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ABSTRACT
This paper presents exploratory research into the use of
pathfinding algorithms to solve the graph isomorphism
problem, where the pathfinding algorithms will be used
to turn isomorphic graphs into isomorphic trees. A frame-
work for testing such algorithms has been developed and
several algorithms have been tested using this framework.
The algorithms are proven to be in polynomial time, and
the class of graphs on which they provide correct answers
is discussed.
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1. INTRODUCTION
The graph isomorphism problem has been researched by
mathematicians and computer scientists alike for many
years. The complexity of this problem is still open and of
great interest to the graph theory and computational com-
plexity communities, as it could have major consequences
for the polynomial hierarchy and give insight into the fa-
mous P=NP question. Current state-of-the-art algorithms
for general graph isomorphism rely on colouring the graph,
possibly supplemented by creating a search tree [10]. On
the other hand, pathfinding algorithms are well-known and
almost always polynomial-time algorithms for the purpose
of finding a path between two points in a graph. This
paper proposes research into algorithms which omit the
colouring step, and start by using a pathfinding algorithm
to create a tree, where isomorphic graphs would result in
isomorphic trees (and non-isomorphic graphs would result
in non-isomorphic trees). Since trees can be transformed
into a canonical form in linear time [1], such algorithms
would be capable of generating a canonical notation of
graph isomorphisms, with a complexity dependent on the
pathfinding algorithm.

This research explores how well pathfinding algorithm can
be used to solve graph isomorphism, as well as which al-
gorithm is best used, what the complexity of such an algo-
rithm is, and what graphs are best suited to the algorithm.
It provides a new way to solve the isomorphism of a certain
class of graphs in polynomial time, thereby continuing on
previous research by the joint author [3], which did not
fully explore the possibilities of the approach.
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2.1 Formal Definitions and Problem Specifi-
cation

A graph consists of atomic entities called nodes (often
called vertices), and edges, which join nodes to other nodes.
Isomorphic graphs have exactly the same structure but
may differ in the labels or layout of their vertices and
edges. More formally, two graphs G1 = (N1, E1) and
G2 = (N2, E2) are isomorphic if there exists a one-to-one
mapping f : N1 → N2 of their nodes such that ∀uv ∈
E1[uv ∈ E1 ↔ f(u)f(v) ∈ E2]. The Graph Isomorphism
problem is determining whether an isomorphism exists be-
tween two graphs.

In this paper, the definition of the word tree is used as is
common in computer science: a directed, acyclic, layered
graph with a single root node (i.e. a node with no incoming
edges), where each edge is directed from a parent node to
a child node and each child has at most one parent.

This research focuses on the isomorphism of simple graphs;
i.e. undirected graphs where there can be at most one edge
between two nodes and an edge cannot join a node to itself.
Furthermore, it discounts the possibility of labeled graphs
(where nodes or edges can have labels), but adapting the
presented algorithms to work on labeled graphs should not
be too difficult.

2.2 AOEU
This research continues on an algorithm jointly developed
by the author during a university project on graph iso-
morphism, the so-called AOEU algorithm [3]. The AOEU
algorithm requires a function called graph to tree. Given
a graph and a start node, this function will create a tree
that represents the graph as seen from the start node, such
that isomorphic graphs will produce isomorphic trees, if
an isomorphically corresponding start node is used. This
algorithm is further discussed in section 2.3, and its ex-
act implementation is the subject of a research question.
The AOEU algorithm compares two graphs by using a
graph to tree algorithm to generate a tree for every indi-
vidual node in both graphs, which results in two unordered
sets of trees. It is then checked that every tree in one set
has an isomorphic counterpart in the other, using an ex-
isting tree isomorphism algorithm.

2.3 graph_to_tree
As mentioned previously, the exact implementation of the
graph to tree algorithm is the subject of a research ques-
tion. This section gives a small overview of a basic breadth-
first implementation to illustrate how such an algorithm
would work. This version is the simplest variant imple-
mented in the previous research.

