
Recipe Suggestion for Meal-Sharing Online Marketplaces
Julien Robert

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
j.c.a.robert@student.utwente.nl

ABSTRACT
Meal-Sharing platforms, being part of the sharing econ-
omy, need strong user retention. Based on the principle
that a recipe suggestion algorithm can help to increase
user retention of such platform, this paper investigates the
design of a recommender system for recipe suggestions.
Different recommender system model are evaluated and
compared using metrics such as meal sellability, RMSE,
Recall and Precision. As no data is available of meal-
sharing platform, this paper investigates on how to create
a dataset that can be used by the recommender system.
The comparaison of the models is done thanks a recom-
mender system prototype.

Keywords
Suggestion Algorithm, Recommender Systems, Recipe Rec-
ommender System, Meal-Sharing Platform

1. INTRODUCTION & RELATED WORK
Meal-Sharing Online Marketplace are web platforms that
have the goal to let food-lovers buy from (private) cooks.
Many meal-sharing platforms failed due to the lack of users
or their bad execution [8]. Their problem is their user
retention [8].

Suggestion algorithms, also known as Recommender Sys-
tems, permit finding information of interests customized
according to users’ preferences [4]. Recommender Sys-
tems (RS) is a computer science topic researched since
several years [2, 14] with already production ready tech-
niques. Most early recommendation approaches are based
on machine learning concepts or information retrieval [17].
According to Alan Said et al. [17], there is a difference
between ”an item being recommended to a user (recom-
mendation) and a query being posted in order to find a
relevant item (information retrieval)”. This paper focuses
on how to recommend a recipe to a meal-sharing plat-
form application user. Recommender Systems have dif-
ferent approaches [19], only the collaborative filtering and
content filtering approaches for performing location-based
recommendation are investigated. Collaborative filtering
systems, in our case, recommend recipes (items) based on
the similarity between different users and or items (rat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
33rd Twente Student Conference on IT July. 3rd, 2020, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

ing) [13]; on the other hand, content-based systems take in
account properties of recipes. This means recommending
recipes based on the user meal order history and ratings
[13].

The business advantage of a recommender system is to
increase the user retention, the user engagement and the
cross-sales (for an online shop) [11]. While user engage-
ment and retention are crucial for any online marketplace,
the focus of the research is made on food related online
marketplace such as meal-sharing platform. A Recipe Rec-
ommender System (RRS) for such platform can be useful
to increase the user retention, based on the principle that
people looking for a meal to cook would use the applica-
tion, and hopefully sell the prepared meals in the platform.

The above mentioned RS approaches have different pros
and cons. For instance, collaborative filtering, while be-
ing useful because not the whole characteristics of items
has to be known, require a decent user base in order to
be relevant and that users have rated the items. A non
rated item cannot be recommended by the system. This
problem is called the cold start issue. The target of this
paper is for business owners or IT managers that want to
improve their meal-sharing platform user retention via a
recipe recommender system. It is then took in considera-
tion that starting meal-sharing platform will not have at
first a decent user base. Contrary to collaborative filtering,
a content-based filtering requires extensive items’ descrip-
tion [13]. Content-based filtering is hence not be subject to
the cold start problem, however, by recommending items
close to what the user purchase there is significantly less
discovery of recipes than with the collaborative filtering
method [15]. For a recipe, items information such as the
ingredients of the recipes or its type of cuisine are hence
required. This is easier information to get than acquiring
users.

All of this together leaves us with trying to investigate how
to build and create a recommender system, given not much
or no data. Others than the best methods to choose or to
combine, other decision must be made while designing a
recommender system. The exhaustivity of the thoughts
about the requirements was a hard thing to do before the
research that has been on building a Recommender Canvas
[18]. The requirements and the use of the Recommender
Canvas are discussed in Section 3.

2. PROBLEM STATEMENT
The main contribution and topic of this paper is to in-
vestigate how to build a recipe recommender system for
a meal-sharing platform. The research will contribute as
well by introducting how to build a dataset for the meal-
sharing platform recommender system, and sharing the
end result (dataset). The goal is to help those platforms

1

to keep the users they need; given that the business own-
ers agree with the assumption that a recommender system
can help their business.

