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ABSTRACT

Distance-based techniques for localization require large
amounts of configuration or complex computations, ren-
dering such systems too expensive for consumer use. Al-
ternative methods such as Radio Signal Strength profiling
(RSS) provide a cheap alternative, but these sensors still
require fine-tuning. By investigating the use of cheaper
and more readily available light and air pressure sensors,
this paper will attempt to localize a moving object. This
system uses light and pressure sensors to collect data. The
system is validated using Thingy:52’s but is not specifically
tailored to this platform.
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1. INTRODUCTION

Around the world, localization plays an ever more impor-
tant role in automated systems. From smartphones to au-
tomated transportation vehicles, there is a growing need
for accurate positioning in a variety of situations. There
is already a variety of cheap options available for outdoor
uses, but in indoor scenarios, a large investment in spe-
cialized materials and systems is often required.

In the field of localization, there are several commonly em-
ployed methods. These can be categorized in three distinct
groups, Angle of Arrival, Distance based and Radio Sig-
nal Strength Profiling.[6] Of these, the second is the most
well known and widely employed, as the receivers can be
made relatively cheaply. This is the methodology used
by, among many others, the GPS, GLONASS and Galileo
systems.[5]

Distance-based systems do, however, require a high degree
of fine-tuning to achieve reasonably accurate results. The
Global Positioning System, as an example, requires that
all transmitters to be synchronized to within 40 nanosec-
onds and can only provide results accurate to 5 meters un-
der optimal circumstances. For fine-grained applications
and especially indoor applications, a different method is
required.
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As discussed by Vaghefi et al., options based on the radio
signal strength profiling (RSS) are a popular alternative
because of the low cost of implementation.|[7] These sensors
are cheaply available and often already present for other
reasons. As such, recent research has been more focused
on building localization on these sensors.

Traditionally, radio sensors have been used for this pur-
pose as they can easily be attuned to frequencies with
little background noise. But alternate sensors such as
light or air pressure have only gained attention in recent
years.[2][8] These sensors are becoming easier to access as
more consumer products are being built with these sensors
included.

The proposed system is designed for indoor usage where
device-free localization is required. It can be applied, for
example, in elderly care. Patients in such facilities are
prone to falling and might forget to carry a monitoring
device. This system could be employed to warn caregivers
when this happens.

This system will not only provide an alternate manner of
localization, but it can also be employed in multi-modal
configurations. Such systems are often designed to lever-
age the strengths of its subsystems to achieve higher accu-
racy than any one single system individually could achieve.

2. RESEARCH QUESTION

As such, the following was formulated as the main research
question:
Can the position and movement of an object be deter-
mined with light and pressure sensors in an indoor envi-
ronment?

To structure the research approach, the main question has
been split into the following sub-questions.

RQ1 How can a single light sensor be used to determine
in what direction an object is moving?

RQ2 How can a single air pressure sensor be used to de-
termine in what direction an object is moving?

RQ3 Can a combined light and pressure sensor be used
to achieve higher accuracy in determining what di-
rection an object is moving?

RQ4 How can multiple sensor pairs be combined to ac-
curately localize a moving object?

2.1 Hypothesis

It is expected that visible light behaves similarly to radio
signals, as both are a form of electromagnetic radiation.
But, its application isn’t as straightforward as RSS strate-
gies with an actively emitting target. The object will have
an influence on light propagation, but this is expected to



be a complicated relationship, and how exactly it has an
influence is to be investigated.

A similar note should be made for pressure. Instead of the
constant source signals that are used for radio-based local-
ization, the air pressure only changes when the target is
moving. And, when the object stops moving, the pressure
readings will return to ambient levels.

Overall, the system is expected to work with a reasonable
degree of accuracy in indoor situations.

3. BACKGROUND

3.1 Non-Invasive Localization

In certain situations, it can be preferable to track objects
without attaching a device, either because the trackers
might get lost or because the volume of objects is too high.
This was previously done using video cameras, but this has
several big disadvantages. First is the privacy violations
such an always active camera system might cause. It is
not hard to imagine malicious actors gaining access to the
system and causing disruptions in the system or sharing
the collected data with unauthorized parties.

Second is the fact that the subject might move outside
the monitored area. In certain situations, this can lead to
targets getting displaced or diverted. This limitation is,
however, not exclusive to video-based systems.