Algorithm 1 performs what is essentially a breadth-first
search on the graph. The mapping values is used as a
cost function; it contains the degrees of all parent nodes
and the node itself. This specific version prioritises nodes
closer to the start node, with lower degrees, making it a
breadth-first search algorithm. The algorithm can be seen
in action in figure 1, where the red node is the start node.
Note that when a node is added to the output tree, the
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(a) Graph 1 [13, 6] (b) Graph 2 [13, 6] (c) Graph 3 [13, 6]

(d) Tree for graph 1 (e) Tree for graph 2 (f) Tree for graph 3

Figure 1: an example of the graph-to-tree algorithm. The root node of a tree corresponds to the red node in a graph.

Algorithm 1: graph to tree

1 func t ion g r aph t o t r e e (Graph , s t a r t node ) :
2 result : a Tree with start node as root ;
3 values : Mapping ( node → l i s t o f i n t e g e r s ) ;
4 frontier ← {start node} ;
5 visited ← {start node} ;
6 values . add (start node , [ start node . degree ] ) ;
7

8 whi l e the re are nodes in frontier :
9 best node ← f r o n t i e r b e s t (frontier , values) ;

10

11 foreach neighbour o f best node :
12 i f neighbour not in visited :
13 new value ← values . get (best node) ;
14 new value . append (neighbour . degree ) ;
15 values . add (neighbour , new value) ;
16

17 frontier . add (neighbour ) ;
18

19 add neighbour to result as ch i l d o f best node
↪→ ;

20 frontier . remove (best node) ;
21

22 func t ion f r o n t i e r b e s t (frontier , values) :
23 return that node in frontier f o r which the

↪→ value i s :
24 1 . The sho r t e s t l i s t .
25 2 . i f nodes have l i s t o f equal length ,

↪→ return that one which i s the f i r s t
↪→ to have a lower number .

degree of the node is used as a label of the corresponding
node in the tree. As their trees suggest, graphs 1 and 2
are isomorphic, while graph 3 is not.

2.3.1 Ambiguous nodes
Unfortunately, the algorithm as described above does not
entirely work; in some graphs, it can occur that there are
two routes of equal value to the same node. Take the
graph of figure 2a. Starting at the topmost node, the
generated tree would be as in figure 2b. As can be seen,
the subgroup at the bottom of the graph has been bound
to the left node of the square, but this could just have
easily been the right node; as such, two isomorphic graphs
could result in non-isomorphic trees.

Previous research identified two solutions to this problem,
one of which will be expanded upon in this research. In

figure 2c, the problematic node, and the nodes that are
bound to it in the subgraph, have been copied to both
possible positions in the tree. This approach solves the
problem, but unfortunately also raises the complexity of
the algorithm; in the worst case scenario (a grid-like struc-
ture) almost every node would be ambiguous, requiring an
exponential amount of nodes in the tree compared to nodes
in the graph. Figure 2d will be explained in section 3.2.

3. METHODOLOGY
3.1 The Framework
A new framework for testing specifically AOEU-type algo-
rithms has been developed for this research [4]. To allow
for more objective comparisons, both between variants of
AOEU as well as with other GI algorithms, this frame-
work has been written in C++. The framework contains
all components of AOEU except graph to tree, but does
provide an interface to easily test different graph to tree
implementations. It also contains several debugging and
testing tools. These components are described below.

The framework also comes with a set of test graphs, taken
from the Nauty-Traces website [11]. These are separate
files, which the program can run upon. The framework
contains 1972 readable graphs with 1000 nodes or less.

3.1.1 Graph representation
The graph files are in the text-based DIMACS format [9],
but in order to run AOEU on them, they must be con-
verted to a format that is easier to operate on. In the
framework, this is handled by the Graph and Node classes.
The Graph class simply has a list of all the Nodes. The
Node has a unique integer id, and a list of its neighbouring
Nodes.

The Graph class can be constructed by simply passing it
a DIMACS file, which it will then read in. It can also
be written to both DIMACS and dot format; the former
for reusing an altered graph, the latter for visualising the
graph using Graphviz [8].

Finally, the Graph class has a shuffle function, which ran-
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(a) A graph with an ambiguous
node

(b) The regular tree for this
graph

(c) The tree with node copying (d) The shadowtree

Figure 2: An ambiguous node and possible solutions

domly reorders all lists and reassigns the unique node ids.
The resulting graph is guaranteed to be isomorphic. This
is a useful feature, as the test graphs contain many graphs
which are nonisomorphic, but not many which are isomor-
phic.

