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Abstract

Excitation of a square optical fiber with rounded edges by a Gaussian beam is
modelled numerically. The numerical simulation is based on the Fictitious Domain
Method (FDM). The derivation of the two-dimensional Fictitious Domain Method is
thoroughly studied and is then extended to three dimensional perfect prisms. Stability
analysis is done on the two-dimensional Fictitious Domain Method. The Gaussian
beams source is implemented using a modified version of a Total Field/Scattered
Field formulation. A convergence study is done for a two dimensional trivial solution
on a rotated square domain.

Keywords: Fictitious Domain Method, Finite Difference Time Difference, Gaussian
beam, TF/SF, Optical fiber

1 Introduction

Optical fibers are thin waveguides, consisting of a core surrounded by a cladding layer with
a higher refractive index. Light is transmitted inside the core by means of total internal
reflection and propagates according to Maxwell’s equations. When a beam of coherent
light, e.g. a Guassian shaped pulse of light from a laser, is used to excitate an optical
fiber, the coherent wavefronts propagating through the fiber interfere. The interference of
these wavefronts is observed as a speckle pattern on the output image. For optical fibers
with exact rectangular (or circular) cores, analytical solutions for their eigenmodes exist,
and consequently the output speckle pattern can be obtained. [10] For more complex core
shapes analytical solutions do not exist and numerical methods are used to simulate the
wave propagation. These methods can be used to observe the effect of other core shapes
on the output image. For example, the effect of the rounded corners of a square core (see
Fig. 1) on the output speckle pattern can be simulated.

Simulations are based on the Finite Difference Time Difference (FDTD) method. This
method, however, uses rectangular finite elements which need a very high resolution in
order to approximate a curved domain. Resolving around non-trivial fiber shapes has been
accomplished by using the Finite Element Method (FEM) [7, 8], but this method uses very
small triangular elements, which lead to small time-steps and thus slower simulations. An
interesting alternative is the Fictitious Domain Method (FDM) which has proved to be
a faster and more precise alternative for these kind of differential equations. [1, 3, 4, 5].
The Fictitious Domain Method resolves complex domains by extending the computational
domain to an outer domain bounded by a new, rectangular boundary. The boundary
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Figure 1: Geometry of a square optical fiber core with rounded corners. Light
propagations is according to Maxwell’s Equations for the electric field E. Blue
region indicates cladding, white region indicates the fiber core.

condition between the core and the slabbing is taken into account by the introduction of
a new variable, which is only defined at that boundary. The core idea is that the meshing
of the computational domain can be done independently of the geometry of the fiber core,
therefore allowing simple rectangular meshes.

In section 3 an implementation of the two-dimensional FDM will be developed and
extended to three dimensional right prisms, as a simplification for the full three-dimensional
FDM. Moreover, the Total Field/Scattered Field (TF/SF) formulation is introduced and
modified for a Gaussian beam source.

In section 4 the stability of the scheme is investigated using the energy method. A
continuous energy of Maxwell’s equations is introduced. A discretized version of this
quantity is shown to be conserved as well. From the discrete energy a stability condition
relating the time-step size to the spatial step is derived.

In section 5 numerical results are presented. First, the stability condition that was
derived, is used to calculate the time-step size by means of the power method. This
stability condition is shown to converge towards the usual CFL condition. Thereafter,
a trivial solution of Maxwell’s equations is fabricated on a two dimensional square grid.
The grid is then rotated and simulated by the FDM. An error is defined and the FDM is
shown to converge. A test is performed to combine the TF/SF formulation and the FDM
for scattering of a two-dimensional circle. Finally, Gaussian beam excitation of an optical
fiber is modelled for two different fiber cores.

2 Theoretical background

2.1 Maxwell’s equations

Maxwell’s equations are a system of coupled equations that describe the behaviour of
electric and magnetic fields. The system shows the relation between four field vectors: the
electric field E = [Ex, Ey, Ez], and the magnetic field H, the electric displacement D and
the magnetic induction B, likewise. Taking ρ as the charge density and J as the current
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density in the medium, the fields are related as follows: [11]

∇×E +
∂B

∂t
= 0 ∇ ·D = ρ.

∇×H− ∂D

∂t
= J ∇ ·B = 0.

(1)

The set of equations is simplified by assuming that the medium is isotropic and linear,
meaning the electric field has a linear relation with the electric displacement and the
magnetic field has a linear relation with the magnetic induction. By standard conventions
this is denoted as: D = εE and H = 1

µB. In an isotropic medium ε and µ are uniform
in all directions and are called permittivity and permeability of the material respectively.
We assume the core of the fiber has a constant permittivity and permeability. Further
simplifications are achieved using the assumption that the medium is without charges and
currents ρ = 0, J = 0. After these simplifications the following equations arise:

∇×E + µ
∂H

∂t
= 0 (2) ∇ ·E = 0 (3)

∇×H− ε∂E
∂t

= 0 (4) ∇ ·H = 0. (5)

In order to obtain a second order differential equation for the electric field alone, we take
the time derivative of (4) and substitute using (2), which yields

ε
∂2E

∂t2
=

∂

∂t
(∇×H) =

1

µ
∇× (∇×E). (6)

This second order differential equation will be used in section 3.2, where the Fictitious
Domain Method will be applied to it. The domain of these equations is made finite by
introducing absorbing boundary conditions at an outer boundary.

2.2 Gaussian beams

We will now introduce Gaussian beams. In section 3.3.1 an input Gaussian beam source is
obtained by modifying the TF/SF formulation and using the shape of the Gaussian beam
at its focus. In order to find a description of a Gaussian beam we use the curl curl identity
∇× (∇× F) = ∇(∇ · F)−∇2F and (3), to rewrite (6) as

1

µ
∇× (∇×E) =

1

µ
(0−∇2E) (7)

and thus

∂2E

∂t2
+

1

µε
∇2E = 0. (8)

Here ∇2 denotes the Laplacian and (8) is just the wave equation. To find an equation
for the propagation of a Gaussian beam, monochromatic, uniformly polarized waves will
be considered under the scalar approximation. Taking ω as the angular frequency of the
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wave, these waves are of the form

E(x, y, z, t) = Ẽ(x, y, z)eiωt. (9)

Substituting (9) in (8), and introducing the wavenumber k, as k2 = ω2

µε , gives

(∇2 + k2)Ẽ(x, y, z) = 0, (10)

which is called the Helmholtz equation. In [12] it is shown that under the paraxial approx-
imation, i.e. it is assumed that the wave traverses with a small angle to the z-axis, this
equation has eigensolutions that keep their functional form as they propagate. The lowest
order eigensolutions are called Gaussian beams. A Gaussian beam with beam waist radius
w0, can be described by

E(x, y, z) = E0
w0

w
e−

x2+y2

w2 ei(kz+φ(z)−k x2+y2

2R
), (11)

where, with the substitution of the Rayleigh range zR =
kw2

0
2 in the newly introduced beam

radius w(z), radius of curvature R(z) and phase correction φ(z), the following relations
hold

w2(z) = w2
0(1 + (

z

zR
)2), R(z) = z(1 + (

zR
z

)2), φ(z) = arctan(
z

zR
). (12)

It should be noted that the shape of a Gaussian beam is determined by the beam waist
radius and the wavenumber alone.

3 Numerical scheme

The electric field in an optical fiber behaves according to (6) in combination with a bound-
ary constraint on the boundary of the fiber. The boundary constraint ensures the continuity
of the tangential trace of the electric field at the boundary. Assuming an infinite refractive
index outside the fiber core, and thus total internal reflection, this boundary constraint
simply means that the parallel electric field at the boundary is zero, or E|| = 0. We intro-
duce the normal vector pointing outwards at the boundary, n = [nx, ny, nz] such that the
boundary constraint can be written as

n× (n×E) = 0. (13)

In this section, first the Yee scheme, a finite difference method used to simulate electro-
magnetic problems, will be introduced. The general framework of this method is then
extended to the Fictitious Domain Method, which will be thoroughly examined. Lastly,
the Total Field/Scattered Field formulation is introduced and modified to accomplish a
Gaussian beam source
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3.1 Yee scheme

In order to introduce the Yee scheme we discretize the first order Maxwell’s equations (2)
and (4). Note that equations (2) and 4) are equivalent to (6)), but lend themselves better
for the introduction of the Yee scheme. We introduce the computational domain C, which
is bounded by an outer boundary ∂C where (13) holds. This domain is discretized using
grid points (x, y, z) = (nx∆x, ny∆y, nz∆z). A staggered grid is introduced as in Fig. 2,
where the discretized E field vectors appear on the edges of an element cube, the H field
vectors appear in the center of the faces, and the nodes of the cube are the grid points
(nx∆x, ny∆y, nz∆z).[13]

Figure 2: Yee cell, a finite element with a staggered grid. Blue triangles indicate
direction and location of the vectors for the electric field, red arrow indicate direction
and location of the vectors for the magnetic field.

Clearly, this discretization only works for brick-like domains C. We introduce the time t,
the time difference ∆t and the time step l, such that t = l∆t. Moreover, we denote a
discrete field F at time step l as Fl(nx, ny, nz) = F(nx∆x, ny∆y, nz∆z). The staggered
grid enables (2) to be discretized as

H
l+ 1

2
x (nx, ny + 1

2
, nz + 1

2
)−Hl− 1

2
x (nx, ny + 1

2
, nz + 1

2
)

∆t
=

1

µ

(
El

y(nx, ny + 1
2
, nz + 1)− El

y(nx, ny + 1
2
, nz)

∆z
−
El

z(nx, ny + 1, nz + 1
2

)− El
z(nx, ny , nz + 1

2
)

∆y

)
,

H
l+ 1

2
y (nx + 1

2
, ny , nz + 1

2
)−Hl− 1

2
y (nx + 1

2
, ny , nz + 1

2
)

∆t
=

1

µ

(
El

z(nx + 1, ny , nz + 1
2

)− El
z(nx, ny , nz + 1

2
)

∆x
−
El

x(nx + 1
2
, ny , nz + 1)− El

x(nx + 1
2
, ny , nz)

∆z

)
,

H
l+ 1

2
z (nx + 1

2
, ny + 1

2
, nz)−Hl− 1

2
z (nx + 1

2
, ny + 1

2
, nz)

∆t
=

1

µ

(
El

x(nx + 1
2
, ny + 1, nz)− El

x(nx + 1
2
, ny , nz)

∆y
−
El

y(nx + 1, ny + 1
2
, nz)− El

y(nx, ny + 1
2
, nz)

∆x

)
.
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Equation (4) can be similarly discretized at time step l+ 1
2 . Clearly, these equations can be

made explicit time-stepping, multiplying by ∆t and rearranging the terms. This explicit
scheme can be written as

H l+ 1
2 = H l− 1

2 − ∆t

µ
Rh(El),

El+1 = El +
∆t

ε
RTh (H l+ 1

2 ),

(14)

where the x, y and z coordinates are omitted by using column vectors El andH l, the matrix
Rh represents the discrete curl operator and RTh denotes its transpose. The Fictitious
Domain Method introduced in the next section will turn out to be an extension of this
general framework. For a Matlab implementation of the two and three dimensional curl
operators see Appendix A.1.1 and A.2.1, respectively.