To fulfill these goals, the research answers the following
questions:

1. RQ1 What are the design requirements for a Recipe
Recommender System?

2. RQ2 How to prepare data to train a Recipe Recom-
mender System?

(a) How to efficiently scrape recipes from the Web?

(b) How to generate user (preferences) data?

3. RQ3 What state-of-art recommendation techniques
should be used for a Recipe Recommender System?

(a) How to evaluate the sellability of a meal?

3. DESIGN REQUIREMENTS
User retention is crucial for a peer-to-peer meal-sharing
platform, so any possibility to increase it should be inves-
tigated. RS are a possible way of increase of user retention
and engagement [10]; its effectiveness in the meal-sharing
field needs to be proven, but for that, a Recipe Recom-
mender Systems, must be first developed. As there is much
research on RS, we can base ourselves on different exist-
ing (state-of-art) techniques and (possibly) combine them.
The fact on combining different techniques has proven its
effectiveness in the Netflix Challenge where the winning
solution was a combination of different filtering algorithms
[13].

The requirements of the recipe recommender system can
be thoughts in two manners:

• Business Requirements, meeting the expectation of
the meal-sharing platform

• System Requirements, design permitting to fulfill the
business requirements

Concerning a few business requirements, the Recipe Rec-
ommender System should suggest meals that match the
taste of the user. Those recipes must, as well, be benefi-
cial to the surrounding users (match their taste). Those
two requirements are made in assumption that it will in-
crease the meals sellability on the platform and its user
retention.

The research is based on the hypothesis that a meal-sharing
platform contains the following data:

D.1 User basic information

D.2 User food preference

D.3 Orders Rating & History

D.4 Recipes data

D.1 contains limited and simple user information as the
user ID (ID), full name (name) and its delivery location
(latitude, longitude).

D.2 contains what characteristics a user likes about recipes.
Those recipes characteristics are named tags.

D.3 contains all orders that took place in the platform and
their ratings (user id, recipe id, rating).

D.4 contains the recipes’ information, such as their cate-
gories (tags) and ingredients.

We can assume that the hypothesis is valid because of
the necessity of these data for the good functioning of the
platform.

The taste of the user can be measured using user food
preferences and the sellability can be assumed with the
surrounding user food preferences.

For designing such a recommender system, there needs to
be some guidance to set precisely and organized the recom-
mender system requirements. Thanks to the development
of the Recommender Canvas by G.van Capelleven et al.
[18], there is now a way to identify the key requirements
of a Recipe Recommender System.

The Recommender Canvas has been used to define the
requirements of the meal-platform suggestion algorithm,
cf. Figure 1. The Capelleven’s Recommender Canvas is
composed of six main area:

RC.1 Goals

RC.2 Domain Characteristics

RC.3 Functional Design Considerations

RC.4 Technique Selection

RC.5 Interface Design

RC.6 Evaluation & Optimization

Those different aspects and the Recommender Canvas in
itself find design requirements for a Recipe Recommender
System.

The answers to the different sections of the canvas are
straightforward, however techniques selections are explained
further in Section 4.

4. METHODOLOGY
There are different techniques to use for building a Rec-
ommender Systems. The focus is made on how perform
some state-of-the-art methods for a recipe recommender
system. We investigate the requirements of each method
and compare them with the requirements and constraint of
a meal-sharing platform. The research of Candillier et al.
[6] resumes the different techniques used in collaborative,
and content-based filtering.

