
Using Graphviz to create aesthetically pleasing LaTeX
drawings of graphs

Niels Benen
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

n.j.benen@student.utwente.nl

ABSTRACT
In this paper, the design of an application built to extend
upon GraphViz is outlined. The current solutions relating
to visualizations of graphs are discussed, after which a new
architecture is proposed. In this architecture, an applica-
tion allows a user to upload a graph, after which a ‘first’
drawing will be created. The user can then change this
drawing by moving around nodes and edges, and finally
export this drawing to LATEX. This is not possible within
any of the currently available programs. Features which
will assist a user in creating a graph to their liking are dis-
cussed, and a prototype implementing these features was
created to verify that the application works correctly.

Keywords
Graph Visualization, Graph Manipulation, GraphViz, TikZ

1. INTRODUCTION
A graph is an abstract mathematical object consisting of
nodes and edges, used to depict relational information in a
data set. A graph drawing is a 2D representations of these
nodes and edges, where each node is shown as a circle and
each edge as a line or a curve. By drawing a graph, the
structure can be illustrated and useful properties such as
symmetries and planarity can be uncovered. Graph visu-
alization has always been a much-researched topic within
the community of graph science. Countless algorithms ex-
ist which will all return a different layout for the same
input (in the form of nodes and edges). In general, all
algorithms try to fulfil the following aesthetical criteria
[3]:

• Evenly distributed nodes, with a minimum distance
between them, and should not overlap.

• Minimal number of edge crossings.

• Minimal number of edge bends.

• Minimal edge lengths.

• Maximize minimum edge angles within a node. This
means that no two edges should come into a node
at an (almost) equal angle. This avoids cluttering of
edges.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
33rd Twente Student Conference on IT July. 3rd, 2020, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

• Maximize symmetry.

• Minimize graph area.

It is often the case that minimizing one aesthetical criteria
will lead to the increase of another. Algorithms which
create graph drawings are therefore trying to fulfil (some
of) the aforementioned criteria, but no single algorithm
can be fit for all different use cases.

2. CONTEXT
There are already many available algorithms which can ac-
commodate a graph visualization. There are many differ-
ent types of algorithms, of which Force-Based and Layered
Drawings are more the most common type of algorithms
that will work on many types of input graphs. For this
reason, these lay outs will therefore be explained in more
detail [14]. Besides these algorithms, there are also many
algorithms which only work when the input graph has cer-
tain properties. These algorithms are also discussed.

2.1 Force-Based Layout
In a force based layout algorithm, each node has a re-
pulsive force on all other nodes, but edges create an at-
tractive force between the connected nodes. Then, based
on real-life physics, a minimized energy state is pursued.
In general, the closer two nodes are to each other, the
stronger the repulsion will be between them. This force
will get so big that all edges will come close to an ‘ideal
length’, avoiding very short edge lengths. In this state,
there should be as little forces as possible still acting on
any node [1].

2.2 Layered Drawing (Sugiyama Drawing)
In a layered algorithm, all nodes are first assigned a layer
using a separate algorithm (for example Coffman-Graham).
It should be noted that this algorithm requires a DAG (Di-
rected Acyclic Graph). Therefore, if the input graph has a
directed cycle, the first step of this algorithm is to perform
a cycle removal stage. When this is the case, one or more
edges will be reversed to make sure the graph becomes
acyclic. Then, each of the nodes are assigned a layer, such
that edges only move downwards from layer to layer, thus
disallowing edges on the same layer or moving upwards.
Coffman-Graham, or similar algorithms, are designed to
perform this task. Once all nodes have been assigned a
layer in this way, an edge crossing minimization phase is
entered. During this phase, the nodes get ordered from
left to right among the layer they were assigned to in the
order which yields the fewest number of crossings [1]. This
problem is NP-hard and no practical algorithm is known
to date [4]. Therefore, a heuristic function is used for this
stage. Finally, the edges that were reversed will be re-
turned back to their original direction. This means that

1

there still might be edges that move up the layers, which
might be undesirable and should be taken into account
when creating a Sugiyama Drawing of a directed cyclic
graph.

2.3 Other Algorithms
There are also plenty of other algorithms, such as circu-
lar, radial and tree layouts. In a circular layout, nodes
are divided into clusters. Each cluster gets placed along
the circumference of an individual circle. This is useful for
showing clustered information within graphs [12]. A radial
drawing is an extension to this, with the additional con-
straint that each circle has the same center, and only the
radii differing. As mentioned, these algorithms often only
work properly on input graphs that have certain proper-
ties, such as being a (binary) tree.

