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ABSTRACT
The main goal of this paper is to show how the load bal-
ancing frameworks Lace, OpenMP, Intel Thread Building
Blocks (TBB) and CilkPlus perform compared to each
other. The research focuses on the task-based nature of
these frameworks, looking at the overhead of task creation
but also at the overall performance of the frameworks.
Tests were run using three benchmarks: Unbalanced Tree
Search, Fibonacci and Strassen matrix multiplication. The
benchmarks were compiled with the Intel Compiler as well
as the GNU Compiler to study what consequences this has
for the performance. The experiments revealed that out of
the four frameworks Lace performs best, CilkPlus and TBB
intermediate while OpenMP had the worst performance by
far. CilkPlus was a little bit better than TBB. Promising
options for future work are discussed.
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1. INTRODUCTION
Complex programs often require a long time to compute
results. Many strategies have been developed to speed up
the execution time of these programs. One such strategy
is parallel programming, making use of multiple processors
or processor cores. Some programs can be modeled as
task-based computations, where tasks rely on independent
subtasks. Independent (sets of) tasks are executed on
separate processing units simultaneously. This means that
the tasks do not have to wait for other tasks to be executed.
Depending on the number of tasks and their size, as well
as the number of available processing units, this could
yield a great reduction in execution time. This process
of distributing a program over processing units in the
form of tasks is called task-based load balancing. Many
strategies for task-based load balancing exist [1]. With
multicore processors becoming more common [2] efficient
load balancing strategies are more important than ever.

When executing a program in parallel, multiple workers
(i.e. threads) work on separate subtasks of the initial task
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simultaneously. Once a worker has finished a subtask,
it moves on to its next one. However when it has no
tasks left, it will simply become idle. Having the worker
that has finished all its tasks remain idle is a waste of
that workers potential. To increase efficiency, a form of
dynamic load balancing is required. One such method is
called work-stealing. With work-stealing the idle worker
attempts to steal a task from another worker. This way the
optimal distribution of tasks can be achieved even if at the
start they have been distributed differently. A theoretical
analysis of the Work-stealing strategy has shown that it is
an efficient strategy for task-based parallel execution [3].

For the programming languages C and C++, multiple
frameworks exist that allow for a programmer to define
tasks for parallel execution. The framework makes sure
that the code is compiled in such a way that it distributes
the tasks among the processing units during execution.
Each framework has its own strategy for load balancing,
meaning that there can be differences in performance be-
tween the frameworks. One such framework is CilkPlus,
which has shown good performance relative to other frame-
works before [4]. However CilkPlus has been deprecated
by Intel and GNU in 2018 [5], making it extra interesting
see if it performs better than Intel’s alternatives OpenMP
and TBB, which are not deprecated. This paper aims to
compare four existing frameworks: Lace, OpenMP, Intel
Thread Building Blocks and CilkPlus, to get an indication
of how much each framework reduces execution time. In
particular, the following questions are investigated:

– What is the difference in performance between the
different load balancing frameworks?

– What is the difference in performance when compiling
with different compilers?

– What is the difference in performance when compiling
with different optimization flags?

The tests are all written in C and C++. They are compiled
using the Intel C++ Compiler (icc and icpc) and the GNU
Compiler Collection (GCC). For each framework, a test is
compiled a total of six times; once for each optimization
flag (O1, O2 and O3) for both compilers. The executables
are then executed on a processor with four cores and eight
threads on a system running Ubuntu 18.04 LTS.

This paper will first look into some related work in Section
2. Then the Approach is described in Section 3, explaining
the chosen benchmarks, compilers, frameworks and testing
setup. Section 4 contains the results of the tests, followed
by a discussion in Section 5. Finally, the conclusion can
be found in Section 6 plus options for future work.
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2. RELATED WORK
In 2009 a task suite was developed containing benchmarks
for task parallelism in OpenMP [6]. The task suite, called
Barcelona OpenMP Task Suite (BOTS), contains a variety
of benchmarks such as Fibonacci and Merge Sort intended
to test the effectiveness of OpenMP task parallelism im-
plementations. Over the years changes have been made to
OpenMP, so the results from back then can not be applied
to the current version of OpenMP. The open source bench-
marks from the task suite however form a good resource
when designing such benchmarks yourself.

Comparisons between multiple existing load balancing
frameworks have already been made in the past. In 2010
research has been conducted into a comparison between
Cilk++, OpenMP 3.0 and Wool [7]. This research has
shown that four OpenMP 3.0 compilers perform signifi-
cantly worse than Cilk++ and Wool for the tested fine-
grained parallel tasks. Additionally, it showed that Wool
outperforms Cilk++ for all tested fine-grained tasks.

