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ABSTRACT
When a pandemic arises, the health of human beings could
be at risk. Even though some businesses can close their
doors, due to government sanctions, logistical infrastruc-
tures usually keep being active to supply necessary prod-
ucts like food to the population. However, these logistical
infrastructures could also be vulnerable to the virus. The
spreading of an infectious virus can be hard to control
and monitor under certain circumstances. Several studies
have shown how viruses spread across the world popula-
tion, they developed protocols to control such spread by
decreasing human interaction. While some studies have
researched the impact of logistical infrastructures on the
spreading of a virus on a high abstract level, the conclu-
sions of these studies are usually confined to a single infras-
tructure. The logistical infrastructure sector as a whole
could contribute to distributing a virus. Therefore, the ob-
jective of this paper is to find out how logistical infrastruc-
tures impact the spreading of a virus and if the logistical
sector could make some significant changes to the infras-
tructure to prevent such a catastrophic pandemic. This
paper will discuss the results by creating models that sim-
ulate real-world logistical infrastructural processes whilst
an infectious virus is among the people.

Keywords
Logistical Infrastructures, pandemic, infection-rate, agent-
based modeling.

1. INTRODUCTION
People, businesses, and countries were not prepared for
the immense impact of the COVID-19 pandemic that con-
tinues to rage across the world. The COVID-19 pandemic
caused by the SARS-CoV-2 virus has over 5,4 million cases
and over 344,000 deaths confirmed across the world as of
26 May 2020 [14]. Preventing more deaths is paramount
and governments apply constrictions to everyone in or-
der to accomplish that. Some businesses struggle to stay
financially stable due to issues such as supply chain com-
plications and a decline in consumer demand. Finding a
method to predict the scale of a potential pandemic could
be key in stabilizing the world economy and saving human
lives. Logistical infrastructures including airlines and ship-
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ping have lost billions of dollars during the COVID-19 pan-
demic, due to the tremendous decrease in infrastructural
traffic and the restrictions that were laid upon them by
the representing governments [13]. There are a few tech-
niques, like analytical methods to simulate a virus with a
logistical infrastructure environment. In this paper, ad-
vanced modeling techniques are used to digitalize a virus-
like object. The simulations use different scenarios to get a
grasp on the effect of logistical infrastructures. With the
help of these techniques, important questions as to how
logistical infrastructures have an impact on the spreading
of a virus can be answered. Via simulation models, the
basis of understanding the impact of mitigation strategies
as executed on different logistic infrastructure layers can
be found. The simulations will be developed in an agent-
based modeling platform GAMMA [18]. Previous related
work usually fixates one specific infrastructure for which
the research is conducted [12, 4, 7, 10]. In this paper, a
model that encapsulate all the different logistical infras-
tructures is designed, and I introduce a full-scale logistical
infrastructure model structure and refine it to a testable
hierarchic structure. The main properties of the models
are:

– Autonomous decisions: the agents in the models must
act according to their own will (with set parameters
to specify the capability of the agent).

– Interaction with environments: The environment set
in the models must be interactable by the agents
used in the simulation.

– Emergent behavior : The agents can interact with
objects and humans alike, leading to unpredictable
behavior in the system as a whole creating a large
impact.

I exemplify the proposed virus spreading model via a proof-
of-concept implementation. It is shown how a virus can be
spread via logistical infrastructures, with different means
of spreading. Experimental results from several sectors
run scenarios that represent this method, indicating the
viability of the model approach [9, 19, 2]. The aim of this
paper is to validate the case study based on the concep-
tual model presented in this paper. I believe that this
contribution can lay a foundation to further research and
development of disease prevention technologies. The con-
tent of this paper with the use of Peffers design science
methodology is as follows, as is shown by the structure of
this paper [15]. The problem statement and the impact on
the logistical branch have been explained above. Section
two covers the necessary background of this paper. Section
three presents the requirements of the simulations. Sec-
tion four presents the reader with the conceptual model
on which this research is based. Section five explains the

1



use of our case study and introducing the logistical in-
frastructures that are going to be simulated. Section six
will present the results of the simulations. Section seven
will go over the sensitive analyses reflected on the postal
infrastructures used in this paper. Section eight reflects
on the research paper and limitations. Section nine will
conclude this research paper and propose future work.

