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Abstract 

This research focuses on using semantic embedding to improve 

the performance of Information Retrieval (IR) for the Covid-19 

related tasks. According to previous research, the technology of 

word embedding can significantly improve the performance of 

IR. There are many types of semantic embedding models at 

present. The purpose of this research is not to develop a new 

one, but to combine multiple popular semantic embedding 

models and to find a more effective ranking for retrieving a 

better IR result by a comparative analysis of these semantic 

embedding technologies. Besides, the current embeddings are 

mostly based on words, phrases, or documents, not on entities. 

So, providing the entity-based IR function, which is missing in 

PubMed or other search engines like Google, is another goal of 

this research. The expected outcome of this research is an 

entity-based working prototype focusing on the Covid-19 data, 

which can visually mark the differences between the search 

results of different semantic embedding models. 
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1. INTRODUCTION 
The recent (2020) worldwide prevalence of COVID-19 has 

caused extreme damage in all areas. Due to the limited time, 

how to build a more sophisticated and intelligent search engine 

for collecting data to study the virus has become an urgent task 

for all involved researchers. The two famous medical datasets, 

MEDLINE1 and Covid-192, contain massive medical data and 

articles covering a variety of medical cases. However, at 

present, the most important point we focused on is Covid-19 

and the IR [1] method of these two data sets is keyword-based. 

Although information retrieval with the traditional keyword-

based [2] method is workable, there is a large room for 

improvement in efficiency and accuracy. In the traditional 

keyword-based way, you can retrieve the accurate results with 

certain keywords, but the coronavirus involving a lot of 

technical terms with similar meanings. Searching information 

with a keyword-based search engine is often time-consuming 

and returns poor data results, which reduces the efficiency of 

the process of coronavirus-related research. We hope to have 

smarter word embedding [3] IR models that considers semantic 

similarities of words in the matching process, to generate high 

usable searching results. 

 

By definition, a set of language modeling and feature learning 

techniques [4] in natural language processing (NLP) are 

___________________________________________________ 

1https://www.nlm.nih.gov/bsd/medline.html 

2https://www.kaggle.com/allen-institute-for-ai/CORD-19-

research-challenge 

collectively referred to as word embedding, which has been 

proven being able to improve the performance in NLP tasks 

such as sentiment classification [5], dependency parsing [6] and 

sentiment analysis [7]. With word embedding models, 

preprocessed text or documents are mapped to vectors of real 

numbers by technologies such as neural networks [8], 

dimensionality reduction on the word co-occurrence matrix [9], 

etc. Since it takes the context where the word appears into 

consideration, it makes the predication of missing words in a 

document possible. In contrast, the traditional keyword-based 

search engine cannot solve the problem of high term mismatch 

and consider the distinct meaning between the semantically 

similar words in the matching process. 

 

This research project is to develop a search engine based on 

word embedding models and find a way to optimize the IR 

concerning coronavirus related data. More specifically, several 

research issues need to be solved: 

1. What is the performance difference between various 

semantic embedding technologies? 

2. How can we combine the results of different semantic 

embedding to achieve a better retrieval result? 

3. How can we compare the results of different semantic 

embedding more efficiently? 

 

The contribution of this paper is that it shows the precision and 

the recall of the IR results of Ranking are better than that of all 

other four technologies to some extent. Although the 

improvement varies according to different models, it improves 

the efficiency of IR. 

 

The structure of remaining paper is arranged as follows. Section 

2 briefly describes the application of a couple of popular 

semantic embedding technologies and two studies on the 

analysis and measurement of the four embeddings involved in 

the present research. Section 3 presents the algorithm and UI of 

the feature of ‘marking searching results visually’. Section 4 

provides the formula, algorithms, and strategies for 

measurement and ranking. Section 5 presents some influences 

of training models in this experiment. Section 6 provides the 

details about the results of the measurement and the involved 

user evaluation. Section 7 describes the limitations and future 

works of this research. 

