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ABSTRACT
Attack Trees are used to analyze system attacks. Their
analysis provides security metrics that can be used as a re-
source to protect systems and increase their security levels.
As the complexity of attacks and systems increases, Attack
Trees become complex by incorporating DAG structures
and attack orderings. This paper develops and imple-
ments algorithms to compute important security metrics
such as Attack Values, Attack Paths, and Pareto Curves
compared to existing model checking solutions, with EXP-
complexity as opposed to the PSPACE-complexity of the
current state-of-the-art. We achieve these complexity bounds
by using efficient BDD data structures and abstractions
regarding the total orderings of basic attack steps.
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1. INTRODUCTION
As the security of computer systems become increasingly
complex, frameworks and standards such as Attack Graphs
[22] were introduced to model and analyze these systems.
Attack trees, first introduced by Weiss [23], and popular-
ized by Schneier [21], provide analysis by computing po-
tential attacks and their respective values such as cost and
time.

1.1 Attack Trees (ATs)
ATs capture all possible attacks in a tree structure, which
features three types of nodes.

1. Basic Attack Step (BAS): The leaf nodes represent
actions that are not split up further with certain at-
tributes such as cost and time.

2. Gates / Connectors: AND/OR-gates show how at-
tacks propagate and indicate whether, respectively,
all or at least one child should succeed.

3. Root : The top node is the root of the AT and the
goal of the attack.

An example of such an AT is provided in figure 1 from [13].
To Obtain Administrator Privileges an attack has to either
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Figure 1: AT for obtaining Administrator Privileges [13]

complete Access System Console or Obtain Administrator
Password as indicated by the OR-gate. These gates are
further refined until we reach the leaf nodes such as Break
Into Computing Center on the bottom left, which alone
would compromise the root node as its parents are all OR-
gates.

1.2 Definitions
For ATs, an attack consists of a set of BASs. We intro-
duce three terms that are relevant in the analysis of these
attacks.

1. Attack Values refer to the values of the cost and time
of an attack.

2. Attack Paths refer to the BASs involved in the at-
tack, and the order of these BASs if this is relevant.

3. Pareto Curves analyze trade-offs between Attack Val-
ues. In this study, we focus on the trade-offs between
cost and time. These trade-offs can provide insights
into how attack costs decline with additional time.

We remark that there is a distinction between sequen-
tial and parallel attacks. Parallel attacks allow multiple
BASs to execute in parallel, while sequential attacks ex-
ecute them sequentially. This paper will discuss parallel
attacks, but sequential attacks are analyzed similarly with
asymptotically equal or lower complexity. The appendix
contains supplementary information to achieve this by dis-
cussing how to adjust the algorithm to use sequential at-
tacks.

1.3 Extensions
As attacks became increasingly complex, DAGs and attack
orderings were introduced for ATs. This domain currently
does not have efficient analysis metrics for attacks, as in-
troduced in section 1.2, which this paper aims to improve.
These new concepts are defined as follows:

• Directed Acyclic Graphs (DAGs): By allowing nodes
to share subtrees, ATs become DAGs instead of trees.
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Figure 2: AT to BDD conversion (A < B < C)

• Order of attacks: New gates were proposed [5] to
indicate a particular order that the children are trig-
gered in. They specify that certain BASs should be
completed before other BASs can start execution.
Commonly these gates are referred to as sequential-
AND (SAND) or ordered-AND (OAND) gates.

In the field with these additional extensions, it is neces-
sary to calculate minimum value attacks. This paper aims
to compute these minimum time/ cost attacks using the
following definition of an AT.

Definition 1. Attack Tree (AT): (N, Child, Values, Root).
- N : The finite set of nodes of the AT.
- Child: V → V ∗ maps each node to it’s child nodes cre-
ating a DAG.
- V alues: V → (cost ∈ R+, time ∈ R+) maps BASs to
their cost and time.
- Root ∈ N : Root of the AT and goal of the attacker.

1.4 Related Work
Several tools have been created, such as AttackTree+ [11]
and SecurITree [4], which can be efficient, but they fre-
quently cannot handle the ordering of events, shared sub-
trees, and constraints. Algorithms to solve Attack Values,
Attack Paths, and Pareto Curves were discussed in title
[16]. The paper demonstrates how ATs can be translated
into Priced Timed Automata [8], an extension of Timed
Automata [3]. Previous work has shown that model-checking
programs such as UPPAAL can find these Attack Val-
ues, Attack Paths, and Pareto Curves in various domains
[16]. However, these algorithms in model-checking have a
PSPACE-complexity [2], which requires a traversal of the
entire state space.