In the same year research has been carried out to the per-
formance of OpenMP 3.0, Cilk, Cilk++ and Intel Thread
Building Blocks specifically on Unbalanced Task Graphs
(UTS) [4]. The results showed that Cilk, Cilk++ and In-
tel Thread Building Blocks outperformed all OpenMP 3.0
implementations.

Sandia National Laboratories analyzed six load balancing
frameworks in 2012: Intel CilkPlus, Intel Thread Build-
ing Blocks, Intel and GCC implementations of OpenMP,
Qthreads and High Performance ParalleX (HPX) [8]. They
created four benchmarks including Fibonacci and Unbal-
anced Tree Search that create fine-grained tasks, because
they focused on the scheduling strategies of the frameworks.
From their results they concluded that no single framework
is optimal in all cases, since they found that frameworks
that perform well on one benchmark usually do not perform
well on another benchmark.

Another comparison was made by Chun-Kun Wang in 2017
[9]. He investigated the scheduling strategies of OpenMP
3.0, Cilk and High Performance ParalleX (HPX-5) and
tested them on six benchmarks. Wang found that Cilk
and OpenMP have higher overhead with task creation
compared to HPX-5. Additionally he stumbled upon the
problem that Cilk has a fixed spawn depth limit for tasks,
causing Cilk to abort on the benchmarks that spawn large
amounts of tasks.

Researchers from Oakland University compared multiple
threading parallel programming models for high perfor-
mance computing, such as Intel CilkPlus, Intel Thread
Building Blocks, OpenMP and PThreads [10]. They inves-
tigated the features of all selected models, followed by a
performance comparison of OpenMP, CilkPlus and C++11
using their own benchmarks. They show results for up to
32 cores, but there is no clear winner.

There has also been research into the effect of different
C compiler optimization options on the performance of
parallel programs [11]. Researchers at the Federal Uni-
versity of Pelotas, Brazil, compared the performance of
five frameworks, including OpenMP, CilkPlus and TBB.
They compiled a benchmark from NASA using the Intel
C Compiler and the GNU C Compiler, for the three opti-
mization flags O1, O2 and O3. Their results showed that
flag O2 from the Intel C Compiler had the biggest impact
on performance. They also discovered that the impact of
the optimization flags can differ per architecture.

A comparison between OpenMP 4.0 implementations in

C/C++ compilers has also been performed. Compilers
AOCC, Clang, G++, Intel C++, PGC++ and Zapcc were
included in research from Colfax in 2017 [12]. This research
only covered the implementation of OpenMP 4.0 of the
aforementioned six compilers. It showed that the Intel
C++ compiler generally performed best in the conducted
tests.

3. APPROACH
This section describes the approach for the load balancing
framework comparison. It explains the benchmarking al-
gorithms, compilers, frameworks and testing environment
used in this research.

3.1 Benchmarks
As mentioned in Section 2, benchmarks for the selected
frameworks have been developed before. The Barcelona
OpenMP Task Suite (BOTS) [6] is a good example contain-
ing twelve different benchmark algorithms developed for
OpenMP under the GNU General Public License Version
2. The BOTS paper shows some characteristics of each
benchmark such as the potential number of tasks they
generate and the average amount of arithmetic operations
per task, that are useful in determining which benchmarks
to use.

Each benchmark selected for this research targets a specific
aspect of load balancing. The first aspect is the overhead
from creating and running tasks. This can be evaluated
by defining a benchmark that generates many tasks, and
only tasks with a small workload, i.e. many fine-grained
tasks. With fine-grained tasks the workers have to spend
only little time working on the tasks, so a larger portion
of the execution time is determined by the overhead. By
having many of these tasks, the execution time increases
such that the amount of overhead stands out even more.
Whether a benchmark has many fine-grained tasks can be
checked in the results from the BOTS [6]. It shows for
each benchmark the amount of arithmetic operations per
task, indicating the workload of each task. It also shows
the number of potential tasks per benchmark.

The second aspect is dealing with indeterministic tasks.
This tests the effectiveness of the dynamic load balancing
strategy of the frameworks. Consider a benchmark with
many fine-grained tasks. If all tasks have similar work-
load and all tasks spawn the same amount of subtasks,
the effectiveness of the dynamic load balancing strategy
does not affect the execution time that much. After the
first few tasks have been distributed equally among all
threads, very little tasks will have to switch threads, since
the original tasks have similar workloads and a similar
amount of subtasks. However if the tasks have a different,
unpredictable amount of subtasks and workloads, dynamic
load balancing is important, since at the beginning of ex-
ecution the amount of time a task will take can not yet
be determined (i.e. is indeterministic). During execution
some threads will end up with much less work than other
threads, meaning they need to take over some tasks from
other threads to prevent becoming idle. To test the dy-
namic load balancing implementation of each framework a
benchmark with indeterministic tasks is required, but also
a benchmark with equally distributed tasks, so that we can
check if a difference in performance for the indeterministic
benchmark is also present for the deterministic benchmark.
If the difference is present for both benchmarks, then it is
probably not caused by a difference in the dynamic load
balancing implementation.

