t) + c

(9)

with a = 0.1, b = 0.5, γ = 2, c = 0.05 and ε = 0.015.

If we define f(v) = v(v − a)(1− v), we can rewrite this problem as{
ε δvδt = ε2 δ

2v
δx2

+ f(v)− w + c,
δw
δt = bv − γw + c.

(10)

The problem is restricted to the boundary conditions
v(x, 0) = 0

w(x, 0) = 0
δv
δx(0, t) = −i0(t)
δv
δx(L, t) = 0

(11)

with L = 1 and i0(t) = 50000t3exp(−15t) [5].

3.1 Finding the recursive equations

We will compute the solutions of the FitzHugh-Nagumo problem on fixed points on a
bounded rectangular domain, x ∈ [0, L], t ∈ [0, T ]. We choose uniformly distributed grid
points such that the difference in x−direction is h and in the t−direction is τ . Thus, we
can write

0 = x0 ≤ x1 ≤ ... ≤ xM = L xi = ih where h =
L

M
(12)

0 = t0 ≤ t1 ≤ t2 · · · ≤ tN = T ti = iτ where τ =
T

N
(13)

We will define unj as the value of u at space step j and time step n, which can be calculated
by u(jh, nτ). When calculating the derivatives at a certain point in this grid numerically,
we can use the formulas{

δ2uni
δx2

=
uni+1−2uni +uni−1

h2

δuni
δt =

un+1
i −uni
τ

. (14)

We apply the semi-implicit backward differentiation formula scheme of equation (8) with
p(v) = f(v) − w + c and q(v) = ε2 dvdt , to the first equation of (10). The IMEX scheme
is useful here, since f(v) is a computationally demanding nonlinear term that is easie
modelled with an explicit method, while applying the implicit method to ε2 dvdt makes sure
the approximation is accurate. When using this IMEX scheme and approximating the
derivatives as in equations (14) we obtain:

ε
δv

δt
= ε2

δ2v

δx2
+ f(v)− w + c, (15)

ε
vn+1
i − vni

τ
= ε2

vn+1
i+1 − 2vn+1

i + vn+1
i−1

h2
+ f(vni )− wni + c (16)
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where i is the space step and i runs from 1 to M − 1 and n is the time step that runs from
0 to N . Multiplying this by τ and setting λ = τ

h2
gives:

εvn+1
i − εvni = λε2(vn+1

i+1 − 2vn+1
i + vn+1

i−1 ) + τf(vni )− τwni + τc

Bringing all terms with index n+ 1 to one side, gives

(ε+ 2λε2)vn+1
i − λε2vn+1

i+1 − λε
2vn+1
i−1 = εvni + τf(vni )− τwni + cτ

The second equation of (10) can be written in a numerical way

δw

δt
= bv − γw + c

wn+1
i − wni

τ
= bvni − γwni + c

Multiplying by τ gives

wn+1
i − wni = τ(bvni − γwni + c) (17)

Bringing again all terms with n+ 1 to one side, yields:

wn+1
i = wni + τbvni − τγwni + τc

3.1.1 Boundary condition at x=0

Now, we can use in the boundary condition vx(0, t) = −i0(t) by saying vn1−vn0
h = −i0(nτ).

We can fill it into equation (15) with i = 1. This gives

ε
vn+1
1 − vn1

τ
= ε2

vn+1
2 − 2vn+1

1 + vn+1
0

h2
+ f(vn1 )− wn1 + c (18)

ε
vn+1
1 − vn1

τ
= ε2

vn+1
2 −vn+1

1
h − vn+1

1 −vn+1
0

h

h
+ f(vn1 )− wn1 + c (19)

ε
vn+1
1 − vn1

τ
= ε2

vn+1
2 −vn+1

1
h + i0(nτ + τ)

h
+ f(vn1 )− wn1 + c (20)

ε(vn+1
1 − vn1 ) = ε2λ(vn+1

2 − vn+1
1 ) +

τ

h
i0(τn+ τ) + τf(vn1 )− τwn1 + τc (21)

(ε+ ε2λ)vn+1
1 − ε2λvn+1

2 = εvn1 +
τ

h
i0(τn+ τ) + τf(vn1 )− τwn1 + τc (22)

3.1.2 Boundary condition at x = L

The boundary condition vx(L, t) = 0 can be written as vM−vM−1

h = 0 Filling this in into
equation (15) with i = M − 1 gives:

