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Abstract

This paper contributes to the understanding of reaction-diffusion phenomena, these
aesthetically pleasing patterns found in nature and chemistry. No background knowl-
edge is required to investigate a simple model, cellular automata, simulating complex
behaviour, reaction-diffusion. Several existing approaches on how to connect cellular
automata models and reaction-diffusion systems are discussed. Leading to the in-
troduction of continuous-cell-states eight-cell neighbourhood two-dimensional cellular
automata as a model of quasi chemical systems with cell-states resembling continuous
flow between a substrate and a reagent. Reaction and diffusion transition rules have
been altered to continuous formulas. Simulated cellular automata have been assigned
to 12 morphology based classes which have been identified or introduced.
Keywords: reaction-diffusion, cellular automata, continuous state, morphology classes

1 Introduction

Reaction-diffusion models simulate chemical like processes, often described by a set of par-
tial derivatives. The model can simulate the propagation of interesting and aesthetically
pleasing periodic patterns in nature and chemistry. The patterns can be a resemblance
of a wide range of phenomena, from animal prints to fluid dynamics. Reaction-diffusion
typically considers two (hypothetical) chemicals, a substrate and a reagent, but can be
extended to more than two different types of chemicals. The reaction and diffusion of the
model is often described by partial derivatives. Simulating reaction-diffusion models with
a set of partial derivatives requires high computational capacity and for a non-educated
viewer the simulation often loses predictability. The model asks for a discretization of
the partial derivatives to make large scale parallel computation possible and gain a more
intuitive simulation, while preserving the qualitative aspects of the model.

Cellular automata are discrete models with elegant rules which are easy to understand,
but can model complex behavior. A cellular automaton consists of a collection of cells
on a grid of a predefined shape. Iterating over discrete time steps, each cell will or will
not change its state depending on the state of the cells in its neighbourhood. Given the
rules of the automaton and the state of every cell, local changes are always easy to pre-
dict. In a two-dimensional binary-state cellular automaton the two possible states of a
cell can be considered as a substrate (dead or 0) and a reagent (alive or 1), similar to
a reaction-diffusion model. Reaction-diffusion and cellular automata have similar ground
rules. Similar possible states and similar change depending on neighbourhood suggests
that cellular automata could be a sufficient model for reaction-diffusion patterns. While
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local predictability is certain, different approaches in providing the rules for a cellular au-
tomaton result in different qualitative results.

The goal of this research is to give a non-educated viewer an intuitive feeling of what
is going on when reaction-diffusion patterns are simulated. In this paper the different
approaches in making a cellular automaton that models reaction-diffusion patterns will
be discussed. Trying to find an environment where someone with a lack of background
knowledge should be able to investigate reaction-diffusion patterns with cellular automata.
To accomplish this the automata need to have a global predictability over multiple itera-
tions and enough freedom in initializing the automata to cover a wide variety of reaction-
diffusion phenomena. After discussing existing different approaches, a continuous-state
eight-cell neighborhood two-dimensional cellular automaton that models quasi-chemical
systems with a continuous flow between substrate and a reagent is introduced and ana-
lyzed.

2 Literature Review

Using lattice gas automata (LGA) has been a popular approach to simulate fluid flows. Be-
ing a cellular automaton an LGA contains a grid with cells with a fixed number of possible
states. Moving particles are simulated in this grid, a cell can have a present particle with a
certain velocity or the cell is empty. Therefore two particles moving in the same direction
with identical velocity can never be in the same cell. After each discrete time step the
new state of every cell is calculated depending on the velocity of neighboring particles and
potential collisions, preserving total mass and total momentum. Not considering collision,
every particle will transfer to a cell its velocity is pointed at, maintaining all of its velocity.
When collision happens, two particles reaching the same cell, predefined rules determine
what will happen. These collision rules are free to adjust depending on the desired qualita-
tive results, but preserving total mass and total momentum is mandatory. A widely used
and approved LGA that simulates the Navier-Stokes equations was introduced by Frisch,
Hasslacher and Pomeau (FHP). The FHP is an improvement on the model already pro-
posed by Hardy, de Pazzis and Pompeau (HPP) which lacked rotational invariance. This
is solved by the FHP by using a triangular instead of a square grid. Due to the limits of
computational power, computing the large scale interactions of parallel existing particles
in fluid dynamics is often impossible or inefficient. The FHP-model is intended to perform
well on simulations which calculates the effects on particles on a parallel and equal basis,
which inherits from the use of a cellular automaton. [1, 2]

Lattice gas models are a form of qualitative discrete modeling, using cellular automata
as a computational friendly alternative to partial differential equations. This approach is
also used in other fields, like the Ising-type models of phase transitions [3]. These mod-
els are created with respect to a specific phenomenon. Although the developed cellular
automaton is often a great macroscopic representation, the rules that determine what hap-
pens with the particles each time step are very specific. A more quantitative approach
that is applicable on a wider reaction-diffusion range is desired.