 

2. RELATED WORKS 
Semantic embedding 

At present, there are two main methods to implement the word 

embedding: count-based and direct prediction. The popular 

count-based word embedding frameworks are LSA (Burgess & 

Lund), COALS, Hellinger-PCA (Rohed etal, Collobert & 

Lebret) etc. For the word embedding frameworks based on 

direct prediction, there are Skip-gram/CBOW (Mikolov et al), 

https://www.nlm.nih.gov/bsd/medline.html


NNLM, HLBL, Skip-gram/CBOW (Mikolov et al), NNLM, 

HLBL, RNN (Bengio et al; Collobert & Weston; Huang et al; 

Mnih & Hinton) etc. 

 

The main advantages of the count-based word embedding are 

fast training and efficient usage of statistics, and that of the 

direct prediction frameworks is being able to capture complex 

patterns of the context. However, they have various 

disadvantages, such as only words similarity can be acquired, 

and disproportionate importance given to large counts for the 

count-based embedding. By contrast, the limitations of the 

direct prediction frameworks are scale with corpus size and 

inefficient usage of statistics. 

 

In this research, four semantic embedding technologies are 

analyzed: word2vec [10], doc2vec [11], Fasttext [12, 13] and 

GloVe [14]. The problem of sparsity in word2vec cause the 

dimension of its vector space higher than other technologies, 

which causes too much memory resources and low robustness.  

In contrast, GloVe combined the two schemes (count-based and 

direct prediction), which can keep its fast training, scalable to 

huge corpora, and good performance with the small corpus. 

Fasttext was developed by Facebook in 2016, although there is 

not much innovation in it, as a shallow neural network, it can 

get the same precision as the deep neural network and keep a 

much shorter training time than the deep neural network. For 

example, with a standard multi-core CPU, it can complete the 

training of 1 billion words within 10 minutes. 

 

For the document embedding, there are many powerful deep 

learning strategies. For instance, doc2vec (Le and Mikolov, 

2014), lda2vec (Moody, 2016), FastText (Bojanowski et al., 

2016), Sent2Vec (Pagliardini et al., 2018), InferSent (Conneau 

et al., 2017), etc. However, they all cost too much computation 

resources. 

 

Comparative studies 

Since word2vec was published, researchers have proposed a lot 

of different embedding models. There are many studies 

compared these embedding methods on various tasks. For 

example, comparing the precision of results between LDA, 

word2vec, GloVe, Fasttext, DCH, LSRH, CSDH, SePH, SCM, 

etc, on the social media dataset like ‘InstaCities1M’ and 

‘WebVision’ [15], exploring the influence of topic 

segmentation on information retrieval quality on the on dataset 

of Wikipedia [16], the comparative analysis of semantic 

similarity technologies for medical text [17], using word 

embedding clustering and convolutional neural network to 

improve the short text classification [18], improving 

information retrieval in software engineering by document 

similarities [19], improving textual-visual cross-modal retrieval 

with generative models [20], aggregating continuous word 

embeddings for information retrieval [21], etc. 

 

3. RESEARCH OVERVIEW 
The procedure of this research consists of four main stages. 

Stage 1 
The first stage is preparation for the development, such as 

determining the developing language, set-up the development 

environment, and designing the user interface of the 

application.  

Stage 2 
In the second stage, the first task is pre-processing the corpus. 

Next, the word embedding models are trained with the pre-

processed corpus. Following this, the document embeddings are 

generated based on the outcome of the word embedding 

training. Finally, the functions of entity searching are 

implemented. All the details of this stage are described in 

Section 4. 

 

Stage 3 
In this stage, the first task is implementing the function of 

calculating cosine similarity [22]. Next, the ranking strategy is 

implemented. Thus, combining with the other four models, the 

searching results are marked visually. The details are described 

in Section 5. 

 

Stage 4 
The final stage is about the measurement and user evaluation, 

which are specified in Section 6. 

