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ABSTRACT
Cooperative Awareness Messages (CAMs) are generated
by Intelligent Transport Systems when the difference in
their speed, direction, or position exceeds a given thresh-
old compared to the previously generated CAM. The fre-
quency of CAM generations is not set, and the channel
used in vehicular communication has a limited spectrum.
To understand the impact of these messages on the vehicu-
lar communication channel, it is important to have an esti-
mate of the generated CAMs in different traffic scenarios.
It is relatively easy to deduct traffic (macroscopic) param-
eters from such scenarios, but CAM generations cannot
easily be predicted using this data, as they are generated
not by macroscopic but microscopic (vehicle) parameters.
This research aims to develop a tool that will analyse a
data set of microscopic parameters and create an estimate
of the subsequent CAM generations, as well as the corre-
sponding macroscopic parameters, and analyse the result-
ing data for the influence of the macroscopic parameters
on CAM generation.
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1. INTRODUCTION
Autonomous vehicles (AVs), also known as Intelligent Trans-
port Systems (ITS-es), have been the subject of science-
fiction as far back as the 1930s [7] and understandably
so. Human errors “have been responsible for 90% of road
fatalities, such as speeding, alcohol impairment, distrac-
tions, and induced fear” [4]. Self-driving vehicles would
thus significantly increase road safety. An important part
of the development of this technology is the communica-
tion between AVs. One of the ways in which autonomous
vehicles communicate amongst each other is through Co-
operative Awareness Messages, otherwise referred to as
CAMs. These messages have everything to do with mi-
croscopic parameters, also known as vehicle parameters.
These are variables concerning the behaviour of individual
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vehicles, such as their speed, direction, and acceleration.
The change in the value of these parameters determines
when a new CAM is broadcast, and these same parame-
ters make up the contents of the broadcast message.

A vehicular communication standard has already been de-
fined for current-day ITS implementations (IEEE 802.11p),
but it is unknown whether the vehicular communication
channel is capable of handling the load which will be placed
upon it by CAMs, as the available bandwidth is limited
and the frequency of CAM generations is variable.

Analysing a traffic scenario in terms of the microscopic pa-
rameters of the vehicles in such a scenario would lend itself
to an estimation of the generated CAMs. However, it is
much easier to analyse traffic scenarios in terms of macro-
scopic parameters such as traffic density, flow, and average
speed. Unfortunately, not much is known about the rela-
tionship between macroscopic parameters and CAM gen-
erations. This research thus aims to create a tool that will
process microscopic data and calculate the corresponding
macroscopic parameters and CAM generations. This tool
will then be applied to an existing microscopic data set
to analyse the effect of macroscopic parameters on CAM
generations. The possibility to estimate CAM generations
in different traffic scenarios may facilitate further research
into CAM generations and the capability of the ITS com-
munication network to handle the requirements of future
C-ITS development towards autonomous vehicles.

This paper aims to describe the development of the tool
and analyse the generated output data. First, some back-
ground information is given on Intelligent Transport Sys-
tems and Cooperative Awareness Messages, after which
the problem that is the focal point of this research is ex-
plained. After discussing some related works, the research
goal and question is defined. Section 5 then describes the
development of the tool in detail. The results of this tool
are then presented and analysed, after which the research
is concluded and future work is considered.

2. BACKGROUND
In order to clearly define the goal of this research and
approach the development of the script as described in
the methodology, some background must be given on In-
telligent Transport Systems and Cooperative Awareness
Messages.

2.1 Intelligent Transport Systems
Intelligent Transport Systems are already a part of modern-
day life and can be seen in vehicles in the form of emer-
gency vehicle and traffic jam warnings. The final goal
of the development of ITS is fully autonomous vehicles,
which has gained quite some media attention, as it could
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provide many improvements to everyday life. Roads would
be safer as autonomous vehicles reduce human errors, driv-
ing would be more comfortable and travel time would de-
crease. Additionally, there could also be environmental
benefits, as fuel consumption and emissions are decreased
and traffic efficiency increased. However, there is much to
be done to reach this final goal. To further the progress
towards autonomous vehicles, vehicles must become aware
of one another on the road, and communicate with each
other. This is where Cooperative Intelligent Transport
Systems come into the picture.