3.1.2 Tree representation
The framework also uses its own representation of trees,
the Tree class. Similar to a Graph, the Tree class sim-
ply holds a collection of TreeNodes, as well as a separate
pointer to the root node. A TreeNode holds pointers to its
child nodes, but also to its parent nodes; as such, it is in
practice a directed graph. A TreeNode can have multiple
parents; see section 3.2.

In order to compare trees, the AHU tree isomorphism algo-
rithm developed by Aho, Hopcroft and Ullman [1] is used,
henceforth referred to as the AHU algorithm. Some mod-
ifications have been made to this algorithm, as described
in section 3.2.1.

3.1.3 Comparison of sets of trees
As mentioned in section 2.2, the AOEU algorithm needs to
isomorphically compare two unordered sets of trees. Nor-
mally, the comparison of two unordered sets would be in
quadratic time, but for these sets it would be in cubic time,
as the comparison of two elements (i.e. tree isomorphism)
is in linear time. In order to improve this complexity,
a slightly different technique is used for set comparison,
which uses the fact that the sets only contain trees.

First, a new tree with a blank root node is created. Then,
all the trees are added as children of this root node. The
resulting tree is an isomorphic representation of the set;
two equal sets of isomorphic trees result in two isomorphic
trees.

As such, the comparison is linearly dependent on the amount
of nodes in all the trees; as the amount of nodes in a single
tree is linear in the amount of nodes in the graph n, and
the amount of trees is exactly n, the final comparison is in
quadratic time. It is trivial that such a comparison would
always return the same result as an element-by-element
set comparison on a set of trees.

3.1.4 Run modes
As the framework is used for both developing and evaluat-

ing algorithms, it has several modes in which it can be ran.
This section provides a brief overview. For more details,
see the code documentation [4].

• single: Generate a single tree from a single node
in a graph, and write it in dot format. Useful for
debugging and illustrative purposes.
• check: Check the isomorphism of two graphs.
• shuffle: Check the isomorphism of a graph and a

shuffled version of that graph.
• fulltest: The complete test; see section 3.4.

Additionally, the algorithm can be selected via a runtime
argument, in order to compare different algorithms via the
same program without recompiling.

3.2 Shadowtrees
As described in section 2.3.1, node copying has, in the
worst case, an exponential memory complexity. When an
algorithm that uses node copying is used on a graph that
has this worst case, it will very quickly allocate memory
until the memory is full; on the Linux kernel, which was
used for these tests, the program will then be unapologet-
ically killed. This caused a problem during testing, as no
full test could be completed.

To solve this issue, the algorithm has been slightly altered.
Instead of producing trees, it now produces graphs which
are directed, acyclic, layered1, and have a single root node,
but in which a node can have more than one incoming
edge; in other words, a tree where a node can have multiple
parents. This paper proposes the term ”shadowtrees” for
such graphs, and will adopt it for the sake of convenience.

An example of a shadowtree can be seen in figure 2d, which
is the shadowtree for figure 2a. As shown, the ambigu-
ous node is no longer duplicated; instead, it is shared be-
tween parents. While the performance improvement for
this graph does not seem to be that great, consider a sit-
uation where another similarly ambiguous node would be
joined to the original ambiguous node. In such a situation,
the second layer of ambiguous nodes would have to be du-
plicated twice, being in the total graph four times; this
behaviour exponentially increases memory usage. Using
shadowtrees, both ambiguous nodes are only in the graph

1In this context, meaning that all edges go from one layer
to the layer below
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once; this avoids this exponentiality, thereby solving the
memory issues.

3.2.1 Comparison of shadowtrees
The AHU algorithm can be easily adapted to work with
shadowtrees: instead of adding the label of a node to the
tuple of the parent, simply add it to the tuple of all par-
ents.

While the isomorphism of these structures is not the focus
of this paper, a short proof that the AHU algorithm [1]
provides the correct result on these structures, with the
modification mentioned above, will be provided in order
to clear any doubts about this part of the AOEU algo-
rithm. As this proof relies heavily on the details of the
AHU algorithm, and follows from its correctness proof, it
is highly recommended to get a good understanding of the
AHU algorithm before attempting to verify this proof.