3.2 Fictitious Domain Method

For the derivation of the Fictitious domain method, it is necessary to start at the second
order form of the Maxwell’s equations (6). An example of a problem that involves solving
this equation subject to (13) on a non-rectangular domain is depicted in Fig. 1. The inner
and outer regions are denoted I and O, and meet on the boundary γ. Obviously, the Yee
scheme cannot be applied easily to I, because of the rounded edges of the domain.
The idea of the Fictitious Domain Method is to extend the computational domain to the
outer region, and introduce a new computational domain C, where C = I∪O. This way the
outer boundary ∂O, and thus ∂C, can be freely chosen. The permeability and permittivity
of the inner domain are also extended into O with the same constant value. The solution e
of the new problem is a continuous and differentiable function on C. To ensure consistency
with the original problem, this function is enforced to be zero parallel to the boundary γ.
This e can be found as the first argument of the solution (e, λ) of a variational problem,
using test functions ẽ ∈ X, a curl conforming function space on C, and λ̃ ∈ L, a function
space on the boundary γ. For the full functional analytic setting we refer to [3]. The
variational scheme is

d2

dt2
(e, ẽ) +

1

µε
a(e, ẽ) = b(ẽ, λ) ∀ẽ ∈ X

b(e, λ̃) = 0, ∀λ̃ ∈ L
(15)

with the inner product and bilinear forms

(e, ẽ) =

∫
C
eẽ dx

a(e, ẽ) =

∫
C
(∇× e)(∇× ẽ) dx

b(e, λ) =

∫
γ
n× (n× e) · λ dγ,

(16)

3.2.1 Semi discretization in space

In order to find discrete approximations to (15), we introduce a piecewise linear polygonal
approximation γh to γ. The space L is approximated by the discrete space Lh on γh.
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Moreover, the discrete subspace Xh ∈ X, and the discrete functions eh, ẽh and λh are
considered. In principle, the meshes Lh and Xh can be chosen independently and do not
need to overlap. The discrete variational version of (15) can now be formulated.

Find (eh, λh) ∈ Xh × Lh such that for all (ẽh, λ̃h) ∈ Xh × Lh :

d2

dt2
(eh, ẽh) +

1

µε
a(e, ẽh) = b(ẽh, λh)

b(eh, λ̃h) = 0.

(17)

Because clearly all identities in (17) are linear or bilinear functions in e, ẽ and λ, they can be
replaced by matrix operations on their respective basis representations in Xh and Lh. More
precisely, let {vi, 1 ≤ i ≤ p = dim(Xh)} be a basis for Xh and {wi, 1 ≤ i ≤ q = dim(Lh)}
be a basis for Lh. Now, for every eh (respectively λh) there is a coordinate vector {Eh,i,
i = 1, 2..p} (respectively {Λh,j , j = 1, 2..q}) such that

eh =

p∑
i=1

Eh,ivi

ẽh =

p∑
i=1

Ẽh,ivi

λh =

q∑
i=1

Λh,iwi.

(18)

Then, matricesMh, Ah and Bh acting on the decompositions Eh, Ẽh, λh can be constructed
such that (eh, ẽh) = ẼThMhEh, a(eh, ẽh) = ẼThAhEh and b(eh, λh) = ΛThBhEh. These
matrices

Mh(i, j) =

∫
C
vj · vi dx

Ah(i, j) =

∫
C
(∇× vj) · (∇× vi) dx

Bh(i, j) =

∫
γ
n× (n× vj) ·wi dγ

(19)

are determined by the choice of the basis functions vi and wi. Indeed, because of the
bilinearity in (16), these matrices together with the column vector decompositions can
now form the basis representation version of (17)

d2

dt2
(ẼThMhEh) +

1

µε
ẼThAhEh = ΛThBhẼh, ∀Ẽh ∈ Rp,

Λ̃ThBhEh = 0, ∀Λ̃h ∈ Rq.
(20)

Since choosing the basis functions {vi, i = 1, 2, ..., p} and {wi, i = 1, 2, ...q} obviously
induces a bijection between Xh and Rp, and Lh and Rq, (20) is equivalent to (17). The
equations (20) hold for all possible Ẽh and λ̃h. Therefore, and by using the fact that Mh
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and Ah are symmetric matrices by definition, it easily follows that

Mh
d2Eh
dt2

+
1

µε
AhEt = BT

h Λh

BhEh = 0.

(21)

The matrix Mh is called the mass matrix and Ah is called the stiffness matrix. This
terminology is extended by referring to Bh as the boundary matrix.

3.2.2 Remarks on the mass and stiffness matrix

By making some assumptions on the basis vectors vi and the meshing, some properties
of the matrices Mh and Ah can be determined. From now on, it is assumed the grid is
isotropic, meaning ∆x = ∆y = ∆z = h and the basis vectors are lowest order Nédelec
edge elements. We introduce the same meshing of the rectangular grid as before, using
gridpoints (x, y, z) = (nxh, nyh, nzh), which induce cubic grid cells. A grid cell is denoted
Kr, and an edge of a grid cell is denoted fj ∈ Fh, the set of all edges. Either an edge
lies in the interior of the computational domain, denoted fj ∈ FC , or at the boundary of
the computational domain, fj ∈ FdC and thus Fh = FC ∪ FdC . Moreover, we denote the
tangent to edge fj by τ j . The lowest order Nédelec edge elements are associated with an
edge fj such that vi · τ j = 1 if i = j and vi · τ j = 0 if i 6= j. Inside the grid cells, the basis
functions vi are linear, for example as shown in Fig. 3 for the two-dimensional Nédelec
edge elements. These functions are translated and scaled per grid cell to obtain the global
basis functions.

Figure 3: Lowest order Nédelec edge elements on a two-dimensional unit grid cell.
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It is important to remark that basis functions vi are nonzero in multiple grid cells. In a
two dimensional grid interior edges have two adjacent grid cells, and in a three dimensional
grid four adjacent grid cells. Moreover, in a three dimensional grid, edges fj ∈ FdC can also
have two adjacent grid cells. In particular, an edge fj is an intersection between grid cells
Kr, r = 1, 2.., i.e. fj =

⋂
rKr. The support of vj (the domain where the basis function is

non-zero) is the union of those adjacent grid cells, and we write supp(vj) =
⋃
rKr. Now,

from (19) it is easily shown that all columns (and rows) of Mh associated with a basis
vector vj associated to an edge fj ∈ FC , add up to h2. Using mass-lumping

Mh = h2I, (22)

where I denotes the identity matrix.
A similar, somewhat more elaborate remark will now be made about the stiffness

matrix. Again, from (19) it is clear that Ah(i, j) is non-zero if supp(vi) ∩ supp(vj) 6= ∅.
In particular, Ah(i, j) = 2 if i = j, Ah(i, j) = 1 if vi and vj both contribute to the
discrete curl in the z-direction with the same sign in the intersection of their support, and
Ah(i, j) = −1 if vi and vj contribute to the discrete curl in the z-direction with a different
sign in the intersection of their support. By direct calculation and from the definition of
Rh,

Ah = h2RThRh. (23)

Combining (21)-(23) gives

d2Eh
dt2

+
1

µε
RThRhEh =

1

h2
BT
h Λh

BhEh = 0.

(24)

3.2.3 Time discretization

In order to do a time discretization, the interval [0, tend] is introduced and divided into
pieces using a time step ∆t. Denoting by Elh the decomposition Eh at time-step l, the
second order central finite difference is applied to (24) to obtain

El+1
h − 2Elh + El−1

h

(∆t)2
+

1

µε
RThRhE

l
h =

1

h2
BT
h Λlh

BhE
l
h = 0.

(25)

To obtain an explicit first order time stepping scheme as in (14), the magnetic field has
to be incorporated in the scheme. With this in mind, the same first order central finite
difference is used to discretize the magnetic field in time

H
l+

1
2

h −H
l−1

2
h

∆t
= − 1

µ
Rh(Elh) (26)

and Λlh is treated as the derivative of a new variable λh

Λh =
λ
l+ 1

2
h − λl−

1
2

h

∆t
. (27)
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Substituting (26) and (27) into the first equation of (25) yields

1

∆t

(
El+1
h − Elh

∆t
−
Elh − E

l−1
h

∆t

)
− 1

ε
RTh

(
H l+ 1

2 −H l− 1
2

∆t

)
=

1

h2
BT
h

λl+ 1
2

h − λl−
1
2

h

∆t

 (28)

which, using a time translation symmetry argument, is equivalent to

El+1
h − Elh

∆t
− 1

ε
RThH

l+ 1
2 =

1

h2
BT
h λ

l+ 1
2

h . (29)

Finally, (26) and (29) can be solved together with the constraint BhElh = 0 to obtain the
promised scheme in the form of (14):

H
l+ 1

2
h = H

l− 1
2

h +
∆t

µ
Rh(Elh),

El+1
h = (1−BT

h (BhB
T
h )−1Bh)(Elh +

∆t

ε
RTh (H

l+ 1
2

h )).

(30)

Comparing this with the main result in [3] shows a difference by a factor ∆t in the term
that incorporates the boundary, whereas (30) is the correct result. It might be noted that
Bh is not a square matrix because p > q and consequently Bh does not have an inverse.
If there is no boundary present Bh = 0 (the zero matrix) and (30) is just the Yee scheme
(14).

3.2.4 Two-dimensional boundary matrix

The term BT
h (BhB

T
h )−1Bh in (30) is the correction term that takes the boundary condition

into account. In this section the entries of the Bh matrix will be determined for a particular
choice of basis elements vi and wj . As has been stated in section 3.2.1 the meshes Xh and
Lh can be chosen independently. For simplicity, the Maxwell’s equations are solved on a
two-dimensional grid only involving Ex, Ey and Hz, see Fig. 4. Later, the result will be
extended to the full three-dimensional equations.