A new class of cellular automata was introduced to model reaction-diffusion systems
in a quantitatively correct way [4]. Multiple sets of partial differential equations can be
mapped onto this class to get a cellular automaton. The class provides a generalized way
to get a discrete representation of reaction-diffusion systems. To implement the diffusion
part of the system the class uses moving averages, which makes the calculation of the
neighbourhood of every cell very efficient. The averaging itself has the effect of diffusion.
The reaction part of the model is implemented by discretizing the rate law of the system,
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making it possible to use a lookup table. Discretization can result in incorrect steady states
or oscillations. The class solves this by using probabilistic rules to determine whether the
cell takes on a new value, making sure the average result still corresponds to the reaction-
diffusion equations. The wide applicability of the class is as desired, but switching to
different systems requires time and knowledge. Therefore this approach is not sufficient.

The approaches discussed so far are constructed from a reaction-diffusion perspective.
The goal of the approaches is to make a cellular automaton that provides qualitative cal-
culations of a certain reaction-diffusion phenomenon. Also the discussed proposed class,
which is rather quantitative than qualitative, maps reaction-diffusion systems onto cellular
automata. The model might be more intuitive if the approach starts with a systematic
investigation of all cellular automata rules within a certain domain. Providing identified
classes within its domain containing automata that behave like chemical processes, map-
ping reaction-diffusion phenomena onto the cellular automata.

Binary-cell-states eight-cell neighbourhood two-dimensional cellular automata have been
investigated as a model of a quasi-chemical system with a substrate and a reagent [5]. The
two-dimensional grid is defined by its coordinates x, y ε Z, every cell c has a unique vector
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The cell-state of cell c at time step t, st(c), can only be in one of two possible states:
st(c) ε {0, 1} for every cell c. Cell-state 0 can be interpreted as a dead cell or as the
substrate and cell-state 1 as an alive cell or as the reagent. For every cell c in the grid,
the state st+1(c) depends on st(c) and the states of the cells in the neighbourhood N8(c)
at time step t. The states of the neighbourhood of c at time step t are summed together
to get:

σt(c) =
∑

n ε N8(c)

st(n)

The neighbourhood of every cell c contains 8 other cells, so 0 ≤ σt(c) ≤ 8 always holds.
Let δ1, δ2, θ1, θ2 be integers holding: 0 ≤ δ1 ≤ δ2 ≤ 8 and 0 ≤ θ1 ≤ θ2 ≤ 8. Interval [δ1, δ2]
is defined as the reaction interval and interval [θ1, θ2] as the diffusion interval. If st(c) = 1
at time step t, then at time step t + 1 cell c stays in state 1 if and only if σt(c) lies in
reaction interval [δ1, δ2]. If st(c) = 0 at time step t, then at time step t+ 1 cell c changes
its state into 1 if and only if σt(c) lies in diffusion interval [θ1, θ2]. As a result, at time step
t every cell c updates its state st(c) by the rule:

st+1(c) =

{
1 if (st(c) = 0 and σt(c) ε [θ1, θ2]) or (st(c) = 1 and σt(c) ε [δ1, δ2])
0 otherwise

The selection of interval boundaries δ1, δ2, θ1, θ2 decides the cell-state transition rules and
thus the propagation of the automaton. The automaton is unique for every possible set of
interval boundaries and from now on denoted by: R(δ1, δ2, θ1, θ2), Conway’s Game of Life
is one of the configurations: R(2, 3, 3, 3).