ε
vn+1
M−1 − vnM−1

τ
= ε2

vn+1
M − 2vn+1

M−1 + vn+1
M−2

h2
+ f(vnM−1)− wnM−1 + c (23)

ε
vn+1
M−1 − vnM−1

τ
= ε2

vn+1
M −vn+1

M−1

h − vn+1
M−1−v

n+1
M−2

h

h
+ f(vnM−1)− wnM−1 + c (24)

ε
vn+1
M−1 − vnM−1

τ
= ε2

0− vn+1
M−1−v

n+1
M−2

h

h
+ f(vnM−1)− wnM−1 + c (25)

ε(vn+1
M−1 − v

n
M−1) = −ε2λ(vn+1

M−1 − v
n+1
M−2) + τf(vnM−1)− τwnM−1 + τc (26)

(ε+ ε2λ)vn+1
M−1 − ε

2λvn+1
M−2 = εvnM−1 + τf(vn1 )− τwnM−1 + τc (27)
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3.1.3 Overview recursive equations

Combining the recursive equation for 1 < i < M − 1 and the boundary conditions, gives
the recursive equations

(ε+ ε2λ)vn+1
1 − ε2λvn+1

2 = εvn1 + τ
h i0(τn+ τ) + τf(vn1 )− τwn1 + τc

−λε2vn+1
i−1 + (ε+ 2λε2)vn+1

i − λε2vn+1
i+1 = εvni + τf(vni )− τwni + τc for 1 < i < M − 1

(ε+ ε2λ)vn+1
M−1 − ε2λv

n+1
M−2 = εvnM−1 + τf(vn1 )− τwnM−1 + τc

wn+1
i = (1− τγ)wni + τbvni + τc

(28)

where λ = τ/h2 and f(v) = v(v − a)(1− v).

3.2 Creating an equation of matrices

We can write the system of equations (28) in matrix form. The structure of this equation
is:

AY n+1 = BY n + C + τF (Y n) + I(n) (29)

The vector Y n = (vn1 , . . . , v
n
M−1, , w

n
1 , . . . , w

n
M−1)

T . A is the [2M − 2] × [2M − 2] matrix[
A1 0
0 I

]
with

A1 =



ε+ ε2λ −ε2λ 0 0 . . . 0 0 0 0
−ε2λ s −ε2λ 0 . . . 0 0 0 0

0 −ε2λ s −ε2λ . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . −ε2λ s −ε2λ 0
0 0 0 0 . . . 0 −ε2λ s −ε2λ
0 0 0 0 . . . 0 0 −ε2λ ε+ ε2λ


(30)

, where s = (ε+ 2λε2), 0 is the zero-matrix of [M − 1]× [M − 1], and I the identity matrix
of [M − 1]× [M − 1].

The matrix B is the matrix
[
B1 B2

B3 B4

]
with B1 the diagonal matrix with entries ε, B2

the diagonal matrix with entries −τ , B3 the diagonal matrix with entries τb and B4 the
diagonal matrix with entries 1− τγ.
C is a column vector of length [2M − 2] with entries τc. F (Y n) is the nonlinear column
vector of length [2M+2] with entries [f(vn1 ), f(vn2 ), . . . , f(vnM−2), f(vnM−1), 0, 0, . . . , 0)] and
I(n) is the column vector [ τh i0(τ ∗ n+ τ), 0, 0, . . . , 0]

4 Model order reduction

When solving the FitzHugh-Nagumo model numerically, it is necessary to use extremely
small time steps in order for the solution to be stable. Because of this restriction, it takes
a lot of time and storage capacity of the computer to compute solutions for a large amount
of time. To lower the computational complexity of the problem, the order of the model
can be reduced. In this section, we will create a reduced model of the FitzHugh-Nagumo
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model using the proper orthogonal decomposition (POD). To compute a reduced order
model, we compute the solutions of the system of equation (29). As a solution we get a
matrix Ysol ∈ RN×2M . Matrix Ysol exists out of the solutions for v(x, t) and w(x, t), Vsol

and Wsol respectively such that Ysol =

(
Vsol
Wsol

)
where Vsol,Wsol ∈ N×M.

4.1 General outline of model order reduction with POD

Proper orthogonal decomposition is a method that can be used to decrease the order of a
model. The general idea of the POD is to approximate the solution vector y ∈ Rm×n by
the product of a matrix Φr ∈ Rm×r and a column vector anr ∈ R1×r

yn ≈ Φra
n
r .