2. OPEN RESEARCH DOMAINS
Table 1 provides an overview of the methods for ATs.
Bottom-up approaches are usually employed in the case
of trees [9], and they can provide linear-time solutions. As
an example for time in a parallel environment, MIN(1)
for OR-gates and MAX(2) for AND-gates are used in a
bottom-up fashion where X/Y denote nodes, and chil-
dren/time provide the children and time parameters for
nodes respectively.

min
X∈children(Y )

[time(X)] (1)

max
X∈children(Y )

[time(X)] (2)

Definition 2. Binary Decision Diagram (BDD) [1]: BDDs
are decision trees that encode Boolean functions, where
left transitions (branches) negate a variable, and right

Table 1: Analysis Methods for ATs
AT Time Cost Pareto Curve
Tree Bottom-up Bottom-up [6, 10, 16]
DAG Bottom-up BDD [16]

SAND Tree [16] Bottom-up [16]
SAND DAG Model checking Model checking Model checking

transitions take the variable. Leaf nodes of the BDD rep-
resent Boolean values corresponding to whether the set
of transitions satisfy the formula. Figure 2 provides an
example of a BDD conversion.

For DAGs, computation of specific attributes is still effi-
cient bottom-up, while others require conversion to BDDs.
For instance, efficient computation of cost is no longer vi-
able as BASs can be present in both subtrees. In such
cases, costs could be counted twice. With SAND-gates
and DAGs, certain areas currently only have PSPACE-
complexity algorithms, as introduced in [16].

This research aims to advance the work of [16] by at-
tempting to develop asymptotically lower complexity algo-
rithms, concerning the number of nodes, that improve the
analysis of ATs in several research areas. In the analysis,
we examine all possible attacks with their corresponding
Attack Values and Attack Paths. This leads to the follow-
ing research questions.

2.1 Research Questions
How can the analysis of sequential Attack Trees with shared
subtrees be optimized concerning a wide range of metrics?

1. How can Attack Values be efficiently computed for
Attack Trees?

2. How can Attack Paths be efficiently reconstructed
for Attack Trees?

3. How can Pareto Curves be efficiently created for
Attack Trees?

3. DATA STRUCTURES
3.1 BDD
Commonly, BDDs are used in the analysis of ATs. In ATs,
it can occur that we have shared subtrees, in which case
the AT is a DAG. In such a case determining the cost by
combining the left and right subtree is no longer done by
simply adding the cost of both as certain BASs might be
present in both subtrees. BDDs can convert these ATs into
tree structures again, which can simplify the calculation
of cost.

However, currently, BDDs do not store temporal depen-
dencies, which are introduced by SAND-gates. To account
for this, we should preprocess data or extend the BDD
data structure. First, we commence with a concrete defi-
nition of SAND-gates, as there have been different inter-
pretations in literature [5, 16].

Definition 3. SAND-gate: Let us define L and R as the
sets of BASs present in the left and right subtree of a
SAND-gate. The SAND-gate G specifies that each BAS
in the left subtree should be completed before BASs in the
right subtree can start. However, BASs that are present
in both subtrees are an exception. Thus, if we consider
(LG, RG) for each SAND-gate it should hold that ((l ∈
LG) ∧ (r ∈ RG \ LG))→ l < r, where l < r indicates that
l should complete before r starts.
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(a) Valid Attack Tree (b) Invalid Attack Tree

Figure 3: Attack Tree Examples

By this definition, figure 3a contains a valid AT and 3b
contains an invalid AT.

3.2 Variable Ordering
The SAND-gates impose certain constraints on the partial
ordering of BASs. Using topological sort, which takes an
Ordering Graph, we construct a total ordering of BASs.

Definition 4. Ordering graph: An Ordering Graph con-
tains a node for each BAS in the AT. Each SAND-gate G
has sets of BASs in the left and right tree. Let us denote
these by LG and RG. The graph will contain a directed
edge (l → r) ⇐⇒ (l ∈ LG) ∧ (r ∈ RG \ LG). Here l → r
indicates that l should complete before r starts. If the or-
dering is not a DAG, we have a cyclic dependency, which
makes the AT invalid.

