Machine Learning for Monitoring Attacks in the Cloud

Nils van Noort
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

n.vannoort@student.utwente.nl

ABSTRACT

‘Cloud’ is a computing infrastructure that is used for stor-
age and processing. Many organizations have switched to
using cloud, of which 28% experienced cloud security inci-
dents in 2019 alone. One promising method for monitoring
cloud attacks is using Machine Learning algorithms (ML).
The problem is that it is not clear which ML approaches
are suitable and most efficient for monitoring which cloud
attack. While some related works have focused on using
ML for monitoring cloud attacks, these studies covered
only a handful of attacks. In contrast, in this research,
we will cover ground towards broad use of ML for moni-
toring many different cloud attacks. Our methodology is
threefold: (i) identifying cloud attacks, then (ii) recogniz-
ing problems that ML solves, and finally (iii) conducting a
performance evaluation on ML using real data. Our anal-
ysis shows that ML-based monitoring can attain a 100%
classification accuracy. Our contribution entails a founda-
tion for future research.

Keywords

Machine learning, Cloud attacks, MITRE ATT&CK, Se-
curity, Monitoring

1. INTRODUCTION

‘Cloud’ has been used as a metaphor for the Internet.
Overall, cloud refers to data centers used for remote stor-
age and/or computing. Cloud is becoming increasingly
popular with organizations as it promises more agility,
efficiency and scalability compared to on-premise infras-
tructure. Gartner [1] projects the cloud services industry
to grow exponentially through 2022. As organizations de-
pend more and more on cloud, the importance of a se-
cure cloud increases. This is evident from a recent (ISC)?
Report[2]: 28% of organizations experienced a cloud at-
tack of some sort in the year 2019 alone. Victims of cloud
attacks include Facebook in 2019, where 146 GB of sensi-
tive user data was leaked from an S3 bucket[3], part of an
Amazon cloud service. Attacks in the cloud come in many
flavours. For example, a well known cloud attack entails
stealing cookies to become authenticated as another user,
i.e. the Web Session Cookie attack[4]. Machine Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

33" Twente Student Conference on IT July 37¢ 2020, Enschede, The
Netherlands.

Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

algorithms (ML) are a promising alternative to traditional
algorithms for monitoring these attacks.

ML is an old concept as it originates from the 1950s[5]. As
computational power is increasing so rapidly, ML is receiv-
ing an increasing amount of attention from the community.
Some[6] might say it is merely a ‘buzzword’ as many com-
panies claim to be investing heavily into ML[7], but it is
not openly explained what algorithms are used. The scien-
tific community has been looking at many ways to use the
benefits of ML. In fact, ML has been proven to be useful
in many areas[8][9], including cloud security[10][11].

The problem we address in our research is that, from a lit-
erature survey, it seems existing works are merely scratch-
ing the surface when it comes to ML capabilities in a cloud
environment. Previous works are often focused on using
ML for a small subset of attacks. This information gap
results in a situation where it is unclear what ML to use
for monitoring cloud attacks.

The goal of our research is to bridge this gap towards im-
proved monitoring of cloud attacks using ML. We provide
a foundation towards a broad state-of-the-art overview,
which entails what ML is suitable and efficient for mon-
itoring which cloud attack. To pursue our goal, the fol-
lowing research questions (RQ) have been defined as the
basis of our research:

RQ1 What problem types are associated with attacks ag-
ainst cloud resources?

RQ2 Which ML could be used for monitoring attacks in
the cloud?

RQ3 How well does ML perform when monitoring cloud
attacks?

Each RQ has its own dedicated section in this research
paper as part of our methodology. In § 2 we discuss the
attacks against cloud resources in order to answer RQI.
After that, § 3 focuses on answering RQ2. Here, we sur-
vey ML and connect their usage to the characteristics of
the found cloud attacks. To answer RQ3, § 4 contains a
performance evaluation of various ML algorithms. This is
done in a real environment to a closed set of attacks us-
ing real data. Finally § 5 contains a conclusion where we
summarize our findings.

Our performance evaluation has shown very positive re-
sults. Of the various ML algorithms we tested, we found
that some of them performed extraordinarily well: The
most promising result is that we managed a 100% classifi-
cation accuracy when monitoring one of the cloud attacks
we surveyed in this research. With our thorough method-
ology in place, we aim to incentivize further research on
using ML for monitoring cloud attacks.

2. SURVEYING CLOUD ATTACKS

The intent of this section is to detail the cloud attacks
that we will be evaluating for ML monitoring. The at-
tacks have been surveyed and analyzed so we can answer
questions such as ‘what cloud service is vulnerable to this
attack?’ and ‘what problem type is associated with this
attack?’. Ultimately, we want to answer and present which
ML algorithms are suitable for monitoring each attack.

2.1 Methodology

To answer RQ1 (What problem types are associated with
attacks against cloud resources?) we have performed a
literature survey. A traditional literature study based on
key-words and sources of data would have led to many
unrelated attacks, where classification could have become
problematic in the time-frame of this research. Instead,
our methodology relies on using an open, globally-accessible
framework that is well known in the security industry,
namely MITRE ATT&CKJ12]. This framework is pro-
posed by a collaborative foundation for the development
of attack information and is used in many sectors. The
MITRE ATT&CK enterprise cloud attack section contains
information on 10 cloud attack tactics and 36 separate
cloud attack techniques[13].

We have summarized the 36 MITRE ATT&CK cloud at-
tacks in Table 1. An arbitrary Technique Identifier (TT)
is assigned to the attack techniques to facilitate referenc-
ing. For each technique is shown which tactic(s) it is part
of and which cloud services are vulnerable to this attack.
The associated problem type is given in the last column.

The attacks (TI-5) ‘Valid Accounts’ and (TI-15) ‘Brute
Force’ are highlighted in Table 1. Only these two attacks
will be used for the performance evaluation in § 4, given
the limited time-frame of this research. The main reason
we highlight these attacks specifically is that they repre-
sent 5 out of the 10 tactics of cloud attacks, which will
make our findings more relevant. The next subsection will
expand upon what all 10 tactics entail.

2.2 Cloud Attack Tactics

As shown in Table 1, there are 10 different tactics for cloud
attacks in the MITRE ATT&CK knowledge base on En-
terprise Cloud[13]. A tactic can be seen as an attack cat-
egory, consisting of one or more attack techniques. For
each tactic we will describe its purpose with an example
of an attack technique from the Cloud section.

2.2.1 Initial Access

The ‘Initial Access’ tactic is a category of attack that is
about getting initial entry to a network. This tactic grants
the attacker an opportunity to gain access to a network as
a first step. Using other tactics afterwards they might be
able to have access for a prolonged amount of time.

