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ABSTRACT
In this paper, a new multi-channel emotion classification
method based on the novel magnetoencephalography (MEG)
dataset CiNet is proposed. This paper falls into the field of
Brain-Computer Interface (BCI) research, as it uses brain
activity data for recognizing human emotions. It should
prove a valuable contribution and a comparison, as most
BCI research uses electroencephalography (EEG) data in-
stead, primarily from the DEAP dataset. Using a com-
bination of a Convolutional Neural Network (CNN) and
a Recurrent Neural Network (RNN), the system will ana-
lyze the high-fidelity data in an attempt to recognize the
emotional state of the subject. The CNN encodes spa-
tial information, while the RNN tracks changes over time.
Each part is evaluated separately as well as in conjunc-
tion, so as to establish the contribution of each of the as-
pects of analysis. Those model variations are evaluated on
both raw MEG signals and the Power Spectrum Density
(PSD) extracted from the signal. The experimental results
show that the best model is the CNN+RNN combination
trained on raw signal data, and it achieves a mean accu-
racy of 56.5% on the valence/arousal classification task.
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1. INTRODUCTION
Emotion recognition is a key aspect in developing Human-
Computer interfaces as the users’ needs and wants are
heavily influenced by their emotional state. It could also
provide an automated system for generating labels of sub-
jects’ emotional states during other experiments that re-
quire such an objective measure.

In recent years the field of emotion recognition based on
EEG data has seen a lot of increased interest [20] and
the leading dataset in this domain is the DEAP dataset
[12][20]. In this research, however, we will use a new
dataset that was acquired using MEG. While more expen-
sive, MEG data is thought to be much better suited to the
task of recognizing emotions as the magnetic fields prop-
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agate much further within the brain than electrical ones.
For EEG this problem is compounded by the fact that the
scalp itself reduces the signal strength by as much as two
orders of magnitude. In contrast, MEG signals propagate
and penetrate the brain and scalp much better, leading
to much higher fidelity. This is a significant advantage
especially in this task, as the limbic system, the part of
the brain responsible for processing emotions, is located
deeper within the brain. While EEG is capable of captur-
ing signals at shallow cortical regions in the frontal lobe,
which partly plays a role in the limbic system, MEG can
record signals from much deeper regions where the cen-
ter of emotional processing is located at, as shown in [18].
Another important advantage of the MEG readings is that
the signal has a much better spatial resolution which, in
combination with a much higher channel count than previ-
ous studies on EEG datasets, should yield an improvement
due to superior source separation ability [15].

The other techniques in this area of research, such as func-
tional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) aren’t suitable for this task.
PET is invasive and includes the use of radiation which
disqualifies it completely. fMRI is much better than PET
but still provides very low temporal resolution for this task
- around 5 seconds [16]. This is above the approximate 1
second necessary for recording emotional response [23].

Having marked the difference between EEG and MEG, it
is important to say that both signals stem from the same
source - an assembly of neurons being activated in a co-
ordinated way. Neuron activation is done through electric
signals and the resulting electric and magnetic fields can be
measured. Since the source is the same, it should be pos-
sible to leverage existing knowledge from the EEG-based
research in developing algorithms for data preprocessing
and for making informed assumptions about the design
and architecture of the Neural Network.

This paper’s contribution to the field of affective Brain-
Computer Interface (aBCI) is two-fold. Firstly, it will pro-
vide a Neural Network model that uses MEG data from the
novel CiNet dataset [22] for emotion classification. Sec-
ondly, it will investigate the paradigm known as Convo-
lutional Recurrent Neural Networks (CRNN) for this task
and explore the hyperparameter space to establish which
aspects of the system and of the data are most important
and provide best performance.

The rest of the paper is organized as follows. Firstly, to es-
tablish a baseline of knowledge for the reader, background
of the topic and the dataset is given in Section 3. After
that in Section 4, related work in this field is reviewed.
Section 5 details the experimental steps, the results of
which are presented in Section 6 and discussed in Section
7. Lastly, Section 8 gives conclusions from the research
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and recommendations for further directions.

2. RESEARCH QUESTIONS
RQ1: Can an architecture be made that uses MEG data
and classifies emotions better than a standard machine
learning model?

