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ABSTRACT
An Autonomous System (AS) is a group of host IP ad-
dresses, known as routing prefixes, that share common
routing policies. Multiple ASes interact with each other
through a massive network of links which reflect customer-
provider and peer-to-peer partnerships among network op-
erators. Such partnerships form an Autonomous System
Network (ASN) that connects millions of hosts around the
world and gives shape to the topology of the Internet. The
ranking of ASes in an ASN allows researchers to acquire
important insights into the complex structure of the Inter-
net. ASes are ranked by the Center for Applied Internet
Data Analysis (CAIDA) by their customer cone size, which
is the number of direct and indirect customers. While the
customer cone size and other similar metrics represent an
intuitive way to measure the rank of ASes, they suffer
from low monotonicity, making it difficult to discriminate
among ASes with the same measurements. In this research
we propose a new approach for ranking ASes within the
ASN, measuring customer cones by exploiting a gravita-
tional approach used in Network Theory to quantify the
influence of nodes in a complex graph and their capac-
ity to become good spreaders. We will also propose an
efficient algorithm to measure gravitational metrics by ex-
ploiting the fact that customer cones form large Directed
Acyclic Graphs, in order to handle large ASNs with dozens
of thousands of nodes and links.

Keywords
Autonomous System Network, Autonomous System Rank-
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1. INTRODUCTION
The backbone of the internet consists of tens of thousands
smaller networks called Autonomous Systems (AS). An AS
is a network of connected devices all sharing a dedicated
IP prefix, the starting bits of an IP address. They are
owned by a network operator who provides them with a
single routing policy [9]. Owners of such a system are e.g.
Internet Service Providers, universities or large companies.
Every AS is connected to one or more other ASes in the
Autonomous System Network (ASN), and communicate
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with each other via the Border Gateway Protocol (BGP).
The ASN is designed in such a way that every AS can
communicate with every other AS via one or more links
in the network.

There are two main types of links between ASes: cus-
tomer to provider (c2p, or p2c when travelling in reverse)
and peer to peer (p2p). The c2p principle is simple: the
provider provides access through its network to the cus-
tomer, for which the customer pays the provider. A p2p
connection between AS A and AS B means that the traffic
from A and their customers may flow through B at no cost
to A, and vice versa. At the core of the internet there lies
a clique of a few dozen ASes which have mostly a p2p con-
nection with each other. Their revenue model comes not
from the other clique members, but from their customers,
and indirectly their customers’ customers and so on.

As of April 2020, over 95.000 ASes have been registered
at the Internet Assigned Numbers Authority [17][10]. The
vast size of this network makes it hard to comprehend or
analyse, for both research and economical purposes. One
way to ease this is to perform Autonomous System Rank-
ing. This produces a list of all ASes, in a particular order.
The most useful ranking criterion is ranking by ’impor-
tance’. This, however, is prone to subjectivity, and to
produce a ranking an objective criterion must be used. A
logical method of ranking is how central a certain AS is
located. The more central an AS, the more others will de-
pend on it. This could be measured by how many shortest
paths travel through this node, which is called betweenness
centrality. Another commonly used criterion is ranking by
customer cone [3], used by for example the Center for
Applied Internet Data Analytics (CAIDA)[5]. In Figure

Figure 1. The customer cone for each AS

1 the customer cone for each AS is shown. The customer
cone is good at capturing the amount of ASes which di-
rectly or indirectly pay a certain AS and therefore form its
cash flow. However, when applying this to the ASN a lot
of nodes will have the same customer cone size, and there-
fore the same rank, whilst they not necessarily have the
same importance or centrality. We express this resolution
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of a ranking via the monotonicity index, which is further
elaborated upon in section 3.2.

Ma et al. [15] proposed a new method of ranking vertices
within a graph by applying the gravitational formula. We
will use this method to rank the ASes within the ASN,
analyse this ranking and compare it to the customer cone
metric. The main question which is answered in this paper
is the following:

Main Research Question: How does the gravitational
approach to ranking autonomous systems in large autonomous
system networks compare to the conventional customer
cone approach?

In order to guide this research and reason a conclusion,
these two questions will first be answered:

Research Question 1: Is it possible to develop an ef-
ficient algorithm for the gravitational-based AS ranking
metrics?

Research Question 2: How does the gravitational rank-
ing approach relate to the customer cone ranking in terms
of monotonicity, correlation and ordering of ASes?

