
 Improving information retrieval by semantic embedding
Ye Yuan

University of Twente
PO Box 217, 7500 AE Enschede

the Netherlands

y.yuan-1@student.utwente.nl

Abstract

This research focuses on using semantic embedding to improve

the performance of Information Retrieval (IR) for the Covid-19

related tasks. According to previous research, the technology of

word embedding can significantly improve the performance of

IR. There are many types of semantic embedding models at

present. The purpose of this research is not to develop a new

one, but to combine multiple popular semantic embedding

models and to find a more effective ranking for retrieving a

better IR result by a comparative analysis of these semantic

embedding technologies. Besides, the current embeddings are

mostly based on words, phrases, or documents, not on entities.

So, providing the entity-based IR function, which is missing in

PubMed or other search engines like Google, is another goal of

this research. The expected outcome of this research is an

entity-based working prototype focusing on the Covid-19 data,

which can visually mark the differences between the search

results of different semantic embedding models.

Keywords

word embedding, entity embedding, document embedding,

NLP, word2vec, doc2vec, Fasttext, GloVe, cosine similarity

1. INTRODUCTION
The recent (2020) worldwide prevalence of COVID-19 has

caused extreme damage in all areas. Due to the limited time,

how to build a more sophisticated and intelligent search engine

for collecting data to study the virus has become an urgent task

for all involved researchers. The two famous medical datasets,

MEDLINE1 and Covid-192, contain massive medical data and

articles covering a variety of medical cases. However, at

present, the most important point we focused on is Covid-19

and the IR [1] method of these two data sets is keyword-based.

Although information retrieval with the traditional keyword-

based [2] method is workable, there is a large room for

improvement in efficiency and accuracy. In the traditional

keyword-based way, you can retrieve the accurate results with

certain keywords, but the coronavirus involving a lot of

technical terms with similar meanings. Searching information

with a keyword-based search engine is often time-consuming

and returns poor data results, which reduces the efficiency of

the process of coronavirus-related research. We hope to have

smarter word embedding [3] IR models that considers semantic

similarities of words in the matching process, to generate high

usable searching results.

By definition, a set of language modeling and feature learning

techniques [4] in natural language processing (NLP) are

1https://www.nlm.nih.gov/bsd/medline.html

2https://www.kaggle.com/allen-institute-for-ai/CORD-19-

research-challenge

collectively referred to as word embedding, which has been

proven being able to improve the performance in NLP tasks

such as sentiment classification [5], dependency parsing [6] and

sentiment analysis [7]. With word embedding models,

preprocessed text or documents are mapped to vectors of real

numbers by technologies such as neural networks [8],

dimensionality reduction on the word co-occurrence matrix [9],

etc. Since it takes the context where the word appears into

consideration, it makes the predication of missing words in a

document possible. In contrast, the traditional keyword-based

search engine cannot solve the problem of high term mismatch

and consider the distinct meaning between the semantically

similar words in the matching process.

This research project is to develop a search engine based on

word embedding models and find a way to optimize the IR

concerning coronavirus related data. More specifically, several

research issues need to be solved:

1. What is the performance difference between various

semantic embedding technologies?

2. How can we combine the results of different semantic

embedding to achieve a better retrieval result?

3. How can we compare the results of different semantic

embedding more efficiently?

The contribution of this paper is that it shows the precision and

the recall of the IR results of Ranking are better than that of all

other four technologies to some extent. Although the

improvement varies according to different models, it improves

the efficiency of IR.

The structure of remaining paper is arranged as follows. Section

2 briefly describes the application of a couple of popular

semantic embedding technologies and two studies on the

analysis and measurement of the four embeddings involved in

the present research. Section 3 presents the algorithm and UI of

the feature of ‘marking searching results visually’. Section 4

provides the formula, algorithms, and strategies for

measurement and ranking. Section 5 presents some influences

of training models in this experiment. Section 6 provides the

details about the results of the measurement and the involved

user evaluation. Section 7 describes the limitations and future

works of this research.