An example of an attack technique within this tactic en-
tails stealing the credentials of a user or service in order
to gain initial access, i.e. ‘Valid Accounts’. The network
access could allow the attacker to pivot across accounts
and ultimately obtain admin privileges.

2.2.2 Persistence

The ‘Persistence’ tactic is an attack category that entails
techniques that allow attackers to maintain access once
they are in. These techniques serve to keep access even
when systems are restarted, credentials are changed or in
case of other obstacles.

A good example of persistence is the ‘Redundant Access’
technique. By using multiple remote access tools you

maintain access even when one of the entryways is de-
tected and/or mitigated.

2.2.3 Privilege Escalation

This tactic has the primary goal of reaching higher level
privileges on a system or network. The tactic consists of
only one technique for Cloud, the aforementioned ‘Valid
Accounts’ technique (§ 2.2.1).

In the ‘Valid Accounts’ technique, the attacker has already
entered the system or network using a compromised ac-
count. Thus, they are able to explore the system/network
for vulnerabilities, e.g. misconfigurations or user accounts
with root permission.

2.2.4 Defence Evasion

‘Defence Evasion’ is a tactic of which the focus is to avoid
being detected while you have broken into the system or
network. There are multiple ways to achieve this, e.g.
disabling or uninstalling security software, or obfuscating
malicious behaviour to be seen as part of trusted processes.

Examples of techniques include the earlier mentioned ‘Re-
dundant Access’ (§ 2.2.2) and ‘Valid Accounts’ (§ 2.2.1).
As you can see, the techniques are not unique to a tactic
and can instead go across multiple. In particular, the ‘Re-
dundant Access’ technique has its focus on redundancy; if
one entryway is mitigated, there are still others. Here, not
being detected obviously plays an important role as you
need not be detected while finding other entryways.

2.2.5 Credential Access

The ‘Credential Access’ tactic entails ways to steal ac-
count names and passwords. Techniques used include key-
logging or credential dumping. If a database is leaked con-
taining hashed passwords, the associated accounts are at
risk as regular ‘Brute Force’ mitigation is not an option.

‘Brute force’ is a well-known technique that most are fa-
miliar with; you try a username and password in hopes
that it is correct. Most services have a limit on login tries.
However, an attacker could instead use ‘password spray-
ing’. Here, a small set of common passwords is attempted
on many different accounts. This is a way to avoid the
account block after many failed attempts.

2.2.6 Discovery

The tactic of ‘Discovery’ is relevant when the attacker
wants to explore the unfamiliar environment. The attacker
looks to gain knowledge on the details of the system or net-
work they are in. Once they know what parts they have
access to they can more adequately decide how to act next.

An example of a technique is ‘Cloud Service Discovery’.
After an attacker gains access to a system, they go through
the cloud services on the system to discover information
about them. The methods used depend on the service
type: platform-as-a-service (PaaS), infrastructure-as-a-ser-
vice (IaaS), or software-as-a-service (SaasS).

2.2.7 Lateral Movement

The ‘Lateral Movement’ tactic involves the attacker trying
to move through the environment. It consists of techniques
the attacker can use to remotely access and control differ-
ent parts of the network. They might use this tactic when
their objective requires them to travel between multiple
systems that have to be breached.

An example of how an attacker might gain access to an-
other system is by using a stolen web session cookie to
become authenticated as a valid user, i.e. the ‘Web Ses-
sion Cookie’ technique. The attacker imports the cookie

into a custom browser and is authenticated for as long as
the cookie is active.

2.2.8 Collection

This tactic consists of techniques related to the collection
of data. The gathering of data is done so they can be
exfiltrated (stolen) afterwards.

One of those techniques entails staging the collected data
in a single directory. This location can be filled with mul-
tiple files or combined into one using methods like encryp-
tion or compression.

2.2.9 Exfiltration

‘Exfiltration’ entails the theft of data from a network with-
out being detected. Common ways include packaging the
data using compression so the exfiltration goes unnoticed.

Table 1. Cloud attacks from MITRE ATT&CK

One technique for exfiltrating data is by transferring the
data to one or multiple other cloud accounts. By split-
ting up the download over multiple smaller transfers you
avoid the monitoring of large file transfers to outside the
network.

2.2.10 Impact

This tactic involves the manipulation, interruption and/or
destruction of data and parts of a system. An attacker
could manipulate a system in order to use machine re-
sources, tamper with data or even destroy data.

A technique relevant to cloud is ‘Resource Hijacking’. Here
an attacker might leverage the computing power of a cloud
service for resource intensive tasks, e.g. cryptocurrency
mining. They might also target user endpoint systems.
These compromises may impact system or service avail-
ability depending on the severity of the attack.

AWS &
GCP & | Azure | Office
TI | Technique Tactic Azure AD 365 SaaS | Problem Type
1 Drive-by Compromise TIA X X X v Class.
2 Exploit Public-Facing Application 1A 4 X X X Class., Cluster
3 Spearphishing Link TA X X v v Class., Cluster
4 Trusted Relationship 1A 4 X X v Class.
5 Valid Accounts IA, P, PE, DE v X X v Class., Regr.
6 Account Manipulation P, CA v v v X Class., Regr.
7 Create Account P v v v X Class.
8 Implant Container Image P 4 X X X Class.
9 Office Application Startup P X X v X Class.
10 | Redundant Access P, DE v v v v Class.
11 | Application Access Token DE, LM X X v v Class.
12 | Revert Cloud Instance DE 4 X X X Class.
13 | Unused/Unsupported Cloud Regions | DE 4 X X X Class.
14 | Web Session Cookie DE, LM X X v v Class.
15 | Brute Force CA X v v v Class.
16 | Cloud Instance Metadata API CA v X X X Class.
17 | Credentials in Files CA v X X X Class.
18 | Steal Application Access Token CA X v v v Class.
19 | Steal Web Session Cookie CA X X v v Class.
20 | Account Discovery D X v v X Class.
21 | Cloud Service Dashboard D v v v X Class.
22 | Cloud Service Discovery D v v v v Class., Regr.
23 | Network Service Scanning D 4 X X X Class.
24 | Network Share Discovery D 4 X X X Class.
25 | Permission Groups Discovery D X v v X Class.
26 | Remote System Discovery D 4 X X X Class.
27 | System Information Discovery D 4 X X X Class.
28 | System Network Conn. Discovery D 4 X X X Class.
29 | Internal Spearphishing LM X X 4 v Class., Cluster
30 | Data from Cloud Storage Object C 4 X X X Class., Regr.
31 | Data from Information Repositories | C 4 X X v Class., Regr.
32 | Data from Local System C 4 X X X Class.
33 | Data Staged C 4 X X X Class.
34 | Email Collection C X X v X Class.
35 | Transfer Data to Cloud Account E 4 X X X Class.
36 | Resource Hijacking I 4 X X X Class., Regr.