This definition for the Ordering Graph resembles the def-
inition for the SAND-gates. Thus, we can select various
SAND-gate definitions as long as the Ordering Graph re-
mains a DAG. If we were to conceive the Ordering Graph
for figure 3a, we would have edges a→ b and b→ c, which
leads to (a, b, c) as a potential total ordering. However,
for figure 3b, we have edges a → b and b → a. In this
instance, the graph is no longer a DAG, in which case it
is infeasible to obtain a total ordering. In such a case, the
AT is invalid.

3.2.1 Topological Sort
To obtain orderings of BASs from the Ordering Graph,
we utilize topological sort [18]. Topological sort is used in
graph theory to find total orderings of nodes such that if
and edge x→ y exists, x occurs before y in the topological
order . However, for ATs, additional orderings of BASs
might be relevant. For example, (a, b, c) might be a valid
ordering, but (b, a, c) could also be a valid and beneficial
ordering for the analysis of ATs. We should remark that
these additional orderings have the same Attack Values,
and only differ in the Attack Path. Thus, they also have
no impact on the Pareto Curve.

Tracking these additional orderings during the BDD traver-
sal is not plausible as a solution of n BASs can contain
(n!− 1) additional solutions in the worst-case when there
are no temporal dependencies. To account for this, we
slightly extend the general implementation of the topolog-
ical sort to reconstruct these solutions after traversal.

For the topological sort, pseudo-code is provided in Algo-
rithm 1. The fundamental concept is that nodes store their
incoming edges. In iterations of the nodes, we can elim-
inate all nodes with no incoming edges, as they have no
ordering dependencies. After the removal of these nodes,
incoming edges are updated, and the next iteration can

commence. This results in sets A1, A2, ...An where each
BAS x ∈ A1 should occur before each BAS y ∈ A2 etc. In
figure 3a, this would result in the sets {a}, {b} and {c}.
A pivotal insight to discern here is that we can permute
the variables of Ax in any way possible while maintaining
the SAND-gate constraints. These permutations allow us
to find additional ordering solutions for the AT.

Algorithm 1: Variable Ordering

Input: Ordering Graph (DAG)
Output: Sets of BASs used to compute a total

ordering of BASs
begin

/* Initialize indegrees of the DAG */

n←− TotalNodes ;
indegree←− [0] ∗ n ;
foreach edge (x, y) ∈ DAG do
inDegree[y]+ = 1 ;
/* Take and remove zero indegree nodes

until the graph is empty */

result←− ∅ ;
visited←− ∅ ;
total←− 0 ;
while total < n do

set←− nodesIndegreeZero() \ visited ;
total←− total + size(set) ;
foreach edges (x, y) ∈ set do
indegree[y]←− indegree[y]− 1 ;

visited←− visited ∪ set ;
result←− result ∪ {set} ;

return result

3.3 BDD Construction
The BDD requires a total ordering of BASs for construc-
tion. The topological sort obtains such a total ordering
using the Ordering Graph so that each SAND-gate is sat-
isfied. If the topological sort is unable to obtain such a
total ordering, the Ordering Graph contains a cycle which,
by definition, makes the AT invalid.

To create the BDD, we utilize ITE structures during con-
struction [12]. These ITE structures define part of the
BDD structure, where x is a variable with G and H as
child BDD subtrees.

Definition 5. ITE(x, G, H) [12]: If-then-else structure
with (x→ G)∧ (¬x→ H). x specifies a BAS while G and
H are ITE structures or Boolean leaf nodes of the BDD.
Satisfying assignments are then given by (x∪ g) and h for
satisfying assignments g ∈ G and h ∈ H.

To create the ITE structure that allows us to translate
an AT into a BDD, we have to specify how to create and
combine them. The leaf nodes can simply translate into
ITE(x, 1, 0), where x is the leaf node’s BAS variable.