2.2 Cooperative Awareness Messages
To enable cooperative awareness within ITS, the European
Telecommunication Standard Institute (ETSI) delivered
the EN 302 637-2 standard defining Cooperative Aware-
ness Messages (CAMs) [5]. These messages contain data
on the position, direction, and speed of a vehicle and are
periodically broadcast over the vehicular ad-hoc network
for all nearby vehicles to receive. These variables are also
called microscopic traffic parameters, as they reflect the
movement of an individual car (unlike macroscopic traffic
parameters, which reflect the average state of traffic flow
[2]). A new CAM is generated when one of the following
holds [5]:

• 1000ms has passed since the previous CAM was gen-
erated

• At least 100ms has passed since the previous CAM
was generated, and at least one of the microscopic
parameters has changed enough compared to the con-
tents of the previous CAM:

– 4 meters of displacement

– 4 degrees of directional change

– 0.5m/s change in speed

As a result, the frequency of CAM generations is not fixed,
with fewer messages being generated when drivers behave
predictably (drive slowly, at a constant speed and in a
straight line), and more when they accelerate, decelerate,
turn, or drive at high speed [5].

2.3 Problem statement
There already exists a standard for the communication
between vehicles, IEEE 802.11p. This standard fits the
requirements for the current implementation of ITS com-
munications, but one of the challenges facing the future
development of C-ITS is network congestion, as data gen-
erated by participating vehicles can be severely high [1].
Not only is the number of participating vehicles unknown
and unrestricted, there also exist traffic scenarios where
the number of generated CAMs might be very high, lead-
ing to network congestion. However, it is not certain what
exact traffic scenarios will result in this high generation of
CAMs. Furthermore, because of the varying frequency of
CAM generations, their impact on the network is difficult
to predict. Having said all that, knowing and understand-
ing the relationship between traffic scenarios and CAM
generations is needed in order to understand the impact
of traffic scenarios on network congestion. Microscopic pa-
rameters may be easy to analyse in traffic scenarios with
very few vehicles, but these situations are not likely to
cause network congestion due to CAM generations. It
is thus important to analyse busy traffic scenarios, and
traffic parameters are much easier to analyse than vehicle
parameters when viewing such a scenario. For example,
when viewing a busy intersection, it is easier to analyse

the traffic flow (the number of cars passing the intersec-
tion during a unit of time) or traffic density (the number
of vehicles per distance unit) than the individual speed,
acceleration, and direction of each vehicle.

3. RELATED WORK
Campolo et al. [1] analysed the evolution of C-ITS ve-
hicular networks. Different phases in this evolution are
discussed, as well as the challenges that lie ahead. One of
the challenges discussed in this paper is the limited band-
width and the possibility of network congestion caused by
CAM generations.

Hoogendoorn and Knoop [2] give a formal definition of
traffic flow and traffic density, as well as defining the math-
ematical functions (4) and (5), which show the relationship
between macroscopic and microscopic parameters.

Krajewski et al. [3] have collected data from German high-
ways in their data set HighD. This data set is used in
testing our script, as well as in the analysis stage of this
research.

Lyamin et al. [5] analyse the performance of ETSI EN 302
637-2. In their paper, a clear overview of the standardisa-
tion of CAM generations is given, detailing exactly when
a new CAM is generated.

4. RESEARCH GOAL
Although there exists research on the relationship between
microscopic parameters and CAM generations, and that
between microscopic and macroscopic parameters, the re-
lationship between traffic scenarios and CAM generations
has unfortunately not yet been thoroughly investigated.
As explained in Section 2.3, the easiest way to analyse
traffic scenarios is though macroscopic parameters. The
goal of this research is therefore to create a tool that will
take a microscopic data set as input and create an estimate
of the macroscopic parameters and the generated CAM
messages. The output of this tool will then be analysed
to answer the research question stated below.

4.1 Research Question
What trends can be observed when analysing the relation-
ship between macroscopic traffic parameters and Cooper-
ative Awareness Message generations?

5. METHODOLOGY
In order to approach the research question, a Python script
was written [6]. The development of this script is detailed
in this section.

5.1 Input handling
For testing and analysis purposes, the HighD data set was
used in the development of this tool. HighD is a large set
of vehicle trajectory data from German highways available
for non-commercial use [3]. Each recording in this data set
has three CSV files, each starting with the recording ID
(indicated as XX in this section).