We will first show the design of a gravitational ranking
algorithm of linear complexity. This algorithm is applied
to the ASN using different centrality metrics to produce
several rankings. These rankings are compared to each
other and the conventional customer cone approach us-
ing on the monotonicity index, correlation coefficients and
general ordering. We present the results of this compari-
son, discuss its impact on the state of the art and conclude
the answer to our research question.

2. RELATED WORKS
There have been multiple works which have introduced
novel metrics to rank ASes within the ASN, or rank nodes
within a network in general.

Kitsak et al. [12] applied the k-shell decomposition method
to identify the most efficient spreaders within a graph. K-
shell decomposition iteratively removes edges from nodes
with the lowest degree to place them in a certain ’shell’.
Comparing it to the susceptible-infectious-recovered model,
a model to simulate the spearing of disease through a net-
work of people, they demonstrated that the k-shell decom-
position is a good method to locate the core of a network.
This also showed how the most influential spreaders are
not necessarily the ones with the highest number of edges
or most central location within the graph. As the ASN
is a directed acyclic graph, the concept of ’centrality’ dif-
fers from its non-directed or cyclic counterparts. The k-
shell decomposition alone would most likely have a bad
resolution on the ranking. Bae et al. [4] recognised the
bad resolution of the k-shell when applying it to complex
networks such as the Barabási-Albert (BA) type[2]. The
BA type networks are scale-free, meaning they have a low
number of nodes with a high degree and a high numbers of
nodes with a low degree, which is similar to the ASN. Bae
et al. proposed identifying influential spreaders through
the coreness centrality metric, which constructs a node’s
score by the k-shell indices of its neighbours. This showed
a better performance on BA type networks compared to
other centrality metrics. Wang et al. [20] recognised the
need for efficient rankings algorithms, as other central-
ity metrics were usually of more than linear complexity.
They proposed a ranking method based on node position
and neighbourhood. This uses the k-shell decomposition
iterations and neighbourhood attributes to measure the

influence of a node. This resulted in an increase in mono-
tonicity compared to other centrality metrics, whilst hav-
ing linear complexity.

The monotonicity of several centrality metrics to rank
ASes within the ASN were compared by Tozal et al. [19].
They show how different metrics lead to different ranking
orders. They find a high level of agreement between cus-
tomer cone size and outdegree, a moderate level of agree-
ment between outdegree and betweenness, and a moderate
level of agreement betweenness and customer cone size.
This demonstrates how different centrality metrics priori-
tise some ASes above others, which is why as part of re-
search we want to measure the correlation between the
different gravitational metrics.

Our research uses the ranking approach described by Ma
et al. [15], which applies the gravitational formula to rank
nodes within a network. In this approach the k-shell of a
node is its mass, and the shortest paths between two nodes
is the distance. This leads to an increase in monotonicity
compared to other centrality metrics. They only applied
the k-shell as node mass to apply the formula, however in
our research we will apply multiple centrality-based met-
rics, compare them to each other and to the customer cone
approach.

3. METHODOLOGY
3.1 Gravitational algorithm
For an algorithm to be considered linear, O(n), the amount
of operations it performs has to be a constant c times the
number of vertices in a graph. This means that when
the graph doubles in size, the calculation may not take
more than two times its previous computation time. This
is especially important when applying algorithms to the
ASN as this network is ever-increasing.

The gravitational approach ranks vertices in a graph ac-
cording to Equation 1 [15]:

G(i) =
∑
j∈Ψi

ks(i)ks(j)

d2
ij

(1)

where dij is the shortest path distance between node i
and node j. The ks value, the mass of a node, can be
constructed in different ways. In this paper we will use
the several different centrality indices as mass metric, all of
the paths take into account the directedness of the edges,
shown in Table 1. The used igraph methods can be found
in the corresponding parts of the documentation manual
[1], and the algorithm is presented later in the paper.

Using the gravitational metric, an extended gravity index
can be calculated by adding all the G-values of an AS’s
direct customers. This formula is represented by Equation
2 [15]:

G+(i) =
∑
j∈Λi

G(j) (2)

where Λ in an ASN is the set of direct customers of i.