The patterns produced by cellular automata for all 1296 possible rules, 1 ≤ δ1 ≤ δ2 ≤ 8
and 1 ≤ θ1 ≤ θ2 ≤ 8, were analyzed, initializing the automaton by assigning every cell
state 1 with probability 0.3. Ten morphology-based classes of rules were discovered and
identified:
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Table 1: Discovered classes in binary-cell-states eight-cell neighbourhood two-dimensional
cellular automata

ClassClassClass Patterns (after 100 iterations)Patterns (after 100 iterations)Patterns (after 100 iterations) ExamplesExamplesExamples
EEE-class (Almost) uniform 0-state R(3,3,c,d), 5 ≤ c ≤ d ≤ 8

R(4,4,c,d), 4 ≤ c ≤ d ≤ 8
R(4,5,c,d), 4 ≤ c ≤ d ≤ 8

SSS-class Few small clusters of 1-states R(1,1,c,d), 3 ≤ c ≤ d ≤ 8
R(2,2,c,d), 4 ≤ c ≤ d ≤ 8

DDD-class (Almost) uniform 1-state R(a,8,c,8),
a = 2, 3 and 1 ≤ c ≤ 4
a = 4, 5 and 1 ≤ c ≤ 3

LLL-class Labyrinth structures with walls 1 cell thick (L1) L1: R(1,3,1,2), R(1,3,2,2)
and walls more than 1 cell thick (L2) L2: R(1,6,1,6), R(4,6,1,7)

MMM-class Irregular branching structures R(1,3,1,5), R(1,4,2,5),
R(2,2,1,3), R(2,8,5,8)

PPP-class 0-state domains containing scattered 1-states R(2,3,1,8), R(2,4,1,8)
and 1-state domains containing scattered 0-states

OOO-class Irregular distribution of spots, R(3,5,1,1), R(3,8,1,1)
(dis)connected small clusters of 1-states

GGG-class Supporting mobile localizations, or gliders R(2,b,2,2), 2 ≤ b ≤ 8

VVV-class Vonoroi-diagram R(1,6,3,4), R(1,8,3,4),
R(4,8,3,4)

CCC-class Convex sets of 1-states R(4,8,4,7), R(4,8,4,8)

The binary-cell-states eight-cell neighbourhood two-dimensional cellular automata have
a lot of freedom in initializing the automaton and covers at least ten different classes with
propagation of reaction-diffusion like patterns. This approach suits the goal of this re-
search.

3 Continuous-state Cellular Automata

For this research a new domain of cellular automata is introduced and analyzed. By allow-
ing the cell-state to have any value inside the continuous interval [0, 1] the model supports
continuous flow between substrate and reagent. Allowing a cell to represent different parti-
cles instead of a single one. To implement the continuous-cell-states, while maintaining the
simplicity of a cellular automaton, minor adjustments have been made to the binary-cell-
states eight-cell neighbourhood two-dimensional cellular automata discussed above. Using
the same terminology, the continuous-cell-states eight-cell neighbourhood two-dimensional

cellular automata consists of cells with a unique vector representation: c =

(
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)
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x, y ε Z. And an eight-cell neighbourhood N8(c) is defined as follows:
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Cell-state, rt(c), of a cell c at time step t can take on any real value inside the interval
[0, 1]: rt(c) ε [0, 1]. Considering the automata to be a representation of quasi-chemical
processes with a substrate and a reagent, the continuous-cell-states allow both a substrate
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and a reagent to be present in cell c. The value of rt(c) can be interpreted as the fraction of
reagent particles in cell c. The remaining fraction of the cell, 1−rt(c), can be interpreted as
the substrate. For every cell c in the grid, the state rt+1(c) depends on rt(c) and the states
of the cells in the neighbourhood N8(c) at time step t. The states of the neighbourhood
of c at time step t are summed together, similarly to the binary-state case, to get:

ρt(c) =
∑

n ε N8(c)

rt(n)

The neighbourhood of every cell c contains 8 other cells with continuous states, so ρt(c) ε [0, 8]
always holds and ρt(c) can take on any real value in the interval [0, 8]. Analogously, let
δ1, δ2, θ1, θ2 be integers holding: 0 ≤ δ1 ≤ δ2 ≤ 8 and 0 ≤ θ1 ≤ θ2 ≤ 8, defining reaction
interval: [δ1, δ2] and diffusion interval: [θ1, θ2]. Because rt(c) can take on any real value in
the interval [0, 1], instead of 0 and 1, the propagation rules of the automaton need to be
adjusted. Handling the reaction part of the propagation with reaction rule: Rtδ1,δ2(c) and
handling the diffusion part of the propagation with diffusion rule: Dt

θ1,θ2
(c). In addition to

the necessary adjustments, the continuous states also opened up the possibility to change
the discrete propagation rules of a cellular automaton to continuous propagation rules.
Taking the reaction rule as an example, gradually increasing the reaction rate from δ1 − 1

