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Abstract

The design of fault trees is standardized and not using its full potential in conveying important

information. Fault trees are commonly used in reliability engineering. This model is used to in-

vestigate possible failures in systems such as airplanes, software or nuclear power engineering. In

this study we propose a new design for this visualization which is more intuitive and understand-

able. The design will not only be able to describe the qualitative relationships between subsets, but

also its quantitative properties. This new design will be used in explaining fault tree mechanics to

non-experts.

Based on a literature review of visualization techniques and an inspection of existing fault tree

designs, a new design will first be designed in Adobe Illustrator. This design will subsequently

be realized in the form of an interactive web application written with the p5.js library. Expert

opinions are used throughout the whole designing process to ensure that all the information of

the regular fault tree is used in a correct way in the new design. And to ensure that the tool is

useful to the experts when they need to explain fault tree mechanics. This process resulted in an

innovative fault tree design that, according to the consulted experts, puts fault trees in a new and

more understandable perspective.
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1 Introduction

Understanding risk is vital for the engineering process of i.a. nuclear power plants, airplanes or

digital infrastructure. Without elaborate reliability evaluation, it is simply impossible to deliver a

safe product. There are numerous ways these complex systems can fail. Especially combinations

of failing elements in systems can become complicated to understand. E.g., the defect of part

A in an airplane does not cause the airplane to crash, but a combination of a defect in part A,

unfavourable weather, a software bug and a defect in part B, will cause the airplane to crash.

Because there was no method to organise all these cluttering possible failure combinations, the US

Nuclear Regulatory Commission introduced in 1981 a handbook for so-called fault tree analysis

(FTA)[1].

Fault trees are a type of decision trees that provide insight in the causes of a system failure.

Fault trees consist of both events and Boolean gates. The top event represents the failure of the

whole system and the bottom events are events that will occur spontaneously. With this diagram,

it is possible to intuitively examine how a single failure can lead to the failure of the system. It is

also possible to add probabilities of failure to this diagram, this enables a wide range of statistical

analysis methods. Fault trees, and all its variations, are currently widely adopted in reliability

engineering [2][3]. An example of a standard fault tree is shown in figure 1. The top-event of

figure 1 fails if either there is a Common cause seal failure or an independent seal failure.

Figure 1: An example of a fault tree [4]

The fault tree is a visualization of the failure relationships between elements of a system. It is

also possible to describe fault trees in plain text, in contrast to a visual diagram. The following text
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represents the tree of figure 1 in Galileo format.

toplevel␣"System";

"System"␣or␣"CommonCauseSealFailure"␣"SealsFailIndependently";

"CommonCauseSealFailure"␣and␣"ContaminationTapeFails"␣"CommonCauseSealFailureBE";

"SealsFailIndependently"␣and␣"Metal-To-MetalSealFails"␣"CompressionSealFailure"

␣"FusedPlugFails";

"CompressionSealFailure"␣and␣"CompressionSeal1Fails"␣"CompressionSeal2Fails";

The information in figure 1 is faster processed by the human brain than the textual descrip-

tion, even though their semantics are similar. The human brain is very sensitive to visual cues,

the visualization of the example mentioned above is, not only much faster processed, but it is also

easier to recognize patterns. Given the positive effects of visualization in the previous example,

it is worth to investigate if the standardized design of figure 1 can be improved even more. As

the current design is focused only on experts, a new design may enable non-experts to use fault

trees more. When the FT design is reviewed, it may be possible to increase understanding of the

fault tree and subsequently increase the reliability engineering process. An insufficient reliability

engineering process can have drastic consequences, such as unsafe computer software, malfunc-

tioning bridges or the crash of a Space Shuttle [5]. No research has been conducted on the current

design of fault trees.

The aim of this thesis is to create an innovative, interactive, fault tree design. The end product

will be presented on a website to enable interactivity and be open-access. First a literature research

is conducted, this part includes relevant background information and a state-of-the-art survey.

Secondly, a design process is completed with the help of experts and a product is realized.
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2 Background

2.1 Fault tree analysis (FTA)

In order to create an improved, innovative fault tree (FT) design, first the mechanics of FTs must

be examined. Fault trees are widely adopted in reliability engineering [2][3]. The goal of these

diagrams is to identify insight in the combinations of events that can cause a system to fail. In FTs,

three event types can be identified; basic events, these have an own probability of occurrence in a

certain time frame. Intermediate events are the consequence of (multiple) basic events. The top event

represents the failure of the entire system the FT describes [3].

Events are connected with logic gates to describe which combinations cause a failure to prop-

agate towards the top event. The most used gates in FTs are OR and AND gates. Next to these,

common gates are k/N gates, these are basically OR gates with a number (N) of inputs and a

threshold number (k). If k or more events happen, an output is produced and the failure propa-

gates further towards the top event. The final gate is an INHIBIT gate. This gate behaves exactly

like an AND gate, but is used in FTs to make the FT easier to understand. These gates are shown

in figure 2. The gates have two or more inputs and one output [3].

Figure 2: The most common gates in fault trees [3]

Two types of FTA can be distinguished, qualitative and quantitative FTA. The main goal of quali-

tative FTA is to determine the cut sets of a FT[6]. A cut set is a combination of components that can

cause the whole system to fail [3]. Often, there are more ways that a system can fail, so there are

also multiple cut-sets. The cut-set with the least amounts of components in it is called the minimal

cut-set. Subsequently, a system with many components in its minimal cut set is generally more

reliable than a system with only a few components in its cut set. There exist multiple algorithms

and methods to find cut sets of a FT, but these are not discussed in this research.
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Quantitative FTA focuses on the the probability of failure calculation of a FT [3]. Each ba-

sic event has its own probability of failure in a time frame. This method of evaluating FTs with

numerical failure probabilities is useful for comparing design alternatives [7]. The quantitative

approach to fault trees is useful to calculate if certain requirements will be met in certain design

alternatives. There may be a minimal mean time between failures of availability. In addition to

this gives quantitative analysis a more complete overview of a system’s reliability compared with

qualitative analysis. The components of the minimal cut-set could e.g. have an infinitesimal prob-

ability, while a larger cut-set could have components with a high probability of failure, making the

latter more reliable.

Probability theory plays a big role in this. If the probability of failure of basic events is known,

it is possible to calculate the probability of the intermediate events and, subsequently of the top

event. For an AND gate, for example, holds that its probability of failure is equal to the product

of all its inputs. This is a simple calculation as long as there are no shared subtrees. If these are

present in the fault tree, it is not possible to calculate the probabilities of a fault tree from the

bottom up [3]. When Basic events are shared there is dependency between the inputs and the

bottom up approach does not hold.

Even though FTA is widely adopted, it has some drawbacks. The fault tree mechanics that are

described above are for static fault tree analysis. These static models are not able to, in contrast to

dynamic trees, adapt to a changing environment. Dynamic fault trees can additionally model time-

and sequence-dependent failures [3]. In addition to this, multiple research papers argue that the

fixed values of probability in quantitative fault trees is a drawback [2][8]. Despite these drawbacks,

this research will focus on static fault tree, as they are relatively uncomplicated for non-experts.

2.2 Information Visualization

Graphics have been used for thousands of years to help people think. They function as a form

of external cognition for humans. This external cognition extends a person’s working memory,

according to Card et al. and Ware [9][10]. A famous example is writing down calculations. Card

et al. claim that the time to calculate a multiplication can be decreased by fivefold when using a

piece of paper and pencil. Visualization is thus a powerful tool to aid cognition. This amplification

of cognition by information visualization has six causes:
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1. Visualization increases the memory and processing capabilities of the user

2. Visualizations help reduce search for information

3. Visualization uses visual representations to increase pattern detection

4. Visualizations enable the user to make assumptions very easily that were otherwise invisible

5. Visualizations utilize perception mechanism of the human brain

6. Visualizations can easily be modified

Card et al. define visualization as: The use of computer-supported, interactive, visual representations

of data to amplify cognition. Ware defines it as: a graphical representation of data or concepts to support

decision-making. The goals of visualization are discovery, decision making and explanation.