Figure 4: Two dimensional projection of the Yee cell

A method to find the matrix Bh for the two-dimensional FDM will now be provided, by
finding the value of an arbitrary non-zero entry in the boundary matrix. The basis elements
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for Xh were already determined to be the lowest order Nédelec edge elements (Fig. 3).
The basis elements for Lh are chosen to be the P 1 (linear) elements. We introduce the
points γi, i = 1, 2, ...q on the polygonal approximation γh of the boundary γ, such that γh
consists of line segments [γi, γi+1]. A line segment between γi and γi+1 is paramatrized by

σi(θ) = (γi+1 − γi)θ + γi, θ ∈ [0, 1], (31)

and has a tangent τ i

τ i =
γi+1 − γi
‖γi+1 − γi‖

. (32)

Here ‖γi+1 − γi‖ denotes the Euclidean norm. Then, from these parametrizations the basis
elements wi are defined as


wi(σ) = (1− θ)τ i if σ = σi(θ)

wi(σ) = θτ i−1 if σ = σi−1(θ)

wi(σ) = 0 otherwise.
(33)

Now having determined the choice of vj and wi, the only thing left to do is to evaluate
the integral in (19) giving the entries of the matrix Bh. An example of two basis functions
corresponding to a non-zero entry in Bh is shown in Fig. 5.

Figure 5: Example of two basis functions vj and wi contributing to a non-zero
entry Bh(i, j) in the boundary matrix

Every boundary segment, e.g [γi, γi+1], can intersect with the boundary of a particular grid
cell one time, intersect with the boundary of a cell twice, or lie completely in the grid cell.
These intersections determine the intersections of the supports of the basis functions vj
and wi, and consequently the bounds of the integral for an entry of the boundary matrix.
The first and the latter option are true here as seen in Fig. 5, however the method is
equivalent for all cases. First, the intersections between the boundary and the mesh grid
of C will be found. Second, the line will be parametrized to change the integration variable.
Finally a Gauss Legendre quadrature is used to evaluate the integral.
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Grid and boundary intersections
The intersections between the edges fj and the line segments σi have to be found in a two
dimensional domain. Due to notational convenience two grid points γh are here indicated
by p1 = (x1, y1) and p2 = (x2, y2). The same points can also uniquely be represented as

p1 =
(⌊x1

h

⌋
h+ x̃1,

⌊y1

h

⌋
h+ ỹ1

)
p2 =

(⌊x2

h

⌋
h+ x̃2,

⌊y2

h

⌋
h+ ỹ2

) (34)

where bxc denotes the floor function. The line segment between these two points has
intersections with edges fj if the values of the floor functions for the x and y coordinates are
not the same. In particular, the number of intersections with a vertical edge is |

⌊
x1
h

⌋
−
⌊
x2
h

⌋
|

and the number of intersections with a horizontal edge is |
⌊y1
h

⌋
−
⌊y2
h

⌋
|. The x coordinates

of the intersections with a vertical edge are now found to be

x| = min
(⌊x1

h

⌋
,
⌊x2

h

⌋)
+ kh 1 ≤ k ≤ |

⌊x1

h

⌋
−
⌊x2

h

⌋
| (35)

and for the y coordinates of the intersections with a horizontal edge

y− = min
(⌊y1

h

⌋
,
⌊y2

h

⌋)
+ kh 1 ≤ k ≤ |

⌊y1

h

⌋
−
⌊y2

h

⌋
|. (36)

The corresponding x− and y| values can easily be found from the line parametrization σi,
substituting a known value from (35) or (36) and then solving for the unknown variable.
Some caution should be taken to resolve the fact that not all points found are unique if a
line intersects with a grid cell exactly at a grid point (nxh, nyh, nzh).

Line parametrization
A basis function wi on a line segment parametrized by σi is simply equal to θτ or (1−θ)τ .
The goal is to transform the integral over the boundary into an integral over θ using these
parametrizations. The value of the basis functions vj are evaluated as vj(σi(θ)). The
(x, y) coordinates of the line segments σi are then mapped to the unit square to find the
value of vj .

Note that for two dimensional grids, where the tangent of a boundary segment is
τ = (τ1, τ2), the normal vector can be written as n = (τ2,−τ1) and consequently, using
(33)

n× (n× vj) ·wi = vj ·wi. (37)

Further note that, for a boundary segment σi from p1 = (x1, y1) to p2 = (x2, y2), the
differential of the integration variable can be substituted with

dγ =
√

dx2 + dy2 =
√

((x2 − x1)dθ)2 + ((y2 − y1)dθ)2 = ‖p2 − p1‖ dθ. (38)

In conclusion, the integral for Bh can now be computed using a change of variables as

Bh(i, j) =

∫
γ
n× (n× vj) ·wi dγ =

∫ γi

γi−1

vj ·wi dγ +

∫ γi+1

γi

vj ·wi dγ

= ‖γi−1 − γi‖
∫ 1

0
vj (σi−1(θ)) · τ i−1 θ dθ + ‖γi − γi+1‖

∫ 1

0
vj (σi(θ)) · τ i(1− θ) dθ

12



Gauss Legendre quadrature
The intersections of the line segments with the grid edges, can be combined with the
parametrizations σi to find α1, β1, α2 and β2, such that for example σi−1(θ) ⊂ supp(vj)
for θ < α1 and θ > β1, and σi−1(θ) ∩ supp(vj) = ∅ for θ > α1 and θ < β1. The integral
bounds can be changed to

Bh(i, j) = ‖γi−1 − γi‖
∫ β1

α1

vj (σi−1(θ)) · θτ dθ + ‖γi − γi+1‖
∫ β2

α2

vj (σi(θ)) · (1− θ)τ dθ

(39)

and the functions vj in the integral are now continuous linear functions without a kink,
i.e. the integral bounds are chosen such that vj is only evaluated inside grid cells it is
supported in. Note that possibly the integration is still over two cells Kr ⊂ supp(vj). In
this case, the integral should be split once more with the intersections found above using
α3 and so on. Thereafter, the functions vj are linear functions in θ and so are θτ and
(1 − θ)τ , and consequently the functions inside the integral are quadratic functions in
θ. Hence, these functions can be exactly evaluated using a second order quadrature, e.g.
Gauss Legendre quadrature

∫ b

a
f(t) dt =

b− a
2

2∑
n=1

f(
b− a

2
ξn +

a+ b

2
), ξn = ± 1√

3
. (40)

By taking f(t) = vj (σi−1(t)) · tτ or f(t) = vj (σi(t)) · (1 − t)τ , the value of the entry
of Bh(i, j) is found. Repeating this method will yield the boundary matrix Bh. For a
Matlab implementation of this result we refer to the Appendix A.1.3.

3.2.5 Extension to three-dimensional right prisms

The method that was derived, does not work for three-dimensional problems. However, it
will be argued that the boundary matrix that was found in section 3.2.4 can be used for
right prisms. Right prisms are objects with a constant two-dimensional shape shifted in a
third dimension, here the z-axis. An example can be seen in Fig. 6.

Figure 6: Example of a right prism
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A discretization of the surface of such a right prism is Sh = {(x, y, z)|(x, y) ∈ γh, z =
kh, k = 0, 1, ..}, where γh is a polygonal approximation to the shape in the xy-plane as
before. The normals on the faces of Sh are parallel to the xy-plane and hence, the tangential
fields at the boundary can be decomposed uniquely as the sum of a component in the xy-
plane, and a component in the z-direction. Now, the constraint at the boundary can be
decoupled for the Ex and Ey-components on the one hand, and the Ez-component on the
other hand. The integrals for Bh as in (19) over the boundary will be surface integrals.
The basis functions for vj are now the three-dimensional lowest order Nédelec elements.
These three dimensional basis functions vj are still associated with an edge fj as before.
We denote by x̂, ŷ and ẑ the unit vectors in the directions of Ex, Ey and Ez. In the unit
cube, there are four edges with an associated basis function in the direction of Ex

v1 = (1− y)(1− z) x̂,

v2 = (1− y)z x̂,

v3 = y(1− z) x̂,

v4 = yz x̂,

(41)

and similarly, four edges associated with basis functions in the direction of both Ey and
Ez. These basis functions are then scaled and translated to the edge fj they are associated
with. Every basis function vj has a direction v̂j ∈ {x̂, ŷ, x̂} and can be decomposed as
vj = vj(x, y)vj(z)v̂j . Basis functions wi on the boundary are either chosen tangent to
the curve γh in the xy plane or parallel to the z axis. We write wi = wi(x, y)wi(z)ŵ,
ŵ ∈ {τ 1, τ 2..., τ q, ẑ}. It is important to note that for every basis function vj (respectively
wi) with the same z location of the cells it has support in, vj(z) (respectively wi(z)) is
the same function translated to the support of the basis function. In particular, due to
the rectangular shape of the boundary elements, the surface integrals over the boundary
can be split into an integral over x, y, and an integral over z which has a constant value.
Therefore, for basis functions vj , wi in a layer, introducing two constants C1, C2



Bh(i, j) =

∫
γ
vj ·wi dS = C1

∫
γ
vj(x, y)v̂j · wi(x, y)ŵi dγ, v̂j ∈ {x̂, ŷ}, ŵi = τ i,

Bh(i, j) = 0, v̂j = ẑ, ŵi = τ i,

Bh(i, j) = 0, v̂j ∈ {x̂, ŷ}, ŵi = ẑ,

Bh(i, j) =

∫
γ
vj ·wi dS = C2

∫
γ
vj(x, y)v̂j · wi(x, y)ŵi dγ, v̂j = ẑ, ŵi = ẑ.

(42)

The entries of this matrix Bh acting on the basis functions with v̂j ∈ {x̂, ŷ} and ŵi = τ i
is just a scaled version of the matrix Bh found in section 3.2.4. Because a scaling of the
matrix Bh has no impact on the scheme in (30), the matrix found in section 3.2.4 can
be applied to such a layer to enforce the boundary condition for the fields Ex and Ey.
Moreover, because the final result is independent of the z variable, the same matrix Bh
can be applied to every layer of the three-dimensional grid. For the other basis functions
w′i, v

′
j , denoted with a prime to avoid confusion, ŵ′i = v̂′j = ẑ. A similar derivation as in

section 3.2.4 is used to find a matrix B′h to enforce the boundary constraint for these basis
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functions (and thus Ez) per layer. The corresponding boundary matrix elements are

B′h(i, j) = ‖γi−1 − γi‖
∫ β1

α1

v′j (σi−1(θ))·θẑ dθ+‖γi − γi+1‖
∫ β2

α2

v′j (σi(θ))·(1−θ)ẑ dθ. (43)

Obviously, these entries are also independent of the z position of the basis functions and
can be applied per layer in the z direction. This way, three-dimensional simulations can
be done on perfect prism shaped objects. An implementation in Matlab can be found in
Appendix A.2.2.