2
to δ1 + 1

2 results in a continuous function around the left edge δ1 of the reaction interval.
Similarly gradually decreasing around the right edge δ2 results in a completely continuous
function for the reaction rule, see Fig. 1. Applying the same strategy to the diffusion rule
leads to the following definitions. First considering the special cases δ1 = δ2 and θ1 = θ2:

Rtδ1,δ2(c) =

{
1 if ρt(c) = δ1 = δ2

0 otherwise

Dt
θ1,θ2(c) =

{
1 if ρt(c) = θ1 = θ2

0 otherwise

Followed by the general definitions:

Rtδ1,δ2(c) =


1 if δ1 + 1

2 ≤ ρ
t(c) ≤ δ2 − 1

2

ρt(c)− δ1 + 1
2 if δ1 − 1

2 < ρt(c) < δ1 +
1
2

δ2 − ρt(c) + 1
2 if δ2 − 1

2 < ρt(c) < δ2 +
1
2

0 otherwise

Dt
θ1,θ2(c) =


1 if θ1 + 1

2 ≤ ρ
t(c) ≤ θ2 − 1

2

ρt(c)− θ1 + 1
2 if θ1 − 1

2 < ρt(c) < θ1 +
1
2

θ2 − ρt(c) + 1
2 if θ2 − 1

2 < ρt(c) < θ2 +
1
2

0 otherwise

Because δ1, δ2, θ1, θ2 are integers and the special cases δ1 = δ2 and θ1 = θ2 have their own
definition, reaction rule: Rtδ1,δ2(c) and diffusion rule: Dt

θ1,θ2
(c) are now defined sufficiently.

If 0 < ρt(c) < 1, then the reaction rule, Rtδ1,δ2(c), and the diffusion rule, Dt
θ1,θ2

(c), both
need to be applied to cell c. Clearly, each rule should be weighted proportionately to the
state ρt(c) of cell c, therefor every cell c updates its state ρt(c) by the rule:

ρt+1(c) = ρt(c)Rtδ1,δ2(c) + (1− ρt(c))Dt
θ1,θ2(c)
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In this way the integrity of a reaction-diffusion system with a substrate and a reagent stays
intact. A cell with a low state ρt(c) has little reagent particles that can react and more
space for reagent particles to diffuse into the cell, assigning more weight to the diffusion
rule Dt

θ1,θ2
(c). Conversely, a cell with a high state ρt(c) has many reagent particles that

can react and little space for reagent particles to diffuse into the cell, assigning more
weight to the reaction rule Rtδ1,δ2(c). The cellular automata is now defined properly and
the selection of interval boundaries δ1, δ2, θ1, θ2 decides the cell-state transition rules and
thus the propagation of the automaton. The automaton is unique for every possible set of
interval boundaries and from now on denoted by R∗(δ1, δ2, θ1, θ2). As defined the interval
boundaries are restricted to: 0 ≤ δ1 ≤ δ2 ≤ 8 and 0 ≤ θ1 ≤ θ2 ≤ 8. With the new
propagation rules it is no longer possible to make the reagent a completely absorbing
state, ρt(c) ≤ ρt+1(c) for all c and any t. Therefor the boundaries of the reaction interval
are extended to −1 ≤ δ1 ≤ δ2 ≤ 9, selecting δ1 = −1 and δ2 = 9 enables the reagent to be
a completely absorbing state.

4 Results

Continuous-cell-states eight-cell neighbourhood two-dimensional cellular automata, as de-
fined above, have been analyzed and classified. All 1296 possible R∗(δ1, δ2, θ1, θ2), with
1 ≤ δ1 ≤ δ2 ≤ 8 and 1 ≤ θ1 ≤ θ2 ≤ 8, have been simulated. As an extension, δ1 = −1, 0,
1 ≤ δ2 ≤ 9 with 1 ≤ θ1 ≤ θ2 ≤ 8 have been added to enable simulations of an (almost)
completely absorbing reagent. Which makes a total of 1944 simulated automata. The state
of ten percent of the cells of a 150x150 two-dimensional grid were initially set to 1. After
100 iterations the patterns were analyzed, if the patterns satisfy certain conditions the
automata can be added to one of the defined morphology based classes. Classes from the
binary-cell-states automata have been used, providing them with new definitions if needed.
Some classes have been added for specific continuous-cell-states automata patterns. As-
signing an automaton to a certain class can depend, to some extend, on an individual
empirical factor, so some automata with unspecific patterns have not been mapped to a
class.