The third aspect is tasks with a large workload, also known
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as coarse-grained tasks. In practice, many parallel pro-
grams have coarse-grained tasks rather than fine-grained
tasks. This means that usually the overhead has a small
impact on the execution time. To ensure that this common
use case of the frameworks is not left out, a benchmark
with coarse-grained tasks is required. Additionally, to check
whether a difference in performance with fine-grained tasks
can be attributed to larger overhead, a benchmark with
coarse-grained tasks is required as a sort of negative control.
If the framework shows similar bad performance with the
coarse-grained task, the cause of bad performance with
fine-grained tasks can not be explained by large overhead
only, since that should have a much smaller impact on the
performance for coarse-grained tasks.

The chosen benchmarks aim to address the aspects de-
scribed above. They are adaptations from the public bench-
marks from the Lace repository [13]. For each benchmark
one version has been made for each framework. The code of
all benchmarks can be found in [14]. Below a short descrip-
tion of the benchmarks can be found, with a motivation
for their use:

Fibonacci: computes the n-th Fibonacci number. Imple-
mented using recursion. Each recursive call spawns a new
task. There is an option to specify a cutoff number smaller
than n. When a recursive call is made with n smaller
than the cutoff, the recursive call will not be parallelized
anymore, thus increasing the workload of tasks.

The used implementation is not the most efficient way to
compute a Fibonacci number but it is a useful benchmark
to test the overhead of task creation for a framework, since
each task has a very small workload (only 2.5 arithmetic
operations per task) but it spawns a lot of them ( 40 G
potential tasks for Fibonacci 50) [6]. Additionally, each
task spawns a consistent amount of subtasks compared to
the other tasks, so this benchmark can be used as the check
for the indeterministic benchmark. Because Fibonacci is
not a complex algorithm, it was also a convenient way to
become familiarized with each framework.

Unbalanced Tree Search (UTS): explores an Unbalanced
Tree to count the number of nodes. The algorithm was
originally created by The Unbalanced Tree Search Project
Team for the evaluation of the performance of dynamic
load balancing frameworks [15]. It uses shape, depth, size
and imbalance parameters to generate trees. To ensure
that the same parameters always yield the same tree, a
constant seed is used to initialize the pseudo-random num-
ber generator. The algorithm explores each parent node
depth first, creating a new task for each child node as soon
as it is found. With work-stealing enabled a breadth first
search perspective is added. Although tasks are not as
fine-grained as they are for Fibonacci, they still have a
small workload. The difference is that for Fibonacci every
task will spawn a consistent amount of new tasks, but for
UTS the amount of new tasks is indeterministic (the tree is
unbalanced, meaning that each parent node has a random
number of child nodes). This causes the threads to have
different workloads meaning that some threads will have
finished their tasks before the other threads. These threads
will have to steal tasks from the other threads, so the dy-
namic load balancing strategy is more important. Because
of its tasks with this indeterministic nature and the fact
that it has a paper thoroughly analyzing its effectiveness
and implementation [15], it has been selected as the second
benchmark.

Strassen Matrix Multiplication: multiplies two large square
matrices. It partitions the matrices into four block matri-

ces with equal size (requiring the matrices to have equal
square dimensions dividable by sixteen). For each block
matrix a new multiplication task is spawned. Each task
performs seven matrix multiplications on the partitioned
block matrices, thus spawning seven subtasks that will
then repeat this process on the smaller matrices.

A cutoff is used to prevent the algorithm from parallelizing
for too small-sized matrices, such that the created tasks
have a larger workload. This larger workload per task is
a more realistic use case of parallel programming. It also
means that the benchmark focuses less on the overhead of
task creation. Additionally, as mentioned before each task
spawns seven subtasks until the cutoff is reached. Therefore
the generated tasks have a very consistent workload, such
that dynamic load balancing does not play that much of a
role in the performance as it does for UTS.

3.2 Compilers
To compile the code, two compilers were used. The first
one is the Intel C Compiler (ICC) and Intel C++ Compiler
(ICPC) version 19.1.1.217 from Intel R© Parallel Studio XE
2020 Update 1 for Linux, installed with a student license.
This compiler has been selected because it implements
CilkPlus and OpenMP, and it includes the TBB library by
default. Additionally TBB and CilkPlus are implemented
by Intel, so it makes sense to include the Intel Compiler to
test them. On top of that research into the performance
of C/C++ compilers has shown that the Intel Compiler
performs best of all compilers when compiling OpenMP
version 4.x code [12].