TA: Initial Access, P: Persistence, PE: Privilege Escalation, DE: Defence Evasion, CA: Credential Access,
D: Discovery, LM: Lateral Movement, C: Collection, E: Exfiltration, I: Impact

2.3 Findings

We have surveyed all attacks from MITRE ATT&CK Cloud
Enterprise. For each attack we have summarized charac-
teristics in Table 1, including the problem type associated
with this attack. This problem type is very relevant to the
next section of this paper, as this is one of the parameters
we used to evaluate which ML algorithms would be most
suitable for monitoring that specific attack technique.

What is striking about this overview is that it shows the
type of problem to solve for all techniques: We have found
that all cloud attack techniques require classification of
some sort. In hindsight this does make sense as monitor-
ing for attacks often involves identifying what actions are
part of an attack versus normal user actions. These groups
(‘normal’/‘attack’) are the labels for the binary classifica-
tion problem. We will expand upon what classification
algorithms could be used for monitoring these attacks in
the next section.

3. SURVEYING MACHINE LEARNING

This section covers the ML approaches that are relevant
to monitoring attacks in the cloud. We focus on the type
of ML to be able to identify appropriate algorithms. We
have surveyed related works on ML that could be useful
for this identification.

3.1 Methodology

To solve RQ2 (Which ML could be used for monitoring
attacks in the cloud?) we must look at which ML to use
for monitoring the various attacks from RQ1. According
to Wolpert and Macready [14]’s famous ‘No Free Lunch
Theorem’, ‘no single algorithm works for all problems.” As
such we had to evaluate what ML algorithms are suitable
for each individual attack technique.

At the bottom of this page is Table 2 which shows which
ML algorithms were used in works that are closely related
to the kind of problem associated with monitoring cloud
attacks. With reference to both related works and the
problem type of an attack, we can possibly deduct which
ML algorithms are suitable to a certain attack. Some of
the related works include cloud attacks, but some do not;
the goal here is to use the knowledge from a different but
relevant perspective to apply it in this research.

The related works each have a specific focus; they address
a certain attack or other (classification) problem. The
way that our research differs from past works is that we
alm to provide a large overview of what ML algorithm
to use for monitoring which cloud attack. The amount
of algorithms used in these works differs, but most fail
to cover all the common classification algorithms. This
leaves possible performance on the table as an untested
algorithm might have outperformed the others.

Table 2. ML Algorithms utilized in Related Works

There are several paradigms in ML, e.g. Supervised, Un-
supervised, and Reinforcement Learning. For the use case
of monitoring cloud attacks, it seems logical to use a su-
pervised ML approach. From what we found, monitoring
cloud attacks very often involves differentiating between
‘attack’ and ‘normal’ actions/processes. This kind of prob-
lem lends itself well to a supervised binary classification
approach. We have surveyed a number of well-established
ML classification algorithms from related works, which we
detail below.

3.1.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a ML algorithm that
involves drawing a line (hyperplane) between two data
classes which effectively divides the two. According to
Kotsiantis [22], ‘Maximizing the margin and thereby cre-
ating the largest possible distance between the separating
hyperplane and the instances on either side of it has been
proven to reduce an upper bound on the expected gener-
alisation error.” When predicting the class of a data point
the algorithm evaluates which side of the hyperplane the
point is on.

Some data sets are not separable by a linear hyperplane.
Kotsiantis goes on to state that for most real world prob-
lems no hyperplane exists that successfully separates the
data points of different classes.[22] In this case, using higher
dimension SVM might be better for solving the insepara-
bility problem. For this research, we will evaluate the
performance of linear SVM when monitoring attacks.

3.1.2 Naive Bayes

The Naive Bayes algorithm assumes that all features are
independent of one another. ‘For this reason naive Bayes
classifiers are usually less accurate that other more sophis-
ticated learning algorithms’, according to Kotsiantis [22].
However they also state that in some cases it can be su-
perior to other learning schemes.

A calculation is made using the Bayes Theorem|[23] and a
product operation. The probabilities of instances belong-
ing to a class are compared, where the highest probability
decides the predicted class. Naive Bayes has a major ad-
vantage over other classifiers, namely the short computa-
tional time necessary for training[22].

3.1.3 k-Nearest Neighbours (K-NN)

The K-NN algorithm is quite simple in how it works. It
relies on the fact that ‘the instances within a dataset will
generally exist in close proximity to other instances that
have similar properties’[22]. When evaluating a new data
point it evaluates an area around it with a radius of ‘k’,
which is a parameter that can be tweaked to get the best
performance. Within this area it counts the amount of
occurrences of each class, and assigns the most occurring
class to the original data point.

Logistic k-Nearest | Decision Naive k-Means

ref Regr. Neighbours Trees SVM | Bayes | LDA | Unsuperv. | Problem addressed
[15] v X v v v X v Malicious URL detection
[16] X v v v 4 X X Class. of text-documents
[17] X X X X 4 X X Classifying internet traffic
[18] X X X X X X v Deep packet inspection
[19] v X X v X X X Detecting bot accounts
[20] v v v v/ v X X XXS attack detection
[21] X X X v X X X SQL injection attacks

Class./Regr. Class. Class. Class. | Class. | Class. Cluster

Unlike most other classifiers, K-NN doesn’t have a set
‘training phase’ because it stores the entire training set
to make predictions about subsequent data points[24]. As
such, a major drawback is the storage requirement when
using this algorithm[22]. Another drawback of K-NN is
low performance when the features are categorical, as it is
hard to define a ‘distance’ between categories[24].

3.1.4 Decision Trees

The Decision Trees classifier relies on a rule-based flow of
decisions, where each decision narrows down what class
the instance is likely to be part of. A decision is made
according to the value of a feature, and ‘the feature that
best divides the training data would be the root node of
the tree’[22]. However, Murthy [25] notes that a majority
of studies have found that there is no single best method
for determining the root.

There is a possible danger of overfitting when using the De-
cision Tree algorithm. To this end, Kotsiantis [22] states
that ‘if two trees employ the same kind of tests and have
the same prediction accuracy, the one with fewer leaves is
usually preferred’. On this topic, Breslow and Aha [26]
have surveyed various methods for tree simplification.