The E-, D-, C-, P-, O-E-, D-, C-, P-, O-E-, D-, C-, P-, O- and G-G-G-class from binary-states automata can also be mapped
onto the continuous-states automata, the definitions are slightly altered to fit the contin-
uous states, see Table 2 for all classes used. The S-S-S-class from binary-states automata is
neglected, since small clusters of 1-states are generally a result of insufficient initial dis-
tribution of 1-states. The automata that could have been assigned to the S-S-S-class are now
assigned to the uniform low state E-E-E-class or not assigned to a class at all.

The L-L-L- andM-M-M-class are redefined to reduce the empirical factor. As in the binary-states
automata labyrinth-like structures can be found. The L-L-L-class now only contains labyrinth
structures with 1 cell thick walls of high state cells. The area between the walls, low state
cells, is usually also 1 cell thick. All other irregular branch-like or labyrinth-like structures
are now part of the M-M-M-class.

The H-, B-H-, B-H-, B- and Q-Q-Q-class have been added for newly discovered behavior. The H-H-H-class
contains automata which look like the automata from the L-L-L-class, but consist of only hori-
zontal and vertical long 1 cell thick stripes of high state cells altered by 1 cell thick stripes
with low state cells. The B-B-B-class groups automata which propagate to an (almost) uniform
distribution of a certain balance between substrate and reagent (cell-states ≈ 0.5), a few
small clusters of low or high state cells can be present. The Q-Q-Q-class contains automata
with a dense distribution of small (1 or 2 cells) disconnected high state cells.

The E-E-E-class, uniform low states, contains a large portion of the simulated automata,
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higher initial distribution of 1-state cells will reduce the number of automata in this class.
In that case, automata with similar rules in other classes can give a prediction of the pat-
terns encountered. This class contains, at least, the automata:

R∗(a, b, c, d) with:
a = −1, 0; b = 7, 8, 9; 5 ≤ c ≤ d ≤ 8
a = −1, 0; b = 3, 4, 5, 6; 4 ≤ c ≤ d ≤ 8
a = −1, 0; b = 1, 2; 3 ≤ c ≤ d ≤ 8
a = 1, 2; b = 5, 6, 7, 8; 4 ≤ c ≤ d ≤ 8
a = 1, 2; b = 1, 2, 3, 4; 3 ≤ c ≤ d ≤ 8
3 ≤ a ≤ b ≤ 8; 3 ≤ c ≤ d ≤ 8
R∗(a, b, 2, 3) with:
4 ≤ a ≤ b ≤ 8

The D-D-D-class, uniform high states, contains automata with δ1 = −1, 0 and δ2 = 9
making the reagent (almost) completely absorbing and enables the state of all cells to stay
high. This class contains, at least, the automata:

R∗(−1, 9, c, d) with:
c = 1, 2, 3, 4; d = 6, 7, 8
R∗(0, 9, c, d) with:
c = 1, 2, 3; d = 6, 7, 8

The M-M-M-class, irregular branching structures, has a lot of freedom in interpretation.
A wide variety of branching structures, from thin to thick branches and few to many
branches, can be found in the class. This class contains, at least, the automata:

R∗(a, 7, c, d) with: a = −1, 0, 1, 2; c = 1, 2, 3; d = 7, 8
R∗(a, 6, c, d) with: a = −1, 0, 1, 2; c = 1, 2, 3; d = 6, 7, 8
R∗(a, 5, c, d) with: a = −1, 0, 1; c = 1, 2, 3; d = 6, 7, 8
R∗(a, 4, c, d) with: a = −1, 0, 1; c = 1, 2, 3; d = 5, 6, 7, 8
R∗(a, 3, c, d) with: a = −1, 0; c = 1, 2; 4 ≤ d ≤ 8
R∗(a, 2, 1, d) with: a = −1, 0; 2 ≤ d ≤ 8
R∗(a, 2, 2, d) with: a = −1, 0; d = 4, 5
R∗(a, 1, 1, d) with: a = −1, 0; 2 ≤ d ≤ 7
R∗(a, 1, 2, d) with: a = −1, 0; d = 4, 5
R∗(3, 7, c, d) with: c = 1, 2; d = 7, 8
R∗(3, 6, c, d) with: c = 1, 2; d = 6, 7, 8
R∗(4, 8, c, 8) with: c = 1, 2
R∗(4, b, c, d) with: b = 5, 6, 7; c = 1, 2; d = 7, 8
R∗(a, b, 1, 3) with: 6 ≤ a ≤ b ≤ 8