The second compiler is the GNU Compiler Collection
(GCC) version 7.5.0. Note that the Intel Compiler version
is compatible with this GCC version. GCC is a widely
used compiler for C and C++ code, and also performs well
compared to other C/C++ compilers [12].

Both compilers provide optimization flags to enable opti-
mization features for the compiled code, such as the flags
-O1, -O2 and -O3 [16]. To determine if, and if so what
difference it would make to choose a different optimization
option for parallelized code, all benchmarks have been com-
piled three times per compiler, once for each optimization
flag -O1, -O2 and -O3.

3.3 Frameworks
As mentioned in the introduction, the four Load Balancing
Frameworks that will be compared are Lace, CilkPlus, Intel
Thread Building Blocks and OpenMP. Each framework is
listed below with a brief description and a simple example
of a use case of the framework:

Figure 1: Code Snippet of Lace’s version of Fibonacci.

Lace: Lace is a load balancing framework library designed
at the University of Twente. It uses a non-blocking work-
stealing deque based on the split task queue [17]. Lace
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Figure 2: Code Snippet of Cilk’s version of Fibonacci.

Figure 3: Code Snippet of TBB’s version of Fibonacci.

consists of a header file and a source file that have to be
compiled and linked with the program that is parallelized
using Lace. In Lace, to be able to spawn a function as a
task, the function has to be defined as a task with the key-
word TASK N(function name, parameters). The keyword
SPAWN(function name, parameters) is used to spawn a
defined task and SYNC(function name) to wait for a single
task to finish. See Figure 1 for the Lace implementation of
Fibonacci.

CilkPlus: CilkPlus is a task-based load balancing frame-
work for C and C++, originating from a 1994 project called
Cilk. In 2006 Cilk was commercialized with the creation
of Cilk Arts, forming Cilk++. In 2009 Intel took over
Cilk Arts, creating CilkPlus. Since 2018, CilkPlus has
been deprecated by Intel and GCC, but it still remained
embedded in their compilers. CilkPlus is not a library, it
has to be implemented by the compiler to be able to use
it. An open-source version of Cilk is still being maintained
by MIT, the original developers of Cilk [18]. CilkPlus im-
plements work-stealing deques [3]. It also has a work-first
policy, meaning that when a worker spawns a new task,
it finishes the new task first before continuing with the
old task [19]. In CilkPlus any function can be spawned
as a task with the keyword “cilk spawn” in front of the
function name. “cilk sync;” is used to wait for all tasks
spawned in the current scope. See Figure 2 for the Cilk
implementation of Fibonacci.

Intel TBB: TBB is a library for task-based load balancing
in C++ developed by Intel. It also uses work-stealing. The

Figure 4: Code Snippet of OMP’s version of Fibonacci.

TBB scheduler was inspired by the early Cilk scheduler
[20]. TBB is already built in with the Intel C++ compiler
(icpc) and can be used during compilation with the ”-tbb”
flag. Since TBB is a C++ library it should work for any
C++ compiler, but due to time constraints only the icpc
built in version is used. In TBB, a task is defined as a class.
To spawn a task an object of its class has to be created
and then called in one of the spawn functions, for example
“spawn and wait for all(task object)”. See Figure 3 for the
Cilk implementation of Fibonacci.

OpenMP: OpenMP is a parallel programming framework
defined by many big computer hardware and software
vendors such as Intel and IBM. The implementation of
OpenMP differs per compiler, but for GCC and ICC it
supports many strategies to parallelize code, including
task-based load balancing with work-stealing. [21]. In
this research OpenMP version 4.5 is used. Like CilkPlus,
OpenMP is embedded in the compiler, so it has to be
implemented by the compiler to be able to use it. To spawn
tasks with work-stealing enabled in OpenMP, the pragma
“#pragma omp task untied” can be used. “#pragma omp
taskwait” is used to wait for all tasks in the current scope
to finish. See Figure 4 for the OpenMP implementation of
Fibonacci.

3.4 Testing Environment
To run the tests a Lenovo Thinkpad p51 20HH000TUS with
an Intel i7 processor with four cores, eight virtual-cores/threads
is used [22]. It runs Ubuntu 18.04.4 LTS. Athough this
is not a multiprocessor system, it represents the target
architecture of many parallel programs and it still has four
cores. For reliability the Intel Turbo Boost technology [23]
is disabled on all cores. To ensure that the performance
is not limited by power-save settings, the CPU governor
is set to performance mode before running tests. Running
time is measured by calling the C function “gettimeofday()”
from sys/time.h right before and after the execution of the
relevant code and then looking at the difference.