• XX recordingMeta: contains general recording data,
such as the total number of vehicles in that record-
ing.

• XX tracksMeta: contains data per track, a track
being the data concerning a particular vehicle within
a recording. An example of this is the number of
frames that a vehicle is in the recording.

• XX tracks: contains frame-specific data of vehicles,
such as their x- and y-velocity.
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Table 1. The locations of the relevant data in the
HighD data set, where XX is the recording number
Filename Variable Table

index
XX recordingMeta Recording ID 0

Framerate 1
Recording duration 7
Number of vehicles 10

XX tracksMeta Number of frames 5
Average velocity 11

XX tracks Vehicle ID 1
X-position 2
Y-position 3
X-velocity 6
Y-velocity 7
Front sight distance 10
Distance headway 12

The relevant data for this script is defined as global vari-
ables in main.py (an overview of which can bee seen in
Table 1), which collects this data from the input file, runs
the functions to calculate the macroscopic parameters and
CAM generations and then writes the results to an output
CSV file. These variables may be at a different index when
using another input data set (this can easily be changed
in main.py), but this three-file structure must be adhered
to in order to run the tool. Once all the necessary data
is collected from the input files, it is passed to estimate-
CAMs.py and macroscopicParams.py.

5.2 CAM calculations
The estimation of CAM generations is done once per vehi-
cle in the recording and then summed. It is assumed that
there was a CAM generation at the start of the recording
(unfortunately there is no way of knowing when the last
CAM was really generated) so the estimation starts at 1.
This does not have a big impact on the results, since the
total CAM generations of a recording is divided by the
duration of the recording, so the final value is an average
of the CAM generations per second. Algorithm 1 details
the calculation of CAM generations per recording. The
CAM condition check is done according to the conditions
detailed in Section 2.2.

Algorithm 1: CAM calculation

Result: The number of CAMs for the given recording
Input: fps, frame amount, positionList, velocityList,

directionList
prev cam = 0;
minimum wait = 100/(1000/fps);
maximum wait = 1000/(1000/fps);
cams = 1;
index = prev cam+minimum wait;
while index < frame amount do

Check if the CAM conditions are met;
if CAM conditions are met OR index >=
(prev cam + maximum wait) then
cams = cams+ 1;
prev cam = i;
index = prev cam+minimum wait;

else
index = index+ 1;

end

end

The change in position and velocity is calculated using
Pythagoras’ theorem and the known old and new x- and y-
values. Unfortunately, the input data set does not contain
directional data (see Table 1), so this is created using the
following equation:

θ = tan−1 vy
vx

(1)

Where θ is the angular direction, and vx and vy the x-
and y-velocity, respectively. If both vy and vx are 0, a
None value is placed in the dictionary. Otherwise, the
angular direction is converted to degrees and stored in the
dictionary. When calculating the change in direction, if
both the old and new direction is None, it is assumed
that there is no directional change. If either the new or
old direction is None, the algorithm searches for the first
non-None value in the data points between the new and
old directions. If neither values are None, their absolute
difference is simply calculated. Algorithm 2 shows this in
more detail.

Algorithm 2: Calculate the directional change

Result: The difference between two directional data
points, which may be of type None

Input: old index, new index, directionList,
positionList

old direction = directionList[old index];
new direction = directionList[new index];
if old direction and new direction are None then

return 0;
else if new direction is None then

index = new index− 1;
while index > oldindex do

if directionList[index] is None then
index = index− 1;

else
direction new = directionList[index];
break;

end

end
if index == old index then

return 0;

end
else if old direction is None then

index = old index− 1;
while index >= 0 do

if directionList[index] is None then
index = index− 1;

else
direction old = directionList[index];
break;

end

end
if index == -1 then

return 0;

end
return abs(direction old− direction new);

5.3 Macroscopic parameter calculations
The calculation of the macroscopic parameter values is
done once per recording. The file macroscopicParams.py
receives the number of vehicles in the recording, the record-
ing duration, a dictionary containing the headway data of
the recorded vehicles, and a list of average vehicle speeds.

Traffic flow q is defined as the “average number of vehicles
(n) that pass a cross-section during a unit of time (T)” [2].
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Thus we have the following equation:

q =
n

T
(2)

Since both variables in this equation are passed to macro-
scopicParams.py, the flow is calculated using this equa-
tion.