The L-L-L-class, labyrinth structures with 1 cell thick walls, is very specified. Nevertheless,
the automata that satisfy the definition of the L-L-L-class are easily recognized. This class
contains at least, the automata:

R∗(a, 7, c, d) with:
a = −1, 0, 1; c = 2; d = 2, 3, 4, 5
a = −1, 0, 1; c = 3; d = 3, 4, 5
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R∗(a, 6, c, d) with:
a = −1, 0, 1; c = 2; d = 3, 4
a = −1, 0, 1; c = 3; d = 3
R∗(a, 5, c, d) with:
a = −1, 0, 1; c = 1; d = 3, 4
a = −1, 0, 1; c = 2; d = 2, 3, 4
a = −1, 0, 1; c = 3; d = 3, 4
R∗(a, 4, c, d) with:
a = −1, 0; c = 1; d = 1, 2, 3
a = −1, 0; c = 2; d = 2, 3
a = −1, 0; c = 3; d = 3, 4
R∗(a, 3, c, d) with:
a = −1, 0; c = 1; d = 1
a = −1, 0; c = 2; d = 2
R∗(2, 7, 3, d) with:
d = 3, 4, 5
R∗(3, 3, 2, d) and R∗(4, 4, 2, d) with:
d = 6, 7, 8
R∗(5, b, c, d) with:
b = 5, 6, 7, 8; c = 1; d = 7, 8
b = 5, 6, 7, 8; c = 2; d = 6, 7, 8
R∗(a, b, c, d) with:
6 ≤ a ≤ b ≤ 8; c = 2; d = 6, 7, 8

The C-C-C-class, convex medium to high state cell clusters, is quite specific. Therefor
it contains only a few automata. Convex clusters are formed, because the reaction rule
[δ1, δ2] does not allow branches to form. This class contains, at least, the automata:

R∗(3, b, 2, 3) with: 4 ≤ b ≤ 8

The P-P-P-class, low state domains with scattered high state clusters and high state do-
mains with scattered low state clusters, contains some very obvious cases like R∗(1, 2, 1, 8),
see Fig. 7(a). But with a wider reaction interval and a more narrow diffusion interval,
the cases become more blurry to a point where the automaton comes really close to some
automata in the M-M-M-class, like R∗(2, 4, 1, 7), see Fig. 7(c). This class contains, at least, the
automata:

R∗(1, 3, c, d) with:
c = 1; d = 8
c = 2; d = 7, 8
R∗(a, 5, 1, d) with:
a = 2, 3; d = 7, 8
R∗(a, 4, c, d) with:
a = 2, 3; c = 1; d = 8
a = 2, 3; c = 2; d = 7, 8
R∗(2, 3, c, d) with:
c = 1; d = 6, 7, 8
c = 2; d = 8
R∗(3, 3, 1, d) with:
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d = 7, 8
R∗(4, b, 1, 3) with:
b = 5, 6, 7
R∗(5, b, 1, d) with:
b = 6, 7, 8; d = 3, 4
R∗(a, b, 1, d) with:
6 ≤ a ≤ b ≤ 8; d = 4, 5

The O-O-O-class, (dis)connected clusters (4 cells) of high states, has automata with dif-
fusion interval: [θ1, θ2] = [1, 1] and a lower boundary of reaction interval: δ1 = 2. This
means that low state cells, with cumulative neighbouring cell states of 1, are trying to
change into high state cells. But the next iteration the newly formed high state cells are
brought back to low state cells, since their cumulative neighbouring cell states will not ex-
ceed the lower boundary of the reaction interval. This class contains, at least, the automata:

R∗(2, b, 1, 1) with: b = 5, 6, 7, 8

The V-V-V-class contains automata which show Vonoroi-diagrams. Because the reaction
interval is wide, the reagent is (almost) completely absorbing. With a random initial dis-
tribution, some places in the grid have more high states than other places. The clusters of
cells that satisfy the narrow diffusion interval of the automata will start to spread. Grow-
ing domains of high state cells meet each other eventually, but will not merge because the
narrow line of low state cells between both domains will then exceed the narrow diffusion
interval. As a result, the automata propagate to Vonoroi-diagrams, each cell in a high
state domain is closest to the initial cluster that formed its domain. This class contains,
at least, the automata:

R∗(−1, 9, c, d) with:
c = 2; d = 4, 5
c = 3; d = 3, 4, 5
R∗(0, 9, c, d) with:
c = 2; d = 3, 4, 5
c = 3; d = 4, 5
R∗(a, 8, 3, d) with:
a = −1, 0, 1; d = 4, 5
R∗(2, 8, c, d) with:
c = 2; d = 3, 4, 5
c = 3; d = 4, 5
R∗(2, 7, 2, 3)