To run the UTS benchmark with Intel TBB, the sys-
tem stack size has to be increased with the command
“ulimit -s <value>”. The value used was 1,000,000. To
run the UTS benchmark with OpenMP the OMP stack
size has to be increased as well by putting the keyword
“OMP STACKSIZE=<value>” in front of the execution
command. For T3L the value used was 1,000,000.

3.5 Running the Benchmarks
Every benchmark has been run on one, two, four and eight
threads, such that the speedup of using more threads can
be shown. Furthermore, for every amount of threads, the
benchmark has been run five times to remove possible
outliers.

The goal of the runs was to get execution times of over
one second. Having smaller execution times could mean
that small differences in performance are not clearly visible.
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Table 1: Average execution time in seconds of all framework & benchmark & compiler combinations with eight threads, for
optimization flag O3.

Fib 45 (No cutoff) Fib 45 (Cutoff=30) Strassen 4096 UTS T3L
Framework ICC 03 GCC 03 ICC 03 GCC 03 ICC 03 GCC 03 ICC 03 GCC 03
Lace 3.049 1.726 0.885 1.024 4.632 4.550 5.354 5.463
OMP 178.838 1031.591 0.935 1.487 4.586 4.711 18.329 22.794
CilkPlus 13.172 23.240 0.906 1.471 4.302 4.427 segfault segfault
TBB 39.268 n.d. 0.840 n.d. 4.368 n.d. 7.031 n.d.

Table 2: Fibonacci 45 (No Cutoff) for Lace with all optimization flag-compiler combinations (average time in seconds).

Framework ICC O3 ICC O2 ICC O1 GCC O3 GCC O2 GCC O1
Lace 3.049 11.740 14.524 1.726 2.444 2.733

However due to time constraints and the fact that every
benchmark had to be run five times for every amount of
threads for every framework (80 times total per bench-
mark), the runs could not last too long, so an execution
time of 10 minutes was the maximum. The parameters of
the benchmarks have been selected with this in mind.

For Fibonacci, 45 was the selected input parameter. It was
the highest Fibonacci number that could be calculated
by all frameworks in a reasonable amount of time for
any amount of workers. For OpenMP with eight workers,
Fibonacci 46 already took longer than 10 minutes to finish
without cutoff, and with less than eight workers this was
expected to take even longer. A cutoff of 30 was chosen
because it seemed to lower the execution times the most
in the experimental runs. It does not matter that much
which number around 30 it is, because it is just intended
to change the tasks from fine-grained to course-grained,
which would also happen with a cutoff of for example 29
or 31.

UTS was run with the parameters of tree T3L. This results
in a tree of size 111345631, depth 17844 and 89076904

leaves. The input variables were as follows:

• Type: Binomial.

• Root Branching Factor: 2000.

• Probability of non-leaf node: 20.0014%.

• Number of Children for non-leaf node: Five.

• Root seed: Seven.

This tree was also used for this benchmark in the devel-
opment of Lace [17], where it had 158,566 task steals,
meaning that the dynamic load balancing strategy is put
to the test. Because of the amount of steals this tree causes
with Lace it is expected that the runs of other frameworks
will require the threads to steal a lot of tasks as well, mean-
ing it is a suitable input tree to test the dynamic load
balancing strategy of the frameworks. T3L also executes
in anywhere between 5 to 40 seconds for all frameworks,
meaning that the time constraints are met as well.

The input parameter for Strassen was 4096. This denotes
the size of the two nxn matrices that are to be multiplied.
The input parameter was required to be a power of 2 and
a multiple of 16 for the algorithm to work, so the closest
alternatives were 2048 and 8192. 2048 turned out to be
too simple generating too small execution times, and 8192
too complex, so with the time constraints in mind 4096
was used.

4. RESULTS
This section describes the results of the research. Section 5
attempts to explain and evaluate the observations described
here. All results can be found as supplementary data in
[14].

The results of the runs with eight threads are summarized
in Table 1. It contains the average execution time of
all frameworks and compilers for all benchmarks. Every
benchmark was run five times to filter out outliers. The
standard deviation turned out to be very low for all test
runs, with the highest being OpenMP’s Fibonacci 45 (No
Cutoff) with only 0.8%. Therefore the average of the
five runs is considered to be accurate enough for a good
indication of the execution time. The table displays the
results of the tests for the optimization flag O3, since all
tests performed best with that flag.