 

4. SEMANTIC EMBEDDING 

4.1 Preprocess 
Based on 100,000 latest medical essays from the dataset of 

MEDLINE and Covid-19, the stop words in the corpus need to 

be removed. However, instead of using the common stop word 

list provided online (like Google English stop words list), a 

weights list was offered by the company OCLC. Through their 

project ‘Fast and Discriminative Semantic Embedding’[23], this 

list describes the weights of appearance for each word in an 

article based on a much larger medical-related training dataset 

than the current one (the size of training dataset in this research 

is 100,000). With this weights list, all the words with a value 

lower than 0.1 are accounted as stop words. 

 

4.2 Word and document embedding 
In this research, word2vec, Fasttext and GloVe are word 

embedding frameworks. They cannot be used to do document 

searching directly. After the word embedding training complete, 

each document in the dataset must be converted into a 

document embedding vector. This process is accomplished by 

the following algorithm: 

Algorithm 1 Generate document embedding 

 Input: a word embedding model M 

 Output: a vector list of the documents 

1: result ← 0 

2: for each documents d do 

3:     for each entity e in the document d do 

4:         v ← get the vector of e from model M 

5:         v’ ← v’ + v 

6:     v’’ ← the mean value of v 

7:     add v’’ to result 

8: return result 

 

As the above algorithm, the mean value of the entity list of each 

document can be calculated by NumPy (a Python library), for 

instance, which is taken as the final embedding for a document. 



 

Figure 1: The results of terms-based searching 

4.3 Entity embedding 

4.3.1 The pattern of entity 
Before the preprocess, the corpus needs to be turned into an 

entity-based pattern. As for entity, it means the words of an 

essay, the author, the subject, the release date, etc. Here 

attached an example of the entity-based essay: 

 

7088458715 [title:minimal detectable...][abstract:...] 

[lang:eng] [author:macdermid jc]  [author:nazari g] 

[issn:...] [doi:10.1519] [type:journal article]

 [pmid:28731864] [subject:adult] 

 

An entity is presented as the pattern: [‘entity name’: ‘entity 

content’], and an article consists of a document index and 

several entities. 

 

4.3.2 The strategy of entity embedding 
All the four models split the text by space, but an entity like 

‘subject’ is normally a sentence consists of many words and 

spaces. In the entity-based embedding, we need to take the 

entire ‘subject’ as an entity. So, all spaces and colon in the text 

of an article concerning the language, author or subject are 

replaced with underline. For example, ‘subject: fatty acids 

omega 3’ is the original pattern of an entity, which should be 

formatted into ‘subject_fatty_acids_omega_3’. Thus, the latter 

one will be treated as an entity and vectorized for embedding. 

 

5. EMBEDDING-BASED INFORMATION 

RETRIEVAL 
After the previous embedding steps in Section 4, words, terms, 

documents, and entities are embedded in the same semantic 

space, where the cosine similarity can be applied in calculating 

the similarity/relatedness. 

 

5.1 Cosine similarity 
By calculating the cosine similarity [22], we gain a score for 

input keywords, which indicates how similar it is between two 

document vectors. Thus, a list of all documents sorted by the 

score is achieved, by which the most similar ones can be 

extracted from and returned to the end-users. The formula of the 

cosine similarity is as follows:  

(1) 

vector 1: [x11, x12, x13 …… x1n] 

vector 2: [x21, x22, x23 …… x2n]  

 

5.2 Entity-based searching 
Entity-based searching provides the users or researchers related 

to the study concerning the Covid-19 a convenient way of 

searching. For example, with terms-based searching, 

researchers can get all the terminologies about coronavirus with 

only one click. However, in the traditional search engine, the 

users need to collect many results and extract terminologies by 

themselves. 

 

There are many entities in an article, such as the words in the 

title and the abstract, release date, ISSN, author, subject, etc. 

Terms-based searching returns the single term related to the 

keywords. Subject-based searching gives the subject of an 

article. Author-based searching displays all the authors related 

to an article. They are implemented based on word embedding. 

Figure 1 presents the terms-based searching results. The input 

keyword is ‘coronavirus’ and the results are all related 

terminologies. Note that the second column (which is for 

doc2vec) is invalid, since it is a document embedding model. 