This effective tool can also be applied to reliability engineering. After reviewing literature

about risk visualization, Martin Eppler and Markus Aeschimann [11] came to the following defi-

nition:

In the context of organizational risk management, risk visualization designates the systematic

effort of using (interactive) images to augment the quality of risk analysis and communica-

tion along the entire risk management cycle. Risk visualization employs charts, conceptual

diagrams, visual metaphors and mapping techniques to improve the understanding and subse-

quent management of risks.

According to this definition, the fault tree is a subset of the risk visualization tools. Other tools are

attack diagrams, decision diagrams or maps.

2.3 Risk communication

Next to the right medium for risk communication, the process of communicating is also of impor-

tance. In the 1970s this process was reserved solely for experts [12]. However, Roth argues that

this view has shifted from expert based to an interactive process that involves a wide spectrum

of stakeholders, policy makers, experts and the general public [13]. Bjögvinsson et al. [14] sup-

port this shift to a more participatory approach in design. The researchers call this the shift from

designing "things" (objects) to "Things" (socio-material assemblies). In Nordic and Germanic soci-

eties, "Things" may refer to governing assemblies. The parliament of Norway is called Stortinget
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from Stor (great) and ting (in old Norse: an assembly of nearby clans and led by a jarl) [15]. Even though

risk communication has become more participatory, Roth claims that the process is still too hinged

upon the experts, due to the complexity of the problems, technical jargon and lengthy reports. To

support the suggested transition to "Things", the fault tree design must be revised as the current

design is made for engineers and not the general public.

Research of Slovic clearly indicates that there is a great difference between the perception of

risk between experts and non experts [16]. From 30 activities and technologies, such as hunting,

smoking or food coloring, non-experts rank nuclear power as the most risky activity or technology.

However, experts rank it on place 20. That is even less risky than e.g. food preservatives. This

misjudgement of risk can be solved by better informing non-experts.

Research suggests that informing people about risks using graphics instead of text is recom-

mended [17][18]. Likpus also points out that graphic displays in risk visualization can be ex-

tremely helpful in conveying this kind of information. E.g. by enabling interaction and mathemat-

ical operations. Likpus recommends using graphic displays if the goal is to promote quantitative

information, which is the case in this thesis.

However, the researcher points out some complications with using visualization in risk com-

munication:

1. Patterns in data may discourage people from looking at the details

2. Some graphs are not well understood because of faulty design

3. The skill level required to read the graph may be too high for some users.

4. Interactive visualizations may require technology that is not widespread available

5. Visualizations may be challenging to create

6. Visualizations can be misleading.

These complications are avoidable, but should be taken seriously.

A pitfall in the communication of information to other people is the so-called Curse of Knowl-

edge. Xiong et al. [19] define this psychological phenomenon as: Well-informed decision makers

fail to predict the judgements of less-informed decision makers, implicitly allowing their own knowledge to

guide those predictions. They show in their research that this phenomenon is also applicable with
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information communication through visualization. This means that when an expert or designer

observes a pattern in data, the expert assumes that it will also be observed by non-experts. In the

experiment, the users were deliberately made biased about a dataset. Subsequently, they were

asked to interpret graphs. Based on the extra knowledge that they gained before the interpreta-

tion, they adopted a certain perspective about the graph. This misinterpretation must be avoided

when designing a visualization. The authors presume: the inability to separate one’s own knowledge

and expertise from that of their audience can make visual data communication more difficult and less clear

than presenters realize. Therefore it is crucial for the expert or designer to determine the level of

knowledge of the user in order to convey the right message.
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3 Research Questions

The aim of this thesis is to create an innovative and interactive fault tree design that can be used

to explain the workings of quantitative fault trees. The corresponding research question is:

How can innovative visualization methods make quantitative fault tree analysis more under-

standable?

To aid the answering of this question, the following sub question is formulated:

What visualization methods improve attractiveness in information visualization?

The sub question is answered in the State-of-the-Art section since this answer is of importance

before the development phase of a new fault tree design. The main research question is answered

in the conclusion of this thesis.
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4 State of the Art

In this section the state of the art of data visualization are discussed. Afterwards, these concepts

are applied to existing interactive fault tree designs to evaluate existing fault tree designs.

4.1 Data visualization

In this section, the basis of graphic design is discussed. Starting with two foundation books written

by Ward and Ware. Subsequently, we elaborate on a psychological phenomenon about communi-

cation between experts and non-experts. Finally, a risk visualization framework is discussed.

4.1.1 Interactive Data Visualization - Visual variables

The book ’Interactive Data Visualization’ is a guidebook for creating digital (interactive) data visual-

izations [20]. Ward specifies eight ways of how graphical objects can represent information. These

ways are called visual variables. The eight variables are: position, shape, size, brightness, color,

orientation, texture and motion. In the next part, each variable will be discussed.
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1. Position is the most powerful of all according to Ward. He mentions that the spatial arrange-

ment of graphics is the first step when reading a visualization. A visualization that uses

position in a highly insightful way is the scatter plot, see figure 3. The relationship between

two variables is easy to distinguish with this plot. Other trends and clusters can also be

discovered using scatter plots.

Figure 3: Using position to express the relationship between two variables [20]

14



2. Any graphical object can be used as a shape variable in visualizations. Ward emphasizes that

the designer should use the same size of the shape when working with multiple shapes, as

size is another variable. In addition, the shapes should be easy to distinguish from each

other to make the visualization efficient. Finally, shapes should have a similar design and

complexity to avoid accidentally highlighting shapes. Figure 4 shows an example of using

shape in a scatter plot.

Figure 4: The shape variable is used in combination with position to distinguish car types, their

fuel consumption and top speed [20]
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3. Size can be applied to three dimensions: length, area and volume. In the first dimension,

length, size can work excellent. The bar chart is a classic example where length can represent

data well. Area and volume, on the other hand, are less useful for data visualization because

it is difficult for humans to perceive a value for an area or volume, an example of this is

shown in figure 5.

Figure 5: The human brain has difficulties measuring the quantitative data of the pie chart.

Whereas a bar chart is easily interpreted [21]
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4. Brightness has a limited use as visual variable. The reason for this is that it is difficult to

discriminate levels of brightness. It is advisable to use a linear brightness scale to maximize

the differences between classes. Figure 6 shows an example where brightness is used in a

scatter plot.

Figure 6: The brightness variable is used to indicate the width of cars, the darker the square, the

wider the vehicle [20]

5. Color can be used as a visual variable in two ways. First, the dominant wavelength of the

color (hue), this is what most people think of as a color, can be used as a variable. Secondly,

the saturation, is the relative distance of hue to grey. Besides using color as a variable, color

contains emotional associations. Clarke et al. [22] conducted researched the emotional con-

notations of color. Colors like blue were associated with calmness, neutral and coldness.

Red was associated with love and anger. Another often used color association is the color

red with failure, and green with success. These associations must be taken into account when

using colors for graphic design.
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6. The use of orientation of an object can serve as a visual variable. An important condition for

this is that the object should have a natural single axis. I.e., having symmetry on only one

axis, see figure 7.

Figure 7: Orientation is used together with position. The orientation of the mark represents the

price.
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7. Texture is a combination of multiple, previously mentioned, variables. These are orientation,

the size of the texture and the density of the texture (color), see figure 8.

Figure 8: A scatter plot with a texture variable. The texture of the mark represents the class of the

vehicle.