3.3 Total Field/Scattered Field formulation

The Total Field/Scattered Field (TF/SF) formulation is a method to insert plane waves
into a numerical simulation using the Yee scheme. The method is introduced for the two-
dimensional case, from which the result for the three-dimensional case is easily obtained.
In principle TF/SF can be used together with the FDM as long as the boundary conditions
are not violated by the inserted waves. In Fig. 7 part of a two-dimensional grid is shown,
consisting of two dimensional finite elements as in Fig. 4.

Figure 7: Two dimensional FDTD grid for TF/SF formulation

A plane wave travelling in the positive x direction will be inserted into the simulation.
The grid is divided into two parts, a total field where the plane wave is present and a
scattered field where the plane wave is not present. First, the update equations for the
two-dimensional grid are introduced. We denote by Ex(nx, ny), Ey(nx, ny), Hz(nx, ny) the
fields at a location determined by the indexing as in Fig. 4, where the bottom left grid
point of the cell has location (nxh, nyh). Using this indexing, the update equations are
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(see also equation (14))

El+1
x (nx, ny) = Elx(nx, ny) +

∆t

hε

[
H
l+ 1

2
z (nx, ny)−H

l+ 1
2

z (nx, ny − 1)

]
El+1
y (nx, ny) = Ely(nx, ny) − ∆t

hε

[
H
l+ 1

2
z (nx, ny)−H

l+ 1
2

z (nx − 1, n)

]
H
l+ 1

2
z (nx, ny) = H

l− 1
2

z (nx, ny) − ∆t

hµ

([
Ely(nx + 1, ny)− Ely(nx, ny)

]
−
[
Elx(nx, ny + 1)− Elx(nx, ny)

])
(44)

These update equations will be altered to insert a plane wave, where fields with indices
{nx,src ≤ nx ≤ Nx, 1 ≤ ny ≤ Ny} are in the total field region and fields with the remaining
indices are in the scattered field region. From (44) it is obvious that only the update
equations for Ey(nx,src, ny) and Hz(nx,src − 1, ny) need to be compensated. In particular,
in the update equation for Ey(nx,src, ny) the term Hz(nx,src − 1, ny) is a scattered field
quantity that has to update a total field quantity, and in the update equation forHz(nx,src−
1, ny) the term Ey(nx,src, ny) is a total field quantity that has to update a scattered field
quantity. Therefore, the magnetic field of the plane wave will be added to Hz(nx,src−1, ny)
and the electric field of the plane wave will be subtracted from Ey(nx,src, ny) when those
particular discrete curls are calculated. By moving these compensations out of the usual
curl calculations, the update equations for Ey and Hz become

El+1
y (nx,src, ny) = Ely(nx, ny)−

∆t

hε

[
H
l+ 1

2
z (nx,src, ny)−H

l+ 1
2

z (nx,src − 1, ny)

]
+

∆t

hε
Hsrc
z ((l + 1

2)∆t)

H
l+ 1

2
z (nx,src − 1, ny) = H

l− 1
2

z (nx,src − 1, ny)−
∆t

hµ

[
Ely(nx,src, ny)− Ely(nx,src − 1, ny)

]
+

∆t

hµ

[
Elx(nx,src − 1, ny + 1)− Elx(nx,src − 1, ny)

]
+

∆t

hµ
Esrcy (l∆t)

(45)

We introduce a plane wave source with wave number k, angular frequency ω and denote
by c the speed of light in the medium, where the relation k = ω

c holds. The plane wave is
described by

Esrcy (x, t) = E0 ei(kz−ωt),

Hsrc
z (x, t) = H0 ei(kz−ωt).

(46)

The constants E0 and H0 are related (see [9]) as

H0 =

√
ε

µ
E0. (47)

The values of these plane waves can be calculated exactly at every time and location in
the grid. The location of the source is fixed and determined by the location of nx,src. The
functions in (46) are then evaluated at times indicated in (45), which concludes the TF/SF
formulation in two dimensions.
For a plane wave travelling in three dimensional space, a similar derivation can be done.
For a wave travelling in the positive z direction with the total field at indices k > ksrc, only
the update equations for Hx(nx, ny, nz,src−1), Hy(nx, ny, nz,src−1), Ex(nx, ny, nz,src) and
Ey(nx, ny, nz,src) have to be compensated.
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3.3.1 Gaussian beams

In order to mimic a Gaussian beam source, a Gaussian window can be applied to a plane
wave source, which is added to simulation by means of the TF/SF method. From (11) we
derive the shape of the Gaussian window from the shape of the Gaussian beam at z = 0,

E(x, y, 0) = E0 e
x2+y2

w2
0 . (48)

Multiplying (48) with a plane wave with wave number k and angular frequency ω gives
the approximation to the beam

E(x, y, z, t) = E0 e
x2+y2

w2
0 ekz−ωt. (49)

According to [6], (49) can accurately be used to construct Gaussian beam distribution on
a TF/SF interface as long as the Gaussian window (48) decays to a low level at the edges
of the grid in the xy plane, and the wavelength λ = 2π

k is smaller than the beam width w0.

4 Stability

In this section the stability of the FDM will be investigated. An energy of Maxwell’s
Equations is introduced and a discrete version of this energy is shown to be a conserved
quantity as well. From this discrete energy, a stability condition relating the spatial step
size h and the time-step ∆t will be derived.

4.1 Energy conservation

If E and H satisfy Maxwell’s equations in a lossless medium and the boundary conditions
E× n = 0 and H× n = 0 are satisfied, an energy conserved in the system is

E =

∫
C

(
ε

∣∣∣∣∂E∂t
∣∣∣∣2 + µ

∣∣∣∣∂H∂t
∣∣∣∣2
)

dx. (50)

This can easily be proved using Maxwell’s equations (2)-(5), see for example [2]. To obtain
a discrete variant of this energy, approximations are made to the partial time derivatives,
using the inner product and bilinear forms in (16). At time t = (l + 1

2)∆t

∫
C

∣∣∣∣∂E(t)

∂t

∣∣∣∣2 dx ≈

(
el+1
h − elh

∆t
,
el+1
h − elh

∆t

)
,

∫
C

∣∣∣∣∂H(t)

∂t

∣∣∣∣2 dx ≈
(
− 1

µ
Rhe

l+1
h ,− 1

µ
Rhe

l
h

)
=

1

µ2
a(el+1

h , elh).

(51)

Remember that Eh(t) in the final FDM scheme (30), is the coefficient vector of eh(t)
in the chosen basis, and eh(t) is the solution to the variational problem in (15). In the
equation above elh thus represents the solution of the variational problem at time step l.
Substituting the approximations of the derivatives into (50), we define the discrete energy
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at time t = (l + 1
2)∆t as

E l+
1
2

h = ε

(
el+1
h − elh

∆t
,
el+1
h − elh

∆t

)
+

1

µ
a(el+1

h , elh). (52)

To show this quantity is conserved, the difference in energy at two consecutive time steps

E l+
1
2

h −E l−
1
2

h = ε

∫
C

(el+1
h )2 − 2el+1

h elh + 2elhe
l−1
h − (el−1

h )2

(∆t)2
dx+

1

µ

(
a(el+1

h , el)− a(elh, e
l−1
h )

)
,

(53)

will be shown to be zero.
It should be observed that (25) still represents the variational scheme of (15), although

now with space and time discretization. The corresponding variational scheme with space
and time discretization is

(
el+1
h − 2elh + el−1

h

(∆t)2
, ẽh

)
+

1

µε
a(elh, ẽh) = b(ẽh, λ

l
h) ∀ẽh ∈ X,

b(elh, λ̃h) = 0 ∀λ̃ ∈ L.

(54)

Choosing the test function ẽh = el+1
h − el−1

h and using the linearity of the bilinear forms
a(e, ẽ) and b(ẽ, λ), the first equation becomes

∫
C

(el+1
h )2 − 2el+1

h elh + 2elhe
l−1
h − (el−1

h )2

(∆t)2
+

1

µε

(
a(el+1

h , el)− a(elh, e
l−1
h )

)
= b(el+1

h , λlh)− b(el−1
h , λlh).

(55)

Now choosing λ̃h = λl−1
h in the second equation of (54), it follows that b(elh, λ

l−1
h ) = 0,

and using a time-symmetry argument, also b(el+1
h , λlh) = 0. A similar argument is used to

prove b(el−1
h , λlh) = 0. Substituting (55) in (53) now gives the desired result

E l+
1
2

h − E l−
1
2

h = ε
[
b(el+1

h , λlh)− b(el−1
h , λlh)

]
= 0, (56)

proving the discrete energy is indeed conserved.

4.2 Stability condition

Now that the discrete energy has been shown to be a conserved quantity, the scheme will
be shown to be stable in a newly introduced norm. Notice the following trick using the
linearity and symmetry of a(e, e):

a

(
el+1
h + elh

2
,
el+1
h + elh

2

)
− a

(
el+1
h − elh

2
,
el+1
h − elh

2

)
=

a

(
el+1
h

2
,
el+1
h + elh

2

)
+ a

(
elh
2
,
el+1
h + elh

2

)
− a

(
el+1
h

2
,
el+1
h − elh

2

)
+ a

(
elh
2
,
el+1
h − elh

2

)
=

a

(
el+1
h

2
, elh

)
+ a

(
elh
2
, el+1
h

)
= a

(
el+1
h , elh

)
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As a result, (52) can be rewritten as

E l+
1
2

h = ε

(
el+1
h − elh

∆t
,
el+1
h − elh

∆t

)
+

1

µ
a

(
el+1
h + elh

2
,
el+1
h + elh

2

)
− 1

µ
a

(
el+1
h − elh

2
,
el+1
h − elh

2

)
We define the bilinear form Q on tuples (u, v) ∈ Xh ×Xh as

Q ((u1, v1), (u2, v2)) =
ε

(∆t)2
(u1−v1, u2−v2)+

1

µ
a(u1 +v1, u2 +v2)− 1

µ
a(u1−v1, u2−v2).