Traffic density k is defined as the “number of vehicles (m)
per distance unit (X)” [2]. Thus we have the following
equation:

k =
m

X
(3)

Unfortunately, the distance in the recording is unknown,
so the equation must be expanded:

k =
m

X
=

m∑m
i=1 si

=
1

s
(4)

This shows the relationship between the traffic density k
and the average distance headway s, distance headway
being defined as the distance between two consecutive ve-
hicles on a road. Using the headway dictionary, the mean
of the mean headway of each vehicle is taken and inverted
to get the density. When a vehicle has no other vehicles in
front of it, their distance headway is set to 0 in the input
data. The use of these 0-values would impact the data
quite severely, so whenever the distance headway is 0, the
front sight distance is taken instead. This is the distance
from the front of the vehicle to the edge of the recording
frame.

Finally, we have the average speed, which is the mean of
the list of average vehicle speeds. Each vehicle’s average
speed weighs equally in this calculation, no matter how
many recording frames they are in. This does not have a
big impact on the results, as the average number of ve-
hicles in a recording is 1842, with the minimum being at
607. The small number of vehicles at the start and end of
the recording which are in only a few frames, therefore, do
not have a great impact on the final average speed as they
do not weigh up against the many more vehicles in the
rest of the recording. Furthermore, since the recordings
are of highway traffic, the vehicles are likely travelling at
a relatively constant speed.

Each value is rounded to 4 decimals when returned to
main.py so they are easier to analyse in the results.csv
file.

5.4 Output
To use the tool, one simply runs main.py. While it is run-
ning, the file paths will be printed as it finishes the calcula-
tions for each path. Once the program is finished running,
the results will appear in the same folder as main.py in a
file named results.csv. This CSV file can then be opened in
a spreadsheet program of your choice. If one were to run
the calculations again, the previous contents of results.csv
will be overwritten.

6. ANALYSIS
Once the script was finished, it was run using the highD
data set as input data. The resulting CSV file was used
to produce the graphs discussed in this section and can
be seen in the GitHub repository Frankavj/camEstimation
[6].

6.1 CAM generations and traffic flow
Equation (2) can be expanded as follows:

q =
n

T
=

n∑n
i=1 hi

=
1

h
(5)

This expansion shows the relationship between traffic flow
and average time headway, the time headway being the
time it takes for a vehicle to reach a certain point after
the vehicle directly in front of it passed it. When the aver-
age speed of vehicles is higher and their distance headway
remains unchanged, the time headway will decrease.

Figure 1. Two vehicles with 10 meters distance
headway travelling towards point X.

Take for example two vehicles, A and B, which are travel-
ling at 10 m/s and have a distance headway of 10 meters
(figure 1). After vehicle A passes a point X, it will take
vehicle B one second to reach X as it is travelling at 10
m/s and is 10 meters behind vehicle A. The time headway
of B is thus one second in this situation. Say now that
both vehicles increase their speeds to 20 m/s, but do not
change their distance headway of 10 meters. In this situa-
tion, it would only take vehicle B half a second to pass X
after vehicle A passes it, as it still has to cross 10 meters
of distance but it is travelling twice as fast. Following this
example, one might say that a higher average speed results
in a lower time headway and that, following equation (5),
the traffic flow must subsequently be higher.

Having said all this, we have assumed that the distance
headway remains unchanged. This cannot be assumed
though, as drivers are generally taught to keep a larger
distance between themselves and the car in front of them
when driving at a higher speed. If one assumes that drivers
keep the appropriate distance headway, traffic flow may
not be influenced by the average speed of vehicles, as the
time headway would remain unchanged. Thus, no differ-
ence in the frequency of CAM generations is expected to
be seen with different traffic flow values based on the cor-
responding vehicle speeds.

Figure 2. The CAM generations per second plot-
ted against the traffic flow. Each point represents
a recording in the data set. The red triangular
data points represent a data group discussed in
Section 6.2.
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However, when plotting the traffic flow in the recordings
against the estimated CAM generations per second, a clear
positive linear relationship can be observed (see Figure
2). This must, therefore, be caused either by drivers not
keeping the preferred distance, or because there are simply
more vehicles emitting CAMs.