3.1.5 Logistic Regression

Logistic Regression is a type of regression that behaves
like a classifying algorithm. ‘A very convenient and use-
ful side effect of a logistic regression solution is that it
does not give you discrete output or outright classes as
output, but instead you get probabilities associated with
each observation’[27]. This probability is then converted
to one of two classes, depending on the threshold.

If there is an association with a feature and a certain out-
come, this association might be missed if the data set is
overly saturated with raw, useless data[28]. This is im-
portant to keep in mind when pre-processing data and ex-
tracting features, as we can draw more concise conclusions
when less features are at play.

3.1.6 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA), as stated by Thar-
wat et al. [29], tries to ‘project the original data matrix
onto a lower dimensional space.” It does this while retain-
ing the information needed to differentiate instances into
classes.[30]

One of the main drawbacks of LDA is known as the Small
Sample Size problem: it ‘fails to find the lower dimen-
sional space if the dimensions are much higher than the
number of samples in the data matrix.’[29] We will be us-
ing a sizable sample of control data, however the amount of
instances that belong to the ‘attack’ class are far and few
between, which might drastically hamper performance.

3.2 Findings

In the previous section we found that all cloud attacks in
Table 1 have at least a classification problem type. For
this reason we will be using the classifiers detailed in this
section for monitoring cloud attacks, as this covers the
most ground for our research. It enables future works to
easily expand on the foundations laid by this research.

However, there were some attack techniques that could be
tackled using a different approach. When it is not clear
what you are looking for, e.g. labels and attributes/features,
it might be beneficial to use an unsupervised ML algo-
rithm, e.g. k-means. For example, in the case of detecting
malicious URLs (TI-3), Sahoo et al. [15] state that “the
number of URLs available for training can be in the order

of millions (or even billions) and as a result, the training
time for traditional models may be too high to be practi-
cal”. Thus, in some scenarios, a clustering approach might
be more suitable than a classification approach. This could
be explored in future works.

To know which classifier performs best for monitoring a
given attack, the best course of action is to conduct a
performance evaluation on different ML algorithms. We
detail this process in the next section, where we use met-
rics to decide which classifier best suits the monitoring of
the cloud attacks that are highlighted in Table 1.

4. PERFORMANCE EVALUATION

The intent of this section is to provide the methodology
of conducting a performance evaluation on the ML algo-
rithms that were discussed in the previous section. The
end of this section includes our findings.

4.1 Methodology

To answer RQ3 (How well does ML perform when moni-
toring cloud attacks?) we have conducted a performance
evaluation of ML algorithms for monitoring the two cloud
attacks (TI-5) ‘Valid Accounts’ and (TI-15) ‘Brute Force’
from Table 1. The exact methodology, including the tools
used, is described in distinct subsections below.

4.2 Tools Used

In this subsection we will go over the tools used for the
performance evaluation. First of all, we used Jupyter
Notebook[31] using Python. Jupyter Notebook is an open-
source web-application for executing live-code. Not only is
this very useful for visualizing the results, but also enables
the reproducibility of our work as the source code is pub-
licly available on GitHub: https://github.com/NilsvN/
my_thesis

The ML algorithms we utilized all come from a Python
module called Scikit-learn (SKLearn)[32]. This module
contains many supervised and unsupervised ML algorithms.
This module helped with the time it took to compare the
performance of in total 6 ML algorithms for each attack.

We used Microsoft Azure[33] for simulating attacks. The
two cloud attacks that we will evaluate ML on (TI-5, TI-
15, Table 1) are simulated on Azure by mimicking the ac-
tions an actual attacker would go through. We will detail
this process along with its drawbacks in the subsections
below. First though, we will mention one other tool used
in a separate subsection.

4.3 Dataset and its Anonymization

The two highlighted attacks are both regarding account
sign-ins, so we needed to acquire ‘normal’ user sign-in logs.
To this end, we collaborated with Northwave[34] to de-
velop a tool that is able to automatically anonymize the
sign-in logs[35] from Azure Log Analytics. After assign-
ing which columns contain sensitive (personally identifi-
able) information, the sensitive entries will be systemat-
ically substituted for anonymous data. Here, context is
preserved, e.g. username A is be replaced by anonymous
username B at every instance of A.

This tool is also made using Jupyter Notebook and Python
and is open to the public. It can be very useful for prob-
lems similar to what is faced in this research. In fact, any
future works can use this tool to decrease the time it takes
to obtain the necessary data. The usefulness of this tool
warranted its own subsection. Now that we have covered
the tools used for performance evaluation, we will detail
how we utilized these tools.

https://github.com/NilsvN/my_thesis
https://github.com/NilsvN/my_thesis

4.4 Datasets

The first step of the performance evaluation entails gath-
ering the datasets. Using the tool from § 4.3 we extracted
30 days of anonymized Azure sign-in logs. These logs were
downloaded and saved as .csv so we could later import it
into our Jupyter Notebook environment.

Gathering the data for the two attacks involved more man-
ual interactions. As we did not have data on actual at-
tacks, it was more beneficial to mimic the attacks by going
through the steps an attacker would go through. We first
created a new Azure tenant so we could simulate attacks
in a closed environment. This simulated approach defi-
nitely has its drawbacks, which we will discuss in § 4.6.
The rest of this subsection will detail the aspects to look
for when monitoring each attack, along with how we repli-
cated certain aspects of the attack. Finally we mention
how we extracted the attack logs.

4.4.1 (TI-5) ‘Valid Accounts’

The ‘Valid Accounts’ attack involves accounts that have
already been compromised, which pose a serious threat to
any system. We found there to be two main aspects to
look for when monitoring such an attack.

Firstly, perhaps the most obvious one is to look for account
sign-ins from different locations in a short time span. This
is a strong indication that an account might be compro-
mised. For example, two successful sign-ins within an hour
of each other but from different locations in the world are
a good candidate. For our simulated attack, we used a
VPN to sign in from the USA and a few minutes later
sign into the same account from the Netherlands.

Secondly, we look for multiple account sign-ins from a sin-
gle IP address. While it is true that some users often
switch between multiple accounts, the chance that in such
a scenario one of the accounts is compromised is higher.
This was simulated by signing into two Azure accounts
within minutes of each other from the same machine. As
an example, attackers might share a compromised account,
which means there is a good chance that both the men-
tioned aspects are relevant.

4.4.2 (TI-15) ‘Brute Force’

‘Brute Force’ is an attack that involves an attacker trying
passwords on one or multiple accounts repeatedly, in hopes
of signing in successfully by chance. Here, coincidentally,
there are also two main ways an attacker could go about
performing such an attack.