RQ2: Which part of the proposed model are important
and how does each impact the accuracy of the system?

3. BACKGROUND
3.1 Emotion classification
Emotion classification as a field is split between two ap-
proaches. One uses proxy indicators, such as speech tone
and facial expressions, to predict the current affection [13].
This field has been studied extensively but is limited due to
similarity between signals of different emotions [26]. The
other - physiological signals - offer a much more objec-
tive measure of emotional state, chief amongst which is
the neural activity in the brain. The recorded magnetic
fields used in this research serve as a much more objective
manifest variable that provides a basis for inference of the
emotional state.

In the field of BCI the standard for quantizing emotion
has long been the Valence/Arousal paradigm [4]. There,
the emotions are mapped onto a 2D plane with the x-axis
being valence - how positive or negative the emotion is
- and the y-axis being arousal - how strongly the person
feels the emotion. This is further illustrated in Figure 1

Figure 1. Valence/Arousal model as presented in
[10]

3.2 CiNet dataset
CiNet is a new dataset aimed to further research into aBCI
by providing higher than ever fidelity of data [22]. Its
novel approach of capturing MEG rather than EEG infor-
mation has already used in other domains [9] but also to
supplement the limitations of facial emotion recognition
techniques [26].

The data was gathered from 36 subjects over 6 trials each.
A trial consists of 4 listening periods that are broken into
a 5 second white noise primer and a subsequent 45 second
song playback. After that, the subject has 20 seconds to
rate his/her emotional response on a scale of 1 to 9 in the
valence and arousal domains.

The MEG data consists of 102 magnetometers whose read-
ings have been corrected to account for the position of the
head using SSS algorithm [21] and other factors such as in-
terference. This is a direct increase over previous datasets,
the most used of which - DEAP – offers only 32 channels
of measurement.

4. RELATED WORK
The field of aBCI has been extensively studied in recent
years as the availability of advanced machinery for both
data collection and analysis have increased [5][2].

This body of research can be broken down into multiple
parts according to learning techniques used, data prepro-
cessing steps and focus on domains of analysis reflected by
system design.

Early research used shallow learning models to estimate
the emotional state of the subjects. SVM’s and kernel
classifiers were used to limited effect of around 70% accu-
racy [3]. The other side of this division consists of Artificial
Neural Network-based approaches.

As ANN’s are sensitive to the data fed to them, prepro-
cessing steps tend to have a substantial influence on their
accuracy and ability to generalize. Researchers here seem
divided mostly on two factors - whether to use raw sig-
nals as input [1][25] or whether to decompose the signal
into its constituent frequencies [24][17][19][14]. The other
factor determines how the data is to be structured.

The structural division yields many subcategories. The
main one encompasses a large body of research that takes
into account the multi-dimensionality of the input, a nat-
ural result of which is the choice of Convolutional Neural
Networks. The dimensions in questions tend to reflect the
spatial separation of the measuring nodes and the multiple
frequency bands taken into account.

To account for the spatial separation of measuring nodes
and brain region connectivity, some research groups use an
adjacency matrix. The matrix is usually a 2D approxima-
tion of the spacing of electrodes or can take into account
functional connectivity. The latter reflects the fact that
different brain regions, while anatomically separate, can
take part in the performance of the same brain function
[6]. This can be done by computing a connectivity index
measuring the coupling of signals from two different brain
regions as in [17], but also can be the learning target of
the network [19]. While this is outside the scope of this
research, the target architecture will follow computational
neuroscience principles and account for such effects.

Last but not least, to reflect a focus on the time domain
of the experiments, some research investigates the viabil-
ity of the Recurrent Neural Network architecture pattern.
The viability of this approach is demonstrated in [1], but
can also serve as an auxiliary part of a larger system as
shown in [25], resulting in an architecture that is respon-
sive to both spatial and temporal context of the informa-
tion. This is especially important as a single snapshot
of brain activity can’t represent the whole temporal spec-
trum of relevant activity which is crucial in analyzing emo-
tional response, as indicated in [7].

There are other ways of extracting the temporal informa-
tion from the signals such as fractal-dimension or zero-
crossing value. However, it has been proven that Neural
Networks can approximate any function [8]. This means
that with the right architecture and enough time the RNN
part of the network will approximate the most optimal
function for extracting that temporal information.