To start with some definitions from Candillier et al.:

• ”user-based approaches associate a set of nearest neigh-
bors with each user and then predict the user’s rat-
ing for unscored items using the ratings given by the
neighbors on that item” [6]

• ”item-based approaches associate an item with a set
of nearest neighbors, and then predict the user’s rat-
ing for an item using the ratings given by the user
on the nearest neighbors of the target item” [6]

• ”model-based approaches, and more specifically those
based on clustering, tend to be more scalable, by
constructing a set of user groups or item groups, and
then predicting a user’s rating for an item using the
mean rating given by the group members.” [6]

A priori none of the approaches needs to be yet eliminated
as the dataset contains recipes information (D.4), and or-
ders information (D.3). Item-based methods are however

2

Figure 1. Recommender Canvas [18] for a Meal-Sharing Platform.

most suitable in a starting meal-sharing platform as only
the recipes data is available.

The research of Candillier et al. [6], conclude that collaborative-
filtering methods result more often in better predictive
performance compared to content-based filtering methods.
While it is shown to be true for movies, we investigate if
it still holds true for recipes.

Research [18, 6, 11] as well advice that user interaction
with the system is important and it must be personal-
izable, in order to avoid the ”one-visit problem”. This is
particularly important for a recipe recommender of this re-
search as our assumption is that the user-retention of the
meal-sharing platform will be high thanks to the recom-
mender. The personalization can be done using the user
food preferences, the model must hence allow personaliza-
tion with the user food preferences and the surrounding
user food preference (assumption on sellability).

Table 1 resumes which state-of-art recommendation tech-
niques that could be used for our recipe recommender sys-
tem. Only models giving personalized recommendation,
in order to fulfill the above defined requirements, are in-
cluded. For instance, ItemPop, which is not a personalized
model and always recommend the top-N popular items to
all users, is not included and thus not investigated. More-
over, implicit rating model such as SVD++, WMRF or
KNN Implicit does not need to be investigated because
the meals rating are always expressed. The table does not
aim to be exhaustive. The way works the different meth-
ods are not relevant for this research but can be learned
via [15, 5, 3, 2, 17]. A description of the different mod-
els from Table 1 is present below; the descriptions of the
collaborative filtering methods are extracted form Gorse1

1https://github.com/zhenghaoz/gorse

source code and documentation2.

1. Keyword-based Vector Space Model [15] is used
for item representation. For a meal-sharing recipe
recommender system, the item are represented by
tags as in table 2. In our case, as the recipes already
contain tags, hence TF-IDF is not necessary.

2. KNN [16] is a neighbors-based model that predicts
ratings from similar users

3. CoClustering [9] is a novel collaborative filtering
approach based on weighted co-clustering algorithm
that involves simultaneous clustering of users and
items.

4. Baseline predicts the rating for given user and item
by r̂ui = bui = µ + bu + bi. If user u is unknown,
then the Bias bu is assumed to be zero. The same
applies for item i with bi.

5. SlopeOne [12] predicts ratings by the form f(x) =
x + b, which precompute the average difference be-
tween the ratings of one item and another for users
who rated both.

6. SVD algorithm, as popularized by Simon Funk dur-
ing the Netflix Prize. The prediction r̂ui is set as:
r̂ui = µ+ bu + bi + qTi pu. If user u is unknown, then
the Bias bu and the factors pu are assumed to be
zero. The same applies for item i with bi and qi.

7. BPR means Bayesian Personal Ranking. It is a
pairwise learning algorithm for matrix factorization
/model with implicit feedback. The pairwise rank-
ing between item i and j for user u is estimated by:
p(i >u j) = σ(pTu (qi − qj))

2https://gorse.readthedocs.io/

3

https://github.com/zhenghaoz/gorse
https://gorse.readthedocs.io/

Approaches Type Methods
Content-based Keyword-based Vector Space Model [15, 2] TF-IDF
Collaborative Nearest Neighbors [2] KNN [16]

Clustering [2] CoClustering [9]
Regression-based [2] Baseline, SlopeOne [12]
Matrix Factorisation [2] SVD, BPR

Table 1. Selected Filtering Approaches & Methods

5. EXPERIMENT
For privacy reason, time and lack of complete datasets,
recipes data (D.4) has been scrapped from cooking web-
sites, and the rest of the dataset (user data D.1, order
history D.3 and food preferences D.2) generated. All the
experiment has been performed using the programming
language Go3. The code snippets are hence written in Go.