(57)

Clearly, Q is symmetric and linear in it’s first argument. Then, Q is an inner product if
it satisfies the positive definiteness property, i.e. Q ((u, v), (u, v)) > 0, for (u, v) 6= (0, 0).
Using the fact that a(v, v) > 0, this is equivalent to

ε

(∆t)2
(u, u)− 1

4µ
a(u, u) > 0 ∀u ∈ Xh\0. (58)

If this constraint is met, Q is an inner product and consequently |||(u, v)||| =
√
Q ((u, v), (u, v))

is a norm. Using (56) we write

∣∣∣∣∣∣∣∣∣(el+1
h , elh)

∣∣∣∣∣∣∣∣∣2 = E l+
1
2

h = E l−
1
2

h =
∣∣∣∣∣∣∣∣∣(elh, el−1

h )
∣∣∣∣∣∣∣∣∣2 (59)

and the system is stable in this norm. In fact, (58) is just a CFL condition on the Courant
number, denoted C, linking the maximal time step ∆t to the spatial step h. Identifying
c = 1/

√
µε as the speed of light in matter,

C :=
c∆t

h
< 2

[
a(eh, eh)

h2(eh, eh)

]− 1
2

∀eh ∈ Xh\0. (60)

In order to determine the maximal time step, the minimum value of the left hand side of
the equation is found by maximizing the function in brackets over all possible functions
eh. Remember that Eh is the representation of eh with respect to the basis functions of
the space Xh. Taking the matrix definitions of (19) into account as well as the identities
in (22) and (23)

sup
eh 6=0

h2a(eh, eh)

(eh, eh)
= sup

Eh 6=0

h2EThAhEh

EThMhEh
= sup

Eh 6=0

EThAhEh

EThEh
. (61)

In this final equation, the Rayleigh quotient can be recognized. The maximum value of
the Rayleigh quotient R(A, x) = xTAx

xT x
is equal to the largest eigenvalue of A. Moreover, in

that case the supremizer is an eigenvector corresponding to that eigenvalue. Any suitable
algorithm, for example power iteration, can now be used to obtain the largest eigenvalue
of Ah and consequently the CFL condition. The power method is a recurrence relation
described by

xn+1 =
Axn
‖Axn‖

, (62)
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where using sufficient iterations and starting at a random initial vector, x converges to
the eigenvector corresponding to (one of) the largest eigenvalue of A. Note that AhEh =
h2RThRhEh and hence the power method consists just of calculating discrete curls and
normalizing the vector in this case.

5 Results

5.1 CFL conditions

In section 4.2 the CFL-condition relating the time step size to the spatial step size has
been found. We denote the CFL condition by Cmax such that

Cmax = 2

[
sup

EThAhEh

EThEh

]− 1
2

. (63)

The power method has been applied on a two-dimensional grid with domain [0, 1]× [0, 1]
to calculate the CFL condition for increasing numbers of grid-points Nx, Ny. The number
of iterations are 10, 100 and 1000. The results can be seen in Fig. 8.

Figure 8: CFL condition for a two dimensional grid with mesh refinement, n is
the number of iterations

Cmax can be seen to converge to 1/
√

2 for large mesh refinements. Likewise, for one and
three dimensional problems Cmax = 1 and Cmax = 1/

√
3 respectively.

5.2 Convergence on a tilted square

In order to test the convergence and errors of the FDM, a solution of the two dimensional
Maxwell’s equations is created on a square. The initial conditions are then injected on
a tilted square and the fields are simulated by the FDM. To find a simple solution of
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Maxwell’s equations it is assumed that ε = µ = 1 and the equations are just

∇×E +
∂H

∂t
= 0

∇×H− ∂E

∂t
= 0

(64)

These equations will be solved on an internal domain I = [0, 5]× [0, 5]. To make sure the
electric field obeys the boundary condition n× (n×E) = 0 on ∂I, the following ansatz is
used

Ex = − cos
(π

5
t
)

sin
(π

5
y
)

Ey = − cos
(π

5
t
)

sin
(π

5
x
)
.

(65)

Calculating the curl of these equations only gives a result in the z direction. Integrating
this curl gives an expression for the magnetic field

Hz = sin
(π

5
t
) [

cos
(π

5
x
)
− cos

(π
5
y
)]

(66)

Obviously, the physically correct boundary condition H|| = 0 on ∂I is discarded here.
However, for the convergence study of the electric field with respect to the FDM boundary
condition on the electric field this does not matter. Calculating the curl of the Hz field
and integrating over time shows that these fields are indeed a solution to the equations
in (64). Simply using the FDM on a square boundary, would disregard the interaction
between the Ex and Ey fields at the boundary. This interaction is of particular interest,
because it differentiates the FDM from the Yee scheme. For this reason the square grid
will be tilted as can be seen in Fig. 9.

Figure 9: Geometry of the problem with the reference grid and the tilted grid of
size 5× 5
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The tilted square is just a rotation around the middle point of the square, using the rotation
matrix

R =

[ 4
5

3
5

−3
5

4
5

]
(67)

The initial conditions at time t = 0 and t = −1/2∆t can be calculated exactly, and rotated
onto the tilted grid. A simulation is done for half a period of the cosine, i.e. the end time
is tend ≈ 5. The time step is chosen with the limit of the CFL condition ∆t = h/

√
2 and

therefore the end time is not exactly 5. The convergence study will be concerning the Ex
field in the tilted grid, which is a combination of the Ex and Ey fields of the reference grid,
therefore validating this choice. The boundary mesh Lh is evenly spaced on the boundary
with distance 2h. Results for h = 0.2, 0.1, 0.05 at the end time can be seen in Fig. 10.

Figure 10: FDM approximation of the Ex component fabricated solution on the
tilted square at t = 5

Let Elx,h(nx, ny) denote the values of the FDM approximation of the solution for the electric
field Ex at time l∆t and (x, y) = (nxh, nyh), and Erefx (nxh, nyh, t) denote the reference
value at the same points at time t. We define the error as

η = h

√∑
nx,ny

(
Elx,h(nx, ny)− Erefx (nxh, nyh, l∆t)

)2
. (68)
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This is just an L2 norm and consequently, we define the relative error as

ηr =
η

h

√∑
nx,ny

(
Erefx (nxh, nyh, l∆t)

)2
. (69)

For an error analysis, the approximations at tend ≈ 5 are compared to the true solution.
These errors are shown in Table 1.

Table 1: Errors and relative errors of the Ex approximation on the tilted square
at time t ≈ 5

spatinal step size error relative error
0.2 0.56931 0.12084
0.1 0.3918 0.083087
0.05 0.2752 0.058371
0.025 0.19537 0.041437
0.0125 0.13778 0.029224

Clearly, the approximations show to converge towards the real solution, although with a
low rate. A plot of the absolute difference |Ex(nx, ny, l∆t)−Elx,h(nx, ny)|, is shown in Fig.
11.

Figure 11: Absolute difference |Eapprox(nx, ny)− E(nx, ny)|

From the figure it can be observed that the values near the boundary have a large impact
on the error of the approximation. This induces the idea to look at the error of the
approximation inside the square. In Table 2 the errors and relative errors are shown for an
inner region [0.5, 4.5]× [0.5, 4.5] in the middle of the square. Indeed, the errors are much
lower and the FDM shows to be a much better approximation to fields within the square
than it is to fields at the boundary.
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Table 2: Errors and relative errors of FDM in an inner region of the tilted square
at time t = 5

spatial step size error relative error
0.2 0.10444 0.024193
0.1 0.073245 0.016948
0.05 0.048508 0.011225
0.025 0.034615 0.0080099
0.0125 0.023981 0.0055497

5.3 A first test: combining FDM and TF/SF

As an example combining the FDM and a TF/SF source, scattering on a two dimensional
domain with the TE mode fields, Ex, Ey and Hz, is considered. The domain used is
[0, 7]× [0, 7] microns. A circle with infinite refractive index is centered at (x, y) = (4.5, 3.5),
and has a radius of 1µm . A plane wave travelling in the positive x direction is inserted into
the total field at x = 2µm, with a wavelength λ = 800 × 10−9m. The wave polarization
is in the direction of Ey and Hz. The spatial step h = 0.02µm and the time step is
determined by the CFL condition. The boundary condition for the circle is the same
boundary condition as the boundary condition between the core and the outside region of
an optical fiber, i.e. the tangential electric field is zero. Therefore, the boundary of the
circle is discretized with spatial step 2h and the boundary condition is modelled using the
FDM. Before the initial time t = 0, the source is zero. The resulting magnetic field Hz

at t = 1.5331 × 10−14s is shown in Fig. 12. Interference of the waves reflected from the
circle can clearly be observed. The reflected waves can also be seen in the Scattered Field
region.

Figure 12: TF/SF of magnetic field Hz at t = 1.5331× 10−14s, after plane wave
scattering with wavelength λ = 800nm on a circle with infinite refractive index.
Total field is to the right of x = 2µm

5.4 Gaussian beam source excitation of an optical fiber

Excitation of an optical fiber using a Gaussian beam source is simulated. The core of
the fiber has size [0, 7] × [0, 7] µm with permittivity and permeability of free space , i.e.
ε = ε0 and µ = µ0. For a second simulation the same core size is used with rounded
edges. The corners have all different radii between 4µm and 7µm. The input Gaussian
beam is polarized in the directions of Ex and Hy, and travels through the fiber in the
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positive z direction, normal to the core. The source has a wavelength of λ = 800nm, a
beam width of w0 = 0.5µm and is implemented into the simulation as described in section
3.3.1. Moreover, this Gaussian beam source is transformed into a Gaussian shaped pulse
of 75fs (75× 10−15s) long, by multiplying it with a Gaussian envelope, the result of which
can be seen in Fig. 13. The value of the electric field in the source is normalized and has a
maximum equal to 1 in the middle of its focus at time t = 140.1fs. Both simulations use a
mesh grid with spatial step h = 0.1µm, and a time step chosen accordingly from the CFL
condition. The distance between points on the boundary is approximately equal to 2h.

Figure 13: Electric field of a Gaussian shaped pulse source in the middle of the
focus of a Gaussian beam against time.

The fiber shape perpendicular to its core is assumed to be constant, i.e. it is a right prism.
Hence, the method from section 3.2.5 can be used for the simulations. In Fig. 14 the
squared sums of the transverse components, E2

x +E2
y , are shown at a location 40µm from

the source at t = 280fs.