5. METHODS
5.1 Preprocessing
The MEG data from the CiNet dataset was first imported
into Python arrays and reshaped according to the map-
ping shown in Figure 2. This yielded the corresponding
11 x 14 matrix for each timestep of the experiment. The
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Figure 2. MEG electrode spatial mapping onto a 2D 11 x 14 matrix. Position of electrodes was taken
from [11]

data was then downsampled 8-fold from 1kHz, as the rel-
evant frequencies are between 1 and 45Hz. With 45Hz
being the Nyquist frequency, the sample rate of 125Hz is
sufficient. The resulting array of timesteps per song per
subject constituted the training examples for the system.

One of the variations on the proposed training scheme
was to compute the Power Spectrum Density (PSD) of
the data with the help of the Fourier Transform. This was
done using the sliding window technique - Welch’s method.
The size of the window from which the Power Spectrum
Density was derived was determined to be 1 second, with
the step between applications of the Fourier Transform was
defined to be 10 timesteps (80 milliseconds). The bands
taken into account are Delta (1 to 4Hz), Theta (4 to 8Hz),
Alpha (8 to 12Hz), Beta (12 to 30Hz) and Gamma (30 to
45Hz).

In regards to the training labels, the 1 to 9 scores on the
valence and arousal scales were translated into high/low
valence and arousal scores, with scores 1-4 being low and
5-9 taken to be high. This is done commonly in research in
this field, due to the resulting dramatic decrease in com-
plexity. These 4 scores form the multi-class output labels
for the training set - [1010] encodes low valence low arousal
and [0110] encodes high valence low arousal.

5.2 Architecture
The architecture explored in this paper was inspired by
the work in [25]. It was one of the few papers to take into
account both of the crucial dimensions of the data - the
spatial and the temporal. This research adapts the model
proposed there and experiments with the introduction of
the novel ConvLSTM2D layers available in Keras. These
layers perform similar operations to a regular LSTM cell
but can operate on 2D data.

The data flow is depicted in Figure 3 and proceeds as fol-
lows. First, timesteps from t to t+S (S is the number of
considered timesteps, e.g. 1 sec * 125Hz) are fed through
a series of parallel Conv2D layers. To preserve the di-
mensionality of the initial input, ”same” padding was used
and the feature space is increased by doubling the filter
size from one layer to the next. The kernels at each step
are of the size 11 x 14 to make sure that functional con-
nections are not lost - it is possible that regions that are
spatially separate work together to provide some output.
The outputs of the CNN layers are concatenated and then
the dimensionality reduced by additional Conv2D layers.

At the same time, in the RNN part of the model, Con-
vLSTM2D layers are fed the MEG data. Here, only one

series of layers is needed, as RNNs are specifically made
for time-series data. After processing the data, this part of
the network outputs the hidden state at the last timestep.

The resulting outputs from both parts of the system are
11 x 14 x 18 matrices (the first two axes are the original
dimensions of the input, while the third is a value used
in [25] and taken here as a reference), that are then con-
catenated and flattened. At the end, 3 Dense layers of
size 1024 follow each other to provide enough complexity
to encode the data. The last one outputs the vector of
length 4, with the first two indices of which are valence
scores and the second the arousal ones.

To answer the second research question, the hyperparam-
eters tested were the impact of extracting the PSD from
the data and the importance of the constituent parts of
the above-described model. Therefore, the architecture
was adjusted to provide 3 models - a CNN-only one, an
RNN-only one and a hybrid one. Then, for each of them,
the data was adjusted to be either the raw MEG signals
or the PSD of the signals, yielding 6 total experiments.

6. RESULTS
6.1 Training & Validation
For each of the subjects, a model was constructed and
then trained on 18 out of the 24 trials, leaving the last
6 as validation data. Then, the validation accuracy was
averaged across subjects to get the model accuracy pre-
sented in Table 1. This is, therefore, a leave-one-out val-
idation scheme. While it does limit the possible conver-
gence of the models due to the reduction in the amount of
training data, it provides as close a measure of accuracy
as possible. K-fold cross-validation was at first consid-
ered but, due to the similarity of data after extracting the
PSD, it was deemed to be unsatisfactory, because that
similarity would yield incorrectly high accuracy. Another
consequence of extracting the PSD from the signal is the
reduction of the number of samples available for training
and validation which could skew the resulting accuracy.