If we consider an AND-gate in the AT, we construct the
ITEs corresponding to the left and right child. Which
results in ITE(x,G1, G2) and ITE(y,H1, H2). Thus, we
specify the formulae used in the construction of ITE struc-
tures [12], which distinguish between AND/OR-gates and
X = Y (XX) and X 6= Y (XY ). These formulae depend
on non-sequential properties in the AT. As we have de-
fined a total ordering that satisfies the SAND-gates, we
can abstract them by replacing them with AND-gates.
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AND −XX = ITE(x, (G1H1 +G1H2 +G2H1), G2H2)

AND −XY (X < Y ) = G2 ∗ ITE(y,H1, H2)

OR−XX = ITE(x, (G1 +H1), (G2 +H2))

OR−XY (X < Y ) = ITE(x,G1, (G2 + ITE(y,H1, H2)))

The creation of these ITE-structures can be simplified us-
ing Boolean logic to reduce the size of the BDD.

• 0 && ITE = 0

• 1 && ITE = ITE

• 0 && 0 = 0

• 0 && 1 = 0

• 1 && 1 = 1

• 0 || ITE = ITE

• 1 || ITE = 1

• 0 || 0 = 0

• 0 || 1 = 1

• 1 || 1 = 1

4. ALGORITHM
After we determine a total ordering of BASs to construct
the BDD, we can traverse the BDD to find Attack Values,
Attack Paths, and Pareto Curves. The pseudo-code for
the traversal is provided in Algorithm 2, and a sample run
is illustrated in figure 4.

During traversal, we create Entries which store possible
solutions. An Entry satisfies the AT if its BASs form a
successful attack.

Definition 6. Entry (O,C, T, L,X)
- N : The set of nodes of the AT.
- O ∈ {T ime,Cost}: Ordering used to compare Entries.
- C ∈ R+: Current cost of the Entry.
- T ∈ R+: Current time of the Entry.
- L ∈ N: Current location in the BDD.
- X ∈ RN: Vector where X[i] denotes required time for
completion of node i.

The algorithm uses a central priority queue in which we
store Entries sorted on either cost or time, to obtain top-K
cost/time attacks. It starts with a single Entry containing
the root of the BDD as location. Cost and time are set to
zero, and an ordering for the Entries is determined.

In figure 4, we demonstrate an example execution of the
algorithm, which takes the BDD of the AT from figure 2.
At the start, we have a single empty Entry, Entry 0, in our
Priority Queue, and let us assume that we are calculating
the minimum cost attacks. We pop Entry 0, and since it is
not a leaf, we create two additional Entries corresponding
to the left transition with ¬A, and the right transition with
A. The right Entry 2 gains the cost of A, as it performs

Figure 4: Algorithm Execution Example

BAS A, and updates the time spent in A and the OR-gate.
The left Entry 1 only updates location. Now the priority
queue contains two Entries of which Entry 1 is popped
first, as it has the least cost. Here, again, two Entries
are created: the left transition is discarded as it does not
lead to a successful attack, indicated by the tree leaf =
0; the right transition, Entry 3, gains the cost of BAS B
and updates the time spent in B, and the OR-gate. If a
BAS is executed, we add that time to the vector X. X[0]
denotes the time spent for BAS A, 0 if not executed and
2 if executed. When a BAS is executed, we also consider
the parent gates, AND/OR/SAND, in the original AT.
In the illustrated AT in figure 2, this requires us to take
min(a, b) for the OR-gate and max(or − gate, c) for the
AND-gate. Thus, if we execute BAS B, the time spent in
the OR-gate is X[3] = 5. These gates allow us to store the
current time spent on the attack, which is stored in the
vector X for each node, such that no recalculation of gate
times is required.

As we keep taking the least cost Entries from the Prior-
ity Queue, we will find solutions with the least cost first.
Thus, we find Entry 4 first, but by continuing the Priority
Queue’s iteration, we can obtain the next K minimum cost
solutions. Solution Entries correspond to 1-leaves in the
BDD, and they satisfy the original AT.