 

5.3 Ranking strategy 
The ranking strategy is quite simple. Firstly, based on the 

results from other four embedding models, a score is assigned 

to each result. Since those searching results are already sorted, 

the top one is assigned a score 9, the second one is assigned a 

score 8. By that analogy, the 10th result is given a zero. 

Secondly, combining those results, removing the overlapped 

results, and recalculating the score according to the number of 

repeats of each result. For instance, the document 789587 

appears at the first position of word2vec, second position of 

doc2vec, third position of Fasttext and ninth position of GloVe, 

it gets a score 25. (9+8+7+1 = 25) 

 



This is the pseudo code about getting the ranking results: 

Algorithm 2 Get ranking results 

 Input: a results list r1 from word2vec, 

            a results list r2 from doc2vec, 

            a results list r3 from Fasttext, 

            a results list r4 from GloVe 

 Output: a result list of Ranking 

1: rm ← [r1, r2, r3, r4] 

2: s_map ← {} # the key is a document id,  

                     # the value is an object of a result 

 

3: for each list l in rm do 

4:     score ← 10  

5:     for each result r in l do 

6:         r.score ← score # assign a score to a result 

7:         score ← score – 1 

8: rm’ ← rm sorted by score 

9: rm’’ ← rm’ 

 

10: for each result r in rm’’ do 

11: if r existed in score_map then 

    # the overlapped results are removed and recalculate 

the score 

12:         s_map[r.id].score ← s_map[r.id].score + r.score 

13:     else 

14:         score_map[r] ← 1 

15: result ← keyset of s_map sorted by score 

16: return result 

 
 

5.4 Compare results visually 
One goal of this research is to investigate a method of marking 

the similarity or differences of the searching results between the 

four models visually. The main method is transferring each 

result as an object, which contains properties like document 

index, the number of repeats and color. All the same results are 

marked with same background color on the web UI.  

 

The searching results are visually marked on the web UI as 

Figure 2. From the first column to the fifth column are the 

searching results of word2vec, doc2vec, Fasttext, GloVe and 

the ranking, respectively. The same documents are marked with 

the same colors. For example, the first result in the first column, 

the third result in the third column and the first result in the fifth 

column are set to green color, which means they are the same 

documents. An item with white background color means there 

is not the same results exist in any of the five columns. 

 

The pseudo code is as follows: 

Algorithm 3 Set the color of each result 

 Input: a map m with document id as the key and the color 

as the value, a mixed results list rm from word2vec, 

doc2vec, Fasttext and GloVe 

 Output: a results list with color property for each element 

1: color_list = [many colors in 6 bits hexadecimal] 

2: for each object d in rm: 

3:     if repeat number of d > 1 then 

4:         if m does not contain the id of d then 

5:             m[d.id] ← color_list.pop(0) 

6:         else 

7:             d.color ← m[d.id] 

8: return rm 

 

Figure 2: The visually marked results 

 



6. EXPERIMENT SETTING 

6.1 Influence factors 
The final product of this research is an IR web application, 

which is implemented with Python. Training with word2vec, 

doc2vec, Fasttext and GloVe requires many parameter 

configurations such as vector size, window, min count, etc. One 

of the most important influential factors is ‘min count’. All 

words with a total frequency lower than this were ignored by 

the semantic model. According to the dimension of the vector 

of embedding models, this value varies. With 256 dimensions in 

this research, this parameter was tested with a value from 2 to 5. 

Finally, it presents that, with 5 min count, the IR engine can 

reach its best performance. As mentioned above, the other 

significant factor is the vector size. With advice from the 

experts from the company OCLC, the dimension of the vector 

was set as 256. Besides, the defaults were used for other 

parameters. 

 

6.2 Measurement time 
Table 1 shows the time consumption for the measurement, 

including preprocess, word embedding training, document 

embedding training and running testing script. The first line is 

the time for preprocess of the corpus. The lines from 2 to 5 are 

the training time for word embedding models. From line 6 to 

line 8 are the time used for document embedding generation. 