To provide a baseline of performance a Logistic Regression
(LR) model was trained by extracting the PSD from 1
second of data into the 5 channels specified. This yielded
an input matrix of (samples, channels, bands) that was
squashed to conform to the shape accepted by the Scikit
Learn implementation of the LR - (samples, channels *
bands). The solver selected was SAGA.

6.2 Scores
The results for the different architectures can be found in
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Figure 3. Final CNN + RNN architecture for emotion classification. The dashed line shows the separation
between the constituent CNN and RNN networks. S is the number of considered timesteps, e.g. 1 sec *
125Hz

Model PSD Accuracy St. Deviation
RNN - 49.5% 25.3%
CNN - 50.4% 27.6%

CNN + RNN - 56.5% 27.9%
RNN + 53.2% 26.3%
CNN + 54.6% 23.8%

CNN + RNN + 48.6% 29.8%
LogisticRegression + 36.3% 5.3%

Random - 25% -

Table 1. Results

Table 1. Provided as a baseline is the random expected
accuracy at 25% and the LR, which achieved an accuracy
of 36.3% at a surprisingly low standard deviation, at only
5.3%. This is of course better than random, but below
any expectation of a model in this task. However, this
does help put the gains in performance achieved by our
architecture into context.

In regards to the models, while the differences between
accuracies are not striking, they do provide interesting in-
sight. Firstly, the constituent parts of the model seem to
perform quite similarly to each other, wit only a 1 percent-
age point difference. It is also quite clear that the CNN
and RNN parts do perform better on the PSD extracted
from the signal.

Secondly, while the CRNN system works better together
on raw data, its performance on the PSD extracted data is
rather sub par - a 5.3 percentage point drop from the mean
of the two sub-networks. And as the standard deviation
is not wildly different from the other models’, it is rather
striking.

7. DISCUSSION
The results achieved, while not on par with the state-of-
the-art in the field, do still provide valuable insight into
both the emotion classification task and some of the Neural
Network performance.

The first research question is therefore answered - an ar-
chitecture was found that can classify emotions based on
brain activity data better than random and better than a
basic Logistic Regression model.

The similarity in accuracy of the CNN and RNN models
is surprisingly similar. This could be interpreted to mean
that a series of concatenated convolutional outputs, each
analyzing one time-point, provide similar functionality to
the new ConvLSTM2D layers. This is a little surprising,
even though the ConvLSTM2D layers were indeed made
for such a purpose. The takeaway here might be that using
the usual Conv2D layers is after all better, as, even though
the number of parameters grows quickly, the convolutional
operations can be done in parallel rather than sequentially.
This provides a boost in training and prediction time - the
CNN-only model took 382ms and 45 ms per training step,
whereas the RNN-only model took 1sec and 212ms per
training step, on raw and PSD data respectively.

As for the performance of the combined model, it is no
surprise that it does better than the constituent parts as it
provides more complexity to encode the data. The surprise
comes in the form of the PSD-trained CRNN model which
does perform much worse. This could be attributed to
the limitation on the number of data points due to PSD
extraction, but it should be investigated further.

8. CONCLUSIONS AND FURTHER RESEARCH
In this paper, an easily extendable network for classify-
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ing emotions was designed. Then, the raw MEG signals
were reshaped and prepared for training. Lastly, multiple
variants of the hybrid network were evaluated to select
the one best suited for the task at hand. Experimental
results show that the best model achieved an accuracy of
56.5% on the validation data selected in a leave-one-out
approach.

My recommendation for further research would be to take
into account recent developments for time-series analysis
by introducing Transformers as the RNN part of the model
and more experimentation with the model - e.g. varying
the amount of time taken into account, trying different
techniques for combining sub-network outputs - and data
preprocessing - e.g. employing different methods for fre-
quency extraction, removing the baseline of the signal as
done in [25]. More work should also be done in develop-
ing techniques for the interpretability of AI. With high
accuracy given by models and the ability to track how the
model is able to provide its results, it might be possible to
settle the debate over the patterns of brain activity that
determine emotions and their structural and temporal as-
pects.
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