Here r is a lot smaller than m. In the columns of Φr are vectors that are coefficients of
the finite difference approximations of the solution for certain time steps.

One can expect to obtain a good approximation of a solution for the FitzHugh-Nagumo
equations by using Φr with only a few columns. This is because the solution of the
FitzHugh-Nagumo model does not change a lot in space over time. Suppose the solution
is completely constant in space over the full time. Naturally, the solution can then be
approximated by one single column vector. When there is more variation over time, more
column vectors are needed to have a good approximation of the solution.
The following steps are needed in the process of model order reduction with help of POD:

1. Compute solutions yn for many points in time n = 1, 2, . . . , N

2. Collect the solutions in columns of matrix Ysol = [y1, y2, . . . , yN ]

3. Perform a singular value decomposition: Ysol = UΣZT

4. Let Φr be a new matrix consisting of the first r columns of matrix U of the singular
value decomposition Ysol = UΣZT

5. Assume yn ≈ Φra(t) for some a(t)

6. Solve the differential equation for a(t) and compute ynapprox = Φra(t)

How solutions are obtained for the FitzHugh-Nagumo model is described in section (3) of
this report. The rest of the steps of the POD method is described in this section.

4.2 Singular value decomposition

We obtained the matrix Ysol consisting of the solutions Ysol =

(
v1 v2 . . . vN
w1 w2 . . . wN

)
, where

vn is the column vector with solution of v(x, t) at time step n, and wn is the column vector
with solutions of w(x, t) at time step n. The matrix Ysol can be written as a product
of three new matrices. We do this using the singular value decomposition (SVD) that is
described in theorem 1 [21].
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Theorem 1: The singular value decomposition (SVD).
Let A ∈ Rm×n and let AT be its transpose. Then A can be factorized as

A = UΣZT

where

1. U ∈ Rm×m is an orthogonal matrix

2. Σ ∈ Rm×n is a diagonal matrix with entries σi ≥ 0 and σ1 ≥ σ2 ≥ · · · ≥ σq, q =min(m,n)

3. Z ∈ Rn×n is an orthogonal matrix.

Here, σ1, . . . , σq are the singular values, which are the square roots of the eigenvalues of ATA and
AAT , neglecting the additional |m− n| zero eigenvalues of ATA if n > m or AAT if m > n.

One nice property of the singular value decomposition A = UΣZT is that the eigenvectors
of AAT form the columns of U , and the eigenvectors of ATA form the columns of Z [7].
We therefore have to find the eigenvalues and corresponding eigenvectors of YsolY T

sol and
Y T
solYsol to find the singular value decomposition of Ysol. Eigenvalues of a matrix A are

defined as the values λ1, λ2, . . . , λn for which holds that Avi = λivi. Here vi is the eigen-
vector corresponding to λi. Unfortunately, no algorithm is able to find all the eigenvalues
of a matrix in a finite number of operations when the matrix is bigger than 2× 2 [21]. A
method called the generalized Schur (QR) method can be used to estimate eigenvalues.
Using this method we find approximations of the eigenvalues of YsolY T

sol and Y
T
solYsol and

thus the approximation of the singular values of Ysol [14].

To find an eigenvector vi corresponding to an eigenvalue λi of YsolY T
sol, we have to ap-

proximate

(YsolY
T
sol − λiI)vi = 0.

Doing this for all eigenvalues, we find all sets of positive eigenvalues with eigenvectors
[λ1, v1], [λ2, v2], . . . , [λq, vq] of YsolY T

sol, with λ1 ≤ λ2 ≤ . . . ,≤ λq. Similarly, all sets of
positive eigenvalues with eigenvectors [λ1, v

∗
1], [λ2, v

∗
2], . . . , [λq, v

∗
q ] of Y T

solYsol can be found.
It can easily be proven that the nonzero eigenvalues of ATA are equal to the eigenvalues
of AAT [6].

The matrix U is constructed as the m × m matrix [v1, v2, . . . , vm], the matrix Σ is an
m × n diagonal matrix with entries

√
σ1,
√
σ2, . . . ,

√
σq, q = min(m,n) and the matrix Z

is the n× n matrix [v∗1, v
∗
2, . . . , v

∗
n] such that

Ysol = UΣZT [7].