Algorithm 2: BDD Traversal

Input: BDD
Output: Set of Entries that satisfy the AT
begin

/* Add root Entry with certain ordering */

solutions←− ∅ ;
Queue q ←− {(time, 0, 0, root, [0, 0, ...0]} ;
while q not empty do

Entry E ←− q.pop() ;
Location loc = E.location ;
if loc = 0-leaf || loc = 1-leaf then

if loc = 0-leaf then
continue ;

else
solutions←− solutions ∪ E ;

else
BAS ←− loc.BAS ;
/* Left transition entry */

Entry left ←− E ;
left.location ←− loc.left ;
q.add(left) ;
/* Right transition entry */

Entry right ←− E ;
right.location ←− loc.right ;
right.cost ←− right.cost + BAS.cost ;
right.X[BAS.ID] ←− BAS.time ;
right.updateParentTimes(BAS.ID) ;
q.add(right) ;

return solutions

4.1 Attack Values
Attack Values are stored in Entry solutions. Due to the
nature of the Priority Queue, it is also easily achieved to
get the AT’s top-K minimum cost/time attacks. This can
be beneficial in the evaluation of larger ATs where the
total number of solutions might surpass the threshold of
calculating all solutions within a reasonable time.

4.2 Attack Paths
To determine Attack Paths, we traverse the X vector ac-
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cording to the total ordering of BASs and filter out unin-
volved BASs to obtain the Attack Path.

4.3 Pareto Curves
Pareto Curves can be determined by continuously iterating
over the Priority Queue until it is emptied. We will have
all the minimal cut sets (MCSs) in the solution set at this
point. These MCSs consist of BASs and the removal of
a single BAS causes the MCS solution to be invalid. If
{a, b} is a MCS, then {a, b, c} could be a CS included in
the solution set. These CSs can be filtered out during the
Pareto Curve construction as we know that costs cannot
increase with additional time.

4.4 Ordering
After receiving a particular Entry E solution, it is possible
to determine the various other possible orderings. The
topological sort can compute these additional ordering by
using the sets of BASs, Ax.

Let us define new sets Bx such that x ∈ Bx ⇐⇒ (x ∈ Ax

&& x ∈ E). These m sets of Bx can calculate the total
amount of additional solutions in O(m) using the following
formula.

solutions =

i=m∏
i=1

|Bi|! (3)

From the equation for the number of solutions, it becomes
apparent that listing each ordering is often unfeasible due
to the factorial complexity of solutions. However, if we
index solutions we can query the K’th additional solution
in O(

∑i=m
i=1 |Bi| ∗ log(|Bi|)2)† which scales quasilinearly

in the amount of BASs in the solution.

4.5 Limitations
4.5.1 BDD Size

The BDDs formed by total ordering is not always mini-
mal. Between several total orderings, there can be large
discrepancies in size. It is essential to reduce the size of
the BDD as linear increases in the size of the BDD can
lead to an exponential increase on the number of Entries
in the algorithm as the number of paths in a BDD are 2n

worst-case where n is the number of nodes in the BDD.

Unfortunately, determining the minimal total ordering is
NP-hard [14], but specific heuristics might improve the
size of the BDD on the average case.

4.5.2 Cut Sets
The algorithm can provide top-K rankings of attacks based
on time, for example, but it could be that ’duplicate’ at-
tacks are present in the ranking. An attack could be a
superset of another attack. For example, we could have
{a, b} and {a, b, c} as valid CSs in our ranking. However,
in this case, the BDD does create MCSs and additional
CSs, which might not be useful in the analysis of the AT.

4.5.3 Time Sorting
The Entries are either sorted on time or cost. The al-
gorithm computes these parameters before inserting an
Entry into the Priority Queue. Whereas the cost is de-
termined O(1), time is O(n) in the worst-case, which in-
creases the algorithm’s complexity.

†To achieve this complexity we use base conversion and a
custom list data structure to remove and query items from
in logarithmic time. This data structure uses a binary
search and lazy segment trees. Further explanation can
be found in the Github repository created for this work
[15], where all experiments can be replicated.

5. IMPROVEMENTS
5.1 Subsuming
Subsuming was introduced for BDDs [20], which mini-
mizes the size of the BDD, and eliminates ’duplicate’ at-
tacks as introduced in section 4.5.2. Using the defined
ITE equations, it becomes feasible to apply subsuming
throughout the construction of the BDD.

During construction of an ITE(x,G,H), it removes paths
from G, which are present in H. In such a case, the solu-
tion of H is Y , while the solution in G is Y ∪ x. Thus, by
eliminating the paths in G, we eliminate the superset. The
following equation is used for combining ITE structures G
and H with variables x and y [20].

G \H =


ITE(x,G1 \H,G2 \H), x < y

G \H2, x > y

ITE(x,G1 \ (H1orH2), G2 \H2), x = y

The subsuming operation is performed after each ITE con-
struction with a worst-case of O(n). Thus, a factor of n is
added to the complexity of the construction. However, in
practice, it can still be efficient even on trees with MCSs
reaching 105 [12].