5.1 Web Scraping
Recipes data is information easily available on Internet.
There are many recipes websites that contain recipes in-
formation in a somewhat structured manner. The choice
has been made for Albert Heijn Allerhande website how-
ever the following would work with any recipe website.

During the experiment the web scraping has been facili-
tated by the Go package Colly4.

1 // g e t t i t l e
2 c .OnHTML(”h1 . t i t l e . hidden−phones ” , func (e ∗ c o l l y .HTMLElement) {
3 r . T i t l e = e . Text
4 })
5
6 // g e t t a g s
7 c .OnHTML(” s e c t i on . tags ” , func (e ∗ c o l l y .HTMLElement) {
8 e . ForEach (”a” , func (int , i ∗ c o l l y .HTMLElement) {
9 r . Tags = append (r . Tags , s t r i n g s . ToLower (s t r i n g s . TrimSpace (i . Text)))

10 })
11 })

The goal of the scraping was to build a dataset of recipes
containing recipes information (D.4), such as recipes name,
recipe ingredient and recipes categories (tags). The pre-
vious code snippet is an extract of the complete recipe
scrapper. The scrapper loads the given recipe page and
read the HTML tags in order to extract the recipe infor-
mation. The code above for instance, read the value of the
CSS class h1.title.hidden-phones and associate it to the ti-
tle of the scrapped recipe. It can append that there is
repetitive information available in the HTML page, such
as recipes tags. We loop through every element having the
CSS class section.tags and extract the tag. There is some
data formatting happening at the same time by setting
the tags lowercase and triming unnecessary scpaces.

Using the method above gives us only one recipe, as we
want a dataset full of recipes we need to query multiple
pages. Albert Heijn Allerhande have a hidden API that
the website use itself that permits to get a list of recipes
in JSON format. Sending a GET request to Allerhande
API5 permits to obtain a list of 100 recipes. Thanks to
this API, we can with a simple script marshaling the JSON
to get a list of recipes. We can then loop through that list
of recipes in order to scrape them.

Recommender System need to have data in a certain for-
mat. The list of recipes must be in a matrix form [13] for
an item profile. A simple script can transform an array of
recipe models to a matrix, while performing data clean-
ing. Table 2 shows the output of that script, a matrix
containing the recipes features (with 1 the recipe having
the feature and 0 not):

3https://go.dev
4https://github.com/gocolly/colly
5https://bit.ly/2Z8QNKc

id tag vegetarisch tag amerikaans ingredient tomaat ingredient bieten
1 1 0 1 1
2 0 1 1 0
3 1 0 1 0

Table 2. Recipes Matrix Example.

In order to limit the number of recipe feature, the ingre-
dient names have been processed. This is because AH
Allerhande make a distinction between different type of
the same ingredient. The cleaning task was manual (as
in specifying word to clean as shown below) because the
recipes data was in Dutch and text processing tools did
not give a satisfactory result.

1 data [i] = s t r i n g s . ReplaceAl l (data [i] , ” z ong e r i j p t e ” , ””)
2 data [i] = s t r i n g s . ReplaceAl l (data [i] , ” k l e i n ” , ””)
3 data [i] = s t r i n g s . ReplaceAl l (data [i] , ”grote ” , ””)
4 data [i] = s t r i n g s . ReplaceAl l (data [i] , ” s t uk j e s ” , ””)
5 data [i] = s t r i n g s . ReplaceAl l (data [i] , ”kruimige ” , ””)

After the automatic scraping of 4950 recipes and data
cleaning, we obtain a recipe matrix of dimensions 4950
(recipes) x 4048 (features); ready to be used by the Recipe
Recommender System.

Unit tests permit to see the good functioning of the web
scrapping.

5.2 Data Generation
Contrary to recipes data, we cannot simply get user data
from Internet. The user data need to be generated. Each
generated users was composed of a name, latitude, lon-
gitude, food preferences, orders history and orders rating.
The name, latitude, longitude, are generated with a Go
package named gofakeit6. The longitude and latitude gen-
erated are restraint within the coordinates bounding box
of the Netherlands. This means we ensure every generated
user are within the Netherlands.