8. The final visual variable, motion, is difficult to express on a static page. But it is powerful if

used correctly in digital visualizations. It combines the previously mentioned variables with

a change over time.
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4.1.2 Interactive Data Visualization - Visualization Techniques for Trees, Graphs and Net-

works

In the same book as in section 4.1.1 Ward specifies design rules for graphs and tree diagrams. As

fault trees are a type of tree diagrams, this is relevant for this thesis. These rules are:

• Minimize line crossings

• Maintain a pleasing aspect ratio

• Minimize the total area of the drawing

• Minimize the total length of the edges

• Minimize the number of bends in the edges

• Minimize the number of distinct angles or curvatures used

• Strive for a symmetric structure

4.1.3 Information visualization perception for design

Ware’s Information visualization perception for design covers a wide scope of fundamental infor-

mation visualization concepts [10]. These are important to grasp before the design phase of this

thesis starts. The most important concepts are summarized below.

• Gray scales are perceptually altered by background lightness. They are in addition unreliable

when they are used to communicate quantitative information.

• There must be enough contrast between the foreground and background. Otherwise, the

foreground information is difficult to distinguish from the background. Black or white bor-

ders can help increase contrast.

• Use high saturation colors for small color-coded objects and use low saturation colors for

large color-coded objects.

• Use images and words together. This combination increases understanding and are remem-

bered better.
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• An interface for and interactive visualization should not increase the cognitive load. The

interface must be able to be used rapidly by a newcomer.

In addition to these concepts, Ware elaborates on the so-called Gestalt laws. The Gestalt laws

are principles that describe how the human brain recognizes patterns when viewing a visual.

Although some principles may seem straightforward, they can have a huge negative impact on

visualizations if they are not used correctly. The Gestalt laws are listed below.

• Proximity, components that are close together are grouped together by the mind.

• Similarity, components that have a similar shape are grouped together.

• Correctness, components that are connected by lines are grouped together.

• Continuity, components that are smooth and continuous are more likely to be constructed as

a visual entity than components that have sharp corners.

• Symmetry, symmetrically arranged lines are noticed to be more strongly. A condition for this

law to apply is that the object should not have too many features, otherwise the Symmetry

is hard to recognize.

• Closure, components that have closed contours are likely to been seen as an object.

• Direction, in order to give direction to an object, the link between object must be made asym-

metrical (an arrow).

4.1.4 Framework for risk visualization

Eppler and Aeschimann proposed a framework to aid the risk visualization design [11]. The

framework consists of five elements: why, what, for whom, when and how. The framework is shown

in figure 9. It is a circular framework as the sequence of the questions matter. A benefit of this cir-

cular design approach is that it is possible to reiterate after a cycle is completed. One may generate

interesting ideas during a cycle, so a possibility to reiterate is desirable.
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Figure 9: The risk visualization framework

In addition to the framework, the authors derived a set of guidelines that managers or risk

analysts can follow in the visualization of risks. Even though the writers admit these guidelines

are not definitive or comprehensive, they can be of use for designers. The guidelines are:

• Do not precipitate the use of a visualization

• Consider the application context and its constraints

• Make sure that risk visualization respects the basic rules of visualization and perception

• Avoid decorative visualization without added benefit

• Think visualizing, not visualization. The process of creating and modifying a risk visualiza-

tion is as important (if not more) as the final result

• Pre-test the risk visualization
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4.2 Evaluation of current FT graphic designs

In this section, the design of three existing fault tree tools is evaluated. Faulttree+, a professional

software package and two non professional web applications. The evaluation is based on the

visual rules that have been discussed in the previous section. After each design is briefly discussed,

the designs will be rated on several criteria using a five-level Likert scale. These criteria are:

1. Color and contrast How is the use of color? Do large areas have a low saturation color and

small areas high saturation color? Is there enough contrast so that everything is readable and

clear.

2. Adaptability Is the arrangement of the fault tree adaptable? Is styling adaptable?

3. Use of visual cues Is the design correctly using visual cues to guide the user? Is the attention

of the user guided properly? E.g. by using arrows.

4. Compliance with design rules Are there other design rules that are not adhered to? Is the design

unambiguous? Is there miscommunication possible.

Tool Color and contrast Adaptability Use of visual cues Compliance with design rules

Faulttree+ o + + +

DFT Visualization – - - o

Visual Paradigm Online ++ ++ o +

Table 1: The scores of the three evaluated fault tree tools
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4.2.1 Faulttree+

Faulttree+ is a fault tree analysis software package by Isograph. With Faulttree+, it is possible to

compute minimal cut sets and predict failures. It has a wide support for libraries and is also used

for ISO (International Organization for Standardization) safety assessment [23]. The user-interface

is shown in figure 10.

Figure 10: The UI of Faulttree+

The standard color of the elements is grey blue, no matter which gate or element is created by

the user. But the colors are adaptable afterwards. The contrast between the background and the

fault tree is good, however the lines connecting the elements could be a pixel thicker. Symmetry is

not always generated automatically and there are some unnecessary angles in the links between

elements. When a cut-set is shown, the line between the elements becomes red. More visual cues

can be added by the user. There is a strong uniformity in fault trees in Faulttree+ because textboxes

are of similar size. In the table below the scores for each criteria is shown.

Color and contrast Adaptability Use of visual cues Compliance with design rules

o + + +
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4.2.2 DFT Visualization

Jungen and Volk made, using the Javascript library ’Cytoscape’, a graphical user interface where

one can create their own fault tree [24]. It supports both static fault trees as dynamic fault trees.

This is a sufficient environment to build your own fault tree, but it does not have any analysis

features. The UI is depicted in figure 11.

Figure 11: The UI of the tool

The interface solely consists of white and shades of grey, this makes it unattractive to use the

built fault trees for publication to the general public. In addition to this, all the lines between ele-

ments are straight. When creating a FT with this tool, the elements are not lined up automatically

so that a hierarchy between the top event and other events is made. This reduces insight in the

fault tree because it will be more difficult to intuitively recognize cut-sets. The lines between the

elements are actually arrows. This visual cue is unusual in FTA since a fault tree can be analysed

by a user in both directions. Below, the scores for each criteria is shown.

Color and contrast Adaptability Use of visual cues Compliance with design rules

- - - - o

25



4.2.3 Visual Paradigm Online

Visual Paradigm Online (VPO) is an intuitive, web based, graphic editor [25]. It could be used to

create block diagrams, flow charts and fault trees. Figure 12 shows a screenshot of the UI.

Figure 12: The user interface of Visual Paradigm Online

It is possible to drag and drop all the fault tree elements to the editor window. Connections

between elements can be made by drawing lines between elements. Additionally, it is possible to

change the color of each individual component. The only functionality of VPO is to create a visual

representation of a FT. It is not possible further analyze the FT using algorithms. Each element has

its own, customizable, low saturation default color, which is desirable. The logic gates do not have

a textbox with their function on it, this could be helpful for non-experts. Lines are either straight,

curved or straight with 90 degree angles. Another advantage is that the gates are easily lined up

on the y-axis as, VPO includes snapping to position. There are no visual cues present. The scores

for this product are shown below.

Color and contrast Adaptability Use of visual cues Compliance with design rules

+ + + + o +
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5 Ideation

The ideation phase will be supported by the framework of Eppler and Aeschimann [11] as dis-

cussed in section 4.1.4. Figure 9 depicts the framework. Subsequently, a use case scenario for the

product is given and the user requirements are listed. Finally, an idea is presented.

5.1 Risk visualization framework

5.1.1 Why

In the State of the Art section it became clear that existing fault tree designs do not comply with all

visualization rules. There was confusing color use, asymmetric design and too many bends in the

edges. Additionally, there was no use of visual variables. The use of an extra visual variable and a

well designed tree will make the fault tree design more attractive and understandable, leading to

an improved risk assessment. In addition to this can a more attractive FT lead to more engagement

of non-experts in the risk assessment process.

5.1.2 What

Following the main research question, the probability of failure of elements and the failure de-

pendencies between system elements must be visualized by this fault tree. In addition to this, the

structure of the design should be like the fault tree. The fault tree that we will use is depicted in

figure 13.