Figure 14: Gaussian beam source output pattern E2
x + E2

y for two optical fibers
with different core shapes at t = 280fs

The patterns observed throughout the fiber for the two core shapes are similar, apart from
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the fact that the simulation for a fiber with rounded edges has interference in the middle of
the core, where the square core has two speckles in the middle. Further research is needed
to characterize the relation between the core shape and the output patterns. It should be
noted that the core of the fiber used in this simulation is near the size of a single-mode
optical fiber, while optical fibers with a core size of around 50mu, multi-mode fibers, are
also of interest.

6 Conclusion

In this work a derivation for the Fictitious Domain Method to solve Maxwell’s Equations
on a non-rectangular domain is shown. The FDM solves these problems by introducing a
new variable at the boundary and a matrix to interact between a boundary mesh and a
grid mesh. The two dimensional boundary matrix has been thoroughly investigated, and
extended to three dimensional perfect prisms. The method has shown to be stable under
the usual CFL conditions. A trivial solution for a rotated two-dimensional square was used
to test the FDM, which was shown to converge to it’s true solution. The FDM is much
better for approximating the fields in the middle of a fiber than at the boundaries. However,
it should be noted that waves reflected at the boundary are still very well approximated in
the middle of a fiber. An implementation of a Gaussian beam source as an extension on the
TF/SF formulation was introduced. Future work should include more three dimensional
simulations of optical fibers with a Gaussian beam source, in particular to study the effects
of the shape on the speckle pattern and to obtain speckle patterns for multi-mode optical
fibers. Moreover, future research should be done on incorporating a more realistic boundary
constraint for cladding with a finite refractive index. Two simulations can be run, one for
the field inside and one for the field outside, with BhEin = BhEout as a boundary constraint
for the new problem.
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A Code

A.1 Two dimensional FDM

Code for the two dimensional FDM is provided. First, the discrete curls and the basis
functions are given. Then interactions between electric field matrices and electric field
columns are stated, which are used to connect the Yee scheme and the FDM. Thereafter, the
functions to find the boundary matrix are given, and finally a main function for the FDM
is provided. The main function provided here, has ε = µ = 1 as used in the convergence
studies. The FDM used for the TF/SF formulation is just a simple modification on this
main function and is therefore omitted.

A.1.1 Curls and basisfunctions

1 function CEz = Ecurl2D(Ex,Ey,dx,dy)

2 [Nx,Ny] = size(Ex);

3 CEz = deal(zeros(Nx,Ny));

4
5 CEz(1:Nx−1,1:Ny−1) = 1/dx*(Ey(2:Nx,1:Ny−1)−Ey(1:Nx−1,1:Ny−1))...
6 −1/dy*(Ex(1:Nx−1,2:Ny)−Ex(1:Nx−1,1:Ny−1));
7 CEz(Nx,1:Ny−1) = 1/dx*(−Ey(Nx,1:Ny−1))−1/dy*(Ex(Nx,2:Ny)−Ex(Nx,1:Ny−1));
8 CEz(1:Nx−1,Ny) = 1/dx*(Ey(2:Nx,Ny)−Ey(1:Nx−1,Ny))−1/dy*(−Ex(1:Nx−1,Ny));
9 CEz(Nx,Ny) = 1/dx*(−Ey(Nx,Ny))−1/dy*(−Ex(Nx,Ny));
10 end

1 function [CHx,CHy] = Hcurl2D(Hz,dx,dy)

2 [Nx,Ny] = size(Hz);

3 [CHx,CHy] = deal(zeros(Nx,Ny));

4
5 CHx(1:Nx,2:Ny) = 1/dy * (Hz(1:Nx,2:Ny)−Hz(1:Nx,1:Ny−1));
6 CHy(2:Nx,1:Ny) = −1/dx * (Hz(2:Nx,1:Ny)−Hz(1:Nx−1,1:Ny));
7
8 CHx(1:Nx,1) = 1/dy * (Hz(1:Nx,1));

9 CHy(1,1:Ny) = −1/dx*(Hz(1,1:Ny));
10 end

1 %Here I get the value of the basisfunctions v, so that they can be changed

2 %to some others functions, with the then proper Gauss−Legendre
3 %approximation of the polynomial

4 function value = basisFunctions(point,loc)

5 if loc=='b'

6 value = [1 − point(2),0];

7 elseif loc=='t'

8 value = [point(2),0];

9 elseif loc=='r'

10 value = [0,point(1)];

11 elseif loc=='l'

12 value = [0,1−point(1)];
13 else

14 disp(This should not happen);
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15 end

A.1.2 Column and Matrix mappings

1 %This makes Ex and Ey into a single column vector that can be used for the

2 %matrix B for the FDM. The reverse function can be used to

3 %retrieve the Ex/Ey. This makes the standard Fdtd part more clear

4 %and also makes plotting a lot easier.

5 %The vector looks like E = [Ex(:,1) Ex(:,2) ..Ex(:,nx) Ey(:,1)..Ey(:,ny)]

6 function E = mapToEcolumn(Ex,Ey)

7 E = [Ex(:); Ey(:)];

8 end

1 %This retrieves Ex and Ey from the single column vector that can be used for

the

2 %matrix B for the FDM. The reverse function can be used to

3 %get the E vector. This makes the standard Fdtd part more clear

4 %and also makes plotting a lot easier.

5
6 function [Ex, Ey] = mapToEmatrix(E,nx,ny)

7 Ex = reshape(E(1:nx*ny), [nx ny]);

8 Ey = reshape(E(nx*ny+1:2*nx*ny),[nx ny]);

9 end

1 %Returns the index of a E vector in the column with as input the location

2 %of the Ex or Ey vector in the matrix

3 %orientation 0 = Ex, 1 = Ey

4 function index = getColumnIndex(x,y,Nx,Ny,orientation)

5 index = orientation*Nx*Ny + (y−1)*Nx + x;

6 end

A.1.3 Intersections, Boundary Matrix

1 % Divides the given straight line in parts adding intersections with edges

2 % of the grid depending on dx,dy.

3 % Also adds the beginpoint, and endpoint to the return vector, and makes

4 % sure it's direction is not changed

5
6 function points = intersections(beginpoint,endpoint,dx,dy)

7 x1 = beginpoint(1);

8 x2 = endpoint(1);

9 y1 = beginpoint(2);

10 y2 = endpoint(2);

11 m = [floor(x1/dx), floor(x2/dx)]; %locate in which square we are

12 n = [floor(y1/dy), floor(y2/dy)];

13 deltax = x2−x1;
14 deltay = y2−y1;
15 if(m(1) > m(2))
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16 m = flip(m); %make sure we start at smallest square

17 end

18 if(n(1) > n(2))

19 n = flip(n);

20 end

21
22 points = zeros(m(2)−m(1) + n(2) − n(1)+2,2);

23 points(1,:) = [x1 y1];

24 row = 2;

25
26 %if the x−position of the squares is different there are some intersections

27 if(m(1) ~= m(2))

28 for i = m(1)+1:m(2)

29 %now fill in solved formula for points intersecting vertical grid

30 %lines

31 points(row,:) = [i*dx, y1+(i*dx−x1) * deltay/deltax];

32 row=row+1;

33 end

34 end

35 %same for if the y−position of the squares is different

36 if(n(1) ~= n(2))

37 for i = n(1)+1:n(2)

38 points(row,:) = [x1+(i*dy−y1)* deltax/deltay,i*dy];

39 row = row+1;

40 end

41 end

42 points(row,:) = [x2,y2];

43
44 %filter out the points that are intersecting twice

45 points = uniquetol(points,'ByRows',true);

46
47 %return the points sorted, and also in the direction from the first point

48 %to the second point.

49 if(x1<x2)

50 points = sortrows(points,1)';

51 elseif(x1>x2)

52 points = sortrows(points,1,'descend')';

53 elseif(y1<y2) %don't forget those vertical lines

54 points = sortrows(points,2)';

55 else

56 points = sortrows(points,2,'descend')';

57 end

58
59 end

1 % This is the main function for creating matrix B

2 %

3 % Nx,Ny,dx,dy are defining the square grid

4 % boundarySegments are the indices of the boundaryPoints that are
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5 % connected, for example for a connected boundary with three points it could

be:

6 % boundarySegments = [1 2; 2 3; 3 1]

7 % This makes sure other non−connected boundaries can be used

8
9 function B = boundaryMatrix(Nx,Ny,dx,dy,boundaryPoints,boundarySegments)

10
11 sparseValues = [];

12 sparseSet = [];

13 sparseM = length(boundaryPoints);

14 sparseN = Nx*Ny*2;

15 for segment = boundarySegments %loop through the boundary segments

16 %here the segment is splitted into parts that are contained in a single

17 %grid square

18 startNode = segment(1);

19 endNode = segment(2);

20 points = intersections(boundaryPoints(:,startNode)...

21 ,boundaryPoints(:,endNode),dx,dy);

22
23 %length of this line

24 l = norm(boundaryPoints(:,startNode)−boundaryPoints(:,endNode));
25
26 %there is a line less than the number of nodes

27 for index = 1:length(points)−1
28
29 lambdaA = points(:,index);

30 lambdaB = points(:,index+1);

31 tA = norm(lambdaA−boundaryPoints(:,startNode)) / l;

32 tB = norm(lambdaB−boundaryPoints(:,startNode)) / l;

33
34 %find the square that this is by looking at the midpoint

35 %of the two lambdas

36 m = floor((lambdaA(1)+lambdaB(1))/(2*dx));

37 n = floor((lambdaA(2)+lambdaB(2))/(2*dy));

38
39 %find the tangent vector

40 tau = [lambdaB(1)−lambdaA(1),lambdaB(2)−lambdaA(2)];
41 tau = tau/norm(tau);

42
43 %find the gauss legendre points and the transformed points on the

44 %grid [0 1 0 1],

45 xi = [−1/sqrt(3) 1/sqrt(3)];

46 GLPoints = (lambdaB−lambdaA)/2*xi + (lambdaA+lambdaB)/2;

47 TGLPoints = [GLPoints(1,:)/dx − m; GLPoints(2,:)/dy−n]; %transformed

points

48
49 %values of the ascending basisfunction w from lambdaA to lambdaB

50 wValues = [norm(GLPoints(:,1)−points(:,1)), norm(GLPoints(:,2)−
points(:,1))]/l;
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51
52 % Here the integral are evaluated the first one is always the

53 % descending basisfunction w which is 1 on the startNode, the second

54 % one is the ascending basisfunction w, e.g. which is 1 on the

endNode

55 % This part could be shortened with some more fancy loops, but this

56 % way it is more understandable

57
58 %bottom basisvector

59 i = startNode;

60 j = getColumnIndex(m+1,n+1,Nx,Ny,0);

61 value = l*(tB−tA)/2*(dot(basisFunctions(TGLPoints(:,1),'b'),tau)*(1−
wValues(1))...