As such, more and more researchers are looking towards
radio technology to provide broader coverage. For exam-
ple, Zhang et al. surround an area to be monitored with
cheap radio transceivers and use machine learning to de-
termine whether a target is in the monitored area and
where it is situated.[9]

3.2 Thingy:52

To validate the methodology proposed below, the Thingy:52
will be used as a testing platform. It is a cheap, low-
powered sensor prototyping platform which can be con-
nected to using a Bluetooth Low Energy connection. Its
firmware, as well as sample applications, are available un-
der an open-source license. It offers a wide array of sen-
sors, but for this research, only the air pressure and light
sensors will be used.

4. RELATED WORK

4.1 Localization

The 2017 survey performed by Paul et al. categorizes
methods of localization in three distinct groups, Angle of
Arrival, Distance based and Radio Signal Strength Profil-
ing.[6] In past decades, distance-based methods got the
most interest, but recently the RSS profiling option has
gained more attention. It offers a simpler and cheaper
implementation than its alternatives.

But, RSS based solutions also require more computational
complexity. An array of parameters must be initialized
correctly for the system to work, and these values differ
per location. Hu et al. described a method of RSS pro-
filing where these values are not known, so-called blind
RSS.[3] These methods attempt to estimate the trans-
mission power and background noise when they cannot
accurately be determined, such as with hostile or non-
cooperative targets.

Furthermore, as pointed out by Martin et al., noise reduc-
tion systems often make subtle assumptions that might
not necessarily be true.[4] Chief among these is that the
signal-to-noise ratio in RSS based techniques is close to 1,

i.e. that there is comparatively little background noise for
a given signal. They point out that this assumption can
be wrong, especially when working with a non-cooperative
target.

4.1.1 Device-free Localization (DfL)

Device-free localization is often used in situations where
it is undesirable or impossible to attach transponders to
the objects being tracked, either due to volume or privacy
concerns. Commonly, device-free RSS-based localization
techniques require a training phase before they can start
to localize objects. This is done by positioning the object
in a spot, recording the received radio fingerprint, and
repeating this for all possible locations.

Recently, however, research is trying to reduce the re-
quired amount of initialization in device-free localization.
One avenue being pursued are model-based techniques based
on radio tomography.[1] These systems collect data by
having sensor-pairs monitor a narrow slice of the space
for disturbances. If such a disturbance is found, the ex-
act position can be determined by intersecting multiple of
these slices.

5. METHODOLOGY & APPROACH

In order to properly answer the question posed in this re-
search, there are several key steps. First of which is the
collection of data from the Thingy:52’s using a Bluetooth
Low Energy connection. The collected data is stored in
an InfluxDB database, which also facilitates some rudi-
mentary analysis. To facilitate the later analysis step, it
is important that the collection rate is sufficiently high,
preferably at 15Hz or higher.

Thereafter, the next step is to build an understanding of
how the sensor readings change in response to different
environmental factors and how they respond to different
scenarios like moving towards or away from a sensor. This
data will be collected by placing a small cuboid (6cm by
6cm by 4cm) in front of the sensor and moving it in various
directions using fishing line.

Proper analysis of the data might require noise reduction
or normalization. Common methods to do this include
running averages and the removal of high-frequency sig-
nals. It is important here to take the work by Martin
et al. into account when developing the noise reduction
strategy.[4]

It is planned to feed this cleaned up data to a neural net-
work to classify movements. The network will get to con-
sume the last 20 observations of all four channels (red,
green, blue, clear) and outputs one of three states (to-
wards, away, no movement.) The amount of hidden layers,
as well as their sizes will be determined empirically.

Last is the development of a system capable of using the
aggregated data from multiple sensors to provide actual
movement localization. This will leverage a Bayesian model
to combine the different readings. This accounts for both
the possibility a sensor picks up too much background
noise, as well as the possibility that sensor readings are
conflicting.

5.1 Testing & Validation

The system will be validated in two manners. First is a
small scale testing setup of 1 by 1 meter. This will not have
walls as to reduce the interference from reflection. This
setup is illustrated in figure 1. The primary light source
will be placed above the setup at a height of roughly 40
cm, but it should be noted that reflected light from other
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Figure 1. Schematic drawing of a validation setup
without walls.

sources cannot be completely mitigated and can influence
the reported values of the sensor.