1. The AHU algorithm is correct for regular trees, as
proven by Aho, Hopcroft, and Ullman [1].

2. The isomorphism of two individual substructures can
be proven, as per 1, and is proven while running
AHU on the tree.

3. Take two nodes, X and Y , which share (i.e. are both
parents of) a child Z. If Z (and its lower subtree)
were duplicated such that X and Y both have their
own identical copy, X and Y receive the same label
as they do when Z is shared.

4. The AHU algorithm is correct on regular trees where
the nodes would be duplicated, per 2.

5. Per 3 and 4, two isomorphic shadowtrees will be la-
belled as isomorphic.

6. If Z were duplicated, the layer on which Z resides
contains one more node, which would be spotted
as an isomorphic difference to a tree where Z were
shared.

7. Per 5, and 6, the modified AHU algorithm can prove
that shadowtrees are isomorphic.

The complexity of this modified algorithm is trivially dif-
ferent than that of the original, as the combined length of
the tuples is no longer linear in the amount of nodes in the
tree. As it is not the focus of this paper, the algorithm’s
complexity is assumed to be lower than or equal to that of
the graph to tree algorithm, which practical results seem
to confirm.

3.3 Metrics of evaluation
The research has developed multiple variants on the same
algorithm. These variants have been evaluated on the fol-
lowing metrics:

• Mathematical correctness - is there a mathematical
proof that the algorithm is correct?
• Practical correctness - did the algorithm work on all

graphs in the test set, and if not, on which graphs
did it fail and why.
• Theoretical complexity - what is the asymptotic com-

plexity of the algorithm?
• Practical speed - how long did the algorithm take on

graphs in the test set?

3.4 The Fulltest
In order to evaluate the practical speed and correctness,
the fulltest runmode was added. This mode evaluates all
graphs in a folder, in this case the entire test set, sorted
alphabetically by path; because of the way the files are
named, this ensure intentionally isomorphic graphs will
be directly after each other.

For each graph the set of trees is generated If the last

graph had the same amount of nodes as the current one,
it checks for isomorphism with this graph. Otherwise, only
the time required to generate the set is recorded. It also
shuffles the graph, and checks for isomorphism with the
shuffled version, recording the time required to generate
the set of the shuffled version as well as the time required
to compare the sets.

It outputs these results into a CSV file, with the following
information:

• The name of file
• The amount of nodes in the graph
• The time taken to generate the tree set
• The time taken to compare this with the tree set of

the last graph. If the amount of nodes is different,
this is set as 0.
• The total time taken for the comparison of the two

graphs, i.e. the above two combined.
• The result of this comparison (false if none was per-

formed).
• The time taken to generate the tree set for the shuf-

fled graph
• The time taken to compare the tree sets of the shuf-

fled and non-shuffled graph.
• The total time taken for the comparison of these two

sets.
• The result of this comparison; if this is ever false,

there is an issue with the algorithm.

In order to keep the runtime manageable the test skips
any graphs with more than 1000 nodes.

4. ALGORITHMS
This section provides an overview of the different imple-
mentations of the graph-to-tree algorithms that have been
developed. For the proofs of correctness and the actual
runtimes of these algorithms, see section 5.

4.1 Breadth First Search
The first algorithm is a reference implementation, a direct
translation of the algorithm developed in the previous re-
search. It uses a standard breadth-first search algorithm,
like algorithm 1, and it implements the node copying as de-
scribed in section 2.3.1. Unfortunately, the memory com-
plexity of this algorithm is so high that I have not been
able to successfully run any tests on it, as it would repeat-
edly consume all memory on the system and summarily
crash. As such, there are no results available for this al-
gorithm.

4.2 BFS-shadow
A similar algorithm to BFS, but ambiguous nodes are
shared between parents instead of having their entire sub-
tree duplicated. Pseudocode for this algorithm is provided
in algorithm 2. Take special notice of lines 20 to 23, which
are the main difference with algorithm 1.