1 const minLatitudeNL = 51.1028
2 const maxLatitudeNL = 53.5842
3 const minLongitudeNL = 3.987
4 const maxLongitudeNL = 7.8929

The food preferences required to be generated meaning-
fully. This mean that the data must make sense and not
be a random character string for instance. What comes
closest to food preferences are recipes tags, hence the food
preferences of the user is generated based on the avail-
able recipes tags. This make a user food preference non-
exclusive. One can like vegetarian food but it does not
mean that person is vegetarian by the simple fact the tag
is in the user food preferences. This leaves the freedom to
select any random recipes matching the user preference.

An order is a meal that a user purchased. A meal is linked
to a recipe and all orders are rated. We assume that the
meal-sharing platform has the recipe of all meals posted
on their platform and if the meals is not present, the cook
has to add it.

The user order history and rating can then be generated
randomly. The selection of recipes is done as following:

6https://github.com/brianvoe/gofakeit

4

https://go.dev
https://github.com/gocolly/colly
https://bit.ly/2Z8QNKc
https://github.com/brianvoe/gofakeit

1. A user is generated

2. The food preferences are generated randomly (with
a maximum of 12 tags per user)

3. The recipes dataset is filtered to match the user food
preferences

4. A random number of recipe is randomly taken from
the recipe dataset (with a minimum of one order per
user and a maximum of 50)

For this research 10 000 users has been generated. This
low number of users helps to reflect the lack of users of the
meal-sharing platforms. Unit tests permit to see the good
functioning of the user generation.

The generated dataset is available online7.

5.3 Recommender System
The Recipe Recommender System for meal-sharing plat-
form is using the previously generated data and based on
the methods from Table 1.

5.3.1 Collaborative Filtering
Collaborative filtering methods, from Table 1, have been
implemented using the package Gorse8. All the different
models has been trained on the order history dataset gen-
erated earlier. Each model have different hyperparame-
ters. The best parameters has been found using the Grid-
SearchCV function from Gorse. It permits calculating
metrics and evaluate the given parameters that gives the
best metrics. The given parameters to the function have
been found with trial and error. What is considered the
best parameters is the value that maximize the Precision,
Recall and minimize the RMSE. Sellability has not been
considered in the selection due to lack of available compu-
tation power.

For instance, the best parameters for BPR are with a
learning rate of 0.1, number of factors of 50 and a reg-
ularization stength of 0.005.

For BaseLine, to maximize the Precision and the Recall,
we use a regularization stength of 0.5, a learning rate of
0.1.

For KNN, the best parameters are alearning rate of 0.005,
the similarity function is using MSD similarity, the regu-
larization stength of 0.02. and 80 the maximum k neigh-
borhoods to predict the rating.

And finally, SVD, has its best parameters with a learning
rate of 0.005, number of factors of 10 and a regularization
stength of 0.005.

For each model we use a relatively high number of epoch
being equal to a minimum of 150. Trial and error showed
that the metrics does not get better after 500 epochs.

We can maximize whether the Precision and Recall at
the same time or minimize the RMSE. The rest of the
investigated models does not require hyperparameters.

5.3.2 Content Filtering
The content filtering approach has been specified using a
similarity matrix of the different items (recipes) using their
tags and ingredients defined in their item profile (Table 2).
The similarity between recipes has been calculated using
their cosine similarity. An extract of the matrix can be
found on Table 3, where Rx is a recipe of id x.

7https://bit.ly/2YGMCGx
8https://github.com/zhenghaoz/gorse

R1 R2 R3 R4
R1 1 0 0.077850 0.261116
R2 0 1 0.149071 0.083333
R3 0.077850 0.149071 1 0.298142

Table 3. Extract Recipe Similarity Matrix

Creating the recipe similarity dataset is intensive opera-
tion and can become inefficient with a large recipe dataset
(in our case already 4950 x 4950 matrix). Each new recipe
added in the meal-sharing platform requires a similar-
ity calculation with each recipe of the dataset. This is
problematic for a meal-sharing platform as exhausitivy of
recipes is impossible to achieve, which will lead to many
more calculation required.