The H-H-H-class, 1 cell thick stripes of high and low states, consists of automata which
diffusion interval [θ1, θ2] is only 1 or 2 more wide than cases of the L-L-L-class. The automata
from both classes are very similar, but the stripes are easily identified making it possible
to have separate classes. This class contains, at least, the automata:

R∗(a, 6, c, d) with:
a = −1, 0, 1; c = 1, 2, 3; d = 5
a = −1, 0, 1; c = 3; d = 4
a = 2; c = 3; d = 4, 5
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R∗(a, 5, 3, 5) with:
a = −1, 0, 1
R∗(a, 4, 2, 4) with:
a = −1, 0, 1
R∗(a, 3, c, d) with:
a = −1, 0, 1; c = 1; d = 2
a = −1, 0, 1; c = 2; d = 3

The B-B-B-class, uniform balance between substrate and reagent (most cell states ≈ 0.5),
contains automata which are able to propagate to an (almost) uniform medium state. The
sum of the states of neighbouring cells will become steady when the value of the sum is
around 4, because δ1 = 4 and θ2 = 4. When (almost) every cell has a state equal to
approximately 0.5, the sum of the states of the neighbouring cells will be approximately 4
for every cell and thus steady. This class contains, at least, the automata:

R∗(4, b, 2, 4) with: b = 5, 6, 7, 8

The Q-Q-Q-class, dense distribution of small (1 or 2 cells) disconnected high state dots,
only contains 3 automata. The behavior of the class can only be encountered at specific
small and low reaction and diffusion intervals. This class contains, at least, the automata:

R∗(−1, b, c, d) with:
b = 1; c = 1; d = 1
b = 2; c = 1; d = 1
b = 2; c = 2; d = 2

The G-G-G-class, supporting mobile localizations (gliders), is different to the other classes.
The patterns are not valued after 100 iterations, but the propagation towards generation
100 is analyzed. The automata in this class support mobile localizations, also known as
gliders. Gliders are small clusters of cells that periodically return to its initial form only
with a small displacement. As a result the gliders will "glide" over the grid. The existence
of gliders makes the behavior of the automata very complex, because colliding gliders can
result in irregular exploding complex behavior not limited to the position of the initial
clusters. The automata R∗(1, 2, 2, 2) also supports gliders. Usually this leads to complex
behaviour, but the narrow low reaction interval (1, 2) will lead to the vanishing of most
high state cells. After a few generations, only glider formation will be present in the sim-
ulation, see Fig. 13. This class contains, at least, the automata:

R∗(a, b, 2, 2) with:
a = 0; b = 1
a = 1; b = 2, 3, 4
a = 2; b = 3, 4, 5
3 ≤ a ≤ b ≤ 8
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Table 2: Discovered classes in continuous-cell-states eight-cell neighbourhood
two-dimensional cellular automata

ClassClassClass Patterns (after 100 iterations)Patterns (after 100 iterations)Patterns (after 100 iterations) ExamplesExamplesExamples
EEE-class (Almost) uniform low-state cells See Fig. 2
DDD-class (Almost) uniform high-state cells See Fig. 3
MMM-class Irregular branching structures of high-state cells See Fig. 4
LLL-class Labyrinth structures with walls of high state cells, 1 cell thick. See Fig. 5
CCC-class Uniform low-state cells with stable convex clusters See Fig. 6

of medium to high state cells
PPP-class Low state domains containing scattered high states See Fig. 7

and high state domains containing scattered low states
OOO-class Irregular distribution of spots, See Fig. 8

(dis)connected small clusters (4-cells) of high states
VVV-class Vonoroi-diagram, every domain of high states See Fig. 9

is separated by a fine line of low states
HHH-class Almost completely covered by long lines of 1 cell thick See Fig. 10

high states altered by 1 cell thick low states
BBB-class (Almost) uniform medium-state (≈ 0.5) cells See Fig. 11
QQQ-class Dense distribution of small (1 or 2 cells) See Fig. 12

disconnected high state dots
GGG-class Supporting mobile localizations, or gliders See Fig. 13
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Figure 1: Continuous reaction rule: Rtδ1,δ2(c)

(a) (b)

(c) (d)