3.1.1 Topological sort
Traversing the vertices within a graph in a certain order
allows for efficiency within algorithms. The ASN has a
structure known as a DAG (Directed Acyclic Graph). The
ASN graphs used is this research are constructed via the
method described by Luckie et al. [14]. In this research,
BGP routing policies between ASes are used to infer re-
lationships. It does not make economical sense for an AS
to export provider routes to providers and peers, as this
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Mass
metric

Definition Implemen-
tation

Out-
degree

Amount of links directed out of
a node, in the ASN: direct cus-
tomers

igraph
degree(

mode=

"OUT")

Customer
Cone
size

The total amount of nodes
which can be reached from one
node, including itself

Algorithm
2

Closeness The average length of the
shortest path between a node
and all other nodes

igraph
close-

ness(

mode=

"OUT")

Between-
ness

The fraction of shortest paths
which flow through a node

igraph
between-

ness()

K-shell Applying K-shell decomposi-
tion [12], taking into account
the combination of in- and out-
degree

igraph
shell_index(

mode="ALL")

Table 1. The centrality metrics used in the gravi-
tational ranking approach

would lead to free transit. Therefore, in their inference
method the assumption is made that the ASN is valley-
free, which means there are no cycles possible following
the directed edges. This may not fully represent reality,
but the inferred AS relationship graph is therefore certain
to contain no loops. Because there are no loops within a
DAG, a topological order can be created. Traversing ver-
tices within this order means that when visiting a vertex,
it is certain that all vertices which have a directed edge
towards this vertex have already been visited. This al-
lows for top-down and bottom-up walking through graphs,
which in Figure 1 would lead to traversing in respectively
alphabetical and reversed alphabetical order. A topologi-
cal order is not necessarily unique, but always adheres to
the above described principle. The sorting of vertices in a
DAG in topological order can be done in linear time using
Algorithm 1 [8]:

Algorithm 1: Topological sort

input : A list of vertices
output: The list of vertices in topological

ordering
Create linked list toposorted;
/* A node is considered ’explored’ in DFS

once all its successors have been

explored */

while there are still unexplored nodes do
Take arbitrary unexplored node v;
Call DFS(G) on v;
Insert every explored node onto the front of
toposorted;

return toposorted

3.1.2 Attributing mass
In order to calculate the gravitational value of every ver-
tex, they have to be attributed a mass. The only mass
metric for which we wrote a separate algorithm is the cus-
tomer cone size. This allows us to elaborate the first char-
acteristics of the actual gravitational ranking algorithm.

For this algorithm to be linear every vertex may only be
visited a constant amount of times. To achieve this, we
make use of an AncSet (Ancestor Set). The ancestor set
of a vertex is the opposite of a customer cone. Instead of
all customers, customers of customers, etc. we look at all
the providers, providers of providers and so on. In graph
terminology those are called ancestors. If v has an ances-
tor a, then v is part of a’s customer cone. This is relevant
as it therefore contributes to a’s customer cone size/score.
When visiting node v, because of the topological order all
its ancestors have previously been visited. If therefore v’s
direct parents p have kept track of all their own ancestors,
v can derive their ancestors from its parents’ AncSets. If
whilst traversing the graph in topological order every node
keeps track of their AncSet, at the end every node will have
a set of all of their ancestors. To compute the customer
cone size, every node simply loops over all their ancestors
and increments their customer cone size by one. The pseu-
docode for this is presented in Algorithm 2. CC_sizes[v]

is the customer cone size of vertex v, and AncSet[v] is the
ancestorset for vertex v which contains no duplicates. An-

cSet[a] + = AncSet[b] means that AncSet[a] becomes
the union of both sets. The operator set(v) creates a new
set containing item v.

Algorithm 2: Calculation of customer cone
size

input : The directed acyclic graph g
output: The list of all Customer Cone sizes
/* Initialise CC_sizes array with as many

0’s as there are vertices in the graph

*/

CC_sizes = [0]∗ amt of vertices ;
/* Initialise ancestorset for each vertex,

including self-entry */

foreach v ∈ g do
AncSet[v]= set(v)

Compute topological ordering;
/* Loop over all vertices in topological

order */

foreach v ∈ g in topological order do
/* Inherit the parents’ ancestorsets */

foreach parent p of v do
AncSet[v]+ = AncSet [p]