We wrote a custom implementation for the subsuming op-
eration in Java, as the paper did not provide an implemen-
tation. Furthermore, the paper provides an optimization
to store results of G\H in a hash table. As the authors
did not provide a hash function, the string interpretation
of the ITE structure was utilized by the implementation as
the key as it is unique for each structure. This hashtable
can improve the subsuming operation as results are calcu-
lated once for each G\H.

5.2 Time Sorting
If minimum cost attacks or Pareto Curves are determined,
there is no necessity to track time throughout traversal. In
the case the solution Entry has m BASs, the time track-
ing complexity is O(n ∗ m) worst-case. However, as the
Priority Queue does not require time during traversal for
minimum cost attacks and Pareto Curves, we can simply
ignore time tracking until the end. If it is required, we can
calculate the time in the end for a solution in O(n). By
removing these superfluous computations, the complexity
of minimum cost attacks and Pareto Curves is reduced by
a factor m.

6. EVALUATION
For the evaluation, we compare the execution times of
the conventional, subsuming, and UPPAAL implementa-
tion as proposed in [16] for various ATs from literature
[12, 17, 19]. It was essential to take ATs with DAGs
AND/OR/SAND-gates. Furthermore, some ATs that ben-
efit from subsuming, while others are already minimal.

6.1 Implementation
We have written the implementations for the conventional
and subsuming algorithms in Java, which are available on
Github [15]. The UPPAAL algorithm was executed using
UPPAAL [7] version 4.1.23.

6.1.1 Conventional & Subsuming
The implementation takes ATs represented in JSON for-
mat. The algorithm creates the AT and BDD and uses
these to evaluate the algorithm queries. At each step,
the AT and BDD structures can be converted to DOT to
visualize results and verify correctness. The results are
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defined in cost, time, and BASs used in the attack. Fur-
thermore, optionally the other orderings of solutions can
be computed if required.

The subsuming utilizes the same functions specified by
the conventional algorithm. However, it applies the BDD
reduction during construction.

6.1.2 UPPAAL
From the AT, UPPAAL files are generated for evalua-
tion. It produces the System Declarations and Declara-
tions files. The library [15] provides a sample UPPAAL
file that can be used as a UPPAAL template to evaluate
the queries for minimum cost and time. The previous pa-
per [16] can provide supplementary information about the
UPPAAL queries and models.

6.2 Experimental Setup
6.2.1 Replications of trees from literature

ATs were gathered from literature, but commonly these
were quite small to illustrate specific concepts. To evaluate
on larger examples, ATs were combined using AND/OR/
SAND-gates. We take two ATs and combine them us-
ing an AND/OR/SAND-gate as the root nodes. This can
continue multiple replications, allowing us to scale up ATs
linearly. Combinations using AND/SAND-gates yield sim-
ilar results, as it simply changes the ordering of the BDD.
Thus, various orderings might influence the computation
time between ATs, but the algorithm reaches equal execu-
tion times on average.

Equations (4) and (5) give the number of MCS solutions
for k replications of the AT, where n denotes the number
of MCS solutions of the initial AT.

OR = n ∗ k (4)

AND = nk (5)

These formulae can be used to check that the correct num-
ber of solutions was found, and also get the number of
solutions for ATs for which we cannot calculate every so-
lution.

6.2.2 Parameters
The ATs are combined using three types of gates, after
which the algorithm computes the minimum cost/time and
Pareto Curves. Based on these combinations, we can ex-
amine the implementations. However, Uppaal does not
have a single query to determine the Pareto Curve. In-
stead, it uses sequential queries that exclude previous re-
sults. To account for this, we multiply the execution time
of a single query by the amount of MCSs solutions, as this
would be the number of required queries.

7. RESULTS
Execution times were measured five times to account for
variance, which is indicated by whiskers. However, due to
the low variation in results, these whiskers are not always
visible. ATs from the literature were used to evaluate
the algorithms, of which we highlight two to explain key
findings and results.

AT 1: The first AT is for forestalling software, which
is comparable to the AT used in the paper [16] except
that defense nodes were removed. The created BDD for
the AT does not contain additional CSs, which makes the
subsuming operation superfluous.