2. RELATED WORKS
Semantic embedding

At present, there are two main methods to implement the word

embedding: count-based and direct prediction. The popular

count-based word embedding frameworks are LSA (Burgess &

Lund), COALS, Hellinger-PCA (Rohed etal, Collobert &

Lebret) etc. For the word embedding frameworks based on

direct prediction, there are Skip-gram/CBOW (Mikolov et al),

https://www.nlm.nih.gov/bsd/medline.html

NNLM, HLBL, Skip-gram/CBOW (Mikolov et al), NNLM,

HLBL, RNN (Bengio et al; Collobert & Weston; Huang et al;

Mnih & Hinton) etc.

The main advantages of the count-based word embedding are

fast training and efficient usage of statistics, and that of the

direct prediction frameworks is being able to capture complex

patterns of the context. However, they have various

disadvantages, such as only words similarity can be acquired,

and disproportionate importance given to large counts for the

count-based embedding. By contrast, the limitations of the

direct prediction frameworks are scale with corpus size and

inefficient usage of statistics.

In this research, four semantic embedding technologies are

analyzed: word2vec [10], doc2vec [11], Fasttext [12, 13] and

GloVe [14]. The problem of sparsity in word2vec cause the

dimension of its vector space higher than other technologies,

which causes too much memory resources and low robustness.

In contrast, GloVe combined the two schemes (count-based and

direct prediction), which can keep its fast training, scalable to

huge corpora, and good performance with the small corpus.

Fasttext was developed by Facebook in 2016, although there is

not much innovation in it, as a shallow neural network, it can

get the same precision as the deep neural network and keep a

much shorter training time than the deep neural network. For

example, with a standard multi-core CPU, it can complete the

training of 1 billion words within 10 minutes.

For the document embedding, there are many powerful deep

learning strategies. For instance, doc2vec (Le and Mikolov,

2014), lda2vec (Moody, 2016), FastText (Bojanowski et al.,

2016), Sent2Vec (Pagliardini et al., 2018), InferSent (Conneau

et al., 2017), etc. However, they all cost too much computation

resources.

Comparative studies

Since word2vec was published, researchers have proposed a lot

of different embedding models. There are many studies

compared these embedding methods on various tasks. For

example, comparing the precision of results between LDA,

word2vec, GloVe, Fasttext, DCH, LSRH, CSDH, SePH, SCM,

etc, on the social media dataset like ‘InstaCities1M’ and

‘WebVision’ [15], exploring the influence of topic

segmentation on information retrieval quality on the on dataset

of Wikipedia [16], the comparative analysis of semantic

similarity technologies for medical text [17], using word

embedding clustering and convolutional neural network to

improve the short text classification [18], improving

information retrieval in software engineering by document

similarities [19], improving textual-visual cross-modal retrieval

with generative models [20], aggregating continuous word

embeddings for information retrieval [21], etc.

3. RESEARCH OVERVIEW
The procedure of this research consists of four main stages.

Stage 1
The first stage is preparation for the development, such as

determining the developing language, set-up the development

environment, and designing the user interface of the

application.

Stage 2
In the second stage, the first task is pre-processing the corpus.

Next, the word embedding models are trained with the pre-

processed corpus. Following this, the document embeddings are

generated based on the outcome of the word embedding

training. Finally, the functions of entity searching are

implemented. All the details of this stage are described in

Section 4.

Stage 3
In this stage, the first task is implementing the function of

calculating cosine similarity [22]. Next, the ranking strategy is

implemented. Thus, combining with the other four models, the

searching results are marked visually. The details are described

in Section 5.

Stage 4
The final stage is about the measurement and user evaluation,

which are specified in Section 6.

4. SEMANTIC EMBEDDING

4.1 Preprocess
Based on 100,000 latest medical essays from the dataset of

MEDLINE and Covid-19, the stop words in the corpus need to

be removed. However, instead of using the common stop word

list provided online (like Google English stop words list), a

weights list was offered by the company OCLC. Through their

project ‘Fast and Discriminative Semantic Embedding’[23], this

list describes the weights of appearance for each word in an

article based on a much larger medical-related training dataset

than the current one (the size of training dataset in this research

is 100,000). With this weights list, all the words with a value

lower than 0.1 are accounted as stop words.