62 + dot(basisFunctions(TGLPoints(:,2),'b'),tau)*(1−wValues(2)));
63 sparseSetCheck(i,j,value)

64
65 i = endNode;

66 j = getColumnIndex(m+1,n+1,Nx,Ny,0);

67 value = l*(tB−tA)/2*(dot(basisFunctions(TGLPoints(:,1),'b'),tau)*(
wValues(1))...

68 + dot(basisFunctions(TGLPoints(:,2),'b'),tau)*(wValues(2)));

69 sparseSetCheck(i,j,value)

70
71 %upper basisvector

72 i = startNode;

73 j = getColumnIndex(m+1,n+2,Nx,Ny,0);

74 value = l*(tB−tA)/2*(dot(basisFunctions(TGLPoints(:,1),'t' ),tau)

*(1−wValues(1))...
75 + dot(basisFunctions(TGLPoints(:,2),'t' ),tau)*(1−wValues(2)));
76 sparseSetCheck(i,j,value)

77
78 i = endNode;

79 j = getColumnIndex(m+1,n+2,Nx,Ny,0);

80 value = l*(tB−tA)/2*(dot(basisFunctions(TGLPoints(:,1),'t' ),tau)*(

wValues(1))...

81 + dot(basisFunctions(TGLPoints(:,2),'t' ),tau)*(wValues(2)));

82 sparseSetCheck(i,j,value)

83
84 %left basisvector

85 i = startNode;

86 j = getColumnIndex(m+1,n+1,Nx,Ny,1);

87 value = l*(tB−tA)/2*(dot(basisFunctions(TGLPoints(:,1),'l'),tau)
*(1−wValues(1))...

88 + dot(basisFunctions(TGLPoints(:,2),'l'),tau)*(1−wValues(2)));
89 sparseSetCheck(i,j,value)

90
91 i = endNode;

92 j = getColumnIndex(m+1,n+1,Nx,Ny,1);

93 value = l*(tB−tA)/2*(dot(basisFunctions(TGLPoints(:,1),'l'),tau)*(

32



wValues(1))...

94 + dot(basisFunctions(TGLPoints(:,2),'l'),tau)*(wValues(2)));

95 sparseSetCheck(i,j,value)

96
97 %right basisvector

98 i = startNode;

99 j = getColumnIndex(m+2,n+1,Nx,Ny,1);

100 value = l*(tB−tA)/2*(dot(basisFunctions(TGLPoints(:,1),'r'),tau)
*(1−wValues(1))...

101 + dot(basisFunctions(TGLPoints(:,2),'r'),tau)*(1−wValues(2)));
102 sparseSetCheck(i,j,value)

103
104 i = endNode;

105 j = getColumnIndex(m+2,n+1,Nx,Ny,1);

106 value = l*(tB−tA)/2*(dot(basisFunctions(TGLPoints(:,1),'r'),tau)*(
wValues(1))...

107 + dot(basisFunctions(TGLPoints(:,2),'r'),tau)*(wValues(2)));

108 sparseSetCheck(i,j,value)

109 end

110 end

111
112 B = sparse(sparseSet(:,1),sparseSet(:,2),sparseValues,sparseM,sparseN);

113
114 function sparseSetCheck(i,j,value)

115 if(~isempty(sparseSet))

116 [bool, ~] = ismember(sparseSet,[i,j],'rows');

117 else

118 bool = 0;

119 end

120 if(sum(bool))

121 sparseValues(bool) = sparseValues(bool) + value;

122 else

123 sparseSet = [sparseSet; [i,j]];

124 sparseValues = [sparseValues, value];

125 end

126 end

127 end

A.1.4 2D Fictitious Domain Method

1 % Main function for the 2D FDM

2 %

3 % h is the spatial grid step

4 % t_end the end time

5 % boundaryPoints and boundarySegments determine the boundary by linking the

6 % boundary points with indices in boundarySegments

7 % Ex0,Ey0,Hz0 are initial conditions

8 % dim is the domain of the simulation

9 %
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10 % output is here Ex (resultEx) at corresponding times (resultTime)

11 function [resultEx,resultTime] = FDM(h,t_end,boundaryPoints,boundarySegments

,Ex0,Ey0,Hz0,dim)

12
13 %length of the fields

14 dx = h;

15 dy = h;

16 Nx = dim(1)/dx+1;

17 Ny = dim(2)/dy+1;

18
19 %initialising fields

20 Ex = Ex0;

21 Ey = Ey0;

22 Hz = Hz0;

23
24 %calculating the timestep

25 alphaCFL = sqrt(1/2);

26 dt = dx*alphaCFL;

27
28 %here the boundary matrix is constructed

29 B = boundaryMatrix(Nx,Ny,dx,dy,boundaryPoints,boundarySegments);

30 Q_h = B*B';

31 [L,U,P,Q] = lu(sparse(Q_h));

32
33 %timesteps and initialising result variable

34 nsteps = ceil(t_end/dt);

35 resultEx = zeros([nsteps+1,size(Ex)]);

36 resultTime = zeros(nsteps+1,1);

37 resultEx(1,:,:) = Ex;

38 resultTime(1) = 0;

39 tic

40 for tn = 1:nsteps

41
42 %Calculate curl of the E field into the z−direction and then the H

43 %field

44 CEz = Ecurl2D(Ex,Ey,h,h);

45 Hz = Hz − dt*CEz;

46
47 %calculate curl of the H field into x/y direcion and then the D

field

48 [CHx, CHy] = Hcurl2D(Hz,h,h);

49
50 %calculate E field

51 Ex = Ex + dt*CHx;

52 Ey = Ey + dt*CHy;

53
54 %Here I map the Ex,Ey field into one large E column vector that I

now
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55 %can use to interact with the Boundary matrix, which is constructed

to

56 %use on a vector E, after this it is mapped back

57 E = mapToEcolumn(Ex,Ey);

58 lambda = Q*(U\(L\(P*B*E)));

59 diff = B'*lambda;

60 E = E−diff;
61 [Ex,Ey] = mapToEmatrix(E,Nx,Ny);

62
63 %saving the result, here Ex

64 resultEx(tn+1,:,:) = Ex;

65 resultTime(tn+1) = (tn)*dt;

66
67 end

68 end

A.2 Three dimensional FDM

The additional functions for the three dimensional FDM are provided here.

A.2.1 Curls and additional basis function for Ez

1 %Calculates the discrete 3D curl

2 %Ex,Ey,Ez are the fields in the 3 directions, with dimensions Nx,Ny,Nz

3 %dx,dy,dz are the sizes of the grid

4 %This function leaves the outer row and column of the curl matrices to zero

5 %THIS IS ONLY FOR THE CURL OF THE E FIELD

6 %ONLY FOR THE GRID WITH E AT THE LOWER BOUNDARY EDGE

7
8 function [Cx, Cy, Cz] = Ecurl3D(Ex,Ey,Ez,dx,dy,dz)

9 [Nx,Ny,Nz] = size(Ex);

10 [Cx,Cy,Cz] = deal(zeros(Nx,Ny,Nz));

11
12 Cx(2:Nx−1,2:Ny−1,2:Nz−1) = 1/dy*(Ez(2:Nx−1,3:Ny,2:Nz−1)−Ez(2:Nx−1,2:Ny−1,2:

Nz−1))−1/dz*(Ey(2:Nx−1,2:Ny−1,3:Nz)−Ey(2:Nx−1,2:Ny−1,2:Nz−1));
13 Cy(2:Nx−1,2:Ny−1,2:Nz−1) = 1/dz*(Ex(2:Nx−1,2:Ny−1,3:Nz)−Ex(2:Nx−1,2:Ny−1,2:

Nz−1))−1/dx*(Ez(3:Nx,2:Ny−1,2:Nz−1)−Ez(2:Nx−1,2:Ny−1,2:Nz−1));
14 Cz(2:Nx−1,2:Ny−1,2:Nz−1) = 1/dx*(Ey(3:Nx,2:Ny−1,2:Nz−1)−Ey(2:Nx−1,2:Ny−1,2:

Nz−1))−1/dy*(Ex(2:Nx−1,3:Ny,2:Nz−1)−Ex(2:Nx−1,2:Ny−1,2:Nz−1));
15
16 end

1 %Calculates the discrete 3D curl

2 %Hx,Hy,Hz are the fields in the 3 directions, with dimensions Nx,Ny,Nz

3 %dx,dy,dz are the sizes of the grid

4 %This function leaves the outer row and column of the curl matrices to zero

5 %THIS IS ONLY FOR THE CURL OF THE H FIELD

6 %ONLY FOR THE GRID WITH E AT THE LOWER BOUNDARY EDGE

7
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8 function [Cx, Cy, Cz] = Hcurl3D(Hx,Hy,Hz,dx,dy,dz)

9 [Nx,Ny,Nz] = size(Hx);

10 [Cx,Cy,Cz] = deal(zeros(Nx,Ny,Nz));

11
12 Cx(2:Nx−1,2:Ny−1,2:Nz−1) = 1/dy*(Hz(2:Nx−1,2:Ny−1,2:Nz−1)−Hz(2:Nx−1,1:Ny

−2,2:Nz−1))−1/dz*(Hy(2:Nx−1,2:Ny−1,2:Nz−1)−Hy(2:Nx−1,2:Ny−1,1:Nz−2));
13 Cy(2:Nx−1,2:Ny−1,2:Nz−1) = 1/dz*(Hx(2:Nx−1,2:Ny−1,2:Nz−1)−Hx(2:Nx−1,2:Ny

−1,1:Nz−2))−1/dx*(Hz(2:Nx−1,2:Ny−1,2:Nz−1)−Hz(1:Nx−2,2:Ny−1,2:Nz−1));
14 Cz(2:Nx−1,2:Ny−1,2:Nz−1) = 1/dx*(Hy(2:Nx−1,2:Ny−1,2:Nz−1)−Hy(1:Nx−2,2:Ny

−1,2:Nz−1))−1/dy*(Hx(2:Nx−1,2:Ny−1,2:Nz−1)−Hx(2:Nx−1,1:Ny−2,2:Nz−1));
15
16 end

1 %Here I get the value of the basisfunctions v, so that they can be changed

2 %to some others functions, with the then proper Gauss−Legendre
3 %approximation of the polynomial

4 function value = basisFunctionsZ(point,xloc,yloc)

5 value = ((1−point(1))^(1−xloc))*((point(1)^xloc))*...
6 ((1−point(2))^(1−yloc))*((point(2)^yloc));
7 end

A.2.2 Boundary Matrix for Ez

1 % This is the main function for creating matrix B_h' (for z vectors)

2 % (it is very similar to boundaryMatrix.m

3 %

4 % Nx,Ny,dx,dy are the dimensions of the grid

5 % boundaryPoints are the nodes of gamma_h

6 % boundarySegments are the indices of the boundaryPoints that are

7 % connected, for example for a connected boundary with three points it could

be:

8 % boundarySegments = [1 2; 2 3; 3 1]

9 % This makes sure other non−connected boundaries can be used

10
11 function B = boundaryMatrix_acc(Nx,Ny,dx,dy,boundaryPoints,boundarySegments)

12
13 sparseValues = [];

14 sparseSet = [];

15 sparseM = length(boundaryPoints);

16 sparseN = Nx*Ny;

17 for segment = boundarySegments %loop through the boundary segments

18 %here the segment is splitted into parts that are contained in a single

19 %grid square

20 startNode = segment(1);

21 endNode = segment(2);

22 points = intersections(boundaryPoints(:,startNode)...