Usually, it is up to the creator of the graph to determine
which algorithm they find the best fit. Even if the graph
can very cleanly be displayed using a circular layout, the
creator might find that another algorithm produces a bet-
ter result because it encapsulates his thought of the graph
better. For the same reasons as described in section 1,
there is no ’best’ way to draw a graph. One person might
find one aesthetical criterion to be the most important
while another person might think this criterion is not as
important.

3. REQUIREMENTS
It is important that the application adheres to a number
of requirements to ensure that it works correctly and in-
tuitively. An important general requirement is that the
application should be free-to-use, so that every researcher
around the world could make use of it without the need
for any financial investments.

3.1 Importing of Graphs
As the program does not facilitate the creation of graphs,
nodes or edges, it is important that the user can import
a graph using an easy-to-create format. The easiest way
to allow for this is by having the user upload a graph in a
format in which only the edges are specified. This infor-
mation alone is enough to create a drawing of the graph
and thereby requires the least effort by the user. It would
also be preferable if the format used is already widely used.
By conforming to already an available specification, it will
be much easier for a (new) user to use the application.

3.2 Provide a lay-out for the graph
Once the user has uploaded a graph, they should be able
to choose from a variety of different lay-out algorithms to
facilitate the type of graph they uploaded. Once an algo-
rithm has been selected, the program should automatically
create a drawing of the provided graph. This should be
done via an already available API, specifically designed
for the purpose of graph drawing. This ensures that the
first drawing presented to the user is as good as possi-
ble. It might happen that an edge goes through another
node. The user should be notified about these collisions by
a message informing them about which edge(s) collide(s)
with which node(s).

3.3 Allow for customization
It is important that a user can customize the graph to
their liking. This includes the toggling of labels, toggling
directed edges and the specification of node size. By al-
lowing a user to set these parameters, they can easily cus-
tomize the graph to their liking. Furthermore, it should

be possible to move nodes or curve edges simply by click-
ing and dragging them to another location. By allowing a
user to do this, (minor) errors by the aforementioned API
can be mitigated by the user.

3.4 Export to LaTeX
Finally, the application should ensure that the graph can
easily be exported to LATEX. A user should be able to
simply copy paste the generated result into the document,
which should then place the graph they created there. In
this process, it is important that the graph is scaled cor-
rectly, such that the relative distance between any two
nodes remains the same, and that the node size is also
scaled accordingly. If the node size would not be scaled,
it can be possible that an edge will go through another
node in the exported drawing, but not in the application,
because the relative sizes differ.

4. EXISTING SOLUTIONS
There are already available applications which can gen-
erate an initial drawing of a given graph. Furthermore,
there is also an extension to LATEX which allows a user to
generate and neatly display a given graph in a document.
We will look at two often-used graph drawing programs:
GraphViz and yEd. Their APIs will also be examined to
determine which program is the best to extend upon. We
will also look at TikZ, the LATEX extension which provides
features to draw graphs.

4.1 Graph Drawings Programs
4.1.1 yEd

yEd is a closed source program that allows a user to upload
a graph in a specific format [15]. A selection can be made
from a wide variety of lay-out algorithms, among which
the most common ones such as a force-based layout. It is
possible to customize a graph to a certain extent. A user
can change the color of the nodes or the size of a node. It
is not possible for a user to edit the topology of a created
graph; a user has to take this graph for what it is and is
not able to manipulate this topology any further. This is
a major shortcoming, as the lay-out algorithms often, as
described before, rely on heuristics to come up with the
best graph. These heuristics are not fail-proof, and it may
happen that a node is placed in a non-optimal location. A
created graph can be exported into a variety of common
formats, such as .PDF, .JPG and .PNG, but there is no
option to directly export to a LATEX compatible format.
The API of yEd is well-documented and offers all of the lay
out algorithms that are also offered by the official GUI [16].
A license is needed to be able to use the API. This license
means that creating an application that runs using this
API has to be closed-source, or requires users to buy their
own API key. This is of course not desirable and directly
counters the requirement that the application should be
free-to-use.