/* Increment the CC size of each

ancestor by 1 */

foreach a ∈ AncSet[v] do
CC_sizes[a]+= 1

return CC_sizes

3.1.3 Gravitational approach ranking
Once a useful visiting order has been created and all ver-
tices have a mass, the actual G and G+values are com-
puted. This is done in a similar fashion to the customer
cone size calculation, however solely saving the set of an-
cestors is not enough to compute G-values. The gravity
formula uses the distance between two nodes as part of the
equation. Therefore, next to the ancestor itself, a node
needs to keep track of the distance to that ancestor. For
this we use an Ancestor Distance HashTable (ADHT). We
define a node’s ADHT as a hashtable containing ancestor
nodes as keys, and the shortest link distance to the re-
spective ancestor as values. When inheriting an ADHT
from a parent, all distances are incremented by 1. There
are cases where an AS can reach an ancestor via differ-
ent paths, possibly with different link lengths. For this
case we only use the shortest path length to compute the
G-value of the ancestor. Therefore, when inheriting an
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ADHT from a parent node, we first check for duplicates.
When an ancestor is in both sets, only the version with
the shortest link length to is saved to the AS’s ADHT.
For example, the ADHT of node E in Figure 1 is con-
structed in two iterations. In this network B ’s ADHT is
{B:0,A:1} and C ’s ADHT is {C:0,A:1}. E first inherits
B ’s ADHT which makes it {B:1,A:2}. Second E inherits
C ’s ADHT, skips the duplicate A entry which does not
provide a shorter link distance, which results in E ’s final
ADHT of {B:1,A:2,C:1}.
Once these steps have been completed, a node can cal-
culate their part of the G-value for all of their ancestors.
Computing all G+ values requires one extra loop through
the entire graph where they sum the G-values of their di-
rect children/customers. The full algorithm is stated in
Algorithm 3. ADHT[v], mass[v], G_val[v] and G+_val[v]

are the corresponding values of vertex v. ADHT[v].ancestors
is the set of ancestors of v and ADHT[v][a] is the short-
est distance between v and its ancestor a. The inheritance
process is expressed via the merge(ADHT[v],ADHT[p]) func-
tion. This function returns an ADHT which is the union of
v’s and p’s ADHT, with p’s ancestor distances incremented
by 1. In the case where both ADHT’s contain the same an-
cestor a, this ancestor is included only once, with the dis-
tance min(ADHT[v][a],ADHT[p][a]+1), where min() re-
turns the lowest value of the two arguments.

Algorithm 3: Gravitational ranking

input : The directed acyclic graph g
output: The lists of G and G+ values for every

node in the graph
/* Initialize the ADHT for every node v in

graph g, including self-entry */

foreach v ∈ g do
Initialize ADHT[v];
Add v{v:0} to ADHT[v]

Compute topological ordering;
/* Initialise G_val array with as many 0’s

as there are vertices in the graph */

G_val = [0]∗ amt of vertices ;
/* Fill all ADHT tables and compute

G-values */

foreach v ∈ g in topological order do
foreach parent p of v do

ADHT[v]= merge(ADHT[v],ADHT[p])
foreach ancestor a ∈ ADHT[v].ancestors do

if a! = v then
G_val[a]+ =
(mass[a]∗ mass[v]) / ADHT[v][a]2

/* Compute G+ values */

G+_val = [0]∗ amt of vertices ;
foreach node v ∈ g do

foreach child c from v do
G+_val[v]+= G_val[c]

return G_val, G+_val

3.2 Monotonicity
The first way of comparing the outcome of these new rank-
ing metrics is via their monotonicity index [15]. This for-
mula measures the resolution of a ranking: the less shared
ranks there are amongst vertices, the higher the mono-
tonicity. As the goal for a ranking metric is to show the
difference between vertices, a higher monotonicity is de-
sired. The formula for this is represented by Equation 3:

M(X) = [1−
∑

c∈V Nc(Nc − 1)

N(N − 1)
]2 (3)

where Nc is the number of nodes with the same rank and
N is the size of the entire network. Calculating the mono-
tonicity value from a ranking is done following Algorithm
4. Within the ranking ranking, the content of each rank
is expressed as the list ranklist, containing one or more
vertices.

Algorithm 4: Monotonicity computation

input : A ranking list with a list of nodes at
every rank

output: The monotonicity value
total_node_amt = 0 ;
sigma_val = 0 ;
/* Loop over every rank and add its values

to the sigma equation and total amount

of nodes */

foreach ranklist ∈ ranking do
rank_node_amt += length(ranklist);
sigma_val += rank_node_amt *
(rank_node_amt - 1);
total_node_amt += rank_node_amt;

monotonicity =
(1− sigma_val

total_node_amt∗(total_node_amt−1)
)2;

return monotonicity

3.3 Correlation
The next gravitational metrics comparison is performed by
computing all pairwise correlations. Every ranking met-
ric produces a list of scores, corresponding to the ASes.
The lists of every two pairs of ranking metrics will be
compared using different correlation coefficients. Such co-
efficients are Pearson[16], Spearman[13] and Kendall[11],
which compute a value between 0 and 1 on every rank-
ing metric pair. The higher the correlation coefficient, the
more correlated two ranking metrics are.
Where Kendall and Spearman do not have any require-
ments for the dataset, the Pearson correlation coefficient
assumes that the values are normally distributed. There-
fore to decide how relevant the Pearson correlation coef-
ficient is, the Shapiro-Wilk test[18] will be applied to the
rankings metrics. This is a test on normality which indi-
cates how normally distributed the scores of the ASes are.