First of all the attacker could try logging in to a single ac-
count many times. The amount of failed sign-in attempts
is the main thing to look for when monitoring this attack.
On Azure, there are already systems in place to block an
account from sign-ins after a certain amount of failed at-
tempts. This did not stop us from trying to log in 20 times
in a row for simulating the attack.

The other aspect of the attack is what is known as ‘pass-
word spraying’. This involves the attacker trying a limited
amount of commonly used password on many different ac-
counts. This method is smarter than the one above, as
you might avoid simple account blocks for too many failed
attempts. To simulate this we created 10 different Azure
accounts that we each tried to log into once.

To end this step in the methodology, we extracted the vari-
ants of each attack from the ‘Logs’ page of the Azure ten-
ant by downloading all columns from the ‘SigninLogs’ ta-
ble. Since we have two variants of two attacks we extracted
4 .csv files in total that were filtered to only include the

attacks. All datasets are publicly available here: https://
github.com/NilsvN/my_thesis/tree/master/datasets

4.5 Feature extraction

The second major step entails the extraction of features
from the datasets. The ‘Brute Force’ and ‘Valid Accounts’
attack both have a dedicated .ipynb Jupyter Notebook
file. The difference lies in the functions created for fea-
ture extraction. Before going into the feature extraction
functions, we must first prepare the data. We will briefly
describe this process.

For each variant of an attack there is a training and testing
version, meant to minimize the possibility of overfitting
the ML. The difference being a change in sign-in attempts
and/or an altered date/year. The training sets of each
attack are concatenated into one, and then combined with
a subset of the 30 day sign-in logs. The same is done for
the testing sets. All the while, the attack logs are labelled
as ‘1’ while the normal 30-day logs are labelled as ‘0’ to
suit the classification algorithms. Finally, each individual
log contains a column ‘TimeGenerated’ which displays the
date and time that this log was generated. This column
is converted from date/time string to Unix time (seconds
since January 1, 1970, 00:00:00 UTC).

It is obvious that the final datasets are very much imbal-
anced. Instead of trying to balance this dataset by either
up-sampling or down-sampling, we chose to embrace the
imbalance. If we were to balance the data, the perfor-
mance of the classifier in the real world would be lower
because the actual proportions of classes was not repre-
sented well during training[36].

The sign-in logs contain many columns containing irrele-
vant data for monitoring a specific attack. This is noise
that can hamper overall performance, so the data requires
a significant amount of pre-processing to get the most rele-
vant features[37]. For each attack, we describe the unique
features we extracted from the logs and why those are
most relevant to monitoring the attack.

4.5.1 (TI-5) ‘Valid Accounts’

For monitoring the ‘Valid Accounts’ attack we will keep in
mind the two aspects that could point towards an account
being compromised. As such the functions put in place
to extract useful features for the ML have the following
functionalities:

e For each row, save the amount of different locations
from which this account was successfully logged into
within a certain time window (loc_delta_s)

e For each row, save the amount of different accounts
this IP successfully logged into within a certain time
window (delta_s)

Here, delta_s and loc_delta_s represent the difference
between the log Unix time and the lower/upper bound
of the time window (in seconds), which can be tweaked
independently.

4.5.2 (TI-15) ‘Brute Force’

For monitoring the ‘Brute Force’ attack we will keep in
mind the two approaches an attacker could use, either
trying to force passwords on a single account or trying
a common password on many accounts. The functions
put in place to extract useful features for the ML have the
following functionalities:

e For each row, save the amount of times this machine
attempted to sign into this account within a certain
window (delta_s)

https://github.com/NilsvN/my_thesis/tree/master/datasets
https://github.com/NilsvN/my_thesis/tree/master/datasets

e For each row, save the amount of times this IP tried
to sign into any account (ip_delta_s)

e For each row, save the amount of different accounts
this IP tried to log into within a certain time window
(ip_delta_s)

Same as before, delta_s and ip_delta_s represent the
difference between the log Unix time and the lower/upper
bound of the time window (in seconds), which can be
tweaked independently.

Now that we have covered the attack specific features we
can look at the last feature that is present for both at-
tacks, namely the sign-in status. This status is either a
successful login (‘success’) or an unsuccessful login (‘fail-
ure’/‘notApplied’). This is a nominal categorical variable,
meaning the different statuses have the same weight (in
contrast to e.g. sizes M/L/XL). In order to effectively in-
clude this categorical feature along with the other, value-
driven features we used ‘One-Hot Encoding’[38]. This re-
places the original column with X amount of columns,
where X is the amount of different categories. Each col-
umn will be filled with a ‘0’ or a ‘1’, depending on which
category this row is in.

4.6 Algorithms and Thresholds

The next part of the methodology entails using ML clas-
sification algorithms from SKLearn[32]. We will describe
how we implemented a threshold variable that should al-
low for optimized results. Finally we end this subsection
by detailing the drawbacks associated with our approach.

The classification algorithms we used are the 6 ML algo-
rithms that we detailed in section § 3. SKLearn offers a
straightforward way to utilize these algorithms. For each
ML algorithm, we implemented an option to include a
threshold variable. This variable replaces the standard
value of 0.5 when assigning a label. For example, if the
algorithm finds that the probability that a certain entry
belongs to class ‘1’ is equal to 0.35, it would normally
output class ‘0’. However, if we set threshold to <0.35 it
predicts class ‘1. When testing we used an interval of [0, 1]
with 100 total thresholds evenly spread throughout. The
exception is k-Nearest Neighbours, which instead takes an
integer k as variable. Naturally, instead of an interval of
[0, 1] we used an interval [1, 50] with 50 total values (1, 2,
..., 50).

It is important to realize the drawbacks of our approach
that involves mimicking the attacks. The danger of such
an approach is that the tests we have conducted might
not represent a real world scenario well. This could lead
to conclusions drawn that do not match the real perfor-
mance. Another aspect to worry about is the concept of
overfitting. There is a certain risk that the algorithm is
overfitted to match the mimicked attack, such that this
algorithm would not perform well in a real environment.
We tried to mitigate this by manually editing the attacks
so that the training data does not match the testing data
in any meaningful way.