We can see that there were some differences in the time of 

training at different models. The training of Fasttext model 

spent the longest time (28+23=51 minutes). The second time-

consuming training is GloVe (33+15=48 minutes), which has 

only the Linux version. It is training on Google Colab, so the 

training time is limited. By contrast, word2vec and doc2vec 

cost less time for training, 29 and 26 minutes, respectively. 

Table 1. The time cost for testing/measuring 

 Process Time(minutes) 

1. preprocess 2 

2. word2vec (word embedding) 12 

3. doc2vec (word embedding) 26 

4. Fasttext (word embedding) 28 

5. Glove (word embedding) 33 

6. word2vec (document embedding) 17 

7. Fasttext (document embedding) 23 

8. Glove (document embedding) 15 

9. Total 156 

 

 

7. EXMPERIMENT RESULTS 
In this research, three main properties are required to be 

measured: precision, recall, and relevance. 

 

7.1 Precision and recall 

7.1.1 Testing method 
In this section, testing with the keywords from the current 

dataset for precision and recall. 100 documents are drawn from 

the dataset, and then extract many words from the title or 

abstract of these documents as the input keywords for searching. 

This task was executed for ten rounds, and different lengths of 

keywords were used for each round. For the first three rounds, 

the length of the input is around 5 words, then about 50 words 

for the next three rounds. The last four rounds using the entire 

title of an essay as input keywords. 

 

7.1.2 Results 
Figure 3 and Figure 4 present the percentage of precision and 

recall out of 1,000 searching for each of the four models, 

respectively. For example, the first green bar in Figure 3 shows 

that 791 out 1000 times of searching the first result in the 

word2vec results set is the target. The first green bar in Figure 4 

means that 879 out of 1,000 times of searching found the target 

in the word2vec results set. Finally, it can be seen from Figure 3 

and Figure 4 that both the precision and recall of the ranking 

results are higher than that of the other semantic embedding 

technologies. Besides, the error in Figure 3 and Figure 4 show 

that the ranking is the second stable one for both precision and 

recall.  

 
Figure 3: The precision of word2vec, doc2vec, Fasttext, 

GloVe and ranking 

 

 
Figure 4: The recall of word2vec, doc2vec, Fasttext, GloVe 

and ranking 

 

The followings are the definition of precision and recall: 

Precision@1: the first result is the target one. 

Recall@10: the target result exists in the result set. 

 

7.2 Relevance: 

7.2.1 User evaluation 
In this user evaluation, three participants are required to do the 

searching task and fill in the evaluating form (See Table 2 in 

Appendix). Their feedback is about the relevance between the 

input keywords and the ten results returned by each semantic 

embedding model and the ranking algorithm (four models plus 

a ranking set, 50 results in total). Each of them needs to search 

the articles in terms of Covid-19 with ten provided keywords. 

Keywords 1, 2, and 3 contains only one term, respectively. The 

keywords 4, 5, and 6 are medium size with around 5 words. The 

keywords 7, 8, 9, and 10 are long size with the abstract of an 

essay. These keywords are outside the current dataset, collected 

from PubMed. 

 



Evaluation steps 

In the first step, a participant put in the first keyword and 

clicked the searching button on the web UI. In the second step, 

the participant read each of the (ten) results displayed on the 

screen and recorded the number of related results based on two 

different standards, which is specified in Section 6.2.2 and 

Section 6.2.3. Then, repeated the above steps for all keywords 

in Table 2 (See appendix). 

 

Data process 

Instead of all detailed data, Figure 5 and Figure 6 describe the 

average values based on the feedback forms. For example, 

calculating the average value of relevance for word2vec under 

the strict standard need to sum all the values of the third 

columns in Table 2 and divide by 30 (the total number). 