4.1.2 GraphViz
GraphViz is an open source program that does not itself
come with any sort of GUI. [8] It allows a user to upload
a graph in the .DOT format. This format requires a user
to list the edges in any graph and will, using this informa-
tion, generate the complete graph. GraphViz also offers
a variety of common force-based and layered layouts, as
well as some other lesser-used layout algorithms [6]. As
GraphViz purely applies a lay-out algorithm to a graph,
it is not possible within GraphViz to change the created
graph. But, just like with yEd and any other graph draw-
ing software, the generated drawing might not be com-

2

a

b

c

d ef

g

h

k

Figure 1. A graph as created by GraphViz using
the FDP algorithm

a

b

c

d ef

g

h

k

Figure 2. The same graph in planar form

pletely to the users liking. An example of such a graph is
given in Figure 1. This graph is generated by GraphViz
and has not been altered. Generally, planar graphs are
easier to look at and understand. A planar graph is a
graph with no overlapping edges. It is not possible to cre-
ate a planar drawing for every graph and they are hard for
an AI to automatically create, which is why an AI will try
to approach a planar drawing. A user might then manip-
ulate the drawing to create a planar drawing, such as the
one in Figure 2, and think that this drawing is a better fit
for their purpose.

The GraphViz API offers quick and easy access to all of
the features it offers. As mentioned before, GraphViz is
open source and this means that their API is free to use.
Because GraphViz is written in C, the API is also in C
[7]. But there are also APIs available that allow the use
of GraphViz in both Python and Java [11].

4.2 Graphs in LaTeX
Many researchers use LATEX to write their reports, papers
or other documents. The general way of getting a drawing
of a graph in a LATEX document now is as follows: first,
the software generates an image of the graph, which can
then be inserted into the document using. This means that
additional steps have to be taken to load a graph into a
document, which slows the process down. Furthermore,
inserting images into a LATEX document can make this
image pixelated, and thereby not readable. There is also
a LATEX extension to generate graphs, called TikZ [13].
This program allows a user to neatly insert a graph in

a document, just like a table or a list would be inserted.
TikZ does not provide any inbuilt lay-out algorithms which
will generate a graph based on a list of nodes and vertices.
Graphs can only be generated by providing the (relative)
positions of each of the nodes This makes it so an author
cannot generate a first guess of any graph. On top of
this, if a small change is made to the graph, the whole
document has to be reloaded for the change to be loaded
into the document. Creating a curved edge is possible by
providing the angle at which an edge has to leave a node,
or by giving an edge a specific parameter. It is not easy for
a human to work out at what angle the edge should leave
the node when the result does not automatically update,
and the parameters do not yield full flexibility but rather
only specific angles.

dot2tex
It should be noted that there is already an application to
convert GraphViz drawings to a LATEX compatible format,
called dot2tex [5]. This application does not preview the
created graph to the user, which means that they would
have to paste the generated into a LATEX document before
they can see the result. This makes it hard to compare
different lay out algorithms. On top of this, there is again
no option for customization of the positions of the nodes
and edges, unless the returned code is edited manually by
the user. It is then a blind guess as there is no direct feed-
back to what the user edited, which makes the application
unfit for the purpose of this research.

5. NEW ARCHITECTURE
An application was designed to fulfil all of the require-
ments. In this section, the design of this application is
discussed.

5.1 Libraries used
As described before, the application should extend an al-
ready available graph drawing API to make sure that all
the requirements are met. In order to be able to meet the
requirement that the application should be free-to-use and
available to anyone, the preference lied at an open-source
graph drawing software. This is why the GraphViz Java
API was chosen as the API to use for generating the first
drawing of the graph. This decision was taken in spite
of the relatively few lay-out algorithms that are offered
by GraphViz (five). This fact was not seen as a major
problem, though, as the nature of the application allow-
ing people to change the graph to their liking means that
there is no need for a lot of different algorithms. The five
algorithms offered are therefore sufficient, as the combina-
tion of these manage to evaluate many of the input graphs
quite well.

As mentioned previously in section 4, there is already an
available extension which can display a graph in a very
neat manner in a LATEX document, called TikZ. As this
extension offers a great variety in options to accommodate
the lay-out of a graph within a document, TikZ will be
used to display the graphs within LATEX.

5.2 Implementation
A prototype was created implementing the most important
features. The code can be found on the GitHub page of
the project [2].