4.7 Evaluation Metrics

As the next step in our methodology we cover the defini-
tions of metrics used to measure performance. Typically,
the performance of a classifier is presented using a confu-
sion matrix[39]. This matrix shows the amount of erro-
neous and successful predictions; as such a sign-in log can
be classified into one of the four following groups:

e True Positive (Tp): When the classifier correctly pre-
dicts an attack log as ‘attack’.

e False Positive (Fp): When the classifier incorrectly
predicts a normal log as ‘attack’.

e True Negative (T%): When the classifier correctly
predicts a normal log as ‘normal’.

e False Negative (Fv): When the classifier incorrectly
predicts an attack log as ‘normal’.

The accuracy (ACC) of a classifier is given by
ACC = (Tp +1Tn)/n

where n is the total number of logs.

The precision (PRC) and recall (REC) of a classifier are
defined as follows, respectively:

PRC:TP/(TP+FP)

REC:TP/(TP—I—FN)

These metrics are used to express the performance of the
classifiers for each attack. In the next subsection we will
analyze the performance where the metrics are plotted
against the threshold.

4.8 Evaluating Performance

As the last step, we will analyze the plots in Figure 1 and
Figure 2 displayed on the next page. We will split this
analysis into two parts for the respective attacks.

4.8.1 (TI-5) ‘Valid Accounts’

When looking at the plotted metrics, we can see that there
is no classifier that at any point reaches a value of 1.0
for accuracy, precision and recall simultaneously. Many
of them do have a high accuracy though (all except (b)),
however this does not draw the complete picture. For
that we must also look at the precision (PRC) and recall

(REC).

Besides the accuracy, one could argue that the most im-
portant metric is the recall. The reasoning being that is
that you would prefer to be in a situation of a false alarm
than a situation where you missed a breached account. As
such a Fiy could do much more damage in a real environ-
ment than a Fp. This is important to keep in mind when
judging which algorithm(s) performed the best.

With this in mind, we summarized the classifiers that per-
formed best along with their optimal threshold/k range:

e (a) SVM (0.01 < threshold < 0.99)
e (¢)KNN (1 <k<7)
e (d) Decision Trees (0.01 < threshold < 0.99)

The reason some of the plots show rather straight lines is
because the datasets are imbalanced, as previously men-
tioned. This means that any change in Fp or Fy makes
a big difference for the metrics shown. Also, the fact that
the best performers, (a), (c), and (d), all max out at a
recall of 0.67 has one main reason. One of the variants of
the ‘Valid Accounts’ attack was not predicted correctly by
any of them.

When analyzing further, the features that make this attack
suspicious can occur in a similar fashion within normal
sign-in logs. For example, there are plenty of users that
switch between 2 or more accounts often, or those that use
a VPN. This is exactly why you sometimes receive an e-
mail along the lines of ‘Was this you? You signed in from
country X’. You simply cannot be certain if the account
is compromised or if this was a regular user action, which
means this is a limitation of traditional algorithms as well.

ACC === PRC REC

Figure 1. Plotted Metrics of ML Classifiers when
monitoring (TI-5) ‘Valid Accounts’

1.0 1.0
208 308
[TS ~
0.6 150.6
=4 b4
&0.4 ~0.4
U ok - &)
Qo2 202
0'%.0 02 04 06 08 1.0 O'%.O 02 04 06 08 1.0
Threshold Threshold
(a) Support Vector Machine (b) Naive Bayes
1.0 1.0
0.8 0.8
[~ T L U
$0.6 $0.6
o~
0.4 0.4
U [ettt
So2] & 202
t
1
0-0 10 20 30 40 50 0'%.0 02 04 06 08 1.0
K Threshold
(c) k-Nearest Neighbours (d) Decision Trees
1.0 1.0
%O.S 0.8
L TS
0.6 0.6
4
£0.4 0.4
Q Q
202 202

1.0 0'%.0 02 04 06 08 10
Threshold
(f) Linear Discriminant Analysis

We found best results when delta_s = 120 (seconds) and

1800 (seconds, equal to 30 minutes)

Figure 2. Plotted Metrics of ML Classifiers when

monitoring (TI-15) ‘Brute Force’
1.0 T

0'%.0 02 04 06 08
Threshold
(e) Logistic Regression

loc_delta_s =

1.0
1
Jo38 L1508
~) | & 1
506 11506 !
&]| = ’
0.4 1 1504 i
© 1o T IS IIID
0.2 1 1S02b -~
1
1
0'%.0 0.2 %}411 hoig 0.8 1.0 0'%.0 0.2 0.}411 hoig 0.8 1.0
resho Thresho!
(a) Support Vector Machine (b) Naive Bayes
1.0 — 1.0
I
0.8 i 0.8
4 1 ~
0.6 H 0.6
& H 4
&0.4 1 ~04
O 1 Q
202 ! Q02
]
0.0 10 20 N 30 40 50 0'%.0 0.2 _(11}411 hoig 0.8 1.0
resho
(c) k-Nearest Neighbours (d) Decision Trees
1.0 H - T 1.04r
E 0s8{ ! S0.8
T] ~
J0.6{, i $0.6
Eo.k ! £
20.4 } 04T e
o2 | g
=0. : =02

1

0'%.0 02 04 06 08 10 0'%,0 02 04 06 08 1.0
Threshold Threshold

(e) Logistic Regression (f) Linear Discriminant Analysis

120 (seconds)
120 (seconds)

Table 3. Overview of Classifiers & Techniques

We found best results when delta_s =
and ip_delta_s =

4.8.2 (TI-15) ‘Brute Force’

For this attack, we can see quite a difference in results
when comparing the plots to the previous ones. Here, the
maximum metrics of 1.0 for accuracy, precision and recall
is reached by multiple classifiers. It is safe to say that
the features extracted for monitoring this attack showed
enough difference between normal logs and attack logs that
the classifiers could predict more accurately.

Once more for this attack, we summarized the classifiers
that performed best with their optimal threshold/k range:

e (a) SVM (0.01 < threshold < 0.26)

e (c) K-NN (1 <k < 31)

e (d) Decision Trees (0.01 < threshold < 0.99)

e (e) Logistic Regression (0.10 < threshold < 0.46)

The above classifiers all managed the maximum metrics of
1.0, which means no erroneous predictions. This is quite a
promising result when you consider that both variations of
the ‘Brute Force’ attack are classified with 100% accuracy.
The results from both (TI-5) and (TI-15) are presented in
what comprises the start of an overview that shows exactly
what ML algorithm to use for which attack, Table 3 below.