Table 1 shows a clear difference in performance between
all frameworks for the Fibonacci and the UTS T3L bench-
mark. As can be seen in the table, Lace performs best for
Fibonacci without cutoff and UTS T3L with both compil-
ers. The difference between the frameworks for Fibonacci
with cutoff is very small and for Strassen only OpenMP
has a big difference.

What is interesting to see is that OpenMP has bad perfor-
mance for Fibonacci without cutoff and for UTS. Especially
for Fibonacci without cutoff there is an extreme difference
in execution time with the other compilers (1.7 seconds for
Lace compared to 1869 seconds for OpenMP).

CilkPlus has a hard coded deque limit of 1024 entries,
which is exceeded when running UTS T3L [9]. Therefore
these tests resulted in a segmentation fault, indicated in
Table 1 with “segfault”. As explained in Section 3 there are
no entries for GCC with TBB, which is why those entries
in Table 1 contain n.d. (no data).

As it turned out from the results, there were only two cases
in which there was a noticeable difference between different
optimization flags. The first was the Intel Compiler for
Fibonacci with cutoff, where the switch from O1 to O2
increased the execution time with a little over 50%. The
second case was Lace’s test run for Fibonacci without cutoff.
Here all three optimization flags showed a different timing,
for both compilers. Table 2 shows the execution times for
this second case.

Figure 5 displays the timings of Strassen for the runs
with one through eight threads. It shows that the small
differences in timings between the frameworks persist when
less threads are used. Additionally, the speedup from four
threads to eight threads seems to be close to zero. The
same patterns were present in the data of Fibonacci with
cutoff, also a benchmark with coarse-grained tasks.
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Figure 5: Average execution time in seconds of Strassen
for different number of threads.

Figure 6: Average execution time in seconds of UTS for
different number of threads.

Figure 7: UTS Speedup of each framework based on average
execution time.

The timings of UTS for all numbers of threads can be found
in Figure 6. It shows how the difference between Lace and

Figure 8: Fibonacci without cutoff Speedup of each frame-
work based on average execution time.

TBB roughly remain the same with a different number of
threads, but OpenMP gets closer to the two frameworks
when less threads are used. This difference is more visible
in the speedup in Figure 7, where Lace and TBB show
similar speedup to OpenMP. Speedup is determined as
speedup from using a single thread. It is calculated by
dividing the timing of the run with a single thread by the
timing of the run with n threads, to get the speedup for n
threads.

Perhaps the most surprising results followed from run-
ning Fibonacci without cutoff with less threads. OpenMP
turned out to have a lower execution time when running on
a single thread, with 157 seconds versus 179 seconds with
eight threads. This behaviour, displayed in Figure 8, shows
that the timings have actually deteriorated when more
than one thread is used. There is however still a speedup
from two to four threads and from four to eight threads.
Additionally, the CilkPlus and TBB graph show a speedup
when switching from four threads to eight threads, but
Lace does not speed up there. This is interesting because
CilkPlus and TBB did not show this speedup from four to
eight threads with the Strassen and Fibonacci with cutoff
runs, for which their graphs were similar to the graph of
Lace.

5. DISCUSSION
The main goal of this paper was to show how the load bal-
ancing frameworks Lace, OpenMP, Intel Thread Building
Blocks and CilkPlus perform compared to each other.

The first research question was: What is the difference in
performance between the different load balancing frame-
works? The results show that Lace has lower execution
times than the other frameworks for two benchmarks (Ta-
ble 1). The biggest difference is in Fibonacci without
cutoff, but there is also a big difference in the UTS bench-
mark. As explained in Section 3.1 Fibonacci spawns many
fine-grained tasks, testing the overhead of task creation.
Since there is no big difference between the frameworks
when running Fibonacci with cutoff and Strassen where
the tasks are more coarse-grained, the good performance
in Fibonacci without cutoff likely means that Lace adds
less overhead with task creation compared to the other
frameworks.

As also explained in 3.1 UTS tests the dynamic load balanc-
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ing strategy of the frameworks. The low execution time for
Lace in UTS can therefore indicate that Lace has a more
efficient dynamic load balancing strategy (work-stealing)
than the other frameworks. However it can not be said
with certainty that this is the only cause for the difference
in performance since UTS also spawns fine-grained tasks,
which means that overhead could also play a role.

In contrast to Lace, OpenMP does not perform well for
Fibonacci and UTS. Especially for Fibonacci, OpenMP
had very long execution times. This most likely means
that OpenMP has a lot of overhead on task creation. Since
the difference in performance is much less significant for
UTS than it is for Fibonacci, it is not yet certain that
OpenMP has a bad dynamic load balancing strategy, since
the difference could also be caused by the large overhead.