3.4 AS ordering
Lastly, we want to find out which AS characteristics are
ranked highest by the metrics. The correlation research
will show which ranking metrics are heavily correlated,
and which are not. We will take several rankings which are
barely correlated and compare their top 10. We will look
into the differences and what leads to an AS being ranked
higher in one ranking metric compared to the others.

4. RESULTS
4.1 Gravitational algorithm
The result of this part of the research is the algorithm
demonstrated in Section 3.1. This is a gravitational rank-
ing algorithm of linear complexity, which was the target.
They key part of the algorithm was the use an ADHT
for every node. This made it possible to construct all G-
values in a single traversal through the graph in topological
order. The different mass metrics were used in the gravi-
tational ranking of five different AS relationship datasets
from CAIDA[7], all one year apart.
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Ranking
metric:
Dataset

Out-
degree
G

Out-
degree
G+

CC
size
G

CC
size
G+

Close-
ness
G

Close-
ness
G+

Between-
ness G

Between-
ness
G+

K-
shell
G

K-
shell
G+

Customer
Cone

05-2020 0.0123 0.0033 0.0780 0.0123 0.0780 0.0123 0.0115 0.0033 0.0795 0.0123 0.0778
05-2019 0.0121 0.0032 0.0778 0.0121 0.0779 0.0121 0.0113 0.0032 0.0793 0.0121 0.0777
05-2018 0.0120 0.0032 0.0774 0.0120 0.0774 0.0120 0.0111 0.0031 0.0789 0.0120 0.0772
05-2017 0.0113 0.0027 0.0751 0.0113 0.0751 0.0113 0.0104 0.0026 0.0764 0.0113 0.0749
05-2016 0.0115 0.0028 0.0757 0.0114 0.0756 0.0114 0.0107 0.0028 0.0771 0.0115 0.0755

Table 2. The monotonicity values considering all ASes

Ranking
metric:
Dataset

Out-
degree
G

Out-
degree
G+

CC
size
G

CC
size
G+

Close-
ness
G

Close-
ness
G+

Between-
ness G

Between-
ness
G+

K-
shell
G

K-
shell
G+

Customer
Cone

05-2020 0.3672 0.1200 0.7342 0.3608 0.7344 0.3608 0.3489 0.1182 0.9377 0.3673 0.7122
05-2019 0.3627 0.1164 0.7340 0.3555 0.7344 0.3557 0.3444 0.1150 0.9380 0.3629 0.7115
05-2018 0.3610 0.1148 0.7327 0.3536 0.7329 0.3538 0.3408 0.1131 0.9367 0.3613 0.7093
05-2017 0.3548 0.1025 0.7315 0.3473 0.7317 0.3476 0.3353 0.1007 0.9346 0.3547 0.7091
05-2016 0.3555 0.1044 0.7326 0.3484 0.7329 0.3484 0.3384 0.1037 0.9362 0.3556 0.7102

Table 3. The monotonicity values without taking into account the leaf ASes

4.2 Monotonicity comparison
The results of the initial monotonicity comparison are pre-
sented in Table 2. These values are very low due to the
way the ASN is structured. At the outer ends of the ASN,
there are a lot of ASes which do not have any customers.
Imagining the ASN as a tree structure, these ASes would
be the leaves at the bottom, illustrated in Figure 2. We
define a Leaf AS as an AS which has an outdegree of 0.
As these ASes have no customers, through the gravita-

Figure 2. The outskirts of the ASN

tional formula they score a 0 by default, therefore within
the gravitational ranking approach about 85% of all ASes
have a score of 0. The score of the providers of leaf ASes
are reliant on the metric used to assign mass to an AS.
When the mass metric is outdegree, this will be 0 for all
leaf ASes. In the gravitational approach, the G-value of an
AS is constructed through a multiplication with the mass
of its customers as can be seen in Equation 1. Since this
mass for leaf ASes is 0, any AS which only has leaf ASes as
customers also has a G-value of 0. Therefore, mass met-
rics which assign the value of 0 to leaf ASes will by default
classify leaf ASes and the providers of solely leaf ASes as
the lowest rank, heavily influencing the monotonicity.