5.1.3 For Whom

The target audience are students that have some basic knowledge of probability theory and logic

gates. This fault tree must engage the students and generate initial insight in fault tree models.

5.1.4 When

The visualization must be used by an individual from a web browser. But it can also be used in

presentations to demonstrate risks to a large audience of an organisation.
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5.1.5 How

The format of the visualization is an innovative, quantitative fault tree. The semiotics may deviate

from those described in section 2.1, as long as the design can be used to aid the explanation of the

quantitative features of fault trees.

Figure 13: The design to be improved

5.2 User requirements

To categorize user requirements, both the MoSCoW [26] and Kano [27] method are used. The

MoSCoW method stands for Must, Should, Could and Would. These categories enable a devel-

oper to prioritize requirements. Must has the highest priority while Would has the lowest priority.

It is essential for a project to fulfill at least all the Must requirements to meet the minimal accepted

needs. The listed requirement categories are sorted on priority.

The Kano method describes requirements in three categories: must be (M), performance (P) and

attractive (A). A must-be is an essential feature, without this feature, the product is incomplete, for

example water in a hotel room. A performance feature describes a feature where the more you

have of it, the higher the satisfaction, e.g. internet speed in a hotel room. The final class, attractive-

ness, are features that are unexpected and cause a positive reaction. When these two methods are

combined, it is more easy to recognize and prioritize important features. In the following table,

features are listed based on the MoSCoW (rows) and Kano (columns).
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Kano/

MoSCoW
Must be Performance Attractive

Must

The product must be

displayed on a web

browser

The product must contain

more insight than a standard

quantitative fault tree

The product must be made

attractive by following all the

visualization rules as

mentioned in section 6.1

Should
The user should be able to

interact with the product

Could

The user could be able to

view the product on

a mobile device

The product could have

animations

Would

The user would like to be able

to create their own fault trees

in the tool

1. The product must be displayed on a web browser

This enables for easy presentation of the product and enables interaction. This is useful

when the product is being used for educational purposes. The teacher can demonstrate it

and students can experiment with it afterwards.

2. The product must be made attractive by following all the visualization rules as mentioned

in section 4.1

This is a must since this increases user engagement and an intuitive design can be more

accessible for non-experts.

3. The product must contain more insight than a standard quantitative fault tree

Required because this enables the target group to grasp the concepts of quantitative fault

trees faster.

4. The user should be able to interact with the product

This enhances both the user involvement and the demonstration of the fault tree mechanics.

5. The user could be able to view the product on a mobile device
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This is useful when one want to explain the quantitative fault tree on a mobile device.

6. The product could have animations

This can enhance the user engagement.

7. The user would like to be able to create own fault trees in the tool

This feature is useful if users want to evaluate their own quantitative fault trees.
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5.3 Generated ideas

A few ideas were generated in the brainstorm sessions that followed after listing the iteration of

the Risk Visualization Framework and user requirements.

One idea was to make the fault tree circular, comparable with the structure of an onion. The

top event would be in the centre and the events of its subtrees on the rings. This circular design

is very beneficial when the fault tree is very extensive. If a fault tree is circular, it is not possible

to read everything at the same time, as some part of the tree will be upside down. Therefore, a

web application would allow this ’onion’ to rotate like a wheel of fortune. If a person wants to

study a certain part of the fault tree, he simply rotates it until that part is on the bottom. A simple

sketch is shown in figure 14. Even though this design can be very helpful when trying to get an

overview over large fault trees, it has not been chosen to realize as a product. The reason for this

being that its potential for visualizing quantitative FT information is not great and the fault tree to

be visualized is not extensive. There is additionally, no extra visual variable added in this design.

Figure 14: The sketch of the ’onion’ fault tree
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5.3.1 FT Visualization with Sankey Diagrams

Taking the user-requirements, the Risk Visualization Framework and the findings in the State of

the Art section into consideration, the idea of integrating a Sankey diagram in a fault tree was

chosen:

The Sankey diagram was introduced in 1898 in energy engineering and is used to visualize

the flow of quantitative information [28]. An example of a Sankey diagram in energy context is

shown in figure 15. Next to this domain, they have also been used to visualize monetary flow or

the relation between college majors and the job one ends up with [29]. One of the most famous vi-

sualizations is Charles Minard’s visualization of Napoleon’s Russian campaign of 1812. However,

this visualization is not a Sankey diagram, but a flow diagram since it is an overlay on a map. But

it is relevant for this idea as it demonstrates excellently how the width of each edge can be used to

visualize quantitative information and generate insight. The probabilistic properties of fault trees

can be displayed as a Sankey diagram in a fault tree.

Figure 15: A Sankey diagram

Figure 16 shows a basic event of a FT in the hybrid form with a probability of failure of 0.8.

This design decision is made so that the user can more quickly process the probabilities of a FT

and is supported by the recommendations of Likpus [18]. The visual variable used here is size, the

greater the probability of failure, the larger the width of the edge between nodes. However, size

can be a tricky variable to use as its quantitative properties can fade if used incorrectly [20], see

figure 5. Despite this, the design in figure 16 still holds its quantitative properties for the most part.

It is difficult to recognize the difference between a probability of 0.8 and 0.82 in the output, but
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these small differences are not relevant for this project. To aid the perception of these probabilities,

text is added in the BE with the value of the probability of failure.

Figure 16: AND gate with Sankey diagram integration

As the main purpose this Sankey diagram is to show the relationship between failures and

non-failures, the hue of the Sankey diagram is red for failure and green for non-failure. This cor-

responds to our findings on the use of color in section 4.1 in the State of the Art. A low saturation

red and green color are chosen in the Sankey diagram. The reason for this low saturation being

that the areas of it are relatively large. A high saturation color would be too distractive, while

a low saturation color would not [10]. For this reason the edges were given a color with an even

lower saturation. The edges between the nodes are straight, as Ward’s design rules for graphs [20],

section 4.1.2, state that the number of bends and the total length of the edges must be minimized.

In addition to this, the tree should be symmetrical. Therefore the top-event must be placed in the

middle of the window.

Figure 16 is the building block of the new fault tree design. With this design, the whole fault

tree looks as follows:

With this design, it is also possible to fulfill the interaction requirement. When sliders are

placed on the bottom of each basic event, the user can set their own probability of failure for each
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Figure 17: The hybrid fault tree concept

BE. Subsequently, the probability of each intermediate event can automatically be calculated using

probability theory.
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6 Realization

To realize the design as proposed in the previous chapter, a programming language must be cho-

sen. As specified in section 5.2, the product must be viewed in a web browser. Therefore JavaScript

is chosen as the main programming language. JavaScript is very well suited for web based inter-

action and web applications. Another advantage of JavaScript is the wide availability of libraries

and frameworks. In this project we make use of the library p5.js [30]. This library is made for

creative coders. It shares many features with Processing, but p5.js can be fully integrated in a web

page. The complete code of the project is to be found in Appendix 1.

6.1 Classes

The fault tree consists of a collection of both nodes and edges, where edges show the relationships

between nodes. In this program, a superclass Node is used to facilitate the inheritance of the

constructor to the subclasses. The four subclasses are AND, OR, Basic Event (BE) or k/N. The

following variables will be inherited from to superclass to each subclass, see figure 18 for the UML

diagram:

1. x (number): the x position of the node on the screen.

2. y (number): the y position of the node on the screen.

3. children (array): the id of the children of the node, this is an array as a node can have multiple

children.

4. parents (array): the id of the parents of the node, this is an array.

5. id (number): the id of the node. This id will be used in the parents and children to describe

the relations that nodes have with each other.

6. columnPos (string): the horizontal position of the node in the grid system. It is necessary to

have this extra variable to enable for a responsive.

7. rowPos (string): the vertical position of the node in the grid system.