2. BACKGROUND
Agent-based modeling and simulation, ABMS in short,
is a platform on which agents can interact with other
agents in a given environment. Agents are components
of a model with certain properties and attributes that can
follow base-level rules for behavior as well as a higher-
level set of freewill behavior. These interactions can lead
to influence in their overall behavior, making the agents
unpredictable. According to Macal and North [5], “By
modeling agents individually, the full effects of the diver-
sity that exists among agents in their attributes and be-
havior can be observed as it gives rise to the behavior of
the system as a whole”. Building an agent-based model
from the ground up developing each agent individually,
self-organization between the agents can be observed in
models. Such self-organization is composed of patterns,
structures, and behaviors that can emerge, even though
those features were not hardcoded in the first place. The
above-stated feature of agent-based modeling is key and
separate agent-based modeling from other modeling sys-
tems. Modeling social systems with agent-based modeling
is extremely beneficial, due to the interaction and influ-
ence agents could have on each other. Agents learn from
each other through experience and adapt accordingly to
their environment.

When a virus has embedded itself inside a human body,
that person can become infected and can carry over the
virus to other people. Usually, these types of viruses start
on a small scale, with people in an approximately small
circle around the first infected person get infected. In
most cases, the presence of the virus is not yet known.
Viruses can spread using different means, most commonly
airborne and via water. Raspatory protection is extremely
important as a mitigation mechanism for an outbreak [16].
Infections that cover a large group, community, or popu-
lation inside a region of a country is referred to as an
epidemic. When a pandemic occurs, the infectious virus
covers a much larger group of population spread across
multiple countries.

3. REQUIREMENTS
The developed simulations’ purpose is to determine how
the logistical infrastructures affect the spreading of a virus
[9]. The structure of these simulations is built upon the
study of Enrique Frias-Martinez et al. who developed a
simulation model in which the Mexican H1N1 outbreak
was simulated [10]. Their paper researched the impact
of the interventions the Mexican government-enforced to
prevent the spreading of the H1N1 virus. The simula-
tions were done in an agent-based modeling system with
similar agent attributes. In our simulations an agent can
deviate between three different states, Exposed, Infected
and Cured as shown in Fig. 1. These states are inspir-
ited by Barrett et al. and follow a similar approach [3].
In Fig. 1 ∆ represents the infection distance of the virus,
γ represents the chance an agent is cured after a period
of time, and α represents the chance an agent is infected.
Once an agent is cured of the disease it creates ant-bodies
against the virus. Therefore, it can no longer be infected

or infectious, so it will be removed from the simulation.
In our model, it is assumed that every agent has the same
probability of infection and probability to be cured. The
specific changes in these variables are highly dependent
on which type of virus is represented. In this paper, the
main focus is on the specifics of the virus COVID-19. The
further explained properties of the COVID-19 virus used
in this paper are the following:

– Infection distance (∆): this variable depicts the dis-
tance in which an infected agent can carry over the
virus. This distance is different for humans to object
respectfully and human to human. According to the
Center for Disease Control and Prevention, the min-
imum social distancing is 6 foot or 1.8 meters [8].

– Incubation time (γ): the incubation time is a unit
of time after which an infected agent is cured and
develops antibodies, after which the agent can no
longer be infected or infect other agents. According
to the research of Lin Yang et al. the incubation
time is roughly: 1-15 days [20].

– Infection chance (α): this variable depicts the chance
of which a virus can spread between a human or an
object. In these simulations the infection chance is
approximately: 2,454,452 / 330,944,050 * 100 % =
0.74 percent [14]. This number is derived from taking
the country with the highest number of cases and
divide those with their total population. As of May
26th, the USA has 2,454,452 reported cases and a
population of approximately 330,944,050.

The properties above hold for each logistical infrastruc-
ture, the dissimilarity is the environment and the speed
in which the agents move around the environment. Each
environment is built around the usage of the logistical in-
frastructure.

– Human agents move 4 km/h with 0,1% chance to
move during day and 0,001% during night.

– Postal agents move 30 km/h with 50% chance to
move during day and 30% during night.

– Ships move 45 km/h with 50% chance to move during
day and 40% during night.

– Trucks move 80 km/h with 45% chance to move dur-
ing day and 40% during night.

– Airplanes move 270 km/h with 50% chance to move
during day and 50% during night.