The G+ value is constructed by adding the G-values of its
direct customers, therefore with the outdegree mass metric
even the providers of the providers of the leaf ASes will
get a score of 0.
What can be argued however, is that the 85% of leaf ASes
are not the ones that we are interested in. They may have
p2p connections, but serve no purpose in the economical
analysis as no customer pays them. Therefore, we decided
to compute the monotonicity index again, but after re-
moving all ASes with an outdegree of 0. The results of

this are presented in Table 3.

4.3 Ranking metric correlations
For this part of the research, only the CAIDA AS rela-
tionship dataset of 05-2020 was used. As the monotonicity
research demonstrated, there is a significant difference be-
tween rankings when considering the entire ASN or when
leaving out the leaf ASes. Therefore, we applied the cor-
relation metrics to both the ’score list’ (G-value and G+
values) of the entire ASN, and the score list after filtering
out the leaf ASes.
Firstly, the Shapiro-Wilk values were computed for ev-
ery metric, the results of which are provided in Table 4.
As this was mainly to indicate how accurate the Pearson
correlation coefficient would be and not a test on normal-
ity, no null-hypothesis alpha value was constructed before-
hand. From the Shapiro-Wilk values however, we see that
the lists of G, G+ and customer cone values do not show
much resemblance of a normal distribution, with the possi-
ble exception of the customer cone with leaf ASes removed.
Therefore, we decided not to use the Pearson correlation
coefficient for this research.

We computed the clustermaps of the Spearman and
Kendall correlation metric, applied to the entire ASN rank-
ing as well as the ranking with leaf ASes removed. Figure
3 shows the correlation clustermap with the highest reso-
lution. The other clustermaps can be found in Appendix
A. Both correlation coefficients can show a better reso-
lution of ranking metric correlation when applied to the
dataset with leaf ASes removed. This is because the 85%
of 0-scores is removed from the ranking lists and therefore
their differences are highlighted more. In all four figures
there are three highly correlated clusters of ranking met-
rics visible:

• Outdegree G+ and Betweenness G+

• CC size G, Closeness G and Customer Cone

– K-shell G is somewhat correlated, but can also
be seen as a different group

• Outdegree G, CC size G+, Closeness G+, K-shell
G+

– Betweenness G is somewhat correlated, but can
also be seen as a different group
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Ranking
metric:

Out-
degree
G

Out-
degree
G+

CC
size
G

CC
size
G+

Close-
ness
G

Close-
ness
G+

Between-
ness G

Between-
ness
G+

K-
shell
G

K-
shell
G+

Customer
Cone

Entire
ASN

0.0015 0.0029 0.0046 0.0041 0.0041 0.0049 0.0046 0.0063 0.0105 0.0051 0.0240

Leaf ASes
removed

0.0075 0.0146 0.0224 0.0201 0.0191 0.0233 0.0222 0.0299 0.0467 0.0242 0.1041

Table 4. The Shapiro-Wilk test values of the score lists produced by the different ranking metrics, applied
the 05-2020 AS relationship dataset

Figure 3. Clustermap of Kendall correlation coef-
ficient, applied to the score lists of various ASN
ranking metrics with leaf ASes removed, using the
CAIDA AS relationship dataset of 05-2020 [7] as
ASN. Lighter colors correspond to higher corre-
lation coefficients. The blue contours represents
the different correlation clusters. The dotted line
highlights the metric which only has a moderate
correlation with the other metrics within that clus-
ter.

For each pairwise comparison, besides the correlation co-
efficient the two-sided p-value is also computed. For all of
the correlation coefficients this value was near or equal to
0.

4.4 Top ranked AS characteristics
We manually looked up the information corresponding to
the selected ASes using the CAIDA ASRank tool [6]. Ta-
ble 5 displays the organisation and AS id of the top 10s of
five minimally correlated ranking metrics.