This setup is used for testing the individual localization
as well as cooperative localization. In the first case, the
object will be placed at the center of the setup and moved
along and perpendicular to the primary axis of a selected
sensor. When validating the cooperative approach, the
object will be placed and moved along the primary axes
as well as in composite directions.

The second setup is more akin to a real-world application.
This testing will be performed in a 3.5 by 3.5 meter room
where the sensors will be placed against the wall. This
will cause more reflected signals, but might also prove to
yield a more clearly defined change in pressure.

In both setups, the accuracy of the solution will be deter-
mined as the mean squared error of three distinct elements
of the movement vector: the direction, magnitude and ori-
gin.

6. RESULTS
6.1 Data Collection

As discussed earlier, the first step in the development of
this localization system is the reduction of noise on the
reported sensor values. The readings of the light sensors
were directly usable, as their signal to noise ratio is be-
tween 102 and 103. This is illustrated in figure 3. As such,
it was decided to not implement a noise reduction strategy
here.

Figure 3 also shows that the reported light levels might still
change, even if there is no clearly identifiable reason for the
increase or decrease. In this case, the object was lit using
overhead lighting, but the shifting weather conditions still
had an effect on the reported light levels.

The reported values of the pressure sensor proved, how-
ever, quite noisy. The spread of values was significantly
larger than what was expected from a small moving ob-
ject, 0.2 hPa and 0.05 hPa respectively. A sample of the
reported pressures is illustrated in figure 4.

While the method proposed by Martin et al. would be

able to filter out the noise in such scenarios, it would re-
quire a large number of data points to be collected of the
same situation.[4] This means the noise reduction strategy
they developed is only able to accommodate low-frequency
changes. This is not the case on the scales the Thingy:52 is
usable as a moving object has a high-frequency signature.

6.2 Detection using Single Light Sensor

As part of the hypothesis of this paper, we postulated
that the relation between light levels and how an object is
moving would be complicated. The expectation was that
reflected light of the object and the shadow it cast could
negate each other under the right circumstances. This
assumption turned out to be wrong, however. The effect of
reflected light, while certainly an important consideration,
was significantly smaller than the effect caused by cast
shadows.

As such, the detection algorithm saw a decrease in its com-
plexity. While originally it was planned to use a neural
network, the simplified version compared the difference
between a moving average and the last observation. If
this value exceeded a set value, it would be classified as
movement. The direction of change then indicated the di-
rection of movement relative to the sensor. (i.e. moving
towards or away from the sensor.) After empirically test-
ing various sizes of objects, it was determined that this
trigger value should be between 50 1x and 100 Ix.

The light sensor of the Thingy:52 reports light levels in
terms of four distinct channels, red, green, blue and clear.
As such, the above-described method of detection can be
applied to each channel individually. The detection of an
object moving towards or away from the sensor are illus-
trated in figures 5 and 6 respectively.

6.2.1 Movement Detection

To properly detect and classify movement, it is important
to acknowledge the fact that a single channel can occa-
sionally classify data incorrectly. To mitigate this, the
individual channels need to be aggregated, which can be
done in two distinct manners.

First is the option to aggregate the raw data and then clas-
sify its result. This can be done using simple addition or
via more complex algorithms that take the relative change
in value into account.

The other is to determine movement based on individual
channels and aggregate the results afterwards, for example
by using a majority vote algorithm. This approach does,
however, have one large disadvantage. If the object is
illuminated using monochromatic light, it might become
undetectable for some or all of the channels.

However, in most real world applications, light sources are
not monochromatic. Taking this into account, and consid-
ering the limited time-frame during which the system was
developed, it was decided to use the simpler majority vote
approach.

Should this algorithm result in a tie, the data will be clas-
sified as no movement. This means that a situation where
two channels report movement towards the sensor and the
other two report movement away will still be seen as no
movement. While this might seem counter-intuitive, this
was done as there is no clear alternative option.

6.2.2 Object Ranging

Accurately ranging the moving object proved to be too
large a challenge for this paper alone. The intuition to
determine how far an object is that a nearer object will
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Figure 2. Reported light levels in lux in a dynamic environment.
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Figure 3. Reported light levels in lux in a static environment.