6.2 CAM generations and traffic density
Equation (4) shows the relationship between traffic den-
sity and average distance headway. As explained in the
previous section, drivers are generally taught to keep a
larger distance from the vehicle in front of them when in-
creasing their speed. Thus, the average distance headway
increases when the average speed is higher, and according
to equation (4), the density would then be lower. Thus,
one could theorise that a traffic scenario with a low density
of vehicles would have a higher frequency of CAM gener-
ations than if the traffic density were higher. However,
low traffic density also means that fewer vehicles emitting
CAMs than at a high density. Therefore, it is difficult to
formulate a prediction of the relationship between traffic
density and CAM generations.

When plotting the traffic density against the CAM gen-
eration frequency, again a positive linear relationship is
observed (see Figure 3). There is however a group of
outliers that have a significantly lower frequency of CAM
generations. This group has been plotted as red triangles
instead of blue dots in Figure 3. The lower CAM gener-
ational value can be explained by looking at these same
data points in Figure 2, again plotted using red triangles.
These points make up the part of the data with the low-
est traffic flow values, explaining the lower value of CAM
generations per second in Figure 3.

Figure 3. The CAM generations per second plot-
ted against the traffic density. Each point repre-
sents a recording in the data set. The different
colours and shapes as used to refer to different
groups of outlying data in Section 6.2.

Other interesting points in this graph are the two with the
highest density values, which have been plotted using a red
cross instead of a blue circle. These have a lower CAM
generation frequency value than would be expected when
one looks at the other data points. This can be explained
by taking a look at Figure 5. Here, the same two points
are again plotted using red crosses. The two recordings
have a significantly lower average speed than the other
recordings, which explains the low CAM generations in
Figure 3, as vehicles travelling at a lower speed emit fewer
CAMs. The high density and low speed suggest that there
may have been heavy traffic in these recordings.

6.3 Traffic density and flow
Both the traffic density and traffic flow have been found
to have a positive linear relationship with the frequency
of CAM generations. However, before any conclusions can
be drawn from these graphs, one must also analyse the
relationship between traffic density and flow. As can be
seen in Figure 4, there is a positive linear relationship
between these two macroscopic variables, though not a
very steep one. However, one must take this into account,
as the positive linear relationships seen in Figure 2 and 3
are amplified by the relationship seen in Figure 4.

Figure 4. The traffic flow plotted against the traffic
density. Each point represents a recording in the
data set.

6.4 CAM generations and average speed
When plotting the average speed against the CAM gen-
erations per second, one would expect a positive linear
relationship, as when vehicles move at a higher speed they
will reach the 4 meters of displacement sooner than when
travelling at a slower speed. However, no such relationship
can be observed in Figure 5.

Figure 5. The CAM generations per second plot-
ted against the average speed. Each point repre-
sents a recording in the data set. The two points
that are represented using red crosses are a sub-
group of the data which is discussed in Section 6.2.

When plotting the average speed of the recordings against
the traffic density, a negative linear relationship can be
observed (see Figure 6). This means that with a higher
average speed, the traffic density is lower. The positive
linear relationship found in 6.2 explains the strange dis-
tribution in Figure 5; a higher speed should increase the
CAM generations per second, but this is compensated by
the low density, which decreases the CAM generations per
second.

5



Figure 6. The traffic density plotted against the
average speed. Each point represents a recording
in the data set.

7. CONCLUSION AND FUTURE WORK
This research aimed to write a script that would allow the
analysis of the relationship between macroscopic traffic pa-
rameters and the overall Cooperative Awareness Message
generations. More specifically, we were interested in what
trends could be observed between them. The graphs pro-
duced from the output data of this script suggest that
there exists a positive linear relationship between traffic
density and CAM generations, as well as between the traf-
fic flow and CAM generations. However, there also exists
a positive linear relationship between the traffic density
and flow, meaning that the density-CAM and flow-CAM
relationships amplify one another. Thus, it may be inter-
esting to run this script on data where either the traffic
flow or density is kept constant. Interestingly, there is no
clear relationship between the average traffic speed and
the CAM generations, as a higher speed also correlates
to a lower traffic density and flow. The low density and
flow values thus counteract the high speed as the former
results in fewer CAM generations and the latter in more.
Again, an interesting continuation of this research may lie
in keeping some of these variables at a constant value. An-
other possible direction for future work lies in analysing
what CAM generation condition has a major influence on
CAM generations in different traffic scenarios. This could
be approached by implementing some minor additions to
my tool.
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