8. output (number): the probability of failure of the node.
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Figure 18: The UML class diagram

6.1.1 Basic Event

The Basic Event class has 4 methods: display(), generateInput(), generateOutput() and drawOutput().

The display function displays the node itself. The width of the Sankey diagram is defined by the

the position of a slider positioned below the gate. The user can set a unique set of probability of

failures for each BE. For simplicity reasons, it is assumed that each tire has the same probability

of failure. The function generateInput maps the output of the corresponding slider to a number

between 0 and 80, as the max with of the BE is 80 pixels and the slider ranges from 0 to 100. Gener-

ateOutput calculates the probability of failure from the value of the slider so that this number will

subsequently be used as an input of its parents. Finally, drawOutput draws the edge(s) between

the BE and its parents.

6.1.2 AND Gate

3 methods can be associated with the AND Gate class. Again a display function which displays

the object and its text. A drawOutput function, this draws the edges between the node and its

parents. The calculateOutput method calculates the probability that all the children of the AND

gate fail. This is done with the following equation:

ANDoutput =

ANDchildren.length

∏
n=1

pn (1)
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1

2 this.output = 1;

3 for (let i = 0; i < this.children.length; i++) {

4 this.output = this.output * nodes[this.children[i]]. output }

Listing 1: The probability of failure calculation for the AND gate in JavaScript

6.1.3 OR Gate

The OR class has the same 3 methods as the AND class mentioned above. The only difference

being that the output equation is different, namely:

ORoutput = 1−
ORchildren.length

∏
n=1

(1− pn) (2)

1 let sum = 1;

2 for (let i = 0; i < this.children.length; i++) {

3 sum = sum * (1 - nodes[this.children[i]]. output) }

4 this.output = 1 - sum;

Listing 2: The probability of failure calculation for the OR gate in JavaScript

6.1.4 k/N Gate

The output of the k/N node is calculated with the following equation. In this fault tree, it is

assumed that the probability of failure of each tire (pt) is equal.

k/Noutput = 1 + (
k

∑
n=0
−
(

k/Nchildren.length

k/Nchildren.length - n

)
pn

t (1− pt)
k/Nchildren.length-n) (3)

1 let sum = 0;

2 for (let i = 0; i < this.k; i++) {

3 sum = sum - combinations(this.children.length , this.children.length - i) * Math.

pow(nodes [5]. output , i) * Math.pow ((1 - nodes [5]. output), this.children.length -

i); }

4 this.output = 1 + sum;

Listing 3: The probability of failure calculation for the KN gate in JavaScript
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6.2 Dependency

Equations 1 to 3 hold when subtrees are independent of each other. This is not the case for the

Roadtrip fails AND gate, the basic event Engine fails occurs in its subtrees. To calculate the output

of the topevent, the law of total probability can be used, see equation 4.

P[Roadtrip] = P[Roadtrip|Engine]P[Engine] + P[Roadtrip|EngineNotFails]P[EngineNotFails]

(4)

P[Roadtrip|Engine] = P[Phone|Engine]P[Car|Engine] (5)

P[Roadtrip|Engine] = P[Phone|EngineNotFails]P[Car|EngineNotFails] (6)

First, in the case that the engine fails equation 5. The probability of the car failing is equal to 1,

as the OR gate only needs 1 positive input to generate an output. P[Phone|Engine] is defined by

the following expression:

P[Phone|Engine] = P[Connection] + P[Battery]− P[Connection]P[Battery] (7)

In the case that the engine does not fail, the probability of P[Phone] is equal to P[Connection], as

the Power fails gate can never fail if the engine does not fail. The probability of P[Car|EngineNotFails]

is equal to P[Tires]. This results in formula 8 when these findings are substituted in equation 4.

P[Roadtrip] = (PCon + PBatPEng− PConPBatPEng)PEng + 1− (1− PEng)(1− PT)
5− 5Pt(1− Pt)

4(1− PEng)

(8)

6.3 Grid system

In order to guarantee that the fault tree will be displayed correctly on every resolution, the design

must be made responsive. Next to this, the fault tree should still be centered when the browser

window is being resized by the user. To achieve this, a grid system will be created. In Appendix

2 is a visualization of the grid system depicted. This grid system is calculated using the function

windowResized() (see Appendix 1) and is called for each time the grid is resized by the user and in

the setup function. A node can be displayed in each grid cell, this is defined by the columnPos and

rowPos variable in the constructor of the node.
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6.4 Final product

The final product is shown in figure 19. A low saturation, road trip themed, background image

is chosen to add a layer of depth. Finally, an image of a stranded roadtrip is added at the top

event to emphasize that it is the undesirable event of the tree. The sliders can be used to change

the probability of the BEs. Subsequently, the Sankey diagrams in the gates will also change width

based on equation 1 to 3 and 8.

Figure 19: The final design of the FT tool
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7 Evaluation

7.1 Interviews

Throughout the whole design phase, experts were consulted to enable a co-design process, this

mode of designing has many benefits [31]. The first expert was consulted when the earliest version

of a working prototype was realized and the last one when the product was almost final. In total 4

experts from research facilities, infrastructure and engineering companies have been consulted to

participate in the design process. This has been done in the form of a semi-structured interview.

The protocol of these interviews is as follows:

1. Introduction, information about the research, signing of consent form.

2. The participant introduces him/herself. Elaborates on the role fault trees play in his/her

career.

3. Scenario 1: How would the participant explain the workings of FTs to a non-expert without

any technical background? For example to a family member.

4. Scenario 2: How would the participant explain the workings of FTs to a non-expert who has

some technical background? For example a computer science or physics student.

5. Are there any aids, tools or analogies the participant uses?

6. Show the prototype of the design

The most important results of the interviews are listed in Appendix 3. The initial reaction of

the experts was very positive. At the first glance most of them were slightly confused, but when

they discovered the sliders they understood it immediately. All experts mentioned that they use

an everyday example whenever they need to explain fault tree mechanics to non-experts. This

supports the choice for the roadtrip fault tree. One expert mentioned that the basic events should

be circular, as this is also the case in the standard fault tree visualization. However, if the basic

events are circular in combination with a Sankey diagram, it will become difficult to estimate the

probability of the BE. Because the area of the BE will be distorted, see figure 20. A doubling of the

probability in the circular BE has the illusion of being a larger increase than it actually is, therefore

the BEs are still rectangles. Another remark experts made was the position of the name of the
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BEs. First it was positioned under the basic event, but it was moved to the top because this is

more akin to the standard design. The remainder of the remarks of the design was more targeted

at new features. Expert mentioned adding a slider where one can change the time period for the

probabilities. This can be useful when one wants to see the effect of a probability of failure over

one day versus one week. Other experts suggested adding more gates and expanding this to a tool

where one can drag and drop elements to create an own fault tree.

Figure 20: Top: Sankey diagram BEs with a probability of failure of 0.1. Bottom: Sankey diagram

BEs with a probability of failure of 0.2.
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7.2 Design evaluation

In this section, the design of the new design will be evaluated in the same way as the three other

designs in section 4.2. The use of color is fully according to the design rules. The larger areas have

a low saturation, while the smaller areas have a higher saturation. In addition to this is the failure

color red and the non-failure color green. Adaptability has a lower score due to the fact that it is

not yet possible to create an own fault tree in the tool. However, the roadtrip fault tree is adaptable

in a sense that it is responsive to the screen size of the browser window. Visual cues are used in

a correct manner, the sliders are located directly below the basic events, this corresponds with the

proximity Gestalt law (section 4.1.3). Finally, the new design does not violate other design rules

and is in accordance with Ward’s guidelines for the visualization of trees, graphs and networks

(section 4.1.2).