4.3 DFS-shadow
Similar to BFS-shadow, but the frontier best function
now prioritises nodes with lower values over shorter paths.
In other words, the priorities for comparing two values are:

1. The value which has the first lower number.
2. If both are equal up to the length of the shortest

path, return the node with the shortest path.
3. If two nodes have the exact same value, return both.
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Algorithm 2: BFS-shadow

1 func t ion BFS shadow (Graph , s t a r t node ) :
2 result : a ShadowTree with start node as root ;
3 values : Mapping ( node → l i s t o f i n t e g e r s ) ;
4 frontier ← {start node} ;
5 visited ← {start node} ;
6 values . add (start node , [ start node . degree ] ) ;
7

8 whi l e the re are nodes in frontier :
9 best nodes ← f r o n t i e r b e s t (frontier , values) ;

10

11 foreach best node o f best nodes :
12 foreach neighbour o f best node :
13 i f neighbour not in visited :
14 new value ← values . get (best node) ;
15 new value . append (neighbour . degree ) ;
16 values . add (neighbour , new value) ;
17

18 frontier . add (neigbour ) ;
19

20 parents : s e t o f nodes
21 foreach node in best nodes :
22 i f neighbour i s a neighbour o f node :
23 parents . add (node) ;
24

25 add neighbour to result as ch i l d o f parents
↪→ ;

26 frontier . remove (best node) ;
27 v i s i t e d . append (neighbour ) ;
28

29 func t ion f r o n t i e r b e s t (frontier , values) :
30 return those nodes in frontier f o r which the

↪→ value i s :
31 1 . The sho r t e s t l i s t .
32 2 . i f nodes have l i s t o f equal length ,

↪→ return that one which i s the f i r s t
↪→ to have a lower number .

33 3 . I f two nodes have the same value , return
↪→ both .

4.4 Heuristic
Both BFS-shadow and DFS-shadow select nodes from the
frontier based on their entire search path. This helps avoid
ambiguous nodes, but also adds to the algorithms com-
plexity (see section 5.1.3). The heuristic graph to tree al-
gorithm avoids this complexity by using a heuristic for the
search path instead: a tuple containing the length of the
search path and the sum of the degrees of all nodes en-
countered in this search path. The frontier best function
simply prioritises the shortest search path, and if those are
equal, the shortest sum of degrees.

5. RESULTS
This section contains the results for the different algo-
rithms, as described in section 3.3. Table 1 provides an
overview of the practical speed of the different algorithms;
it compares the average time required to compare differ-
ent and shuffled graphs, as well as this time divided by the
size of the graph squared (as the average complexity for
AOEU appears to be n2). For figures, see the results doc-
ument [2]. Raw results and the software used to produce
them can be found on the git repository [4].

avg. comp. avg. shuffle comp.
n2

shuffle
n2

BFS 6700 7732 0.0166 0.0216
DFS 6974 7892 0.0170 0.0237
heuristic 5872 6820 0.0146 0.0169

Table 1: Overview of practical speed. All times in mil-
liseconds

5.1 BFS-shadow
5.1.1 Mathematical correctness

Unfortunately, the BFS-shadow algorithm can’t be proven
to be correct for all graphs; in fact, in can be proven to

be incorrect for a very specific subset of graphs. Take the
graphs of figure 3. These consist of two groups of nodes,
which are fully connected to a single node. Within each
group, the nodes are indistinguishable from each other; the
only difference between these graphs is the size of groups
(figure 3a can be described as (6,6), whereas figure 3b
would be (5,7)). Starting at node 0 will obviously not re-
sult in a tree in which these differences are visible, as the
edges that are not used to reach the node from the short-
est path are left out. Starting at one of the other nodes,
however, does not reveal the size of the groups either. Say
we start at node 1 of figure 3a; node 4 is a distance of
3 removed from node 1 when traveling over nodes in the
group, but only two when going via node 0; because this
is breadth-first search, it will go via node 0 instead. As
all nodes in the other group will also be reached via node
0, it is impossible to tell the size of the group from this
tree. As this reasoning is analogous for all other nodes in
the graph (except for node 0), a BFS-based algorithm can
never correctly tell that these two graphs are not isomor-
phic.

Fortunately, this seems to be the only class of graphs with
which AOEU/BFS-shadow has issues. The exact mathe-
matical definitions of graphs for which this issue occurs is
hard to define, and requires further research. Given the
complexity of the algorithm as described in 5.1.3, however,
it is highly probably that it is a subset of or identical to
the PI-class of graphs which are closed under contraction,
as described by Ponomarenko [12].