In the SVD, U contains the spatial structures and Z contains the time dependent struc-
tures [20]. Intuitively can be said that the matrix Σ determines the importance of each
corresponding vector in U and W : a higher value of σ means the corresponding vector is
more important. Since Σ is a diagonal matrix with decreasing entries, we can say that for
a certain r, σi is significant for i ≤ r and σi is not significant for i > r. The Eckhart-Young
Theorem can be used to show that this intuition is correct [21].
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Theorem 2: The Eckart-Young Theorem.
Let A ∈ Rm×n. If k < r = rank(A) and

Ak =
k∑
i=1

σiuiz
T
i (31)

Then

min
rank(B)=k

||A−B||2 = ||A−Ak||2 = σk+1. (32)

Here, A = UΣZT with σi the ith diagonal entry of Σ, ui is the ith column of U and zi the ith column
of Z.

In other words, the best approximation of a matrix A with rank k is Ak as defined in
equation (31), and the norm of the difference between A and its approximation is σk+1.
It can be noticed that equation (31) is nothing else than

Ak = UkΣkZ
T
k

where Uk is the matrix of the first k columns of U , Σk is the diagonal matrix with entries
σ1, σ1, . . . , σk and Zk is the matrix of the first k columns of Z. Thus, when the singular
value decomposition of matrix A is known, it is easy to compute the best approximation
of A of rank k: Ak [21].

4.3 Reducing the order of the model

By equation (32) of the Eckhart-Young theorem,

Ysolr =
r∑
i=1

σiuiz
T
i

is the best approximation of rank r of the matrix Ysol. The 2-norm error between Ysolr
and Ysol is σr+1. To reduce the model, we have to define a tolerance for the error due to
the model order reduction. Once we have defined the tolerance, we can determine what is
the smallest rank possible to reduce A to, for which

σr+1

σ1
≤ tolerance

holds. For the reduced solution Ysolr , the memory required is r(m + n). The memory
required for the original solution Ysol is mn. Thus, if r << min(m,n), the memory re-
quirement is a lot smaller [8].

To apply the POD method, we put the first columns of U in a new matrix and call this
matrix Φr. This matrix Φr has dimensions r×m. To create a smaller system of equations,
we use the approximation Y n ≈ Φra

n. We plug Y n ≈ Φra
n into equation (29) and perform

a Galerkin projection by multiplying the equations from the left by ΦT
r . This gives us

ΦT
r AΦra

n+1 = ΦT
r BΦra

n + ΦT
r C + ΦT

r F (Φra
n) + ΦT

r I
n.
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We make the substitutions

ΦT
r AΦr := Ared,

ΦT
r BΦr := Bred,

ΦT
r C := Cred,

ΦT
r F (Φra

n) := Fnred(Φra
n),

ΦT
r I

n; = Inred

and we rewrite the equation as

Areda
n+1 = Breda

n + Cred + τFnred + Inred (33)

[12]. The reduced matrices are in general much smaller than the original matrices because
Φr generally has only few columns. This makes the new system of equations faster to solve.
The matrices Ared, Bred and Cred have to be calculated only once, and can be used for all
time steps. The column Inred has to be calculated for every time step. However, remember
that the vector In has only one nonzero entry, which makes it very fast to calculate Inred.
The expensive part is the matrix Fnred(Φra

n). The input for this matrix has to be updated
for every time step with the new results of an and to obtain Fred the input has to go into
the formula f(v) = v(v − a)(1− v). remember a = 0.1 is a constant in this formula.

Once equation (33) is solved for an, n = 0, 1, . . . , N , the new approximation of Yn, Ynsol
can be calculated using the approximation Y n

s ol ≈ Φn
r a

n.

With this method of model order reduction, the computation time and the needed space
are decreased. However, still a lot of computation time is needed due to the nonlinear term
Fnred(Φra

n). To reduce the computation time even further, we want to apply model order
reduction also for the nonlinear term. In several papers, this has been done successfully
for other models using an empirical interpolation method (EIM) and a discrete empirical
interpolation method (DEIM). Therefore, for further research we want to advise to apply
the EIM or DEIM method described in [3] and in [5].

5 Results

In this section, we will describe the results found for the heat equation and the FitzHugh-
Nagumo model. We will see the numerical approximation to the solutions of both systems
and the error of the approximation of the solution of the heat equation. Also the model
order reduction described in section 4 is applied to the FitzHugh-Nagumo model, and the
results are shown.

