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1. ABSTRACT
This paper describes the process and results of finding
the most accurate set of features of the data captured by
embedded smarthpone sensors to recognize six different
activities of daily living. The sensor data of the gyroscope
and the accelerometer are processed and trained in the
J48 and Naive Bayes classifiers to recognize laying, stand-
ing, sitting, walking, going upstairs and going downstairs.
Starting with 272 features, around half of these are elimi-
nated by using a Ranker method based on the information
gain. Afterwards a Wrapper Subset Evaluator is applied
and results in the most accurate set of features for the
six activities in both classifiers. By training the classifiers
with these sets of best features the accuracy improved up
to 28.92%, resulting in an overall accuracy for all activities
ranging from 95.32% up to 99.97%.
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2. INTRODUCTION
Human activity recognition (HAR) has become increas-
ingly relevant in the last years in different fields such as
health monitoring, sports, smart environments, security
and elderly care [5]. Many activities can be studied to rec-
ognize, including walking, running, laying down, cycling,
going upstairs and going downstairs. Although this field
of human monitoring is emerging, it is still a challenging
field of research. Different approaches have been taken in
previous research to monitor human activities. Computer
vision based systems to detect suspicious human activi-
ties, activity recognition systems based on WiFi signals
and human monitoring using body-worn sensors are ex-
amples of previous research approaches. However, these
proposed solutions either are location specific or require
additional hardware. A widely deployable activity recog-
nition system will therefore need a more user-friendly and
usable solution.

Such a widely deployable activity recognition system could
be achieved by using smartphones. The smartphone us-
age has rapidly increased over the last years. In early
2019 around 76 percent of the population of advanced
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economies owned a smartphone. With more than three
quarters of the population owning a smartphone, it would
be a viable and low-cost solution.

A smartphone nowadays contains different sensors such
as an accelerometer, gyroscope, magnetometer, proximity
sensor and a microphone. Being able to extract the pro-
duced data from these sensors during different activities
can lead to highly accurate activity recognition. This field
of smartphone activity recognition has already been ex-
plored during different researches. However, the majority
of these studies focus on the feasibility of using smart-
phone sensors for HAR1. These studies have shown that
the embedded smartphone sensors can accurately be used
to recognize human activities. Although it has been shown
that embedded smartphone sensors can be used for HAR,
there is still research that can be done regarding the best
features of these sensors to use for each specific activity.
This knowledge can then be applied by different applica-
tions which are not using a smartphone. An application
in elderly care can for example be interested in when an
elderly is laying at an unusual time, which could indi-
cate that they are helpless laying on the floor. The fea-
tures suggested for the recognition of laying down can then
be applied in this application. So in conclusion the main
research question for this research will be: Which sets
of extracted features from embedded smartphone
sensors are most accurate to recognize different
activities of daily living?

3. RELATED WORK
Different studies have been conducted in the field of HAR.

3.1 Camera Based Approaches
Jalal et al.[5] developed a video sensor-based human ac-
tivity recognition system to monitor in elderly care. They
used depth video sensors to create and capture depth sil-
houettes. Using these silhouettes they created human skele-
tons which can be processed to recognize activity and live
log the elderly. Mean recognition rates of 93 percent were
achieved using this technique. A human activity recogni-
tion system using a mobile camera was proposed by Song
and Chen[6]. They captured the human body using the
mobile camera and combined the information of location,
pose and elapsed time to recognize the activity. They
achieved a recognition rate of 94.8 percent during their
conducted experiments.