Table 1. Statistical analysis of pressure

No movement Towards Away
Min. 1010.91 hPa 1011.00 hPa | 1011.03 hPa
Q1 1013.29 hPa 1013.24 hPa | 1013.23 hPa
Med. 1013.58 hPa 1013.33 hPa | 1013.33 hPa
Qs 1014.49 hPa 1013.51 hPa | 1013.52 hPa
Mazx. 1031.53 hPa 1031.47 hPa | 1031.43 hPa
Avg. 1015.90 hPa 1015.95 hPa | 1015.81 hPa
Var. 5.73 hPa 6.17 hPa 6.02 hPa
Skew. 2.15 hPa 1.95 hPa 2.05 hPa
Kurt. 2.71 hPa 1.82 hPa 2.23 hPa

cast a larger shadow and thus decrease light levels more.
This assumption does indeed hold in static environments
where the source of light is of fixed luminance.

In real-world situations, this assumption cannot be made.
There are a large number of events that can cause inter-
ference when attempting to range an object. For exam-
ple, other moving objects can cause complex reflective pat-
terns, which are difficult to account for. But also the time
of day and local weather patterns should be accounted for
as they can change how much impact the shadow of an
object has.

6.3 Detection using Single Pressure Sensor

As described earlier, the data collected of the pressure
sensors proved to be too noisy to accurately detect a mov-
ing object. As is illustrated in figure 4, the spread of the
returned values was significantly larger than the signal a
moving object might cause.

Using simple filtering strategies such as moving averages
was also determined to be ineffective. This is due to the
fact that a movement is of short duration and causes a low-
frequency change. The filters were unable to compensate
noise while maintaining a detectable signal. It is yet to
be determined if this noise can be reduced by using more
accurate sensors.

6.4 Detection using Combined Sensors

As previously discussed, the data collected from the air
pressure sensor seemed to be unusable. To validate this,
the data from earlier experiments was analyzed again along-
side the data from the light sensor. The data was sepa-
rated into three partitions according to how the light sen-
sor had classified it.

The numerical summaries and four central moments were

compared between samples of stationary objects and those
moving towards and away from the sensor. For all these
samples, no statistically significant difference could be found
in the numerical summaries or central moments at a level
of confidence of 95%. The found values can be seen in
table 1.

6.5 Detection using Multiple Sensor-pairs
Once a single sensor can detect movement with a reason-
able degree of certainty, it is possible to combine multiple
sensors to classify movements in two dimensions. In this
research, four sensors were placed pairwise along the ma-
jor axes in opposite directions. This setup is illustrated in
figure 1. Using trigonometric functions, the global move-
ment of an object could be determined.

This was validated by moving an object along the ma-
jor axes as well as across a diagonal path. The object
was placed 25 cm from the centre point and pulled in a
straight line until it had passed over the centre point and
was 25 cm away from it, as illustrated in figure 10. The
results of these tests are shown in figures 7, 8 and 9, re-
spectively. These figures show that the system is able to
detect movement towards or away from a sensor, but isn’t
able to detect objects moving along a diagonal path.

This lack of detection is due to the relatively small changes
in the light levels reported by the sensors, which is illus-
trated in figure 11. In turn, these small signatures ensure
that none of the sensors are individually able to detect the
object, which means that the developed cooperative aggre-
gation strategy also is not able to classify the movement
correctly.

Due to time constraints, the system was developed with
the restriction that all sensor-pairs would be aimed to-
wards and equidistant from a centre point. This meant
that only a rotational offset needed to be taken into ac-
count when combining reports. While more was less com-
plex to implement, it is not always possible or desirable
to meet this requirement. Furthermore, it is also not
grounded in any technical limitations. As such, the sys-
tem can be expanded to work in more situations than the
current implementation is able to.

A more elaborate system, where not only the rotation but
also the position of each sensor can be configured, should
be able position a moving object in a space instead of
only determining the direction of movement. This can,
for example, be accomplished by creating sectors in the
monitored area.
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Figure 5. Individual channel detection when mov-
ing towards the Thingy:52.
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Figure 6. Individual channel detection when mov-
ing away from the Thingy:52.
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Figure 7. Cooperative movement localization of
an object moving along the X axis in positive di-
rection.
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Figure 8. Cooperative movement localization of
an object moving along the Y axis in positive di-
rection.
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Figure 9. Cooperative movement localization
when moving along a diagonal.
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Figure 10. Schematic drawing of movements used
to validate cooperative localization.
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Figure 11. Sample of reported values in 1x of a
sensor when moving an object along a diagonal.