5.1 Heat equation

We solved the heat equation of equation (34) numerically by implementing equation (39)
in MATLAB. We solved the heat equation on grid points in the time domain t ∈ (0, 1) and
spatial domain x = (0, 1). The grid points are equally spaced with δt = τ = 2.5 · 10−5 and
δx = h = 10−2.

In Fig. 2, we can see the approximation of the solution of the heat equation computed from
equation (A.2). To compute the error of the numerical solution compared to the analytic

12



solution, we use the relative L2 error. This error is defined as√√√√∫ L0 (uapprox(x)− ureal(x))2dx∫ L
0 (ureal(x))2dx

where uapprox is a function that fits the numerical results, and ureal is the analytic solution
of the heat equation. Fig. 3 shows this L2 error, the numerical solution of Fig. 2 is
compared to the analytic solution v(x, t) = cos(πx)t.

Figure 2: The numerical solution of equation (39) with T = 1 and L = 1

Figure 3: The L2 error of the numerical approximation of the solution to the heat
equation, compared to the analytic solution

13



In Fig. 3 can be seen that the relative L2 error is of the order 10−3. This means the
numerical solution approximates the real solution good. We also see that the error increases
when time increases. This can be explained by the dynamics of the heat equation. When
we proceed in time, the rate of change over space of the solution is higher. This causes
that more space steps are needed to have a good approximation to the solution. If not,
the error increases.

5.2 FitzHugh-Nagumo model

To solve the FitzHugh-Nagumo equation numerically, we implemented equation (29) in
MATLAB. We changed the value of ε to 1 so that the nonlinear part of the equation has
less influence on the behavior of the solution, and the solution is more stable. Without
this change of the value ε, it took a lot of time steps to have a stable solution as a result.
We solved the FitzHugh-Nagumo equation on grid points in the time domain t ∈ (0, 80)
and spatial domain x = (0, 1). The grid points are equally spaced with δt = τ = 8 · 10−6

and δx = h = 10−2.

In Fig. 4, we plotted the full order approximation of the solution for v and w of the
FitzHugh Nagumo equation. We see that the solution for v as well as the solution for w
have a peak when t ∈ (0, 2), and that it remains almost constant when t > 10. In Fig. 5
we have a closer look at the peak in the solution for v and w. It is visible that the peak
is highest at x = 0 and decreases when x increases. This peak is caused by the boundary
condition δv

δx(0, t) = −i0(t). The peak is caused to be flattened at x = 1 because of the
boundary condition δv

δx(L, t) = 0.

Figure 4: The numerical approximation of the solution for v (left) and w (right) of
equation 10 for t ∈ (0, 40) and x ∈ (0, 1)

Fig. 6 shows the fast decay of 100 singular values of the snapshot solutions for v and w.
Small decaying eigenvalues indicate that for many values of tx, the solution at t = tx is a
linear combination of solutions at t 6= tx. Since the solution shown in 4 remains almost
constant over a large time interval, this is the case. Thus the fast decay of singular values
can be expected.

Using the singular value decomposition, we computed a matrix Φr and an as described
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Figure 5: Left: The numerical approximation of the solution for v of equation 10
for t ∈ (0, 1) and x ∈ (0, 1). Right: The numerical approximation of the solution
for w of equation 10 for t ∈ (0, 2) and x ∈ (0, 1).

Figure 6: The singular values of 100 snapshot solutions for v and w from the full
order system (29)

in section 4.3 for different values of r. We computed the L2 error between the full order
model and the reduced order model by the formula

L2 =

√√√√∫ L0 (vred(x)− vfull(x))2dx∫ L
0 (vfull(x))2dx

.

Here, vfull is a function that fits the solution of v of the full order model and vred is a
function that fits the solution of v of the reduced order model. The described L2 error
between the solution obtained by Φn

r a
n and the obtained solution from Fig. 4, is shown

in Fig. 7. The maximum of the L2 error over time for each r is shown in Fig. 8. Since
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the singular values shown in Fig. 6 decay fast, it is expected that only few columns r are
needed to obtain a good approximation to the full order numerical solution.