4.2 Word and document embedding
In this research, word2vec, Fasttext and GloVe are word

embedding frameworks. They cannot be used to do document

searching directly. After the word embedding training complete,

each document in the dataset must be converted into a

document embedding vector. This process is accomplished by

the following algorithm:

Algorithm 1 Generate document embedding

 Input: a word embedding model M

 Output: a vector list of the documents

1: result ← 0

2: for each documents d do

3: for each entity e in the document d do

4: v ← get the vector of e from model M

5: v’ ← v’ + v

6: v’’ ← the mean value of v

7: add v’’ to result

8: return result

As the above algorithm, the mean value of the entity list of each

document can be calculated by NumPy (a Python library), for

instance, which is taken as the final embedding for a document.

Figure 1: The results of terms-based searching

4.3 Entity embedding

4.3.1 The pattern of entity
Before the preprocess, the corpus needs to be turned into an

entity-based pattern. As for entity, it means the words of an

essay, the author, the subject, the release date, etc. Here

attached an example of the entity-based essay:

7088458715 [title:minimal detectable...][abstract:...]

[lang:eng] [author:macdermid jc] [author:nazari g]

[issn:...] [doi:10.1519] [type:journal article]

 [pmid:28731864] [subject:adult]

An entity is presented as the pattern: [‘entity name’: ‘entity

content’], and an article consists of a document index and

several entities.

4.3.2 The strategy of entity embedding
All the four models split the text by space, but an entity like

‘subject’ is normally a sentence consists of many words and

spaces. In the entity-based embedding, we need to take the

entire ‘subject’ as an entity. So, all spaces and colon in the text

of an article concerning the language, author or subject are

replaced with underline. For example, ‘subject: fatty acids

omega 3’ is the original pattern of an entity, which should be

formatted into ‘subject_fatty_acids_omega_3’. Thus, the latter

one will be treated as an entity and vectorized for embedding.

5. EMBEDDING-BASED INFORMATION

RETRIEVAL
After the previous embedding steps in Section 4, words, terms,

documents, and entities are embedded in the same semantic

space, where the cosine similarity can be applied in calculating

the similarity/relatedness.

5.1 Cosine similarity
By calculating the cosine similarity [22], we gain a score for

input keywords, which indicates how similar it is between two

document vectors. Thus, a list of all documents sorted by the

score is achieved, by which the most similar ones can be

extracted from and returned to the end-users. The formula of the

cosine similarity is as follows:

(1)

vector 1: [x11, x12, x13 …… x1n]

vector 2: [x21, x22, x23 …… x2n]

5.2 Entity-based searching
Entity-based searching provides the users or researchers related

to the study concerning the Covid-19 a convenient way of

searching. For example, with terms-based searching,

researchers can get all the terminologies about coronavirus with

only one click. However, in the traditional search engine, the

users need to collect many results and extract terminologies by

themselves.

There are many entities in an article, such as the words in the

title and the abstract, release date, ISSN, author, subject, etc.

Terms-based searching returns the single term related to the

keywords. Subject-based searching gives the subject of an

article. Author-based searching displays all the authors related

to an article. They are implemented based on word embedding.

Figure 1 presents the terms-based searching results. The input

keyword is ‘coronavirus’ and the results are all related

terminologies. Note that the second column (which is for

doc2vec) is invalid, since it is a document embedding model.

5.3 Ranking strategy
The ranking strategy is quite simple. Firstly, based on the

results from other four embedding models, a score is assigned

to each result. Since those searching results are already sorted,

the top one is assigned a score 9, the second one is assigned a

score 8. By that analogy, the 10th result is given a zero.