Tool Color and contrast Adaptability Use of visual cues Compliance with design rules

Faulttree+ o + + +

DFT Visualization – - - o

Visual Paradigm Online ++ ++ o +

New design ++ o ++ ++

Table 2: The scores of the three evaluated fault tree tools and the design as proposed in this thesis
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7.3 User Requirements

In section 5.2, user requirements were formulated with the MoSCoW and Kano method. When

considering the result, it can be concluded that the most important (Must and Should) require-

ments have been met. The user requirement table of the Ideation section is repeated below:

Kano/

MoSCoW
Must be Performance Attractive

Must

The product must be

displayed on a web

browser

The product must contain

more insight than a standard

quantitative fault tree

The product must be made

attractive by following all the

visualization rules as

mentioned in section 6.1

Should
The user should be able to

interact with the product

Could

The user could be able to

view the product on

a mobile device

The product could have

animations

Would

The user would like to be able

to create their own fault trees

in the tool

The explanation of why the user requirements are met is listen below:

1. The product must be displayed on a web browser.

The product has been realized in the form of a web application. Therefore it can be viewed

with any computer. The tree is responsive, meaning that it adapts to the resolution of the

screen of the user.

2. The product must be made attractive by following all the visualization rules as mentioned

in section 4.1.

After evaluation the product in the same manner as the other fault tree designs (section

7.2), it can be concluded that the design is in accordance with the information visualization

guidelines.
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3. The product must contain more insight than a standard visualization of a quantitative fault

tree.

The Sankey diagram integration adds a new dimension to the fault tree. This hybrid fault tree

is more insightful, as the results of changes in the failure probability of BEs are immediately

seen in the rest of the tree. The Sankey diagram in the gates is also faster to interpret than

regular numbers.

4. The user should be able to interact with the product.

This requirement is met by adding sliders which the user can use to choose a unique set of

probabilities.

The remaining requirements have not been met, but they are of a low priority, as they fall in

the Should and Would category in the MoSCoW method. These requirements are:

1. The user could be able to view the product on a mobile device.

The p5.js library does not support mobile devices well. But it is possible to elaborate the

sourcecode to enable mobile support. However this can be a very time consuming process

2. The product could have animations.

This user requirement has not been met due to its low priority and difficult process.

3. The user would like to be able to create their own fault trees in the tool

This feature has not been implemented due to the difficult mathematics involved when there

is dependency. But if an algorithm for the probabilistic calculations of shared subtrees is

available, implementation in this tool is not difficult.
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8 Conclusion

This thesis focused on creating an innovative fault tree design to aid the understanding of its quan-

titative mechanisms. To achieve this, first a literature review on visualization techniques and risk

perception was conducted. In the review it became clear that current fault tree designs do not fully

comply with the visualization guidelines and that there are still many opportunities for innova-

tive visualization in risk management. After the review, brainstorm sessions were conducted to

explore possible designs that are more attractive and insightful than current FT designs. Subse-

quently, Sankey diagrams were used instead of regular logic gates and basic events. The addition

of this area visual variable resulted in a more insightful fault tree, as it is possible to perceive in a

glance what effects a change in a single BE has to the whole fault tree. In the phase between the

initial prototype and the final product, experts offered useful suggestions for the design. Lastly,

the final product was evaluated similarly to existing designs. It can be concluded that the most

important user requirements have been met for this thesis.

The main research question How can innovative visualization methods make quantitative fault tree

analysis more understandable? can now be answered:

Even widely adopted visualizations, such as fault trees do not comply with all the design rules

of the State-of-the-Art section. They often have asymmetry, the edges between the nodes have

strange bends, there is confusing use of color or lack of color. By simply following these rules, a

more attractive fault tree can be made. When an extra visual variable is added, area in our case,

the visualization can become more insightful. Interaction can also help in making a visualization

more attractive, this enables for more engagement.

8.1 Future work

A next phase in the development of the web-application would be to convert it to a tool that people

can use to make their own fault trees in this design, or to add support for more fault tree elements.

For this thesis this was out of scope because of the complicated mathematics.

A user study could be relevant to conduct. In the introduction section, the difference in insight

between a textual description of a fault tree and a FT visualization has been demonstrated. A next

step could be adding the fault tree design of this project to the comparison. This way, the exact

results on insight and effectiveness of the different designs can be determined.
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In addition to this, interactive visualization still has a gigantic number of possible applications,

not only in risk management, but also in other fields. Therefore, further research in this field is

important.
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9 Appendix 1: Javascript code

1 const greenColor = ’#77 ff77’;

2 const failColor = ’#ff6666 ’;

3 const lightRed = ’#ffaaaa ’;

4 const columns = 11;

5 const rows = 5;

6 let fontRoboto;

7 let nodes = [];

8 var column = [];

9 var row = [];

10 var slider = [];

11 let infoText = ’This tool is an interactive fault tree.\nThe width of the edges are

in proportion with the probability of the gate or event .\nUse the sliders of the

basic events to set a probability and notice the effects in the rest of the

fault tree.\nFor education purposes only ’;

12 var horizontalSpacing , verticalSpacing , margin , horizontalCentering ,

verticalCentering;

13 let img , backgroundImg;

14

15 function preload () {

16 img = loadImage(’roadtrip3.png’);

17 backgroundImg = loadImage(’mountain.png’)

18 fontRoboto = loadFont(’Roboto -Regular.ttf’);

19 }

20

21 function generateRoadtrip () {

22 nodes [0] = new BasicEvent(column [2] + horizontalCentering , row[2] +

verticalCentering , [], [11], 0, ’column [2]’, ’row[2]’, 0, 0, ’Connection fails’)

;

23 nodes [1] = new BasicEvent(column [3] + horizontalCentering , row[3] +

verticalCentering , [], [10], 1, ’column [3]’, ’row[3]’, 0, 0, ’Battery fails’);

24 nodes [2] = new BasicEvent(column [5] + horizontalCentering , row[3] +

verticalCentering , [], [10, 9], 2, ’column [5]’, ’row[3]’, 0, 0, ’Engine fails’);

25

26 nodes [3] = new BasicEvent(column [6] + horizontalCentering , row[3] +

verticalCentering , [], [8], 3, ’column [6]’, ’row[4]’, 0, 0, ’Tire 1’);

27 nodes [4] = new BasicEvent(column [7] + horizontalCentering , row[3] +

verticalCentering , [], [8], 4, ’column [7]’, ’row[4]’, 0, 0, ’Tire 2’);
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28 nodes [5] = new BasicEvent(column [8] + horizontalCentering , row[3] +

verticalCentering , [], [8], 5, ’column [8]’, ’row[4]’, 0, 0, ’Tire 3’);

29 nodes [6] = new BasicEvent(column [9] + horizontalCentering , row[3] +

verticalCentering , [], [8], 6, ’column [9]’, ’row[4]’, 0, 0, ’Tire 4’);

30 nodes [7] = new BasicEvent(column [10] + horizontalCentering , row [3] +

verticalCentering , [], [8], 7, ’column [10]’, ’row[4]’, 0, 0, ’Tire 5’);

31

32

33

34 nodes [8] = new KNgate(column [8] + horizontalCentering , row[2] +

verticalCentering , [3, 4, 5, 6, 7], [9], 8, ’column [8]’, ’row [2]’, 0, ’2 out of

5 tires fail’, 2);

35 nodes [9] = new ORgate(column [7] + horizontalCentering , row[1] +

verticalCentering , [2, 8], [12], 9, ’column [7]’, ’row[1]’, 0, ’Car fails ’);

36 nodes [10] = new ANDgate(column [4] + horizontalCentering , row [2] +

verticalCentering , [1, 2], [11], 10, ’column [4]’, ’row [2]’, 0, ’Power fails’);

37 nodes [11] = new ORgate(column [3] + horizontalCentering , row [1] +

verticalCentering , [0, 10], [12], 11, ’column [3]’, ’row[1]’, 0, ’Phone fails ’);