The simulation relies on day-night cycles in which certain
infrastructures conduct less or more business during cer-
tain hours. The day-night cycle is implemented such that
between 18:00 and 06:00 (night time) agents have different
chances to move than between 06:00 and 18:00 (day time).

In short, the proposed model will be carried out on the
simulations of real-life logistical infrastructures. These
simulations depict the properties of a virus type like that of
COVID-19. The information regarding COVID-19 is still
limited due to its recentness. Interventions will be imple-
mented in de simulations, and the effects will be compared
in the results.
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Exposed Infected Cured

? ? ?

Figure 1. Transition model rom exposed to cured

Figure 2. Concept logistical infrastructures

4. MODEL
To fully understand and analyze the impact of logistical
infrastructures on the spreading of a virus, a look at a
bigger picture is needed. First of all, the infrastructures
that are included in this category need to be laid-out. The
papers of A.J.Tatem, Köstler, K.a, and TimCarter et al.
specify the importance of air, land, and water as a means
of spreading a virus [1, 12, 4]. To analyze the spreading,
our model has to encapsulate all the different logistical
infrastructures that are used. Therefore, I have decided
that in this paper the term logistical infrastructures will
consist of all movement via air, land, and water as shown
in Fig. 2. The virus grid model should comply with some
requirements, including reliability, robustness, and exten-
sibility, to sum up, a few. I only focus on a subset of the
controller requirements, to present relevance of the case:

– Scalability: Different viruses can affect certain sec-
tors more than others, scalability is of utmost impor-
tance to increase or decrease the affected area of the
model. The means of spreading and logistical infras-
tructures are included in this process. The proposed
hierarchy already indicated the ability to scale the
virus grid into different levels, when the connections
between them are known. Yet, even at the scale of
a country, a lot of variables are in play and raise the
concern of scalability.

– Multi-agents: Future use of the virus grid model may
want to define additional agents in the model, which
may interfere with the virus. In this paper, I conduct

Figure 3. Concept virus spreading relations

a small sample size of agents in our case study. In
upcoming cases, different agents must be able to be
assigned to the grid and interact properly. These
agents may vary in time, depending on the preference
of the user at that time.

– Incremental change: Technology as a whole does not
stand still, everything must be adaptive, and this
model is not excluded. Any changes that might be
introduced in the future regarding aspects that are
presented in this model must be progressive and can-
not jeopardize a working system. Therefore, chang-
ing large quantities of the model at once is inadvis-
able and can lead to unusable results. The virus grid
model is designed to be progressive and certain as-
pects and objectives can be changed accordingly.

The model that is proposed in this section indicates the
degree the virus will spread in logistical infrastructures.
The research of Fanelli D et al. suggests that a virus-
like COVID-19 can spread via object and humans alike.
Therefore, the proposed model has to define four ways a
virus can spread whilst be in transit via logistical infras-
tructures: Fig. 3 [7]

– Human-human: Infection via human to human con-
traction of a virus is common and is the fastest and
most reliable way of spreading. Humans contract
the virus via air, skin, or bodily fluids. The proposed
model does not distinguish between those three types
of infection.
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– Human-object: Serves as a bridge between the infec-
tion that can occur when a human comes in contact
with an infected object. Depending on the type of
virus objects can play a certain role in the means of
spreading. When objects can transfer the virus to
humans, humans can in return infect an object to
complete the cycle.

– Object-human: Certain viruses can live on objects
for an x period, making the objects curial in the
infectious cycle.

– Object-object: Even though this particular transfer
of a virus does not happen that often, it is important
to include since this model is scalable and could be
used for every type of virus. The connection between
each logistical infrastructure is a two-way street, the
virus can shift between land, air, and water respect-
fully. The means of spreading is the same for each
logistical infrastructure no matter which of the three
categories it is under.

5. CASE STUDY
In the model section, I discussed the conceptual model
for the spreading of a virus in logistical infrastructures. I
also discussed the aim of this research regarding the sig-
nificance of logistical infrastructures in the spreading of a
virus. The scale of logistical infrastructures in the concep-
tual model is too large to fully encapsulate in a reasonable
time frame. Therefore, in this paper, I decided to carry out
a case study with five logistical infrastructures spreading
across all three logistical platforms. The purpose of this
contribution is to facilitate the ground on which the con-
ceptual model is based. It proves a reusable base on which
other logistical infrastructure sectors can be tested. In this
paper, only four spreading measures with the same level of
importance are considered. However, we believe that the
proposed model would also apply to different measures of
spreading based on higher importance. Also, this would
need to be coded into the model program to indicate the
infection percentage of each type of spreading.