Secondly, combining those results, removing the overlapped

results, and recalculating the score according to the number of

repeats of each result. For instance, the document 789587

appears at the first position of word2vec, second position of

doc2vec, third position of Fasttext and ninth position of GloVe,

it gets a score 25. (9+8+7+1 = 25)

This is the pseudo code about getting the ranking results:

Algorithm 2 Get ranking results

 Input: a results list r1 from word2vec,

 a results list r2 from doc2vec,

 a results list r3 from Fasttext,

 a results list r4 from GloVe

 Output: a result list of Ranking

1: rm ← [r1, r2, r3, r4]

2: s_map ← {} # the key is a document id,

 # the value is an object of a result

3: for each list l in rm do

4: score ← 10

5: for each result r in l do

6: r.score ← score # assign a score to a result

7: score ← score – 1

8: rm’ ← rm sorted by score

9: rm’’ ← rm’

10: for each result r in rm’’ do

11: if r existed in score_map then

 # the overlapped results are removed and recalculate

the score

12: s_map[r.id].score ← s_map[r.id].score + r.score

13: else

14: score_map[r] ← 1

15: result ← keyset of s_map sorted by score

16: return result

5.4 Compare results visually
One goal of this research is to investigate a method of marking

the similarity or differences of the searching results between the

four models visually. The main method is transferring each

result as an object, which contains properties like document

index, the number of repeats and color. All the same results are

marked with same background color on the web UI.

The searching results are visually marked on the web UI as

Figure 2. From the first column to the fifth column are the

searching results of word2vec, doc2vec, Fasttext, GloVe and

the ranking, respectively. The same documents are marked with

the same colors. For example, the first result in the first column,

the third result in the third column and the first result in the fifth

column are set to green color, which means they are the same

documents. An item with white background color means there

is not the same results exist in any of the five columns.

The pseudo code is as follows:

Algorithm 3 Set the color of each result

 Input: a map m with document id as the key and the color

as the value, a mixed results list rm from word2vec,

doc2vec, Fasttext and GloVe

 Output: a results list with color property for each element

1: color_list = [many colors in 6 bits hexadecimal]

2: for each object d in rm:

3: if repeat number of d > 1 then

4: if m does not contain the id of d then

5: m[d.id] ← color_list.pop(0)

6: else

7: d.color ← m[d.id]

8: return rm

Figure 2: The visually marked results

6. EXPERIMENT SETTING

6.1 Influence factors
The final product of this research is an IR web application,

which is implemented with Python. Training with word2vec,

doc2vec, Fasttext and GloVe requires many parameter

configurations such as vector size, window, min count, etc. One

of the most important influential factors is ‘min count’. All

words with a total frequency lower than this were ignored by

the semantic model. According to the dimension of the vector

of embedding models, this value varies. With 256 dimensions in

this research, this parameter was tested with a value from 2 to 5.

Finally, it presents that, with 5 min count, the IR engine can

reach its best performance. As mentioned above, the other

significant factor is the vector size. With advice from the

experts from the company OCLC, the dimension of the vector

was set as 256. Besides, the defaults were used for other

parameters.

6.2 Measurement time
Table 1 shows the time consumption for the measurement,

including preprocess, word embedding training, document

embedding training and running testing script. The first line is

the time for preprocess of the corpus. The lines from 2 to 5 are

the training time for word embedding models. From line 6 to

line 8 are the time used for document embedding generation.

We can see that there were some differences in the time of

training at different models. The training of Fasttext model

spent the longest time (28+23=51 minutes). The second time-

consuming training is GloVe (33+15=48 minutes), which has

only the Linux version. It is training on Google Colab, so the

training time is limited. By contrast, word2vec and doc2vec

cost less time for training, 29 and 26 minutes, respectively.

Table 1. The time cost for testing/measuring

 Process Time(minutes)

1. preprocess 2

2. word2vec (word embedding) 12

3. doc2vec (word embedding) 26

4. Fasttext (word embedding) 28

5. Glove (word embedding) 33

6. word2vec (document embedding) 17

7. Fasttext (document embedding) 23

8. Glove (document embedding) 15

9. Total 156

7. EXMPERIMENT RESULTS
In this research, three main properties are required to be

measured: precision, recall, and relevance.