38 nodes [12] = new ANDgate(column [5] + horizontalCentering , row [0] +

verticalCentering , [11, 9], [], 12, ’column [5]’, ’row[0]’, 0, ’Roadtrip fails ’);

39

40 for (let i = 0; i < nodes.length; i++) {

41 if ((nodes[i]. constructor.name == ’BasicEvent ’ && nodes[nodes[i]. parents

[0]]. constructor.name != ’KNgate ’) || nodes[i]. constructor.name == ’KNgate ’) {

42 slider[i] = createSlider (0, 100, 50);

43 slider[i]. position(nodes[i].x + 5, nodes[i].y + 100);

44 slider[i].style(’width’, ’80px’);

45 }

46 }

47 }

48

49 function windowResized () {

50 resizeCanvas(windowWidth , windowHeight);

51 margin = (windowWidth - 1500) / 2;

52 if (margin < 25) {

53 margin = 25;

54 }

55 horizontalSpacing = (windowWidth - margin * 2) / columns;

56 if (horizontalSpacing < 100) {
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57 horizontalSpacing = 100;

58 } else if (horizontalSpacing > 300) {

59 horizontalSpacing = 300;

60 }

61 for (let i = 0; i < columns; i++) {

62 column[i] = margin + horizontalSpacing * i;

63 }

64 verticalSpacing = (windowHeight - 250) / rows;

65 if (verticalSpacing < 125) {

66 verticalSpacing = 125;

67 } else if (verticalSpacing > 300) {

68 verticalSpacing = 300;

69 }

70 for (let i = 0; i < rows; i++) {

71 row[i] = 225 + verticalSpacing * i;

72 }

73 for (let i = 0; i < nodes.length; i++) {

74 nodes[i].x = eval(nodes[i]. columnPos) + horizontalCentering - 23;

75 nodes[i].y = eval(nodes[i]. rowPos) + verticalCentering;

76 }

77 for (let i = 0; i < slider.length; i++) {

78 if (nodes[i]. constructor.name == ’BasicEvent ’ || nodes[i]. constructor.name

== ’KNgate ’) {

79 slider[i]. position(nodes[i].x + 5, nodes[i].y + 100);

80 }

81 }

82 rect(column [0] - 125, row[0], 200, 500)

83

84 horizontalCentering = (horizontalSpacing / 2 - 40);

85 verticalCentering = (verticalSpacing / 2 - 50);

86 }

87

88 function nameText(name , x, y) {

89 textSize (20);

90 stroke (175);

91 fill (0);

92 text(name , x + (80 - textWidth(name)) / 2, y - 7);

93 }

94
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95 function drawRect(name , x, y) {

96 fill (150, 150, 150, 100);

97 stroke (150);

98 strokeWeight (1);

99 rect(x + (80 - (textWidth(name) + 29)) / 2, y - 30, textWidth(name) + 29, 30);

100 }

101

102 function gateText(output , x, y) {

103 fill (0);

104 noStroke ();

105 if (typeof output != ’string ’) {

106 output = output.toFixed (2);

107 }

108 let str = output.toString ();

109

110 if (str.charAt(str.length - 1) == ’0’) {

111 str = str.slice(0, 3);

112 if (str.charAt(str.length - 1) == ’0’) {

113 str = str.slice(0, 1);

114 }

115 }

116 textSize (26);

117 text(str , 40 - (textWidth(str) / 2) + x, y + 65);

118 }

119

120

121 function setup() {

122 var canvas = createCanvas(windowWidth , windowHeight);

123 canvas.parent(’sketch -div’);

124 textFont(fontRoboto);

125 windowResized ();

126 generateRoadtrip ();

127 }

128

129 function draw() {

130 image(backgroundImg , 0, 0, windowWidth , windowHeight)

131 for (let i = 0; i < slider.length; i++) {

132 if (nodes[i]. constructor.name == ’BasicEvent ’ && nodes[nodes[i]. parents [0]].

constructor.name != ’KNgate ’) {

53



133 slider[i]. position(nodes[i].x + 5, nodes[i].y + 100);

134 }

135 if (nodes[i]. constructor.name == ’KNgate ’) {

136 slider[i]. position(nodes [5].x + 5, nodes [5].y + 100);

137 }

138 }

139 fill (0);

140 textSize (16);

141 text(infoText , column [0] + 10, row [0] - 190, 400, 200)

142

143 fill (100, 100, 100, 125);

144 stroke (175);

145 strokeWeight (1);

146 rect(column [0], row [0] - 200, 400, 200);

147 for (let i = 0; i < nodes.length; i++) {

148 nodes[i].x = eval(nodes[i]. columnPos) + horizontalCentering - 23;

149 nodes[i].y = eval(nodes[i]. rowPos) + verticalCentering;

150 nodes[i]. display ();

151 nodes[i]. generateOutput ();

152 }

153 }

154

155 class Node {

156 constructor(x, y, children , parents , id , columnPos , rowPos , output , name) {

157 this.x = x;

158 this.y = y;

159 this.children = children;

160 this.parents = parents

161 this.id = id;

162 this.columnPos = columnPos;

163 this.rowPos = rowPos;

164 this.output = output;

165 this.name = name;

166 }

167 }

168

169 class BasicEvent extends Node {

170 constructor(x, y, children , parents , id , columnPos , rowPos , output , input , name)

{
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171 super(x, y, children , parents , id, columnPos , rowPos , output , name);

172 this.input = input;

173 this.x = this.x - 130;

174 }

175 display () {

176 noStroke ();

177 this.generateInput ();

178 fill(failColor);

179 rect(this.x, this.y, this.input , 90);

180 fill(greenColor);

181 rect(this.x + this.input , this.y, 80 - this.input , 90);

182 gateText(this.output , this.x, this.y - 7);

183

184 line(this.x, this.y, this.x, this.y + 90);

185 this.drawOutput ();

186 nameText(this.name , this.x, this.y);

187 drawRect(this.name , this.x, this.y);

188 }

189 generateOutput () {

190 if (slider[this.id] != undefined) {

191 this.output = (slider[this.id].value()) / 100;

192 } else {

193 this.output = (slider [8]. value ()) / 100;

194 }

195 }

196 generateInput () {

197 if (slider[this.id] != undefined) {

198 this.input = slider[this.id].value () * 0.8;

199 } else {

200 this.input = slider [8]. value() * 0.8;

201 }

202 }

203 drawOutput () {

204 smallStroke(this.output);

205 fill(lightRed);

206 for (let i = 0; i < this.parents.length; i++) {

207 quad(this.x, this.y, this.x + this.input , this.y, nodes[this.parents[i

]].x + (this.input / 2) + 40, nodes[this.parents[i]].y + 100, nodes[this.parents

[i]].x - this.input / 2 + 40, nodes[this.parents[i]].y + 100);
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208 }

209 }

210 }

211

212 function drawANDgate(x, y, output) {

213 for (let i = 81; i > 0; i--) {

214 strokeWeight (2);

215 if ((1 - output) * 80 > 80 - i) {

216 stroke(greenColor);

217 } else {

218 stroke(failColor);

219 }

220 if (i < 40) {

221 line(x + i, y + 100, x + i, y + 20 - Math.sqrt (1600 - Math.pow (40 -

float(i), 2)));

222 } else {

223 line(x + i, y + 100, x + i, y + 20 - Math.sqrt (1600 - Math.pow(float(i)

- 40, 2)));

224 }

225 }

226 }

227

228 function smallStroke(output) {

229 if (output < 0.05) {

230 strokeWeight (1);

231 stroke(lightRed);

232 } else {

233 noStroke ();

234 }

235 }

236

237 class ANDgate extends Node {

238 constructor(x, y, children , parents , id , columnPos , rowPos , output , name) {

239 super(x, y, children , parents , id, columnPos , rowPos , output , name);

240 }

241 display () {

242 this.drawOutput ()

243 drawANDgate(this.x, this.y, this.output);