To make recommendation to a user, we based ourself on
the user order normalized rating history. The weight of
each tags of the user food preferences is calculated using
the mean of all order ratings containing that tag.

The recipes with the highest ratings having the user top-3
tags will then be used for recommendation. We will rec-
ommend the top-3 most similar recipes to those previously
selected recipes.

This method might prohibit discovery of new recipes and
let the user in a recipe bubble. The meal-sharing business
owner can decide if this is problematic for the vision of
his/her platform.

5.3.3 Validation
Because no user testing has been possible during the ex-
periment, mathematical measures have been used in order
to test the performance and viability of each model. In the
information retrieval field, there are some measures that
can be used to test a recommender system. I. Cantador
et al. listed the different measures that are usually used
in order to test a recommender system offline. There is no
consensus on which characteristics of a recommender sys-
tem should be evaluated [5]. The decision has been made
to evaluate precision, recall and RMSE based on Figure
2, on [7, 6], and because the users preferences are binary.

Precision =
TP

TP + FP
(1)

Precision is defined as the ratio of relevant items to rec-
ommended items [5]. Where TP means True Positive and
is the relevant recomment recipes and FP, False Positive,
is the non-relevant recommended recipes.

It permits telling how good the retrieved recipes match
a user’s interest and provides an indication of the quality
of the recommendations [1]. It measures the classification
accuracy of the recommender system [5].

Recall =
TP

TP + FN
(2)

Recall is the proportion of relevant items that have been
recommended to the total number of relevant items [5].
Where TP means True Positive and is the relevant recom-
ment recipes and FN, False Negative, is the non-recommended
relevant recipes.

It gives an indication of how many recipes are recom-
mended from the total number of relevant recipes [1]. It
measures the classification accuracy of the recommender
system [5].

5

https://bit.ly/2YGMCGx
https://github.com/zhenghaoz/gorse

RMSE =

√√√√ΣN
i=1

(
pi − vi

)2
N

(3)

The RMSE evaluates the capability of a method to predict
if a user will like or dislike a recipe [6]. It measures the
prediction accuracy of the recommender system [5].

S =

R∑
j=1

cos(u,vj) =
uvj

‖u‖‖vj‖
=

∑n
i=1 uivji√∑n

i=1 (ui)2
√∑n

i=1 (vji)
2

(4)
Where R is the number of neighboring user at x kilometers
radius; u the user recommendation and v the neighbor user
j recommendation.

S is the notion of sellability has been mentioned thorough
the paper. The sellability is the average of the cosine sim-
ilarities between the user recommendations and the neigh-
bors users recommendation in a x km radius. The sellabil-
ity increases if a recommended recipe would please more
than one user in a x km radius. It evaluates how likely
a meal is going to sell with the assumption that a user
being recommended a recipe will cook it and sell it on the
platform.

6. RESULTS
The results of the experiment on the different models used
by the recipes recommender system can be found on Ta-
ble 4 The testing of the recommendation algorithms has
been performed selecting random users from the gener-
ated dataset (generated user ID 8 for table 4). The test
has been done by requesting 5 recipes to recommend to
the user. The sellability has been calculated based on rec-
ommendation of users in a 5km radius of user 8 (resulting
in 11 users).

The content-based filtering is not trying to predict the
ratings of the recipes by selecting a Top-N recipes to rec-
ommend; this means there is no RMSE that can be cal-
culated. The same goes for BPR as it is an item ranking
algorithm. We can see that each model gives us different
recommendations and very few algorithms contains com-
mon recommendations. The precision and recall are both
pretty low while the RMSE is high. With a few numbers
of predictions this is normal that the recall is low; this is
because there are more recipes that could have been rel-
evant that the one predicted. However, the high RMSE
means that more fitting of the models is required. With
this preleminary result we can still get a grasp on the per-
formance of the different models.