7.1 Precision and recall

7.1.1 Testing method
In this section, testing with the keywords from the current

dataset for precision and recall. 100 documents are drawn from

the dataset, and then extract many words from the title or

abstract of these documents as the input keywords for searching.

This task was executed for ten rounds, and different lengths of

keywords were used for each round. For the first three rounds,

the length of the input is around 5 words, then about 50 words

for the next three rounds. The last four rounds using the entire

title of an essay as input keywords.

7.1.2 Results
Figure 3 and Figure 4 present the percentage of precision and

recall out of 1,000 searching for each of the four models,

respectively. For example, the first green bar in Figure 3 shows

that 791 out 1000 times of searching the first result in the

word2vec results set is the target. The first green bar in Figure 4

means that 879 out of 1,000 times of searching found the target

in the word2vec results set. Finally, it can be seen from Figure 3

and Figure 4 that both the precision and recall of the ranking

results are higher than that of the other semantic embedding

technologies. Besides, the error in Figure 3 and Figure 4 show

that the ranking is the second stable one for both precision and

recall.

Figure 3: The precision of word2vec, doc2vec, Fasttext,

GloVe and ranking

Figure 4: The recall of word2vec, doc2vec, Fasttext, GloVe

and ranking

The followings are the definition of precision and recall:

Precision@1: the first result is the target one.

Recall@10: the target result exists in the result set.

7.2 Relevance:

7.2.1 User evaluation
In this user evaluation, three participants are required to do the

searching task and fill in the evaluating form (See Table 2 in

Appendix). Their feedback is about the relevance between the

input keywords and the ten results returned by each semantic

embedding model and the ranking algorithm (four models plus

a ranking set, 50 results in total). Each of them needs to search

the articles in terms of Covid-19 with ten provided keywords.

Keywords 1, 2, and 3 contains only one term, respectively. The

keywords 4, 5, and 6 are medium size with around 5 words. The

keywords 7, 8, 9, and 10 are long size with the abstract of an

essay. These keywords are outside the current dataset, collected

from PubMed.

Evaluation steps

In the first step, a participant put in the first keyword and

clicked the searching button on the web UI. In the second step,

the participant read each of the (ten) results displayed on the

screen and recorded the number of related results based on two

different standards, which is specified in Section 6.2.2 and

Section 6.2.3. Then, repeated the above steps for all keywords

in Table 2 (See appendix).

Data process

Instead of all detailed data, Figure 5 and Figure 6 describe the

average values based on the feedback forms. For example,

calculating the average value of relevance for word2vec under

the strict standard need to sum all the values of the third

columns in Table 2 and divide by 30 (the total number).

7.2.2 Strict standard
Since the relevance is subjective to the participants, two

standards are adopted in this user evaluation. Figure 5 shows

the data of evaluation in terms of relevance on a ‘strict

standard’. For example, if the input keyword is ‘coronavirus’,

only the result about ‘coronavirus’ can be taken as a related

article. Even the articles about other highly pathogenic

infectious diseases like Sars and Mers are not included. Figure 5

shows that the ranking performs better than word2vec, doc2vec

and Fasttext and lower than that of GloVe.

Figure 5: The relevance of word2vec, doc2vec, Fasttext,

GloVe and ranking (strict standard)

7.2.3 Loose standard
Figure 6 presents the statistics on a ‘loose standard’. By this

standard, articles about other epidemic diseases such as

influenza virus, apore virus, zika virus, etc. are also counted as

correct results.

Figure 6: The relevance of word2vec, doc2vec, Fasttext,

GloVe and ranking (loose standard)

In conclusion, in the strict standard, compared with the

relevance of the ranking results (6.83), that of GloVe is slightly

higher standing at 7.3. In the loose standard, the relevance of

the ranking results ranks the top arriving at 7.77, which is

followed by GloVe and word2vec with 7.70 and 7.27,

respectively. Doc2vec and Fattext in stark contrast, occupies the

minimal share with merely 4.37 and 4.13, considerably lower

than the ranking. Finally, the errors in Figure 5 and Figure 6

show that the ranking results are more stable than other models.