244 gateText(this.output , this.x, this.y + 20);
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245 gateText(’AND’, this.x, this.y - 17);

246

247 if (this.id != 12) {

248 textSize (20);

249 nameText(this.name , this.x, this.y - 22);

250 drawRect(this.name , this.x, this.y - 22);

251 } else {

252 textSize (35);

253 fill (0);

254 text(this.name , this.x + (80 - textWidth(this.name)) / 2, this.y - 31);

255 fill (150, 150, 150, 75);

256 stroke (150);

257 strokeWeight (1);

258 rect(this.x - 85, this.y - 67, 250, 46);

259 image(img , this.x - 125, this.y - 240)

260

261 }

262 }

263

264 generateOutput () {

265 if (this.id == 12) {

266 this.output = (nodes [0]. output + nodes [1]. output - nodes [0]. output *

nodes [1]. output) * nodes [2]. output + nodes [0]. output * nodes [8]. output * (1 -

nodes [2]. output);

267 } else {

268 this.output = 1;

269 for (let i = 0; i < this.children.length; i++) {

270 this.output = this.output * nodes[this.children[i]]. output

271 }

272 }

273 }

274

275 drawOutput () {

276 smallStroke(this.output);

277 fill(lightRed);

278 for (let i = 0; i < this.parents.length; i++) {

279 quad(this.x + 40 + (this.output * 80) / 2, this.y + 18, this.x + 40 - (

this.output * 80) / 2, this.y + 18, nodes[this.parents[i]].x + 40 - (this.output

* 80) / 2, nodes[this.parents[i]].y + 97, nodes[this.parents[i]].x + 40 + (this
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.output * 80) / 2, nodes[this.parents[i]].y + 97);

280 }

281 }

282 }

283

284 function drawORgate(x, y, output) {

285 strokeWeight (2);

286 for (let i = 81; i > 0; i--) {

287 if ((1 - output) * 80 > 80 - i) {

288 stroke(greenColor);

289 } else {

290 stroke(failColor);

291 }

292 if (i < 40) {

293 line(x + i, y + 100 + 0.25 * pow(float(i - 40) / 5.0, 2), x + i, y - 15

+ 0.6 * pow(float(i - 60) / 5.0, 2));

294 } else {

295 line(x + i, y + 100 + 0.25 * pow(float(i - 40) / 5.0, 2), x + i, y - 15

+ 0.6 * pow(float(i - 20) / 5.0, 2));

296 }

297 }

298 }

299

300 class ORgate extends Node {

301 constructor(x, y, children , parents , id , columnPos , rowPos , output , name) {

302 super(x, y, children , parents , id, columnPos , rowPos , output , name);

303 }

304 display () {

305 this.drawOutput ()

306 drawORgate(this.x, this.y, this.output);

307 nameText(this.name , this.x, this.y - 7)

308 drawRect(this.name , this.x, this.y - 7)

309 }

310

311 generateOutput () {

312 let sum = 1;

313 for (let i = 0; i < this.children.length; i++) {

314 sum = sum * (1 - nodes[this.children[i]]. output)

315 }
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316 this.output = 1 - sum;

317 noStroke ();

318 gateText(this.output , this.x, this.y + 30);

319 gateText(’OR’, this.x, this.y - 8)

320 }

321 drawOutput () {

322 smallStroke(this.output);

323 fill(lightRed);

324 for (let i = 0; i < this.parents.length; i++) {

325 quad(this.x + 40 + (this.output * 80) / 2, this.y + 66, this.x + 40 - (

this.output * 80) / 2, this.y + 66, nodes[this.parents[i]].x + 40 - (this.output

* 80) / 2, nodes[this.parents[i]].y + 101, nodes[this.parents[i]].x + 40 + (

this.output * 80) / 2, nodes[this.parents[i]].y + 101);

326 }

327 }

328 }

329

330 function product_Range(a, b) {

331 var prd = a,

332 i = a;

333

334 while (i++ < b) {

335 prd *= i;

336 }

337 return prd;

338 }

339

340 function combinations(n, r) {

341 if (n == r) {

342 return 1;

343 } else {

344 r = (r < n - r) ? n - r : r;

345 return product_Range(r + 1, n) / product_Range (1, n - r);

346 }

347 }

348

349 class KNgate extends Node {

350 constructor(x, y, children , parents , id , columnPos , rowPos , output , name , k) {

351 super(x, y, children , parents , id, columnPos , rowPos , output , name);
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352 this.k = k;

353 }

354 display () {

355 this.calculateSliderInput ();

356 this.drawOutput ();

357 drawORgate(this.x, this.y, this.output)

358 gateText(this.output , this.x, this.y + 30);

359 gateText(’k/N’, this.x, this.y - 8);

360 nameText(this.name , this.x, this.y - 7)

361 drawRect(this.name , this.x, this.y - 7)

362 }

363

364 calculateSliderInput () {

365 this.slidervalue = (slider[this.id]. value()) / 100;

366 }

367

368 generateOutput () {

369 let sum = 0;

370 for (let i = 0; i < this.k; i++) {

371 sum = sum - combinations(this.children.length , this.children.length - i)

* Math.pow(nodes [5]. output , i) * Math.pow((1 - nodes [5]. output), this.children.

length - i);

372 }

373 this.output = 1 + sum;

374 }

375

376 drawOutput () {

377 smallStroke(this.output);

378 fill(lightRed);

379 for (let i = 0; i < this.parents.length; i++) {

380 quad(this.x + 40 + (this.output * 80) / 2, this.y + 66, this.x + 40 - (

this.output * 80) / 2, this.y + 66, nodes[this.parents[i]].x + 40 - (this.output

* 80) / 2, nodes[this.parents[i]].y + 101, nodes[this.parents[i]].x + 40 + (

this.output * 80) / 2, nodes[this.parents[i]].y + 101);

381 }

382 }

383 }

Listing 4: The Javascript code of the web application
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10 Appendix 2: The grid system

Figure 21: Visualization of the grid
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11 Appendix 3: Summary of Expert interviews and Consent Form

In this appendix, the most important points of the expert interviews are given.

11.1 Interview 1

Job:

Researcher, statistical model checking

Relation to fault trees

Uses fault trees in his research

Explanation of fault trees to non-experts

Use a relatable example to explain FTs. Identify a top-event and break down how this could occur

until the basic event level. With a pencil and paper it works better.

Feedback on prototype

“I have to say this is amazing, it conveys very clearly the idea” AND and OR shape is confusing,

adding text would made it more clear. Time probabilities could also be interesting to add. Nice

framework to add more gates too.

11.2 Interview 2:

Job:

Researcher, Civil Engineering background

Relation to fault trees

Improved of fault trees using machine learning and big data.

Explanation of fault trees to non-experts

Show a basic fault tree of an everyday object (e.g. a bike). Explain the workings of AND and OR

gates. No mathematical formulations. Ask the person to point at the most risky event of the fault

tree image. Little extra knowledge is necessity the fault tree.

Feedback on prototype

Very nice and interesting way to show the idea behind quantitative properties and propagation.

Maybe also show change the time period of a basic event probability. Basic events should be cir-

cular according to the standardized design.
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11.3 Interview 3:

Job:

Engineering company

Relation to fault trees

Risk management for railroads/bridges etc.

Explanation of fault trees to non-experts

Take a relatable example. Ask someone about the causes of a failure and relate this to a fault tree.

Feedback on prototype

Definition of roadtrip fails is a bit ambiguous. For the rest is the concept very clear.

11.4 Interview 4:

Job:

Infrastructure company, tunnel and fire safety

Relation to fault trees

Uses quantitative fault trees for RAMS in infrastructure.

Explanation of fault trees to non-experts

Use an infrastructure example, describe the importance of reliability. Decompose fault tree part by

part.

Feedback on prototype

Very interesting, would be interesting to see if this could be used more widespread.
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11.5 Consent Form
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