The sellability of the recommended recipes seems to in-
crease the less personalized are the recommendation. This
makes sense as the less personalized the recommendation
are the more they will be alike between user. With the
definition we use about sellability this is a normal trade
off to take into account.

Based on what is mentioned above, the best performing
algorithm, taking in account the measures metrics, the
sellability and the execution time seems to be BPR and the
Content-Based Filtering in terms of precision and recall
and CoClustering in terms of meal sellability. We will not
select a best performing model based on RMSE because
all of them are relatively close.

The results of the different models are as well subject to
the model hyperparameters. Finding the best model is a

big task but tweaking the model with the right parameters
is another. The finding of the best parameters have been
attempted but there is still room to improve if more com-
putational power is available in order to test the models
with more different parameters.

Moreover, apart Recall, Precision or RMSE metrics, exe-
cution time should be taken in account. The recommen-
dation must be generated every day (according the Rec-
ommender Canvas) and the computational power must be
available to do so. The execution time of the model should
as well enter in account in the decision of picking a model.
For instance, the building of the similarity matrix (used
in KNN on the content-based method) is a intensive task
and using it in production might need to be avoided. Ac-
cording to Lops et al., the nearest neighbor algorithms are
effective, but their most important drawback is their inef-
ficiency at classification time [15].

7. CONCLUSION
We have discovered the system requirements and design
requirements of a Recipe Recommender System by us-
ing the Recommender Canvas. The canvas has permit-
ted us to completely think about the recipe recommender
system before its implementation. It permitted reflect-
ing on what data is available and how it should be used
and to whom the recommender system is targeted. Fur-
thermore, by thinking of what data can be available in
a meal-sharing platform, we generated a dataset match-
ing the defined characteristics. The generation of the user
data has be thought and based on the scraped recipes from
the web. By generating the data we have thought about
how the data needs to be and how to generate reflectively
of general platforms design while being ready to use by
the recommender system. Moreover, the notion of sella-
bility have been introduced. This is an extra metric that
permit to measure how likely the proposed recipes to cook
can sell on the platform. The sellability is evaluated by
the average cosine similarity of the recommended recipes
to the recommended recipes of users in a x km radius The
selected recommender system model each has been evalu-
ated using Recall, Precision, RMSE and Sellability. After
running the experiment, and strictly based on those val-
ues, it seems that the best performing models are BPR and
Content-Based Filtering in terms of Precision and Recall
and CoClustering in terms of meal sellability.

However, for extending the value of this research on Recipe
Recommender System for Meal-Sharing Platform, it might
be interesting to test the obtained results directly with
users. This might however be challenging as are there
well-established meal-sharing platform, the models than
however be trained with the dataset that this paper has
produced9. Moreover, the notion of recipe sellability can
be more researched by studying the behavior of a user be-
ing recommended a recipe; with how many are going to
sell the dish on the platform and how many are going to
purchase it –a too high Availability

Demand
ratio could have the

inverse expected effect. Furthermore, a deeper analysis of
the parameters of the collaborative filtering model may in-
crease the measured metrics of the recommender system.
Finally, future work could investigate the performance of
hybrid filtering methods to see if there is any gain combin-
ing collaborative and content-based filtering for a recipe
recommender system.

9https://bit.ly/2YGMCGx

6

https://bit.ly/2YGMCGx

Model Precision@5 Recall@5 RMSE@5 Sellability@11 Recommendation
BaseLine 0.00007 0.00006 1.47615 0.20000 [845 1298 2470 3571 1080]

SlopeOne [12] 0.00344 0.00344 1.42902 0.08800 [354 330 430 168 700]
CoClustering [9] 0.00012 0.00010 2.27968 0.17946 [3571 3368 3460 3387 2470]

KNN [16] 0.00028 0.00062 1.47962 0.11854 [430 480 555 983 370]
SVD 0.00386 0.00463 2.27968 0.06621 [831 1951 1201 496 203]
BPR 0.14344 0.24350 / 0.15383 [7 3 4 19 18]

Content-Based Filtering 0.20000 0.00786 / 0.09329 [309 55 2 1515]

Table 4. Collaborative/Content-Based Filtering Methods.