TBB performed average relative to the other frameworks.
Although for Fibonacci and UTS its execution times were
higher than Lace, they were still closer to those of Lace
than those of OpenMP. CilkPlus was in between TBB and
Lace for Fibonacci and UTS, and it was similar to the
other frameworks for Fibonacci with cutoff. CilkPlus is
not suitable for programs that create a large amount of
tasks (because of its hardcoded spawn depth limit) as was
noticed from the“segfault” entries for UTS in Table 1. Why
there was no segmentation fault for Fibonacci even though
Fibonacci handles more tasks could be explained by Cilk’s
work-first policy [19]. This policy causes threads in Cilk to
execute a newly spawned subtask first before continuing
with the task that spawned that subtask. For Fibonacci
this means that Cilk has a depth-first approach, meaning
that with eight threads and the Fibonacci implementation
in Figure 2, a maximum of 43 + 41 + 40 + 39 + 39 +

38 + 38 + 38 = 316 tasks can be generated before the
first thread has reached the depth (i.e. n<2) of its task.
Since at that point all currently running tasks must have
reached their maximum depth, and because of the work-
first policy each task that finishes goes back to the task
that had spawned it, new tasks are spawned at a slower
pace than currently existing tasks finish. Therefore the
spawn depth limit is never reached.

Based on the results Intel’s choice to deprecate CilkPlus is
questionable. Although TBB performed similar to CilkPlus
for the two benchmarks with coarse-grained tasks, TBB did
not perform better than CilkPlus, and TBB even performed
worse on the fine-grained and indeterministic benchmarks.
On top of that TBB cannot be used in C, while Intel’s
alternative for use in C, OpenMP, clearly performs worse
than CilkPlus.

The speedup of each framework is also interesting. The
speedup graphs following from running the tests with dif-
ferent numbers of threads show that for the coarse-grained
tasks all frameworks have similar speedup. Additionally,
the speedup seems to correspond to the amount of threads
that are used; two threads leads to a speedup of close to
two and four threads to close to four. This makes sense
because having two threads instead of one means that each
thread only has to do half the work, given that the load
balancing is performed optimally. Strangely enough for
the same benchmarks the speedup does not increase when
going from four to eight threads (and for some it even low-
ers by a small amount). This can most likely be explained
by the fact that the processor that was used to run the
benchmarks had eight virtual-cores or threads, but only
four physical cores, meaning that when eight threads were
used, four of those eight could not actually run in paral-
lel. Although this does seem like a plausible theory, the
speedup graphs from UTS and Fibonacci without cutoff

contradict it, since they still show a big increase in speedup
from four threads to eight threads. It is unclear if this can
be attributed to more virtual cores handling the overhead
of task creation better, or maybe to more virtual cores
handling dynamic load balancing better, or even something
else.

Another interesting observation from the speedup graph of
Fibonacci without cutoff is that OpenMP has a speedup of
lower than 1.0 when using more threads, meaning it was
slower for OpenMP to use more threads. This could mean
that OpenMP has an inefficient scheduler, since Fibonacci
spawns many tasks that all have to be scheduled for the
active threads, however further investigation would be
required to confirm this.

The answer to research question two, about the perfor-
mance of the Intel Compiler versus the GNU Compiler, did
not become very clear from the results. Lace performed
better with the GNU compiler for Fibonacci without cutoff,
while on the other hand OpenMP and CilkPlus performed
much better with the Intel Compiler for the same bench-
mark. The execution time for Fibonacci with cutoff was
shorter for all frameworks with the Intel Compiler, although
for Lace the difference was not that large. For Strassen
there was hardly any difference between the two compil-
ers. UTS T3L showed OpenMP once again performing
better with the Intel Compiler, while for Lace there was
no clear difference in performance. These characteristics
were consistent for the different numbers of threads.

To get a better indication of which compiler is best for
which framework, it would be useful to run sequential tests,
i.e. benchmarks without parallelization that, apart from
the task-based load balancing, have the same behavior as
the parallel benchmarks. The Intel and GNU Compiler
probably already have differences in performance for the
sequential benchmarks, which therefore to some extent
causes differences in performance for the parallel bench-
marks. Based on the results of the sequential benchmarks
a relative speedup can be determined such that the initial
difference for the sequential versions does not influence the
results. Since Fibonacci shows better performance with
GNU for Lace, but with Intel for CilkPlus and TBB, there
is an interesting difference for future work. If it turns out
that a framework actually performs better with one of
the compilers, it could be interesting to look at what the
compilers do different that causes that compiler to perform
better.