5.1 Architecture Overview
In this model, I use agents to simulate the behavior of a
virus inside a fixed environment using the logistical infras-
tructures. The main agents include:

– The virus agent

– The human agents

– The shipment agents

– The airplane agents

– The truck agents

– The postal agents

The views are adopted from the medical field and from the
logistical field, to create a good balance infrastructural sys-
tem that satisfies both parties [11, 6, 17]. Based on that
knowledge a logistical infrastructural hierarchy that en-
capsulates all three of the main types of infrastructures is
proposed. The above agents are placed inside a hierarchic
structure, which shows the relations between the agents
respectively Fig. 4.

Figure 4. Logistical infrastructures hierarchy

6. RESULTS
The results section will present the obtained findings for
each simulation. These results will provide the necessary
information to construct a detailed answer to the research
question of this paper. The results are categorized into
three different scenarios: the method without logistical in-
frastructure, the basic method with logistical infrastruc-
ture, and the mitigation method. Where the mitigations
could be initialized before or during the runtime of the
simulation.

6.1 Methods
The properties discussed in the simulation structures ap-
ply to all the simulations. This sub-section discusses each
simulation scenario separately. The mitigation strategies
used in the simulations are derived from the work of En-
rique Frias-Martinez et al. [10] who used similar mitiga-
tion strategies in their H1N1 model.

6.1.1 Basis without Logistical Infrastructure
This method is the independent simulation, with only hu-
man agent interaction without the use of any logistical
infrastructure. The set-up phase of the simulation starts
with only one infected human.

6.1.2 Basis with Logistical Infrastructure
This method is having the logistical infrastructure imple-
mented. The model starts with one logistical infrastruc-
ture agent infected and no initial human infections during
the set-up phase.

6.1.3 Mitigations
In each simulation three mitigation methods are implanted.
These mitigations consist out of:

– If a human agent is infected, the procedure will be
to stay home until the virus is cured.

– If an infrastructure agent is infected, the procedure
will be to stop working until the virus is cured

– If the total amount of infected agents crosses the
20 percent mark, the specific logistical infrastructure
will cut back 50% off its workers.

These mitigations are used individually or simultaneously
on the logistical infrastructure’s simulations.
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Figure 5. Infection percentages and mitigation strategies

Figure 6. Infections logistical infrastructures

6.2 Outcome
The purpose of the presented experiments is to show the
effects that the logistical infrastructures are having on the
spreading of an infectious virus. They are not meant to
validate any of the presented models in this paper, nor to
evaluate their performance. In the environments set for
the logistical infrastructure simulations, the sample size
of the simulations is Np = 25000 which is the average
population of a small village in the Netherlands and Ni =
130. The runtime of the simulation is 28 days, after which
the results will be gathered.

In Fig. 6 the results of all five of the logistical infrastruc-
tures using the model presented in this paper. The logis-
tical infrastructures follow the same pattern of infection
rate. The postal and truck infrastructure seems to have
the highest infected percentage in 28 days of the simula-
tion, whilst the shipment infrastructure follows close. The
reason for this could be due to the postal and truck infras-
tructure have more human interaction in a short period of
time, which could make it easier to give over the virus.
Remarkable is the airline infrastructure, which has a sig-
nificantly lower percentage of infected people at its peak
and after 28 days. In all four infrastructures, the decline
in infected people after 28000 minutes (19 days) is the re-
sult of the incubation time which is 15 days, after which
people get cured of the virus.

Fig. 5 shows an overview of the results of the simulations

Figure 7. Infections postal infrastructure

with and without using logistical infrastructures. On the
right side of the table, the counter measurements are dis-
played while using the different logistical infrastructures.
At first glance, the logistical infrastructures do not seem
to deviate that much from each other, except for the air-
line whos results lie significantly lower. What is remark-
able are the results when using and not using a logisti-
cal infrastructure, these results suggest that the logistical
infrastructures do have an impact on the spreading of a
virus. The airline infrastructure has a lower percentage
of infected people on average and it is remarkable that
counter measurement one and two are both more effec-
tive on the airline infrastructure than on the other logis-
tical infrastructures. On further inspection the results of
all three counter measurements simultaneously are notice-
able. These counter measurements have a significant im-
pact on all four logistical infrastructures. The airline in-
frastructure is most affected by the use of all three counter
measurements simultaneously.