5. DISCUSSION
5.1 Monotonicity comparison
As illustrated by Table 2 and 3, the monotonicity dras-
tically increases when leaving out the ’irrelevant’ part of
the ranking, namely the leaf ASes. Both outdegree and
betweenness assign the mass of 0 to the leaf ASes, which
results in their direct providers scoring 0 through the mul-
tiplication in the gravitational formula. This effect is am-
plified when computing the G+ value, which adds the 0
scores of the leaf-providers, resulting in the three outer

layers of ASes all being ranked at the bottom. This heav-
ily decreases the monotonicity of such rankings, as this
includes roughly 97% of all ASes.
There are two mass metrics which have roughly the same
monotonicity as the conventional customer cone approach:
CC size G and closeness G. All three of them do not bring
much resolution to the score of the leaf AS’s providers,
however the gravitational metrics seem to be better at
showing differences between the ASes which are not in the
outer two shells of the ASN. Their G+ counterparts how-
ever, will still rank the outer two shells at the same bottom
rank, comparable to the G-values of the outdegree and be-
tweenness metrics.
Finally, there is the K-shell G-value which ranks highest in
monotonicity of all metrics. As shown in the Methodology
section, for the K-shell decomposition metric we used the
combination of indegree and outdegree, as when only using
either of them there was no distinction possible between
any of the ASes: all ended up in the same shell. The main
difference between this mass metric and CC size, is that
the K-shell is able to bring more resolution to the scor-
ing of the providers of leaf ASes. Where the other met-
rics only take into account the outgoing edges of an AS,
this K-shell metric can show the difference between an AS
which is heavily connected through both its providers and
customers, and an AS which has the same amount of cus-
tomers but less providers. The disadvantage of taking into
account all edges is that it may attribute a higher mass
to an AS with many providers than the provider of many
ASes. This is therefore less desirable when using a rank-
ing for economical importance, but more specific research
is required to investigate how much the above illustrated
example actually occurs in the real ASN.

5.2 Ranking metric correlations
The three clusters in Figure 3 show that through the grav-
itational approach itself, rankings with multiple properties
can be computed. The K-shell G seems to be least cor-
related to any other ranking, which makes sense from our
monotonicity observation.
Closeness G and CC size G are highly correlated with the
conventional customer cone, whilst both having a higher
monotonicity. This means they produce a ranking similar
to the customer cone one, whilst having a higher resolu-
tion, which can be seen as an improvement.
The correlation between Outdegree G+ and Betweenness
G+ could show that when an AS has many direct cus-
tomers, they will also provide more shortest links between
ASes.
Finally, there are mixed G and G+ ranking metrics corre-
lated: Betweenness G, Outdegree G, K-shell G+, CC size
G+ and Closeness G+. A possible explanation for this
is that they all adhere to the principles of the Outdegree
mass metric discussed in section 4.2. For the G-value met-
rics among these, all leaf ASes are assigned the mass of 0,
which leads to their providers getting a G-value of 0. All
G+ metrics also follow this pattern as leaf ASes score a
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Ranking
metric:
Rank

Outdegree G+ Customer Cone K-shell G Closeness G+ Betweenness G

1 Level 3 Parent,
LLC (3356)

Level 3 Parent,
LLC (3356)

Level 3 Parent,
LLC (3356)

Telia Company AB
(1299)

Telemar Norte
Leste S.A. (7738)

2 Telia Company AB
(1299)

Telia Company AB
(1299)

Cogent Communi-
cations (174)

Level 3 Parent,
LLC (3356)

ITS Telecomunica-
coes (28186)

3 PCCW Global,
Inc. (3491)

Cogent Communi-
cations (174)

Telia Company AB
(1299)

Cogent Communi-
cations (174)

Psychz Networks
(40676)

4 GTT Communica-
tions Inc. (3257)

GTT Communica-
tions Inc. (3257)

GTT Communica-
tions Inc. (3257)

GTT Communica-
tions Inc. (3257)

UPX Technologies
(52863)

5 Sprint (1239) NTT America, Inc.
(2914)

NTT America, Inc.
(2914)

Tata Communica-
tions (America),
Inc. (6453)

Vocus Communi-
cations (4826)

6 MCI Communi-
cations Services,
Inc. d/b/a Verizon
Business (701)

Tata Communica-
tions (America),
Inc.(6453)

Tata Communica-
tions (America),
Inc. (6453)

NTT America,
Inc.(2914)

China Mobile
International
Limited (58453)

7 Cogent Communi-
cations (174)

MCI Communi-
cations Services,
Inc. d/b/a Verizon
Business (701)

PCCW Global,
Inc. (3491)

PCCW Global,
Inc. (3491)

China Telecom
Next Generation
Carrier Network
(4809)

8 Tata Communica-
tions (America),
Inc. (6453)

PCCW Global,
Inc. (3491)

Hurricane Electric
LLC (6939)