5.2.1 Importing of Graphs and generating lay-out
Because GraphViz was designed to work with .DOT files,
it was only logical to also use that as the way for users to
import a graph into the application. In the DOT language,

3

Figure 3. The GUI of the prototype

a user first specifies whether the graph is directed or not.
Optionally, the user can then define all the nodes with
an ID and define some properties that define their layout,
such as shape, color and label. For this prototype, only
the label feature has been implemented. Finally, all edges
are defined by: nodeFrom – nodeTo for undirected graphs
or nodeFrom -> nodeTo for directed graphs. If a node ID
was not defined before, it will be automatically created at
this stage with the default lay out properties. An example
DOT file is given in Figure 4. Once the user uploaded the
file and selected the layout method, the selected file will be
parsed and the lay-out will be generated by GraphViz. It
is possible for GraphViz to return a drawing with splines
(curved edges), but the application requests GraphViz ex-
plicitly not to do this. There are a few advantages to this,
the main one being that it creates a more intuitive envi-
ronment for the user. This will be explained in more detail
in section 5.2.2.

The lay out algorithms offered by GraphViz are described
in [6], and consist of two force-based lay outs (FDP, NEATO),
a layered drawing (DOT), a radial lay out (TWOPI) and
a circular lay out (CIRCO). There is also the OSAGE al-
gorithm, but this algorithm is built for displaying larger,
clustered graphs. As this application focuses on smaller
graphs which can be displayed in documents, this algo-
rithm will not be discussed further.

digraph {
a [l a b e l =”Foo ”] ;
a −> { b c } ;
b −> c ;

}

Figure 4. The DOT file for a triangular graph

This layout is returned in the plain format [9], which in
turn will be parsed again by the program. The program
will store the generated location and label of each of the
nodes as well as the (from, to) tuple of all edges. Based
on the screen size of the user, the graph will be scaled to
fill as much of the screen as possible and is moved towards
the middle of the screen. In this step, special care was
taken to ensure that the relative positions of the nodes do
not change.

5.2.2 Graph Customization
Now that the graph is presented to the user, it is possible
to manipulate the graph. One of the main issues that mas-
sively decreases the readability of a graph is edges which go
through another node. To inform the user of such events,
the colliding nodes and edges will be colored red. The user
can then decide to fix these collisions by moving nodes or
curving edges. The GUI of the prototype is shown in Fig-
ure 3.

Moving a node is simple, the user can drag and drop any
node to any other location on the screen. The edges that
are connected to that node will automatically move along
with the node. This happens instantly when the node is
moved, even if the user has not released the node. This
immediate feedback makes it so a user can see what effect
moving one node has on the total picture.

The decision was made to also allow users to curve edges.
A user can click on an edge and drag around his mouse,
just like with the movement of nodes. The line then be-
comes a Bézier Curve with a control point at the position
of the mouse. Doing so allows for users to move the edges
in an intuitive manner. This is also the reason why it was
decided that the initial drawings should be straight-lined.
The splines that are produced by GraphViz are Bézier
Curves with n control points. This would mean that curv-
ing an edge would no longer result in an edge that would

4

predictably follow a complete trajectory according to the
position of the mouse, but rather one that only changes
a part of the curve. The splines that GraphViz automat-
ically create can have many control points, which would
mean that the user would have to move each and every
one of these points by hand in order to change the tra-
jectory of a curve completely. Alongside this, when many
control points get placed close together, it becomes very
hard to determine which control point the user meant to
click. This problem is amplified by the fact that control
points lie away from the actual curve and are invisible to
the user. For this reason, it was decided that a user can
only create a curve using one control point.

More features were added that allow the user to customize
the look of the graphs, such as changing the size of the
nodes and toggling whether labels are shown.

5.2.3 Export to / Import into LaTeX
The application also comes with the option to export the
created graph into a LATEX document. Because use cases
will differ across different graphs, the maximum width and
height can be defined. The application will then scale the
graph down to fit these new dimensions, again ensuring the
preservation of relative positions. Because TikZ uses a co-
ordinate system starting from the bottom left, whereas the
application uses a coordinate system starting from the top
left, all node positions are amended to ensure that that the
graph will not be upside down when displayed in LATEX.
Then, the graph is finally exported to a TikZ compatible
format such as the example in Figure 5 as follows:

First, the picture is initialized by setting some properties
that control the lay-out of the nodes. Then, each node
is defined with their ID, position and label. If no label
is present, the value between the curly brackets will be
empty. Finally, all the edges are drawn and the picture is
created.