8. CONCLUSION AND FUTURE WORKS
There are three aims in the present research. The first one is to

mark the searching results between different semantic models

on the web UI. The second aim is to measure the performance

of the four models on the dataset related to Covid-19. Finally,

investigate a method of ranking which performs better than

other embeddings.

The experiment shows that the relevance of word2vec and

GloVe are superior to that of doc2vec and Fasttext. However,

the results set of doc2vec contains a majority of articles about

other viruses, which can only be detected manually instead of

the testing scripts. The advantage of GloVe is obvious, it keeps

the highest precision, recall, and relevance throughout the entire

experiment. The only disadvantage of it is not stable enough.

Sometimes it got very low precision and recall nearly to only

10%. In contrast, Fasttext got the lowest performance in this

research. The precision, recall, and relevance of Fasttext are

always much lower than other models. On the top of that, it

costs longer training time than other models.

For the precision and the recall, the ranking results set is higher

than all other embedding models. According to the

measurement, even searching with the same keywords, the

results vary tremendously between different models. In the user

evaluation, it presents that the ranking results are better than

word2vec, doc2vec and Fasttext, and keeps stable all the time.

For the strategy of mark the searching results visually, this

search engine can mark the same document from different

models with the same background colors. Thus, users can

compare the searching results more intuitively.

In the future, there are more works can be done. Firstly, the

ranking algorithm can be improved by taking into consideration

the weights of different embedding models. For example,

models with better performance get higher weights. They can

put more results in the ranking set, and vice versa. Secondly,

now, the way of marking the searching results is based on the

document index. However, the similarity score is also an

important factor. With the similarity scores, the search engine

can mark the results with similar content, not just limited to the

identical ones. Thirdly, a user evaluation about the strategy of

‘mark searching results visually’ could be done, to test how

effective it can improve the researchers’ work. Finally, the

weights of the word embedding can be used to train models

with better performance if there is more time for the experiment.

Besides, the experimental results of Fasttext are much lower

than other models, which might be caused by the size of the

training dataset or the configuration of the model. With more

time, more training and adjustments could be conducted to

improve its performance.

9. REFERENCES
[1] Manning, C.; Raghavan, P.; Schutze, H.: Introduction to

information retrieval. Natural Language Engineering, 16

(1) (2010), 100–103.

[2] Diego Arroyuelo, Senén González, Mauricio Marin,

Mauricio Oyarzún, Luis Valenzuela. To index or not to

index: Time–space trade-offs for positional ranking

functions in search engines. Information SystemsVolume

89 (March 2020) Article 101466.

[3] Schnabel, T.; Labutov, I.; Mimno, D.; Joachims, T.:

Evaluation methods for unsupervised word embeddings. in

Proc. of the 2015 Conf. on Empirical Methods in Natural

Language Processing (2015), 298–307.

[4] Saiyed Umer, Bibhas Chandra Dhara, Bhabatosh Chanda

2017. A novel cancelable iris recognition system based on

feature learning techniques (September 2017), 102-118.

[5] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin,

“Learning sentiment-specific word embedding for twitter

sentiment classification,” in ACL (1), (2014), 1555–1565.

[6] Anita Balandina, Anastasiya Kostkina, Artem Chernyshov,

Valentin V. Klimov. Dependency Parsing of Natural

Russian Language with Usage of Semantic Mapping

Approach. Procedia Computer ScienceVolume 145 (2018),

77-83.

[7] Ravi, K.; Ravi, V.: A survey on opinion mining and

sentiment analysis: tasks, approaches and applications.

Knowl. Based. Syst., 89 (2015), 14–46.

[8] Bengio, Y.; Ducharme, R.; Vincent, P.; Janvin, C.: A

neural probabilistic language model. J. Mach. Learn. Res.,

3 (2003), 1137–1155.