Research question three was: What is the difference in
performance when compiling with different optimization
flags? As described in Section 4 most Benchmark-Compiler
combinations did not result in a noticeable difference be-
tween the compiler flags O1, O2 and O3. It also has a
similar problem to research question two. Although all
timings usually decrease when a better optimization flag is
used, this does not necessarily mean that the optimization
flag affects the performance of the mechanics of a load
balancing framework. If the same difference is present
when running sequential tests, then the mechanics of the
frameworks are not affected by the optimization flag, but
rather the sequential code. Therefore this also requires
future work.

A few other studies mentioned in 2 have already explored
differences in performance between task-based load bal-
ancing frameworks and compilers implementing the frame-
works. The comparison from Podobas et al. [7] has shown
that Cilk++ performed better than OpenMP 3.0 on fine-
grained tasks. This is in line with the results in this paper
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for Fibonacci without cutoff in Table 1.

The comparison from Olivier et al. [4] showed that Cilk,
Cilk++ and Intel Thread Building Blocks all outperformed
the OpenMP 3.0 implementations. This is again in line
with the execution times seen in the results for Fibonacci
and UTS.

Sandia National Laboratories compared CilkPlus, TBB
and OpenMP [8]. They concluded that although there
were differences in performance, none of the frameworks
could be considered the best, since every framework that
did well on one benchmark, scored worse than the others
on a different benchmark. My results are not in line with
this observation, since the frameworks that performed well
on Fibonacci and UTS did not perform worse than the
others on Strassen. This could however change when my
benchmarks are run on a system with more cores.

The research focusing on optimization flags [11] discussed
that the switch from O1 to O2 had the biggest impact on
performance. Although for most benchmark-compiler com-
binations in my research there was no noticeable difference
between the optimization flags, the case where there was a
difference (Fibonacci with cutoff for Intel Compiler) shared
the observation that the biggest impact was from O1 to
O2.

The compiler comparison performed by Colfax [12] showed
that the OpenMP version 4.x code performs better when
compiled by the Intel Compiler than when compiled by
the GNU compiler. My results showed that for OpenMP
version 4.5 the code compiled by the Intel Compiler also
performed better than the code compiled by the GNU
compiler.

6. CONCLUSION
This paper shows the performance of the load balancing
frameworks Lace, OpenMP, Intel TBB and Cilk compared
to each other. Tests are run using three benchmarks:
Unbalanced Tree Search, Fibonacci and Strassen matrix
multiplication. The benchmarks were compiled with the
Intel Compiler as well as the GNU Compiler to study what
consequences this has for the load balancing framework per-
formance. The experiments revealed that on the overhead
of task creation and the efficiency of the dynamic load bal-
ancing implementation Lace has the lowest execution times,
CilkPlus and TBB score intermediate and OpenMP has the
worst performance. CilkPlus was a little bit better than
TBB. Speedup-wise Lace, CilkPlus and TBB performed
similarly for UTS and Fibonacci, with the exception for
the eight-threads runs. The difference there can most likely
be explained by the fact that there were only four physical
cores and the remaining four were virtual cores. OpenMP
showed smaller speedups than the rest for Fibonacci and
UTS. The results for Fibonacci suggest that Lace has the
least overhead on task creation, followed by CilkPlus, then
TBB and then OpenMP. The results from UTS suggest
that Lace has the best dynamic load balancing strategy,
followed by TBB and then OpenMP. For the benchmarks
with coarse-grained tasks all frameworks had close to equal
execution times and speedups.

No consistent difference was found between the Intel Com-
piler and GNU Compiler. For some compiler-benchmark
combinations the Intel Compiler showed better results,
whereas for other combinations the GNU compiler per-
formed better. Future work is required before reliable
conclusions can be drawn regarding with which compiler a
framework performs better.

As expected, using a higher optimization flag yields better

performance (albeit only slightly better) for nearly all test
runs. It can not be excluded, however, that this is purely
caused by optimizations in the sequential components of
the benchmarks. To determine whether the mechanics of
the frameworks are also affected by the optimizations of
the optimization flags, future work is required.

6.1 Future Work
Some relevant concepts have not been explored yet due
to the limited time for this project. One such thing is
running the benchmarks on multiprocessor systems with
more available cores. This way it can be tested whether
the observed increase in speedup in this research will be
continued when more than 8 threads are used.

It would also be interesting to test the frameworks with
more benchmarks to cover more problem domains and
scenarios. Examples of such benchmarks are are Alignment
and SparseLU from the Barcelona OpenMP Task Suite [6]
which had even more coarse-grained tasks than Strassen.

Monitoring performance with tools such as Linux’s ”perf”
could provide new insights into lower-level events that
occur during execution. Furthermore a study into the
generated executables could show how the frameworks are
interpreted by the compilers, which helps in finding the
cause of differences in performance and may lead to new
strategies to improve performance.
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