AT 2: The second AT is from [12], and highlights an ex-
ample where the BDD contains additional CSs. We use

these figures to analyze the benefits of the subsuming op-
eration.

Figures 5 and 6 plot the number of MCSs, respectively for
11 and 10 replications of AT 1 and 2. The x-axes show
the number of nodes of each AT replication: for AT 1 in
figure 5, a single replication contains 19 nodes; the AT
representing two replications contains 39 nodes, etc. This
is plotted against the total amount of CSs and MCSs in
the BDD. While AT 1 contains no additional CSs, AT 2
contains additional CSs, which can be used to determine
when the subsuming operation becomes preferred.

Figure 5: Cut sets of AT 1

Figure 6: Cut sets of AT 2

Figure 7: Min time query with SAND-gate replications for
AT 1

7.1 Time
In figure 7, we plot the computation runtime of the various
algorithms when we query the minimum attack time for
AT 1. The x-axis shows the increasing SAND replications
of the AT, starting with a single instance (leftmost points
of all curves), up to 13 replications (rightmost point of the
blue curve). This is plotted against the y-axis, in logscale,
which represents the execution runtime, in ms, that it took
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Figure 8: Min time query with SAND-gate replications for
AT 2

for each algorithm to compute the solution to the query
”what is the time of the fastest attack.” Similar plots were
created for the minimum cost query and Pareto Curve
computation.

In figure 7 and 8, we can observe that the Uppaal algo-
rithm cannot discover solutions within a reasonable time
for the third replication of the AT. For AT 1, the subsum-
ing operation is superfluous, which increases the prepro-
cessing time. The traversal of the BDD only occurs until
the algorithm finds a single solution, which increases the
preprocessing time compared to the traversal. For AT 2,
we can observe that the subsuming operation allows us to
continue two additional replications due to the reduction
in CSs.

For both ATs, we can observe that although the amount
of MCSs exceeds 106, the minimum time solutions can still
be obtained. Thus, obtaining top-K minimum time results
can still be viable for larger ATs by using the Priority
Queue in the algorithm.

Figure 9: Min cost query with SAND-gate replications for
AT 1

Figure 10: Min cost query with SAND-gate replications
for AT 2

7.2 Cost
In figure 9 and 10, we can observe that the Uppaal algo-
rithm cannot discover solutions within a reasonable time
for the third replication of the AT. The cost parameter
can be tracked with asymptotically lower complexity than
time, as discussed in section 4.5.3, which allows us to ana-
lyze larger ATs compared to time. However, the execution
time does not have to improve significantly. In contrast
to Pareto Curves, we only traverse for a single solution,
which could take less traversal for time than for cost.

For AT 2, the subsuming operation becomes preferred over
the conventional as the CSs and MCSs differ by a factor of
100. Thus, for parameters such as cost and time, the CSs
and MCSs have to differ by a significant factor in order to
compensate for the increased precomputation.

For both ATs, we observe that the MCSs in the AT sur-
passes 107 and 108, but obtaining the least cost solution
remains feasible. Thus, similarly to time, obtaining the
top-K minimum cost results can still be viable for ATs
with increasing amounts of solutions surpassing 108 in
some cases.

Figure 11: Pareto Curve with SAND-gate replications for
AT 1

Figure 12: Pareto Curve with SAND-gate replications for
AT 2

7.3 Pareto
In figure 11 and 12, we can observe that the Uppaal algo-
rithm cannot discover solutions within a reasonable time
for the second replication of the AT. We can observe in
AT 1, that for Pareto Curves, the superfluous subsuming
operation has less effect on the execution time than single
parameters. This is explained by the fact that traversal
becomes a more substantial part of the execution than the
preprocessing. As Pareto Curves require the traversal of
each solution, each algorithm became unviable around 106

(M)CSs, while cost and time could continue beyond this.

However, the subsuming algorithm can significantly out-
perform the conventional algorithm as the BDD minimiza-
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tion gains increasing effect. As the CSs and MCSs differ
by a factor of two, the subsuming algorithm is preferred.
This allows it to continue multiple replications, but it still
cannot surpass replications where the amount of MCSs
grows beyond 106.