23 ,boundaryPoints(:,endNode),dx,dy);

24
25 %length of this line
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26 l = norm(boundaryPoints(:,startNode)−boundaryPoints(:,endNode));
27
28 %there is a line less than the number of nodes

29 for index = 1:length(points)−1
30
31 lambdaA = points(:,index);

32 lambdaB = points(:,index+1);

33 tA = norm(lambdaA−boundaryPoints(:,startNode)) / l;

34 tB = norm(lambdaB−boundaryPoints(:,startNode)) / l;

35
36 %find the square that this is by looking at the midpoint

37 %of the two lambdas

38 m = floor((lambdaA(1)+lambdaB(1))/(2*dx));

39 n = floor((lambdaA(2)+lambdaB(2))/(2*dy));

40
41 %find the gauss legendre points and the transformed points on the

42 %grid [0 1 0 1],

43 xi = [−1/sqrt(3) 1/sqrt(3)];

44 GLPoints = (lambdaB−lambdaA)/2*xi + (lambdaA+lambdaB)/2;

45 TGLPoints = [GLPoints(1,:)/dx − m; GLPoints(2,:)/dy−n]; %transformed

points

46
47 %values of the ascending basisfunction w from lambdaA to lambdaB

48 wValues = [norm(GLPoints(:,1)−points(:,1)), norm(GLPoints(:,2)−
points(:,1))]/l;

49
50 % Here the integral are evaluated the first one is always the

51 % descending basisfunction w which is 1 on the startNode, the second

52 % one is the ascending basisfunction w, e.g. which is 1 on the

endNode

53 % This part could be shortened with some more fancy loops, but this

54 % way it is more understandable

55
56 %bottomleft basisvector

57 i = startNode;

58 j = n*Nx+m+1;

59 value = l*(tB−tA)/2*(basisFunctionsZ(TGLPoints(:,1),0,0)*(1−wValues
(1))...

60 + basisFunctionsZ(TGLPoints(:,2),0,0)*(1−wValues(2)));
61 sparseSetCheck(i,j,value)

62
63 i = endNode;

64 value = l*(tB−tA)/2*(basisFunctionsZ(TGLPoints(:,1),0,0)*(wValues(1)
)...

65 + basisFunctionsZ(TGLPoints(:,2),0,0)*(wValues(2)));

66 sparseSetCheck(i,j,value)

67
68 %bottom right basisvector

69 i = startNode;
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70 j = n*Nx+m+2;

71 value = l*(tB−tA)/2*(basisFunctionsZ(TGLPoints(:,1),1,0)*(1−wValues
(1))...

72 + basisFunctionsZ(TGLPoints(:,2),1,0)*(1−wValues(2)));
73 sparseSetCheck(i,j,value)

74
75 i = endNode;

76 value = l*(tB−tA)/2*(basisFunctionsZ(TGLPoints(:,1),1,0)*(wValues(1)
)...

77 + basisFunctionsZ(TGLPoints(:,2),1,0)*(wValues(2)));

78 sparseSetCheck(i,j,value)

79
80 %top left basisvector

81 i = startNode;

82 j = (n+1)*Nx+m+1;

83 value = l*(tB−tA)/2*(basisFunctionsZ(TGLPoints(:,1),0,1)*(1−wValues
(1))...

84 + basisFunctionsZ(TGLPoints(:,2),0,1)*(1−wValues(2)));
85 sparseSetCheck(i,j,value)

86
87 i = endNode;

88 value = l*(tB−tA)/2*(basisFunctionsZ(TGLPoints(:,1),0,1)*(wValues
(1))...

89 + basisFunctionsZ(TGLPoints(:,2),0,1)*(wValues(2)));

90 sparseSetCheck(i,j,value)

91
92 %top right basisvector

93 i = startNode;

94 j = (n+1)*Nx+m+2;

95 value = l*(tB−tA)/2*(basisFunctionsZ(TGLPoints(:,1),1,1)*(1−wValues
(1))...

96 + basisFunctionsZ(TGLPoints(:,2),1,1)*(1−wValues(2)));
97 sparseSetCheck(i,j,value)

98
99 i = endNode;

100 value = l*(tB−tA)/2*(basisFunctionsZ(TGLPoints(:,1),1,1)*(wValues
(1))...

101 + basisFunctionsZ(TGLPoints(:,2),1,1)*(wValues(2)));

102 sparseSetCheck(i,j,value)

103 end

104 end

105
106 B = sparse(sparseSet(:,1),sparseSet(:,2),sparseValues,sparseM,sparseN);

107
108 function sparseSetCheck(i,j,value)

109 %this funtions checks if the sparse location in B_h will already be

110 %set

111 if(~isempty(sparseSet))

112 [bool, ~] = ismember(sparseSet,[i,j],'rows');
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113 else

114 bool = 0;

115 end

116 if(sum(bool))

117 sparseValues(bool) = sparseValues(bool) + value;

118 else

119 sparseSet = [sparseSet; [i,j]];

120 sparseValues = [sparseValues, value];

121 end

122 end

123 end

A.2.3 3D Fictitious Domain Method

1 % Main function for the 2D FDM

2 %

3 % h is the spatial grid step

4 % t_end the end time

5 % boundaryPoints and boundarySegments determine the boundary by linking the

6 % boundary points with indices in boundarySegments

7 % Ex0,Ey0,Ez0,Hx0,Hy0,Hz0 are initial conditions

8 % dim is the domain of the simulation

9 %

10 % outputs are multiple fields at the final timestep

11
12 function [result,dt] = FDM3D(h,t_end,boundaryPoints,boundarySegments,dim,Ex0

,Ey0,Ez0,Hx0,Hy0,Hz0)

13
14 %length of the fields

15 [dx,dy,dz] = deal(h);

16 Nx = round(dim(1)/dx+1);

17 Ny = round(dim(2)/dy+1);

18 Nz = round(dim(3)/dz+1);

19
20 %initialising fields

21 Ex = Ex0;

22 Ey = Ey0;

23 Ez = Ez0;

24 Hx = Hx0;

25 Hy = Hy0;

26 Hz = Hz0;

27
28 %some constants

29 c0 = 299792458;

30 alphaCFL = 1/2;

31 dt = alphaCFL*h/c0/4;

32 mu0 = 4*pi*1e−7;
33 e0 = 8.8541878128*1e−12;
34 nsteps = ceil(t_end/dt);
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35
36 %here the boundary matrix B_XY and B_Z are constructed

37 B_XY = boundaryMatrixXY(Nx,Ny,dx,dy,boundaryPoints,boundarySegments);

38 Q_h = B_XY*B_XY';

39 [L_XY,U_XY,P_XY,Q_XY] = lu(sparse(Q_h));

40 B_Z = boundaryMatrixZ(Nx,Ny,dx,dy,boundaryPoints,boundarySegments);

41 Q_h = B_Z*B_Z';

42 [L_Z,U_Z,P_Z,Q_Z] = lu(sparse(Q_h));

43
44 for tn = 0:nsteps

45 disp(tn)

46 %Calculate curl of the E field into the z−direction and then the H

47 %field

48 [CEx,CEy,CEz] = Ecurl3D(Ex,Ey,Ez,dx,dy,dz);

49
50 Hx = Hx − (dt/mu0)*CEx;

51 Hy = Hy − (dt/mu0)*CEy;

52 Hz = Hz − (dt/mu0)*CEz;

53
54 %calculate curl of the H field into x/y direcion and then the E

field

55 [CHx,CHy,CHz] = Hcurl3D(Hx,Hy,Hz,dx,dy,dz);

56
57 %calculate E field

58 Ex = Ex + (dt/e0)*CHx;

59 Ey = Ey + (dt/e0)*CHy;

60 Ez = Ez + (dt/e0)*CHz;

61 tic

62 for nz = 1:Nz %boundary condition per layer

63 %Here I map the Ex,Ey field into one large E column vector that

I now

64 %can use to interact with the boundary matrix, which is

constructed to

65 %use on a vector E, after this it is mapped back

66 Ecolumn_XY = mapToEcolumn(Ex(:,:,nz),Ey(:,:,nz));

67 lambda_XY = Q_XY*(U_XY\(L_XY\(P_XY*B_XY*Ecolumn_XY)));

68 Ecolumn_XY = Ecolumn_XY−B_XY' * lambda_XY;

69 [Ex(:,:,nz),Ey(:,:,nz)] = mapToEmatrix(Ecolumn_XY,Nx,Ny);

70
71 %Here Ez is transformed in a column, to

72 %interact with it's own boundary

73 %matrix

74 Ecolumn_Z = Ez(:,:,nz);

75 Ecolumn_Z = Ecolumn_Z(:);

76 lambda_Z = Q_Z*(U_Z\(L_Z\(P_Z*B_Z*Ecolumn_Z)));

77 Ecolumn_Z = Ecolumn_Z − B_Z' * lambda_Z;

78 Ez(:,:,nz) = reshape(Ecolumn_Z,[Nx Ny]);

79 end

80 end
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81
82 %saving the result

83 result = {Ex,Ey,Ez};

84 end

41
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