7. SENSITIVITY ANALYSIS
The results of the simulations are based upon the values
set during the initialization phase. In this section, the ef-
fect of changing these variables will be discussed. The
outcome of each simulation is depended on the chosen
variables: Infection change, sample size, movement speed,
change to movement, to name a couple. Changing these
variables in any way could heavily affect the results. With
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the sensitivity analysis, I want to discuss that the found
results are not definitive in any shape or form. The cho-
sen variables are gathered with current information from
chosen sources and could change in the future. A sensi-
tivity analysis on the postal infrastructure using the third
counter measurement which lets the postal company cut
back their staff after a certain percentage of people got in-
fected will be conducted. The threshold of the number of
infected people is changed into five scenarios: 10%, 20%,
30%, 40%, and 50%. Fig. 7 shows the results in a graph
with the different thresholds. On immediate inspection
the number of infected people after 28 days lies seemingly
close to each other. What is remarkable is that 30% has
the lowest rate of infections. Whilst 10%, 40%, and 50%
seem to follow the same pattern.

8. DISCUSSION
The content of this paper is only a case study of the con-
ceptual model. The reason that this research consists of
only a fraction of the logistical infrastructures for this
model, lies in the unknown viability of the conceptual
model. This model was created to research if logistical in-
frastructures have an effect on the spreading of a virus in a
controlled environment. The data had to be gathered in a
short period, which limited the number of infrastructures
that could be tested. This paper tries in no way to present
the most optimal solution for the proposed problem. The
initialization variables set for the simulation are gathered
from current research of COVID-19 and could change in
the future. Because of the limited time and resources, the
environments are smaller than initially proposed, also a
more realistic set of environments for the different logis-
tical infrastructures could have been created. The initial
design of the simulations could be approved upon, these
simulations were modeled with limited to no knowledge
about modeling or agent-based modeling. Also, the agents
could be made more proactive instead of only following
certain rules, for instance, avoiding crowded areas during
a pandemic or let everything be delivered so it does not
need to leave the house. In this paper, I used agent-based
modeling, but it is not the only platform on which such
experiments can be conducted, further research could be
made on other platforms. With the current knowledge
and skills, the logistical infrastructure movement patterns
could have been made more realistic with set goals and
time frames to further increase the real life environment
of the simulations.

9. CONCLUSION AND FUTURE WORK
This paper presented a conceptual model for logistical in-
frastructures in a virus spreading simulation in the form
of a case study. In this paper, I investigate the spread of
a virus via logistical infrastructure, based on a conceptual
model presented. The purpose of this contribution was to
address the connection between logistical infrastructures
and virus spreading, including mitigation methods within
the case study. Four logistical infrastructures are identi-
fied and encapsulated in the conceptual model. I experi-
mented with three different mitigation methods and run on
the applied logistical infrastructures. The obtained results
indicated the viability of the conceptual model, including
most apparent:

– the impact of logistical infrastructure on the spread-
ing of a virus, by integrating logistical infrastructure
in the simulation.

– the impact of the combined mitigation methods, when

applied to the logistical infrastructure environment.

– the impact in regards of amount of infected are the
truck and postal infrastructure.

The results indicate that using counter measurements dur-
ing a pandemic could reduce the number of people that get
infected and with that contain the virus.

There are numerous ways to further improve the current
models. The models were created with little knowledge
about the modeling world and these models could be cre-
ated in a different modeling platform. Future work can
focus on studying the possibility of expanding the model.
This will include the introduction of different logistical
infrastructures and mitigation methods, with contrasting
variables. Besides, future work can experiment with self-
adaptive logistical infrastructures, viruses, and humans,
swapping between different mitigation methods to miti-
gate the spreading of the virus. With the introduction of
AI in the model, a more realistic real-world scenario could
be made that could have more reliable results.

9.1 Open source
Once the research has been published, all code written
for the project will be made publicly available on GitHub.
Everybody can acces the code and use it at their own
pleasure.
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