7.4 Asymptotic vs Practical Complexity
From the pseudo-code, we conclude that the Pareto Curves
have a worst-case complexity of O(2n ∗ n2), with an addi-
tional factor of n for the subsuming algorithm. The factor
of O(2n) is the worst-case for the number of solutions,
but additionally, the complexity of the BDD construction.
For smaller ATs, as figure 13 illustrates, there is a linear
relation between CSs and execution time.

However, we should be critical and analyze larger ATs con-
sisting of thousands of nodes to confirm this. Figure 14 il-
lustrates the BDD construction time. We can observe that
even for large ATs, the number of solutions remains the
limiting factor for the conventional algorithm. However,
for the subsuming algorithm, BDD construction becomes
the limiting factor as the nodes exceed 400.

Figure 13: Linear relation between cut sets and time

Figure 14: BDD construction time

8. CONCLUSION
The analysis of ATs with DAGs and SAND-gates could
be optimized regarding Attack Value, Attack Path, and
Pareto Curve metrics. By conversion to BDDs, the issues
associated with DAGs could be solved. By imposing a
total ordering on the BASs, the BDD data structure was
able to abstract the SAND-gates from the AT, as solutions
would satisfy the SAND-gates due to the ordering of BASs.

In each of the analyzed ATs in the library [15], the conven-
tional and subsuming algorithms were able to outperform
the Uppaal model significantly. From the pseudo-code, we
conclude that the cost and Pareto Curve algorithms’ com-
plexity have a worst-case of O(2n ∗ n), where n denotes
the number of nodes in the AT. The minimum time query
has an additional factor of n during traversal, which leads

to a complexity of O(2n ∗ n2). The subsuming operation
adds a factor n to the complexity of each algorithm.

However, from the results, we can conclude that the al-
gorithm performs much better in practice than the worst-
case complexity. The number of solutions is the main lim-
iting factor for each of the algorithms, indicated by the lin-
ear relation between solutions and execution time in figure
13. Thus, the metrics could be computed for ATs consist-
ing of thousands of nodes if they have a limited number of
solutions. However, for larger ATs, the subsuming oper-
ation can significantly impact the construction time, thus
preferring the application of the conventional algorithm,
as indicated in figure 14.

Attack Values could be computed in asymptotically lower
complexities than the state-of-the-art for ATs using the
proposed algorithm with optional subsuming for the BDD
as an improvement to the conventional algorithm to elim-
inate non-minimal solutions in the BDD. The subsuming
operation for minimum Attack Values, however, takes sub-
stantial preprocessing. Thus, it was less efficient than the
conventional algorithm, unless there was a considerable
discrepancy between the CSs and MCSs as found in AT
2. As the algorithm obtains solutions without traversing
every solution, it could still compute minimum parameter
solutions for ATs with over 108 solutions in some cases.

Attack Paths are computed during the computation of At-
tack Values. This was expected as Attack Values and At-
tack Paths are linked quite closely together. Extensions
on the topological sort allow us to find additional Attack
Paths in quasilinear time with different execution orders.
As the amount of these solutions grows with a factorial
complexity, an algorithm was developed to query them in
quasilinear time.

Pareto Curves are created by traversal of all solutions.
From the ATs, we can conclude that the Pareto Curves
mainly depend on the amount of CSs generated by the
BDD, as each solution has to be traversed. However, as
the ATs grow, these complexities can no longer be reached
with the subsuming algorithm, but solely by the conven-
tional algorithm.

In future work, the alternative definitions of SAND-gates
from literature could be considered, as the framework sup-
ports various definitions, as discussed in section 3.2. Fur-
thermore, the probabilities of BASs could be considered
for the analysis of ATs to improve the ranking of attacks
as the probability of success of a BAS is not currently
taken into account.
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APPENDIX
A. SEQUENTIAL ATTACKS
In the case of sequential attacks, the computation of time
for Entries is simplified. Similarly to cost, a time variable
can be stored, to which time of a BAS is added. The
vector X can be simplified to a Boolean array to store
which BASs were involved in the solution. The complexity
for minimum time reduces by a factor of n, as computing
time no longer has a worst-case of O(n). The complexities
of the other algorithms remain the same.

We can note that the additional orderings of BASs for so-
lutions are more relevant to sequential attacks as (a, b, c)
and (b, a, c) have a distinct ordering of BASs in sequen-
tial attacks. In contrast, for parallel attacks, a and b are
executed in parallel in both cases.
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