S. CONCLUSION

Cloud and ML are both becoming increasingly popular.
However they seem to be doing this mostly separated from
one another. Most existing works are merely scratching
the surface when it comes to ML capabilities in a cloud
environment, as they often use ML for a small subset of
attacks. This results in an information gap which raises
uncertainty whether or not ML is a worthwhile investment
for monitoring cloud attacks. We proposed a methodology
in order to pave the way for future research on using ML
for monitoring cloud attacks. For ease of reproducibil-
ity and expansibility, the source code is publicly available
here: https://github.com/NilsvN/my_thesis

While we witnessed promising results, it is important to
note that the trickiest part of utilizing ML for another
attack is likely to be the feature extraction, depending
on the nature of the attack. Our methodology thoroughly
covers all steps involved in utilizing ML; from acquiring the
datasets, to feature extraction, to threshold optimization.
We hope this incentivizes further research on this topic.

In future works, we aim to expand the overview of Table 3
to include an increasing number of attacks for which the
performance of ML algorithms has been evaluated. Beside
this horizontal development, future works may also look at
further optimizing the ML algorithms used. For example,
a ‘Cost-based classification’ approach might be beneficial,
as a Iy carries more weight than a Fp.

With this research, we aim to incentivize further develop-
ment on using ML for monitoring cloud attacks. ML has
shown promising results when used against the attacks
covered in this paper. While traditional algorithms might
perform similarly to what we found ML capable of, there
are other cloud attacks of which the high-dimensionality
is likely to favour ML over a traditional approach. We
believe such a possible prospect could warrant further re-
search to ultimately provide a full overview of exactly
which ML algorithm to use for which attack.

Naive | k-Nearest | Decision Logistic Linear Discr.
TI | Technique Tactic SVM | Bayes | Neighbours Trees Regression Analysis
5 Valid Accounts | IA, P, PE, DE v X 4 v X X
15 | Brute Force CA v X v v v X

TA: Initial Access, P: Persistence, PE: Privilege Escalation, DE: Defence Evasion, CA: Credential Access

https://github.com/NilsvN/my_thesis

Acknowledgement

We would like to thank J.J. Cardoso de Santanna from
Northwave (https://northwave-security.com/) for collabo-
rating with us on the tool for anonymizing Azure sign-in
logs, as this tool turned out to be invaluable to our re-
search and undoubtedly so to future works as well.

References
[1] Gartner. Gartner Forecasts Worldwide Pub-
lic Cloud Revenue to Grow 17.5 Percent

[11]

in 2019, 2019 (accessed April 30, 2020).
https://www.gartner.com/en/newsroom/press-
releases/2019-04-02-gartner-forecasts-
worldwide-public-cloud-revenue-to-g.

Cybersecurity Insiders. 2019 Cloud Security
Report - ISC2, 2019 (accessed June 27, 2020).
https://www.cybersecurity-insiders.com/wp-
content/uploads/2019/05/2019-Cloud-Security-
Report_ISC2_1.7.pdf.

UpGuard. Losing Face: Two More Cases of Third-
Party Facebook App Data Ezposure, 2019 (accessed
May 1, 2020). https://www.upguard.com/breaches/
facebook-user-data-leak.

MITRE Corp. Web Session Cookie, 2020 (ac-
cessed May 1, 2020). https://attack.mitre.org/
techniques/T1506/.

Arthur L Samuel. Some studies in machine learning
using the game of checkers. IBM Journal of research
and development, 3(3):210-229, 1959.

NCS Analytics Inc. J. Adams. Buzzwords &
Bullsh!t: Machine Learning, 2018 (accessed May
2, 2020). https://www.ncsanalytics.com/media/
buzzwords-and-bullsht-machine-learning/.

Index.co. Machine Learning Investors, 2020 (accessed
May 3, 2020). https://index.co/market/machine-
learning/investors.

Marleen De Bruijne. Machine learning approaches in
medical image analysis: From detection to diagnosis,
2016.

Dario Amodei, Sundaram Ananthanarayanan,
Rishita Anubhai, Jingliang Bai, Eric Battenberg,
Carl Case, Jared Casper, Bryan Catanzaro, Qiang
Cheng, Guoliang Chen, et al. Deep speech 2: End-
to-end speech recognition in english and mandarin.
In International conference on machine learning,
pages 173-182, 2016.

Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and
Wei-Yang Lin. Intrusion detection by machine learn-
ing: A review. FExpert Syst. Appl., 36:11994-12000,
2009.

Diogo Fernandes, Liliana Soares, Joao Gomes, Mario
Freire, and Pedro Indcio. Security issues in cloud en-
vironments - a survey. Int. J. Inf. Secur.: Security in
Cloud Computing, 2013.

MITRE Corp. MITRE ATTE&CK, 2020 (accessed
May 1, 2020). https://attack.mitre.org/.

MITRE Corp. Cloud Matriz, 2020 (accessed May
1, 2020). https://attack.mitre.org/matrices/
enterprise/cloud/.

[14]

[15]

[16]

18]

19]

21]

[25]

David H Wolpert and William G Macready. No free
lunch theorems for optimization. IEEFE transactions
on evolutionary computation, 1(1):67-82, 1997.

Doyen Sahoo, Chenghao Liu, and Steven CH Hoi.
Malicious url detection using machine learning: A
survey. arXw preprint arXiw:1701.07179, 2017.

Aurangzeb Khan, Baharum Baharudin, Lam Hong
Lee, and Khairullah Khan. A review of machine
learning algorithms for text-documents classification.
Journal of advances in information technology, 1(1):
4-20, 2010.

Andrew W Moore and Denis Zuev. Internet traffic
classification using bayesian analysis techniques. In
Proceedings of the 2005 ACM SIGMETRICS inter-
national conference on Measurement and modeling of
computer systems, pages 50—60, 2005.

Uday Trivedi and Munal Patel. A fully automated
deep packet inspection verification system with ma-
chine learning. In 2016 IEEE International Confer-
ence on Advanced Networks and Telecommunications
Systems (ANTS), pages 1-6. IEEE, 2016.

Phillip George Efthimion, Scott Payne, and Nicholas
Proferes. Supervised machine learning bot detection
techniques to identify social twitter bots. SMU Data
Science Review, 1(2):5, 2018.

Shailendra Rathore, Pradip Kumar Sharma, and
Jong Hyuk Park. Xssclassifier: An efficient xss at-
tack detection approach based on machine learning
classifier on snss. JIPS, 13(4):1014-1028, 2017.

Solomon Ogbomon Uwagbole, William J Buchanan,
and Lu Fan. Applied machine learning predictive an-
alytics to sql injection attack detection and preven-
tion. In 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pages 1087—
1090. IEEE, 2017.

Sotiris Kotsiantis. Supervised machine learning: A re-
view of classification techniques. Informatica (Ljubl-
jana), 31, 2007.