Telecom Italia
Sparkle S.p.A.
(6762)

Internexa Brasil
Operadora de
Telecomunicacoes
(262589

9 Telecom Italia
Sparkle S.p.A.
(6762)

Sprint (1239) Telecom Italia
Sparkle S.p.A.
(6762)

Sprint (1239) M247 Ltd (9009)

10 NTT America, Inc.
(2914)

Hurricane Electric
LLC (6939)

Level 3 Parent,
LLC (3549)

Hurricane Electric
LLC (6939)

Reliance Glob-
alcom Limited
(15412)

Table 5. The company behind every AS within the top 10 of five different ranking metrics, followed by
the AS id

G-value of 0, and therefore their providers score 0 in the
G+ metrics. The difference between the Betweenness G
and Outdegree G metric versus their G+ counterparts, is
that in the G+ variant even the providers of the providers
of the leaf ASes get a score of 0 through this reasoning.

Figure 4. An example ASN

5.3 Top ranked AS characteristics
The top 10 ASes are quite alike for four of the five ranking
metrics, only the Betweenness G stands out. This can be
explained by the characteristics of this metric and the way
the ASN is structured. See Figure 4 for an example ASN.

The betweenness value of a node is computed by the short-
est paths which flow through them, whilst they are neither
the source nor destination-node. This means that both A
and D will have a betweenness value and therefore weight
of 0. As the gravitational value for an AS is constructed
via a multiplication with their mass, this will result in
a score of 0 by default for nodes A and D. In the ASN

this means that ASes without providers as well as ASes
without customers are ranked at the bottom. Node C will
also have a G-value of zero, since this is constructed by
D’s mass of 0. In the end, only B will have a non-zero
G-value. This demonstrates another reason for the low
monotonicity value of Betweenness G, and suggests that
this metric ranks the ASes customer to provider-less clique
ASes highest.

6. CONCLUSION AND FUTURE WORK
6.1 Conclusion
Gravitational ranking algorithm
The gravitational approach allows for a novel method of
ranking ASes within the ASN, which is possible to com-
pute via a linear complexity algorithm due to the DAG
type structure of the network.

Monotonicity
Applying the gravitational ranking approach to the ASN
allows for metrics with a higher monotonicity compared to
the conventional Customer Cone size approach. The K-
shell G-value has the highest overall monotonicity, whilst
the Closeness G-value has the highest monotonicity of
metrics which only uses an AS’s customer cone.

Correlation
By applying different metrics to the gravitational formula,
there are different gradations of correlation possible. We
have shown three different highly correlated clusters of
gravitational ranking metrics.

7



Top ranked ASes
Whilst most gravitational metrics rank the AS with the
largest customer cones highest, the Betweenness G-value
metric ranks the ASes forming the bridge between the
clique and the rest of the ASN highest.

Therefore, the gravitational approach allows for an ef-
ficient ranking metric which is highly correlated to the
conventional customer cone approach, but with a higher
monotonicity. In addition, the gravitational approach al-
lows for multiple ranking metrics less correlated to the
customer cone approach.

6.2 Future work
In this research we have demonstrated the efficiency of a
linear complexity gravitational ranking algorithm. Besides
this algorithm, there also exists a version with quadratic
complexity. One of the differences between these two is
that the quadratic algorithm is able to calculate the G+
values of nodes in parallel, contrary to the linear version
where this is only possible in sequential order. The paral-
lelism allows for running on multiple threads at the same
time, which could lead to an even quicker computation
time compared to the linear one. The future research we
therefore suggest is comparing the computation times of a
linear single-threaded gravitational ranking algorithm to
its multi-threaded quadratic counterpart.
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APPENDIX
A. CORRELATION CLUSTERMAPS
Figures 5, 6 and 7 demonstrate the clustermaps corre-
sponding to different correlation metrics or ASN compo-
nents, using the CAIDA AS relationship dataset of 05-2020
[7] as ASN. Lighter colors imply a higher correlation coef-
ficient. The blue contours represents the different correla-
tion clusters. The dotted line highlights the metric which
only has a moderate correlation with the other metrics
within that cluster.

Figure 5. Clustermap of Spearman correlation co-
efficient, applied to the score lists of various ASN
ranking metrics

Figure 6. Clustermap of Kendall correlation coef-
ficient, applied to the score lists of various ASN
ranking metrics

Figure 7. Clustermap of Spearman correlation co-
efficient, applied to the score lists of various ASN
ranking metrics with leaf ASes removed
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