8. REFERENCES
[1] Measures of effectiveness, Jan 2012.

[2] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge amd Date Enginrrting,
17(6):734–749, June 2005.

[3] C. Anderson. A survey of food recommenders. 2018.

[4] D. Bianchini, V. D. Antonellis], N. D. Franceschi],
and M. Melchiori. Prefer: A prescription-based food
recommender system. Computer Standards and
Interfaces, 54:64 – 75, 2017. SI: New modeling in
Big Data.

[5] F. Cacheda, V. Carneiro, D. Fernández, and
V. Formoso. Comparison of collaborative filtering
algorithms: Limitations of current techniques and
proposals for scalable, high-performance
recommender systems. TWEB, 5:2, 01 2011.

[6] L. Candillier, K. Jack, F. Fessant, and F. Meyer.
State of the Art Recommender System, pages 1–22.
04 2009.

[7] I. Cantador, I. Fernández-Tob́ıas, S. Berkovsky, and
P. Cremonesi. Cross-Domain Recommender Systems,
pages 919–959. Springer US, Boston, MA, 2015.

[8] A. R. Davies, F. Edwards, B. Marovelli, O. Morrow,
M. Rut, and M. Weymes. Making visible:
Interrogating the performance of food sharing across
100 urban areas. Geoforum, 86:136 – 149, 2017.

[9] T. George and S. Merugu. A scalable collaborative
filtering framework based on co-clustering. In Fifth
IEEE International Conference on Data Mining
(ICDM’05), pages 4 pp.–, 2005.

[10] C. A. Gomez-Uribe and N. Hunt. The netflix
recommender system: Algorithms, business value,
and innovation. ACM Trans. Manage. Inf. Syst.,
6(4), Dec. 2016.

[11] D. Jannach and M. Jugovac. Measuring the business
value of recommender systems. ACM Trans.
Manage. Inf. Syst., 10(4), Dec. 2019.

[12] D. Lemire and A. Maclachlan. Slope one predictors
for online rating-based collaborative filtering. CoRR,
abs/cs/0702144, 2007.

[13] J. Leskovec, A. Rajaraman, and J. D. Ullman.
Mining of Massive Datasets. Stanford, Stanford,
2010.

[14] C.-J. Lin, T.-T. Kuo, and S.-D. Lin. A
content-based matrix factorization model for recipe
recommendation. In V. S. Tseng, T. B. Ho, Z.-H.
Zhou, A. L. P. Chen, and H.-Y. Kao, editors,
Advances in Knowledge Discovery and Data Mining,
pages 560–571, Cham, 2014. Springer International
Publishing.

[15] P. Lops, M. de Gemmis, and G. Semeraro.
Content-based Recommender Systems: State of the
Art and Trends, pages 73–105. 01 2011.

[16] X. Ning, C. Desrosiers, and G. Karypis. A
Comprehensive Survey of Neighborhood-Based
Recommendation Methods, pages 37–76. Springer
US, Boston, MA, 2015.

[17] A. Said, A. B. Kouki, and A. P. deVries. A top-n
recommender system evaluation protocol inspired by
deployed systems. 2013.

[18] G. van Capelleveen, C. Amrit, D. M. Yazan, and
H. Zijm. The recommender canvas: A model for
developing and documenting recommender system
design. Expert Systems with Applications, 129:97 –
117, 2019.

[19] R. Yera Toledo, A. A. Alzahrani, and L. Mart́ınez.
A food recommender system considering nutritional
information and user preferences. IEEE Access,
7:96695–96711, 2019.

7

APPENDIX

Figure 2. Summary of metrics used for evluation
recommender system from I. Cantador et al. [7].

8

	Introduction & Related Work
	Problem Statement
	Design Requirements
	Methodology
	Experiment
	Web Scraping
	Data Generation
	Recommender System
	Collaborative Filtering
	Content Filtering
	Validation

	Results
	Conclusion
	References