7. DISCUSSION

7.1 Air Pressure Sensor Noise

As discussed earlier, the reported values of the Thingy:52’s
air pressure sensor show a spread of 0.2 hPa under static
conditions, which can be seen in figure 4. This effect has
two causes, but it is yet to be investigated how much in-
fluence each has.

Firstly, the Thingy:52 is built using cheaply available sen-
sors. Such sensors are commonly less accurate and will
show a higher deviation from ground truth than their more
expensive counterparts. As such, using a different sensor
platform might yield more usable air pressure readings.

But secondly, what humans perceive as completely static
air is rarely truly stationary. The effects of Brownian mo-
tion can cause small but measurable changes in pressure
when this might not be expected. It should thus be inves-
tigated if and how much influence these effects have and
how they can best be mitigated.

7.2 Thingy:52

The Thingy:52 is promoted as a prototyping platform,
which is reflected in the build quality of the device. Be-
sides the earlier discussed issues with the air pressure sen-
sor, this also manifests itself in the range and field of view
of the light sensor. While the exact range and field of
view varies from device to device, an average is illustrated
in figure 12.
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Figure 12. Schematic drawing of the field of view
of a Thingy:52’s light sensor.

The range in which all tested devices noticed an object
is illustrated as the smallest of the two sectors. This ex-
tends three-quarters of a meter from the device and covers
a 25-degree arc from the centerline. The larger sector illus-
trates where a Thingy:52 might pick up on a change, the
probability of which is largely dependent on how reflective
a given object is. This range extends to approximately 1
meter from the device and spans about 45 degrees from
the centerline. It should be investigated if and to what
extent this field of view can be extended or made wider.

7.3 Limitations of the Implementation

The current implementation has several limitations, the
two most important will be discussed here. Firstly, the de-
veloped system does not require a specific amount of sen-
sor nodes, instead, it can be configured to work with any
amount. It does, however, require that all nodes are di-
rected towards a single point and that they are all equidis-
tant from that point. This assumption does not hold in all
cases, areas that are significantly longer than wide, such
as hallways currently pose an issue.

Secondly, the system assumes a single moving target is
being monitored. This assumption was mainly made to
reduce the complexity of this exploratory research, but it
cannot hold for applications in the real-world. To use the
same example of a hallway again, it happens often that
multiple people are walking down the same hallway. The
current implementation would be unable to handle such
situations.

7.4 Future Work

This paper opens various avenues to further research, which
can be summarized into the following three categories.

7.4.1 Increase Target Variety

The developed system was built under the assumption that
the target is non-reflective, which meant that the signal
intensity would decrease as an object moved closer to the
sensor. This was done to develop clearer fingerprints of a
moving object. Future research could investigate if and to
what extent a reflective object causes a different pattern
than those illustrated in figures 5 and 6.

7.4.2  Decrease Sensor Noise

The reported values from the light and air pressure sen-
sors of the Thingy:52 contain a certain element of noise,
which can be seen in comparing figures 2 and 3. For real-
world applications, the assumption of a clean and rela-
tively static environment cannot be made. As such, future

research could look into how to reduce the noise caused by
such situations.

7.4.3  Extend Field of View

As described earlier, the area in which a Thingy:52 can re-
liably detect a moving object is quite limited. This means
the developed system is only applicable to monitor small
areas, which is undesirable for real-world application. Fu-
ture research could investigate how this range could best
be extended.

8. CONCLUSION

In this research, the possibility of using a light and air pres-
sure sensor to localize a moving object was investigated.
It was shown that a simple detector can be built to detect
moving objects using a light sensor. Localization using
the air pressure sensor of a Thingy:52 proved unfeasible
due to a low signal to noise ratio. A statistical analysis
was preformed into the possibility of multi-modal local-
ization, but this proved unsuccessful. It was also shown
that a cooperative approach to localization can increase
the accuracy and reliability of such systems.

As a result of this research, we conclude that it is feasible
to localize movement using multiple light sensors. The
possibility to do this using pressure sensors could neither
be confirmed nor ruled out.
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