[9] Muskan Garg, Mukesh Kumar. TWCM: Twitter Word Co-

occurrence Model for Event Detection. Procedia Computer

ScienceVolume 143 (2018), 434-441.

[10] Mikolov, T.; Chen, K.; Corrado, G.; Dean, J.: Efficient

estimation of word representations in vector space. CoRR,

vol. abs/1301.3781, (2013).

[11] Donghwa Kim, Deokseong Seo, Suhyoun Cho, Pilsung

Kang.Multi-co-training for document classification using

various document representations: TF–IDF, LDA, and

Doc2Vec. Information Sciences, Volume 477, (March

2019), 15-29.

[12] Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T.:

Enriching word vectors with subword information. Trans.

Assoc. Comput. Linguistics, 5 (1) (2017), 135–146.

[13] Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T.: Bag of

tricks for efficient text classification. arXiv preprint

arXiv:1607.01759, (2016).

[14] Pennington, J.; Socher, R.; Manning, C.: Glove: Global

vectors for word representation. in Proc. of the 2014 Conf.

on Empirical Methods in Natural Language Processing

(EMNLP), (2014), 1532–1543.

[15] Raul Gomez, Lluis Gomez, Jaume Gibert, Dimosthenis

Karatzas. Self-Supervised Learning from Web Data for

Multimodal Retrieval. Multimodal Scene Understanding

(2019), 279-306.

[16] Gennady Shtekh, Polina Kazakova, Nikita Nikitinsky,

Nikolay Skachkov. Exploring Influence of Topic

Segmentation on Information Retrieval Quality. Internet

Science: 5th International Conference (October, 2018),

131-140.

[17] Fakhare Alam, Muhammad Afzal, Khalid Mahmood

Malik. Comparative Analysis of Semantic Similarity

Techniques for Medical Text. ResearchGate. (March 2020)

[18] Peng Wanga, Bo Xu, Jiaming Xu, Guanhua Tian, Cheng

Lin Liu, Hongwei Hao. Semantic expansion using word

embedding clustering and convolutional neural network

for improving short text classification. Neurocomputing,

Volume 174 (January 2016), Pages 806-814.

[19] Xin Ye, Xiao Ma, Xiao Ma, Razvan Bunescu, Chang Liu.

From word embeddings to document similarities for

improved information retrieval in software engineering.

ICSE 16: Proceedings of the 38th International Conference

on Software Engineering (May 2016), Pages 404–415.

[20] Jiuxiang Gu, Jianfei Cai, Shafiq R. Joty, Li Niu, Gang

Wang. Look, Imagine and Match: Improving Textual-

Visual Cross-Modal Retrieval With Generative Models.

The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2018) pp. 7181-7189.

[21] Stephane Clinchant, Florent Perronnin. Aggregating

Continuous Word Embeddings for Information Retrieval.

Conference: Proceedings of the Workshop on Continuous

Vector Space Models and their Compositionality (August

2013).

[22] Nora Grieb, Theo Oltrup, Thomas Bende, Martin A.

Leitritz. The Cosine Similarity Technique: A New Method

for smart EXCIMER laser control. Zeitschrift für

Medizinische PhysikIn press, corrected proof, Available

online 2 (April 2020).

[23] Rob Koopman, Shenghui Wang, Gwenn Englebienne. Fast

and Discriminative Semantic Embedding. Association for

Computational Linguistics (May 2019).

https://www.aclweb.org/anthology/people/r/rob-koopman/
https://www.aclweb.org/anthology/people/s/shenghui-wang/
https://www.aclweb.org/anthology/people/g/gwenn-englebienne/
https://www.aclweb.org/anthology/W19-0420.pdf
https://www.aclweb.org/anthology/W19-0420.pdf

10. APPDENDIX
Table 2: The table for user evaluation

Note: the keywords from 7 to 10 are the abstract of the articles.

The addresses of the articles are provided. From the third

column to the last column, the participants are asked to fill in

the number of searching results related to the keywords for the

four models on the strict standard and loose standard,

respectively.