There is one useful mathematical proof for AOEU/BFS-
shadow: it can be proven that isomorphic graphs will al-
ways be labeled as such.

1. Given way graphs are represented in the framework
(see section 3.1.1), there are two possible differences
between isomorphic graphs; the order of the nodes
in the list of the graph itself, and the order in which
individual nodes list their neighbours.

2. The statement on line 18 could add nodes to the
frontier dependent on the order in which neighbours
are listed.

3. frontier best will return all nodes with the best value,
and is therefore not dependent on the order in which
nodes are added to the frontier, up to the order of
the returned set.

4. The loop on line 21 of algorithm 2 eliminates any
dependence on the order in which nodes are added
to the frontier, up to isomorphism of the resulting
shadowtree.

5. Per 3 and 4, the resulting shadowtree is independent
of the order in which nodes list their neighbours, up
to isomorphism; in other words, isomorphic graphs
will produce isomorphic shadowtrees, given corre-
sponding start nodes.

6. Per section 3.2, AHU will label isomorphic shad-
owtrees as such.

7. Per 5 and 6, two isomorphic graphs with correspond-
ing start nodes will be labeled isomorphic

8. In two isomorphic graphs, each node in one graph
will have a corresponding equivalent in the other,
per the definition of isomorphism.

9. AOEU compares the sets of trees, thereby comparing
all nodes in one graph against all nodes of the other.

10. Per 7, 8, and 9, AOEU/BFS-shadow is not depen-
dent on the two differences listed in 1; it labels iso-
morphic graphs as isomorphic.

In other words, while there are clearly non-isomorphic
graphs which AOEU/BFS-shadow labels as isomorphic,
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(a) (b)

(c) The tree for most nodes

Figure 3: Two graphs which are not isomorphic, but are labeled as isomorphic by BFS

there are no isomorphic graphs which AOEU/BFS-shadow
labels as non-isomorphic; there are false positives, but no
false negatives.

5.1.2 Practical correctness
Although the issue above is definitely present on those
specific graphs, the algorithm nevertheless provided the
correct answer for all other graphs in the test set. This
suggests the graph class for which the issue occurs is rather
limited.

5.1.3 Theoretical complexity
Looking at algorithm 2, there are several loops dependent
on input size.

• The loop on line 8 goes over all nodes once, and is
therefore O(n).
• The loop on line 11 can be discounted, as every node

will removed from the frontier after going through
this loop once, thus never being in the loop again;
this loop simply works in accordance with the loop
of line 8.
• The loop on line 12, combined with the if statement

on line 13, will run through each node once, indepen-
dently of the other loops; it does therefore not affect
the asymptotic complexity, as O(2 · n) = O(n).
• The loop on line 19 can also be discounted, as the

added complexity is offset by the statement on line
13
• The condition of line 20 is linear in the amount of

edges in the graph, written as O(e)

• Running frontier_best is done once for every n on
line 9; therefore, the complexity of this line is highly
relevant. The worst-case complexity for this func-
tion would require checking the value of every node
in the graph; the longest possible value is also ev-
ery node in the graph. It is therefore safe to say the
complexity of the function is bound by O(n2). How-
ever, the integers in a value represent nodes which
have already been visited, and can therefore not be
in the frontier; as such, the length of the values in
inversely proportional to the amount of nodes to be
checked. This inverse relationship seems to be lin-
ear, which would not change the upper bound of the
complexity, but it does suggest the upper bound can
never be reached.

We can therefore construct two upper bounds. The call
to frontier_best on line 9, which is done for every n,
generates a total bound of O(n3). There is also a total
upper bound of O(n · e); however, e is maximally

(
n
2

)
=

1
2
(n−1)n, and can therefore never exceed n2, making this

bound irrelevant. The final upper bound can therefore be
written as O(n3)

The spacial complexity of BFS-shadow algorithm can be
easily deduced. Because of the use of shadowtrees, each
node in the graph is represented in the tree exactly once,
and each edge can also be in the tree only once; the spacial
complexity of a single tree is therefore O(n · e).
Note that both of these proofs only apply to the BFS-
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shadow algorithm; as AOEU runs BFS-shadow on every
node in the graph, the complexity of the full AOEU/BFS-
shadow algorithm has an extra factor n.