Figure 7: The L2 error between the solution of the reduced order system Φn
r a

n and
the full order solution shown in Fig. 4

Figure 8: The maximum of the L2 error of Fig. 7 for different ranks r

In Fig. 7 and Fig. 8, we can see that the error decreases when r increases. This is exactly
what we would suspect to happen. However, we can see that the error when r = 15 is big-
ger than the error when r = 10 on a large interval. This can be explained by the machine
precision. This precision has an accuracy of approximately 10−16. Since the square root is
taken to obtain the error, the accuracy is only about 10−8 and thus the L2 error shown in
Fig. 7 for r = 15 is effected by that.
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In Fig. 7 we can also see that the error between the full order and reduced order so-
lution always has a peak at the beginning. This can be expected and is explained by the
peak in the solution shown in 4.

6 Conclusions

In this thesis we have discretized the FitzHugh-Nagumo model and found a numerical
solution to this problem. This numerical solution is used to obtain a reduced order model
that approximates the full order numerical solution. We did this using POD and the
Galerkin projection. This method for model order reduction works for the FitzHugh-
Nagumo model. In Fig. 8, it can be noted that the maximum error caused by POD
decreases when the rank of the approximation increases. The L2 error caused by the POD
obtained with a rank r = 10 is only of the order 10−5, which is insignificant compared
to the error caused by the discretization. To choose the best rank r, we can approximate
the error of the numerical solution compared to the analytical solution, and make sure
the error caused by the POD is smaller than this. This way, the POD does not cause
significant errors.

6.1 Limitations

Due to the non-linearity in the FitzHugh-Nagumo problem, a lot of time steps are needed
to ensure stability of the numerical solution. This was not possible for a time period longer
than t ∈ [0, 1], due to lack of storage capacity. Besides, obtaining these results required
a lot of computation time, which was not available. To solve this limitation, the variable
ε is set to 1. This reduces the influence of the nonlinear part in the FitzHugh-Nagumo
equation.

6.2 Future research

To obtain more relevant results, the same numerical solution as described in this report
can be obtained for ε = 0.015, but on a faster computer with more capacity.

In the reduced order model created in this report, there is still a nonlinear part ΦT
r F (Φra

n),
which has to calculated in each time step. This takes time to compute, and causes that
the solution of the reduced order model still takes a large amount of time to compute. A
method called the emperical interpolation method (EIM) [3, 4], and its discrete variant the
discrete empirical interpolation method (DEIM) [5] can be used to improve the dimension
reduction efficiency of POD with Galerkin projection. DEIM in combination wit POD is
faster than only applying POD, and can provide a nearly optimal subspace approximation
of this nonlinear term [5].
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A Heat equation

To be able to validate all steps taken and to verify the code written for the FitzHugh-
Nagumo model, it is useful to repeat each step in a simplified model. For this model, a
solution should be found by hand, such that we can check if everything is done in the right
way. To create this simplified model, we assume w = 0 and neglect the nonlinear part f(v)
and we obtain the heat equation. This new model is given by the equation

ε
δv

δt
= ε2

δ2v

δx2
+ f(x, t) (34)

and is restricted to the boundary conditions
v(x, 0) = 0
δv
δx(0, t) = 0
δv
δx(L, t) = 0

. (35)

A.1 Recursive equations

When applying the semi-implicit backward differentiation formula scheme of equation (8)
with p(v) = f(x, t) and q(v) = ε2 d

2v
dx2

, to the heat equation, we get

ε
vn+1
i − vni

τ
= ε2

vn+1
i+1 − 2vn+1

i + vn+1
i−1

h2
+ f(ih, nτ). (36)

Here, n is the time step and runs from 0 to N . The space step i runs from 1 to M − 1.
For 2 < i < M − 2, multiplying by τ and bringing all terms of time n+ 1 to the left side
gives:

(ε+ 2ε2λ)vn+1
i − ε2λvn+1

i+1 − ε
2λvn+1

i−1 = εvni + τf(ih, nτ) (37)

with λ = τ/h2

A.1.1 Boundary condition at x=0

The boundary condition dv
dx(0, t) = 0 can be written as v1−v0

h = 0. Filling this in into
equation (36) with i = 1 gives:

ε
vn+1
1 − vn1

τ
= ε2

vn+1
2 − 2vn+1

1 + vn+1
0

h2
+ f(h, nτ)

ε
vn+1
1 − vn1

τ
= ε2

vn+1
2 −vn+1

1
h − vn+1

1 −vn+1
0

h

h
+ f(h, nτ)

ε
vn+1
1 − vn1

τ
= ε2

vn+1
2 −vn+1

1
h − 0

h
+ f(h, nτ)