Because TikZ does not draw the quadratic Bézier curve
produced by the application in the same way, a conver-
sion has to take place. Within TikZ, using only one con-
trol point will result in the creation of an edge that is a
cubic Bézier curve with two control points in the same
spot, rather than a quadratic curve. This means that the
edge is much sharper than originally shown in the applica-
tion. To convert the quadratic Bézier curve produced by
the application to an equivalent cubic one, the following
theorem is used:

Theorem 1. Let p1, p2 be the start, respectively end
point of a quadratic Bézier curve, and q1 be the control
point. The two control points c1, c2 for a cubic Bézier

\begin { t i k z p i c t u r e } [every node / . s t y l e={draw ,
c i r c l e , minimum s i z e =0.45cm, inner sep =1}]

\node (a) at (3 . 7 1 , 8 . 3 4) {Foo } ;
\node (b) at (3 . 7 1 , 1 . 1 2) {b } ;
\node (c) at (9 . 9 7 , 4 . 7 3) {c } ;
\draw[−{Latex [l ength=2mm] }] (a) −− (b) ;
\draw[−{Latex [l ength=2mm] }] (a) . .

c o n t r o l s ($ (1 0 . 1 9 , 8 . 8 3) ! 1 / 3 ! (a) $)
and ($ (1 0 . 1 9 , 8 . 8 3) ! 1 / 3 ! (c) $) . . (c) ;

\draw[−{Latex [l ength=2mm] }] (b) −− (c) ;
\end{ t i k z p i c t u r e }

Figure 5. Generated TikZ code for the example
DOT file in Figure 4, with a curved edge from a
to c

curve can then be defined as [10]

c1 = p1 ∗ 2

3
(q1− p1)

c2 = p2 ∗ 2

3
(q1− p2)

This is equivalent to setting the 2 new control points at
exactly one third of the distance between the old control
points and the start and end points. Therefore, this is
exactly what happens in the generated TikZ code.

The main benefits of being able to perform all these tasks
within one application are ease of use and the fact that
they can be performed more quickly. This will save users
a lot of time in the long run, as they will no longer be
required to export the result of one application into an-
other application to perform the next step in the process
of creating a graph, but rather they can directly go from
the .DOT specification to the LATEX compatible format.

6. VERIFICATION
To verify whether the new architecture adheres to the re-
quirements as specified in section 3, a number of tricky
graphs were tested together with the supervisor of the
project, prof. dr. ir. Hajo Broersma. The tested graphs
were a cube, a dodecahedron and the Petersen graph. In
all cases, the graph could easily be imported into the pro-
totype using the .DOT description of the graph. These
dot files can also be found on the GitHub page of the
research.[2] Some of the results produced during this ver-
ification can be found in Appendix A.

Cube
First, it was tested how the available lay-out algorithms
presented the cube to the user. The NEATO and FDP al-
gorithms were found to present the user with a very good
first guess for what the graph should look like if a 3d rep-
resentation of a cube was desired. The CIRCO algorithm
would return a graph that could easily be manipulated to
create a planar graph.

Dodecahedron
The dodecahedron is a more complex graph consisting of
20 nodes. Despite this, it can still be displayed in a planar
form. None of the provided algorithms will instantly dis-
play this planar form, but the NEATO algorithm comes
quite close. The result could be manipulated to create a
planar representation of the graph by moving the middle
circle to the outside. Furthermore, the FDP algorithm
displayed the best 3d result.

Petersen Graph
As a final test, the Petersen graph was examined. This
graph is commonly displayed in a variety of different lay-
outs, but none of the provided lay-out algorithms would
properly capture this. Despite this, the desired represen-
tation of the graph could still be created by using the
available manipulation tools when using the FDP algo-
rithm as a basis. This is, in this case, hard to do without
prior knowledge of what a user wants a graph to look like
in the end, but even without this knowledge a user can
move the nodes and edges until they find a lay out that
they like.

The final test concerned testing the correctness of the func-
tion which exports the graph to LATEX. The created graphs
were exported to a TikZ compatible format and put in a

5

LATEX document. This feature is mostly functional, al-
though there are still some minor bugs, such as node sizes
differing if a node has a longer label than the others. All
of the graphs in this paper have been created using the
prototype and its export function.

7. CONCLUSION
This research set out to find a solution to help researchers
produce nice LATEX drawings of graphs. By defining a
number of requirements for a new architecture, the pro-
cess of creating visualizations can be sped up drastically.
All these requirements have been fulfilled by means of
a prototype. The prototype was verified to be working
correctly in a testing session together with the supervi-
sor of the project. It was also found that, indeed, it was
easy to manipulate any graph to the user’s liking. The
most useful lay-out algorithms to start with for the tested
graphs turned out to be the CIRCO, NEATO and FDP
algorithms. The TWOPI and DOT did not produce nice
drawings for any of the tested graphs, but rather returned
unusable results. A few examples of such unusable graphs
are shown at the end of Appendix A, Figures 13-15. As
stated before, TWOPI is a lay-out algorithm that only will
work nicely on graphs which can nicely be visualized by a
radial layout. DOT is a layered drawing, which does not
work well for geometrical figures, but will work on many
other types of input graphs. There is definitely potential in
creating an application that helps researchers create aes-
thetically pleasing graphs as it will speed up the process
of creating (smaller) graphs, and available libraries do not
always return the desired result.