5.1.4 Practical speed
When plotting the time required to compute the isomor-
phism against the size of the graph (as in done in [2]), most
graphs appear very close to a polynomial line. In most
cases, the line appears to be n2; this would suggest the
average-case complexity of the BFS-shadow graph to tree
algorithm is linear.

The time required to compute a shuffled graph is slightly
higher than a comparison between two graphs. This can
be explained by the way the test works: while the com-
parison to the shuffled graph will always require both tree
sets to be fully explored, the comparison with the previ-
ous graph will often be cut short because an isomorphic
difference is found; in many cases, this difference is the
size of the graphs, in which case the sets don’t even need
to be compared.

There are some instances where the time required to com-
pare the sets of trees in significant: Cai-Fürer-Immerman
graphs [5], grids, and Miyazaki graphs. For these graphs,
the time required to compare the tree sets is about as
large as the time required to generate them. The cause
of this is immediately apparent when one would view a
generated tree for such a graph: due to the layered struc-
ture of these graphs with many nodes of equal degree, the
resulting trees contains almost every edge in the graph.

The graphs that took the longest to compute were Hadamard
matrix graphs ([2], figure 1.9), being the only category of
graphs to breach the 100 second mark. This probably has
something to do with the ratio of edges to the distance
between nodes, which may lead to exact worst-case be-
haviour. Complete graphs were significantly faster than
other graphs, which seems logical given that the tree for
such graphs would only have two layers. For other classes
of graphs, the size of the graph was much more significant
than its type.

It is hypothesised that the runtime of the graph to tree
algorithm is proportional to the depth of its resulting tree.
This would make the algorithm more suited to graphs with
shorter search paths, i.e. graphs which more edges and
more nodes of higher degrees. Unfortunately, such graphs
also tend to fit the description of classes on which AOEU
gives false positives, as in section 5.1.1. As such, it cannot
be confidently said that any graph classes are particularly
well suited to AOEU.

A profiling has revealed that most of the runtime of this
algorithm was spend on hashtable lookups; given that the
implementation of the algorithm heavily relies on sets and
maps, this seems logical.

5.2 DFS-shadow
5.2.1 Theoretical Correctness

While the specific example graph used in section 5.1.1
is correctly identified as non-isomorphic by DFS-shadow,
this does not mean that DFS-shadow does not share the
underlying problem. Consider a graph class C of size n,
where all nodes have a degree m with m < n. There are
multiple non-isomorphic graphs that fit this description,
implying |C| > 1. However, DFS-shadow, only relying on
the length of the paths, is highly probable to run into the
same problem. In these graphs, the algorithm can only
rely on shortest path length, making it equivalent to BFS-
shadow; it certainly does not provide a correct answer.

The second proof in section 5.1.1, however, still holds
for DFS-shadow; DFS-shadow will never label isomorphic
graphs as non-isomorphic.

5.2.2 Practical Correctness
DFS-shadow gave the correct answer for all graphs in the
test set, including figure 3.

5.2.3 Theoretical Complexity
All proofs in section 5.1.3 hold for DFS-shadow as well;
therefore, the theoretical complexity is the same: a time
complexity of O(n4) and a spacial complexity of O(n2 · e)
for the full AOEU/DFS-shadow algorithm.

5.2.4 Practical Speed
While DFS seems to be slightly slower overall as seen in ta-
ble 1, there are no significant differences in the datasets [2].
The only other conclusion that may be drawn is that the
time required by DFS seems to be a bit more irregular
than its breadth-first counterpart.

5.3 Heuristic
5.3.1 Theoretical Correctness

All proofs of section 5.1.1 apply to the heuristic algorithm
as well, including the inability to detect the difference be-
tween figures 3a and 3b.

5.3.2 Practical Correctness
The practical correctness is identical to BFS-shadow; that
is, it gave the correct answer to all graphs in the test set,
except figure 3.

5.3.3 Theoretical Complexity
Because the value of a node is now constant, the time
frontier best requires is now linear in the frontier (instead
of quadratic). This means that the upper bound for the
algorithm generated by the call (line 9 of algorithm 2) is
now O(n2) (instead of O(n3)).