 

7.2.2 Strict standard 
Since the relevance is subjective to the participants, two 

standards are adopted in this user evaluation. Figure 5 shows 

the data of evaluation in terms of relevance on a ‘strict 

standard’. For example, if the input keyword is ‘coronavirus’, 

only the result about ‘coronavirus’ can be taken as a related 

article. Even the articles about other highly pathogenic 

infectious diseases like Sars and Mers are not included. Figure 5 

shows that the ranking performs better than word2vec, doc2vec 

and Fasttext and lower than that of GloVe. 

 
Figure 5: The relevance of word2vec, doc2vec, Fasttext, 

GloVe and ranking (strict standard) 

 

7.2.3 Loose standard 
Figure 6 presents the statistics on a ‘loose standard’. By this 

standard, articles about other epidemic diseases such as 

influenza virus, apore virus, zika virus, etc. are also counted as 

correct results. 

 

Figure 6: The relevance of word2vec, doc2vec, Fasttext, 

GloVe and ranking (loose standard) 

In conclusion, in the strict standard, compared with the 

relevance of the ranking results (6.83), that of GloVe is slightly 

higher standing at 7.3.  In the loose standard, the relevance of 

the ranking results ranks the top arriving at 7.77, which is 

followed by GloVe and word2vec with 7.70 and 7.27, 

respectively. Doc2vec and Fattext in stark contrast, occupies the 

minimal share with merely 4.37 and 4.13, considerably lower 

than the ranking. Finally, the errors in Figure 5 and Figure 6 

show that the ranking results are more stable than other models. 

 

8. CONCLUSION AND FUTURE WORKS 
There are three aims in the present research. The first one is to 

mark the searching results between different semantic models 

on the web UI. The second aim is to measure the performance 

of the four models on the dataset related to Covid-19. Finally, 

investigate a method of ranking which performs better than 

other embeddings. 

 

The experiment shows that the relevance of word2vec and 

GloVe are superior to that of doc2vec and Fasttext. However, 

the results set of doc2vec contains a majority of articles about 

other viruses, which can only be detected manually instead of 

the testing scripts. The advantage of GloVe is obvious, it keeps 

the highest precision, recall, and relevance throughout the entire 

experiment. The only disadvantage of it is not stable enough. 

Sometimes it got very low precision and recall nearly to only 

10%. In contrast, Fasttext got the lowest performance in this 

research. The precision, recall, and relevance of Fasttext are 

always much lower than other models. On the top of that, it 

costs longer training time than other models. 

 

For the precision and the recall, the ranking results set is higher 

than all other embedding models. According to the 

measurement, even searching with the same keywords, the 

results vary tremendously between different models. In the user 

evaluation, it presents that the ranking results are better than 

word2vec, doc2vec and Fasttext, and keeps stable all the time. 

 

For the strategy of mark the searching results visually, this 

search engine can mark the same document from different 

models with the same background colors. Thus, users can 

compare the searching results more intuitively. 

 

In the future, there are more works can be done. Firstly, the 

ranking algorithm can be improved by taking into consideration 

the weights of different embedding models. For example, 

models with better performance get higher weights. They can 

put more results in the ranking set, and vice versa. Secondly, 

now, the way of marking the searching results is based on the 

document index. However, the similarity score is also an 

important factor. With the similarity scores, the search engine 

can mark the results with similar content, not just limited to the 

identical ones. Thirdly, a user evaluation about the strategy of 

‘mark searching results visually’ could be done, to test how 

effective it can improve the researchers’ work. Finally, the 

weights of the word embedding can be used to train models 

with better performance if there is more time for the experiment. 

Besides, the experimental results of Fasttext are much lower 

than other models, which might be caused by the size of the 

training dataset or the configuration of the model. With more 

time, more training and adjustments could be conducted to 

improve its performance. 
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10. APPDENDIX 
Table 2: The table for user evaluation 

 

Note: the keywords from 7 to 10 are the abstract of the articles. 

The addresses of the articles are provided. From the third 

column to the last column, the participants are asked to fill in 

the number of searching results related to the keywords for the 

four models on the strict standard and loose standard, 

respectively. 