8. DISCUSSION AND FUTURE WORK
During the verification of the program, it became apparent
that more features could be added to assist a researcher in
creating even better graphs. Firstly, more manipulation
options could be added. This includes features such as
adding labels to edges, being able to create dotted edges
or changing the color of the nodes. Furthermore, it would
be very handy of researcher to be able to ’snap’ to the
x- or y-coordinate of other nodes. This would make it so
symmetries can much more easily be created, as the user
would not have to rely on their own eyes to see whether
two nodes are aligned or not. This feature would also assist
a user who would like to use the application with a bigger
graph, although there will always be a maximum number
of nodes that can fit because of the limited available space
and lack of zooming capabilities on a physical paper.

9. REFERENCES
[1] G. D. Battista, P. Eades, R. Tamassia, and I. G.

Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. 1999.

[2] N. Benen. Graph visualization tool. https:
//github.com/nielsbenen/GraphVisualization.

[3] C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch.
The aesthetics of graph visualization. Proceedings of
Computational Aesthetics in Graphics,
Visualization, and Imaging, pages 57–64, 01 2007.

[4] C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger,
M. Jünger, G. W. Klau, P. Mutzel, and
R. Weiskircher. A branch-and-cut approach to the
crossing number problem. Discrete Optimization,
pages 373–388, 05 2008.

[5] K. M. Fauske. dot2tex - a graphviz to latex
converter. http://ftp.cvut.cz/mirrors/ctan.org/
graphics/dot2tex/dot2tex.pdf. [accessed
28-May-2020].

[6] E. R. Gansner. Drawing graphs with Graphviz.
http://www.ammd.ch/1.pdf, 2011. [Accessed
1-June-2020].

[7] E. R. Gansner. Using Graphviz as a Library.
https://www.graphviz.org/pdf/libguide.pdf,
2014. [Accessed 25-April-2020].

[8] Graphviz. https://www.graphviz.org/.

[9] Graphviz. https://www.graphviz.org/doc/info/
output.html#d:plain. [Accessed 29-April-2020].

[10] D. Morgan. Degree Reduction of Bézier Curves.
https:

//yamnuska.ca/geek/degreeReductionBezier.pdf.
[Accessed 15-June-2020].

[11] S. Niederhauser. graphviz-java.
https://github.com/nidi3/graphviz-java.

[12] J. Six and I. Tollis. A framework for circular
drawings of networks. Graph Drawing, 1731, 07 1999.

[13] TikZ. https:
//www.overleaf.com/learn/latex/TikZ_package.

[14] R. Vaderna, G. Milosavljevic, and I. Dejanovic.
Graph layout algorithms and libraries: Overview
and improvements. 03 2015.

[15] yEd. https://www.yworks.com/products/yed.

[16] yEd. https://www.yworks.com/products/yfiles/
documentation.

6

APPENDIX
A. RESULTS OF THE VERIFICATION

1

2

3

4

5

6

7

8

9

10

Figure 6. The Petersen Graph as returned by the
FDP algorithm

1

2

34

5

6

7

89

10

Figure 7. The Petersen Graph in a more readable
form after manipulation

a

b

c

d

e

f

g

h

Figure 8. The Cube as returned by the NEATO
algorithm

Figure 9. The Dodecahedron as returned by the
NEATO algorithm

Figure 10. The Dodecahedron in planar form after
manipulation

a

b

c

d

e

f

g

h

Figure 11. The Cube as returned by the CIRCO
algorithm

7

a

b

c

d

e

f

g

h

Figure 12. The Cube in planar form after manip-
ulation

a

b

c

d

e

f

g

h

Figure 13. The Cube as returned by the DOT
algorithm

11
12

13

14

15
16

17

18

19

1

2 3

4

5

6

7
8

9

20

10

Figure 14. The Petersen Graph as returned by the
TWOPI algorithm

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8

9

20

10

Figure 15. The dodecahedron as returned by the
DOT algorithm

8