As a result, the O(n ·e) call becomes relevant again, as the
maximum e =

(
n
2

)
exceeds n. Therefore, the upper bound

for the time complexity of the heuristic graph to tree is
O(n2 + n · e), and the bound for the full AOEU/heuristic
is O(n3 + n2 · e).
The spacial complexity is the same as BFS-shadow, i.e.
O(n2 · e) for the full AOEU/heuristic algorithm.

5.3.4 Practical Speed
Compared with AOEU/BFS-shadow, the speed on most
graphs is not significantly different. Exceptions to this are
random graphs with a 1/10 edge probability ([2], figure
3.24), and the Dawar Yeung graph sets [7] ([2], figures
3.26 and 3.27), on which AOEU/heuristic is about twice
as fast; this descrepancy on a subset of the test set is
sufficient to explain why the algorithm is so much faster
on the average case, as in table 1. Curiously, Hadamard
matrix graphs still pose the greatest challenge, despite the
runtime of the heuristic algorithm being independent from
path length. Further investigation might be required to
find the root cause of why Hadamard matrix graphs pose
such a challenge.

6. CONCLUSION
This paper has provided a new approach to tackle graph
isomorphism, by providing three different algorithms based
on pathfinding algorithms and shadowtrees. It has proven
the complexity of this approach and given a handle on the
graph class on which it is correct, as well as provided an
overview of the practical performance.
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AOEU proved 1 or 2 orders of magnitude slower than the
currently most prominent solution, traces [10] in practice.
While this may seem like a large difference, this imple-
mentation of AOEU was developed in a mere five weeks,
and the actual codebase still has room for optimisation.

This version of AOEU is an enormous improvement com-
pared to the previous version [3]. Not only is it several
orders of magnitude faster2, but it also manages to reduce
the time, and more importantly memory complexity, to
polynomial.

There is a now some form of proof available as to whether
the algorithm works or not, and there is a handle for in-
vestigating on what graphs the algorithm works. Further-
more, there is a formal proof that the algorithm will never
label two non-isomorphic graphs as isomorphic, meaning
it could be used as a heuristic for isomorphism. In these
cases, the runtime could be improved by only running on
a subset of nodes instead of all nodes.

The difference between the different pathfinding algorithms
has no significant impact on most graphs, but the heuristic
algorithm seems to be significantly faster on some.

The theoretical complexity of AOEU is, most optimally,
bound by O(n3 + n2 · e), and its memory complexity is
O(n2 ·e). The practical time complexity seems to be closer
to n2.

The practical data shows that there are no graphs which
can be confidently said to be particularly well-suited to
AOEU, although it can be said that Hadamard-matrix
graphs are particularly ill-suited.

6.1 Further Research
There are several questions that are in need of further
research.

Most obviously, the exact nature of the graphs class on
which AOEU is guaranteed to work is still unknown. As
the algorithm runs in polynomial time, this could be a new
class of of graphs the isomorphism of which can be prov-
ably solved in polynomial time: a PI-class. Furthermore,
this class could be fundamentally different when AOEU is
combined with different graph to tree algorithms, which
could lead to the discovery of even more PI-classes.

As mentioned previously, the implementation still has room
for improvement. For example, the frontier best func-
tion has to analyse the entire frontier for every node that
is analysed; this could be improved by keeping the fron-
tier in a sorted list. Practically, the implementation relies
heavily on hashtables, and changing some datastructures
to be more suitable for the specific purpose could improve
practical speed.

There are still many pathfinding algorithms available which
are unexplored, and some may yield better results.

As mentioned previously, the algorithm could be used as a
heuristic for graph isomorphism; this point is also in need
of further research.

Finally, the invention of shadowtrees brings into mind an
entirely different kind of algorithm. A pathfinding algo-
rithm could also, hypothetically, be used to direct every
edge in the graph, resulting in a directed acyclic graph.
This would no longer be a shadowtree, as it is not layered,
and therefore the AHU algorithm for tree isomorphism (or
the modified variant of this paper) could no longer be used,
but the directed and acyclic properties of the graph might

2which could be (perhaps rightfully so) attributed to the
difference between C++ and Python

nevertheless make it easier to check for isomorphism. As
the process of making edges directed is reversible, this pro-
posed algorithm would be trivially correct for all graphs.
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