ε
vn+1
1 − vn1

τ
= ε2

vn+1
2 − vn+1

1

h2
+ f(h, nτ)

ε(vn+1
1 − vn1 ) = ε2λ(vn+1

2 − vn+1
1 ) + τf(h, nτ)

(ε+ ε2λ)vn+1
1 − ε2λvn+1

2 = εvn1 + τf(h, nτ)

Since vn1−vn0
h = 0, we know vn0 is equal to vn1 .
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A.1.2 Boundary condition at x = L

The boundary condition dv
dx(L, t) = 0 can be written as vM−vM−1

h = 0. Filling this in into
equation (36) with i = M − 1 gives:

ε
vn+1
M−1 − vnM−1

τ
= ε2

vn+1
M − 2vn+1

M−1 + vn+1
M−2

h2
+ f((M − 1)h, nτ)

ε
vn+1
M−1 − vnM−1

τ
= ε2

vn+1
M −vn+1

M−1

h − vn+1
M−1−v

n+1
M−2

h

h
+ f((M − 1)h, nτ)

ε
vn+1
M−1 − vnM−1

τ
= ε2

0− vn+1
M−1−v

n+1
M−2

h

h
+ f((M − 1)h, nτ)

ε
vn+1
M−1 − vnM−1

τ
= −ε2

vn+1
M−1 − v

n+1
M−2

h2
+ f((M − 1)h, nτ)

ε(vn+1
M−1 − v

n
M−1) = −ε2λ(vn+1

M−1 − v
n+1
M−2) + τf((M − 1)h, nτ)

(ε+ ε2λ)vn+1
M−1 − ε

2λvn+1
M−2 = εvnM−1 + τf((M − 1)h, nτ)

Since
vnM−v

n
M−1

h = 0, we know vnM is equal to vnM−1.

A.1.3 Overview recursive equations

To summarize, the recursive equations found are described by
(ε+ 2ε2λ)vn+1

i − ε2λvn+1
i+1 − ε2λv

n+1
i−1 = εvni + τf(ih, nτ) for 1 < i < M − 1

(ε+ ε2λ)vn+1
1 − ε2λvn+1

2 = εvn1 + τf(h, nτ)

(ε+ ε2λ)vn+1
M−1 − ε2λv

n+1
M−2 = εvnM−1 + τf((M − 1)h, nτ).

(38)

From the boundary conditions, we know vn0 = vn1 and vnM = vnM−1

A.2 Equations in matrix form

We can write equations (38) in matrix form. The structure of this equation is

AY n+1 = BY n + Cn. (39)

Here, the vector Y n = (vn1 , v
n
1 , ..., v

n
M−1, )

T , the matrix An is a matrix of [M −1]× [M −1]

An =



ε+ ε2λ −ε2λ 0 0 . . . 0 0 0 0
−ε2λ s −ε2λ 0 . . . 0 0 0 0

0 −ε2λ s −ε2λ . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . −ε2λ s −ε2λ 0
0 0 0 0 . . . 0 −ε2λ s −ε2λ
0 0 0 0 . . . 0 0 −ε2λ ε+ ε2λ
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with s = (ε+ 2λε2) . The matrix B is the matrix

B =



ε 0 0 . . . 0 0 0
0 ε 0 . . . 0 0 0
0 0 ε . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . ε 0 0
0 0 0 . . . 0 ε 0
0 0 0 . . . 0 0 ε


(40)

and Cn is a nonlinear column vector [τf(h, nτ), τf(2h, nτ), . . . , τf((M − 1)h, nτ)].

A.2.1 Finding a solution by hand

To test if the recursive equations, matrices and MATLAB code of the heat equation are
implemented correctly, we need to choose a solution v(x, t) that fulfills the boundary con-
ditions

v(x, 0) = 0
δv
δx(0, t) = 0
δv
δx(L, t) = 0 with L ∈ N

(41)

One function that fulfills all these conditions is v(x, t) = cos(πx)t. To find the correspond-
ing function f(x, t) to this solution, we fill v(x, t) = cos(πx)t in into equation (34). This
gives

ε
δv

δt
= ε2

δ2v

δx2
+ f(x, t) (42)

⇐⇒ εcos(πx) = −ε2π2cos(πx)t+ f(x, t) (43)

⇐⇒ f(x, t) = εcos(πx)(1 + επ2t). (44)
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