Giulio D’Agostini. A multidimensional unfolding
method based on bayes’ theorem. Technical report,
P00024378, 1994.

S. Robinson. K-Nearest Neighbors Algorithm in
Python and Scikit-Learn, 2018 (accessed June
15, 2020). https://stackabuse.com/k-nearest-

neighbors-algorithm-in-python-and-scikit-
learn/.

Sreerama K Murthy. Automatic construction of de-
cision trees from data: A multi-disciplinary survey.
Data mining and knowledge discovery, 2(4):345-389,
1998.

Leonard A Breslow and David W Aha. Simplifying
decision trees: A survey. The Knowledge Engineering
Review, 12(01):1-40, 1997.

A. Shah. Logistic Regression wvs Decision Trees
vs SVM: Part II, 2015 (accessed June 15, 2020).
https://www.datasciencecentral.com/profiles/
blogs/logistic-regression-vs-decision-trees-
vs-svm-part-ii.

https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.cybersecurity-insiders.com/wp-content/uploads/2019/05/2019-Cloud-Security-Report_ISC2_1.7.pdf
https://www.cybersecurity-insiders.com/wp-content/uploads/2019/05/2019-Cloud-Security-Report_ISC2_1.7.pdf
https://www.cybersecurity-insiders.com/wp-content/uploads/2019/05/2019-Cloud-Security-Report_ISC2_1.7.pdf
https://www.upguard.com/breaches/facebook-user-data-leak
https://www.upguard.com/breaches/facebook-user-data-leak
https://attack.mitre.org/techniques/T1506/
https://attack.mitre.org/techniques/T1506/
https://www.ncsanalytics.com/media/buzzwords-and-bullsht-machine-learning/
https://www.ncsanalytics.com/media/buzzwords-and-bullsht-machine-learning/
https://index.co/market/machine-learning/investors
https://index.co/market/machine-learning/investors
https://attack.mitre.org/
https://attack.mitre.org/matrices/enterprise/cloud/
https://attack.mitre.org/matrices/enterprise/cloud/
https://stackabuse.com/k-nearest-neighbors-algorithm-in-python-and-scikit-learn/
https://stackabuse.com/k-nearest-neighbors-algorithm-in-python-and-scikit-learn/
https://stackabuse.com/k-nearest-neighbors-algorithm-in-python-and-scikit-learn/
https://www.datasciencecentral.com/profiles/blogs/logistic-regression-vs-decision-trees-vs-svm-part-ii
https://www.datasciencecentral.com/profiles/blogs/logistic-regression-vs-decision-trees-vs-svm-part-ii
https://www.datasciencecentral.com/profiles/blogs/logistic-regression-vs-decision-trees-vs-svm-part-ii

[28]

[29]

[30]

31]

32]

[39]

S. Sperandei. Understanding logistic regression anal-
ysis, 2014 (accessed June 10, 2020). https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3936971/.

Alaa Tharwat, Tarek Gaber, Abdelhameed Ibrahim,
and Aboul Ella Hassanien. Linear discriminant anal-
ysis: A detailed tutorial. AI communications, 30(2):
169-190, 2017.

U. Malik. Implementing LDA in Python with
Scikit-Learn, 2018 (accessed June 13, 2020).
https://stackabuse.com/implementing-lda-in-
python-with-scikit-learn/.

Project Jupyter. Jupyter Notebook, 2020 (accessed
May 2, 2020). https://jupyter.org/.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830,
2011.

Microsoft. Microsoft Azure, 2020 (accessed June 18,
2020). https://azure.microsoft.com/en-us/.

Northwave. Northwave Intelligent Security Oper-
ations, 2020 (accessed June 21, 2020). https://
northwave-security.com/.

J.J. Cardoso de Santanna. anonymising-azure-
sign-in-logs, 2020 (accessed June 12, 2020).
https://github.com/jjsantanna/anonymising-
azure-sign-in-logs/blob/master/anonymising-
azure-sign-in-logs.ipynb.

B. Rocca. Handling imbalanced datasets in machine
learning, 2019 (accessed June 12, 2020). https:
//towardsdatascience.com/handling-imbalanced-
datasets-in-machine-learning-7a0e84220f28.

Qiang Yang Shichao Zhang, Chengqi Zhang. Data
preparation for data mining. Applied Artificial Intel-
ligence, 17(5-6):375-381, 2003.

Patricio Cerda, Gaél Varoquaux, and Baldzs Kégl.
Similarity encoding for learning with dirty categorical
variables. Machine Learning, 107(8-10):1477-1494,
2018.

Mohamed Hammami, Youssef Chahir, and Liming
Chen. Webguard: A web filtering engine combining
textual, structural, and visual content-based analy-
sis. IEEE Transactions on Knowledge and Data En-
gineering, 18(2):272-284, 2005.

10

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936971/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936971/
https://stackabuse.com/implementing-lda-in-python-with-scikit-learn/
https://stackabuse.com/implementing-lda-in-python-with-scikit-learn/
https://jupyter.org/
https://azure.microsoft.com/en-us/
https://northwave-security.com/
https://northwave-security.com/
https://github.com/jjsantanna/anonymising-azure-sign-in-logs/blob/master/anonymising-azure-sign-in-logs.ipynb
https://github.com/jjsantanna/anonymising-azure-sign-in-logs/blob/master/anonymising-azure-sign-in-logs.ipynb
https://github.com/jjsantanna/anonymising-azure-sign-in-logs/blob/master/anonymising-azure-sign-in-logs.ipynb
https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-7a0e84220f28
https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-7a0e84220f28
https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-7a0e84220f28

	Introduction
	Surveying Cloud Attacks
	Methodology
	Cloud Attack Tactics
	Initial Access
	Persistence
	Privilege Escalation
	Defence Evasion
	Credential Access
	Discovery
	Lateral Movement
	Collection
	Exfiltration
	Impact

	Findings

	Surveying Machine Learning
	Methodology
	Support Vector Machine (SVM)
	Naive Bayes
	k-Nearest Neighbours (K-NN)
	Decision Trees
	Logistic Regression
	Linear Discriminant Analysis (LDA)

	Findings

	Performance Evaluation
	Methodology
	Tools Used
	Dataset and its Anonymization
	Datasets
	(TI-5) `Valid Accounts'
	(TI-15) `Brute Force'

	Feature extraction
	(TI-5) `Valid Accounts'
	(TI-15) `Brute Force'

	Algorithms and Thresholds
	Evaluation Metrics
	Evaluating Performance
	(TI-5) `Valid Accounts'
	(TI-15) `Brute Force'

	Conclusion