Figure 2: propagation of R∗(2, 8, 4, 8) member of the E-E-E-class: (a) Generation 0, (b)
Generation 1, (c) Generation 2, (d) Generation 10. Initial cells set to state 1 with a

chance of 0.1 in a grid of 150x150 cells.
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(a) (b)

(c)

Figure 3: propagation of R∗(−1, 9, 4, 6) member of the D-D-D-class: (a) Generation 0, (b)
Generation 100, (c) Generation 300. Initial cells set to state 1 with a chance of 0.1 in a

grid of 150x150 cells.
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(a) (b)

(c) (d)

Figure 4: examples of automata in the M-M-M-class: (a) R∗(−1, 3, 2, 6), (b) R∗(−1, 6, 1, 6), (c)
R∗(1, 2, 1, 4), (d) R∗(4, 8, 1, 8). Initial cells set to state 1 with a chance of 0.1 in a grid of

150x150 cells, images are of generation 100.
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(a) (b)

(c) (d)

Figure 5: examples of automata in the L-L-L-class: (a) R∗(−1, 1, 2, 7), (b) R∗(−1, 5, 1, 4), (c)
R∗(4, 4, 2, 6), (d) R∗(6, 7, 2, 8). Initial cells set to state 1 with a chance of 0.1 in a grid of

150x150 cells, images are of generation 100.
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Figure 6: example of the C-C-C-class: R∗(3, 8, 2, 3). Initial cells set to state 1 with a chance of
0.1 in a grid of 150x150 cells, image is of generation 100.

(a) (b)

(c) (d)

Figure 7: examples of automata in the P-P-P-class: (a) R∗(1, 2, 1, 8), (b) R∗(1, 3, 2, 8), (c)
R∗(2, 4, 1, 7), (d) R∗(5, 6, 1, 4). Initial cells set to state 1 with a chance of 0.1 in a grid of

150x150 cells, images are of generation 100.
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Figure 8: example of the O-O-O-class: R∗(2, 8, 1, 1). Initial cells set to state 1 with a chance of
0.1 in a grid of 150x150 cells, image is of generation 100.

(a) (b)

Figure 9: examples of automata in the V-V-V-class: (a) R∗(−1, 9, 3, 4), (b) R∗(−1, 9, 3, 5).
Initial cells set to state 1 with a chance of 0.1 in a grid of 150x150 cells, images are of

generation 100.
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(a) (b)

Figure 10: examples of automata in the H-H-H-class: (a) R∗(−1, 3, 1, 2), (b) R∗(−1, 6, 1, 5).
Initial cells set to state 1 with a chance of 0.1 in a grid of 150x150 cells, images are of

generation 100.

Figure 11: example of the B-B-B-class: R∗(4, 6, 1, 4). Initial cells set to state 1 with a chance
of 0.1 in a grid of 150x150 cells, image is of generation 100.

Figure 12: example of the Q-Q-Q-class: R∗(−1, 2, 1, 1). Initial cells set to state 1 with a
chance of 0.1 in a grid of 150x150 cells, image is of generation 100.
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(a)

(b) (c)

Figure 13: example of automata in the G-G-G-class: (a) R∗(1, 2, 2, 2), initial cells set to state
1 with a chance of 0.1 in a grid of 150x150 cells, image is of generation 100. (b)

R∗(1, 2, 2, 2), initial simple configuration for constant glider formation. (c) R∗(1, 2, 2, 2), 8
iterations of constant glider formation producing 2 gliders (16 iterations is a full cycle, )
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5 Conclusion

In this paper different approaches have been discussed to use cellular automata as a model
for reaction-diffusion patterns. Systematically analyzing a domain of automata and map-
ping the patterns simulated by the automata onto reaction-diffusion phenomena turned out
to be the most intuitive way to work with complex pattern generation. Two-dimensional
cellular automata with continuous cell states and eight-cell neighbourhoods were intro-
duced. A wide range of possible automata have been investigated as a model for reaction-
diffusion systems with continuous flow between substrate and reagent. 1944 different au-
tomata have been simulated. Some of them have been classified in 12 (re)defined morphol-
ogy based classes: E-, D-, M-, L-, C-, P-, O-, V-, H-, B-, Q-E-, D-, M-, L-, C-, P-, O-, V-, H-, B-, Q-E-, D-, M-, L-, C-, P-, O-, V-, H-, B-, Q- and G-G-G-class. An environment
has been realized where someone with a lack of background knowledge can investigate the
possibilities of simulating with a cellular automaton. The provided classes can help in
understanding the reaction-diffusion behaviour that will be encountered.
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