3.2 WiFi Based Approaches
Li et al.[8] showed in their conducted research that WiFi
signals can be used to detect human motions and activi-
ties. Their system uses the phase and amplitude informa-
tion from the channel state information. This information

1Human Activity Recognition

1



contains the effect of the activity and also the environ-
ment, from which they extract the signal segments that
belong to the human activity. During the simulation, a
mean accuracy of 96,6 percent in line-of-sight and a mean
accuracy of 92 percent in not line-of-sight was achieved.
Arshad et al.[2] also utilized the channel state informa-
tion, however they utilized all available subcarriers of a
WiFi signal. Subcarriers are signal carriers which are car-
ried on top of the main signal carrier to transmit additional
information. These subcarriers and main carrier are de-
modulated seperately at the receiving end of the signal.
This research was novel as they utilized all subcarriers of
the WiFi signal instead of only a small subset of subcar-
riers. Each subcarrier provides more information about
the human activity which will benefit the accuracy. They
achieved an average accuracy of 97 percent for multiple
communication links.

3.3 Body-worn Sensor Based Approaches
Scheurer et al.[10] researched if Gradient Boosted Trees
was an effective decision algorithm for recognising 17 dif-
ferent activities of firefighters. Data of wireless inertial
sensor units was used in these Gradient Boosted Decision
Trees and compared against k-Nearest Neighbors and Sup-
port Vector Machines algorithms. They concluded that
the Gradient Boosted Trees outperformed the other two
algorithms.

3.4 Smartphone Based Approaches
Kwapisz et al.[7] proposed a human activity recognition
system based on the accelerometer in a smartphone. They
collected data from twenty-nine users and summarized it
into ten seconds data intervals. After classifying they
achieved a mean accuracy of over 90 percent for each ac-
tivity. Bayat et al.[3] also used the accelerometer in smart-
phones and its data to predict physical human activities.
They proposed a low-pass filter for the raw data which
isolates the gravity acceleration from the body acceler-
ation. They selected five classifiers and combined them
into an optimal classifier. This method reached an mean
accuracy of 91 percent. Ronoa and Cho[9] proposed a
system in which they used accelerometer and gyroscope
sensor data. Firstly a continuous hidden Markov model
is applied to seperate moving and non-moving activities.
Secondly continuous hidden Markov models are applied
for classification, to recognize the executed activity. By
applying this two stage continuous hidden Markov model,
an accuracy of 91 percent was achieved.

4. METHODOLOGY
4.1 Data collection
The first step of the research was to collect the sensor
data. Two sensors were used to collect the data during
the different activities.

4.1.1 Accelerometer
A triaxial accelerometer will be used to measure acceler-
ation. This accelerometer not only detects acceleration,
but also captures vibration and tilt. This can precisely
determine movement and orientation along the x-axis, y-
axis and z-axis. Figure 1 shows the orientation within a
smartphone.

4.1.2 Gyroscope
A gyroscope is much like an accelerometer as it also pro-
vides orientation details and direction, but the gyroscope
does this with greater precision. The biggest difference is

Figure 1. Orientation of accelerometer within a
smartphone.

Name Description

Standing The user stands right up
Sitting The user sits
Laying The user lays down
Walking The user moves with a slow pace
Going upstairs The user walks up the stairs
Going downstairs The user walks down the stairs

Table 1. Description of performed activities

that the gyroscope can measure angular velocity, whereas
the accelerometer is not able to measure this.

4.1.3 Gathering the data
The initial plan was to build an app for this research to
gather the sensor data during the six different activities
which are depicted in Table 1. This app was indeed built
and was able to retrieve the sensor data from the sen-
sors during the activities. However, gathering this data,
labelling it correctly and extracting the features from the
data turned out to be too time-consuming within the given
time frame of this research. Therefore an existing labelled
data set was used during this research[1]. This data set
consists of sensor data of 30 people who performed the six
activities wearing a smartphone on their waist. The gy-
roscope captured the 3-axial angular velocity and the ac-
celerometer captured the 3-axial linear acceleration, both
at a rate of 50 times per second. After capturing the data,
the signals of the accelerometer and the gyroscope were
pre-processed using noise filters and sampled in sliding
windows of 2.56 seconds with a 50% overlap. This dura-
tion and overlap was chosen as the average moving speed
of human beings is 1.5 steps per second[4], so this ensures
that a full walking cycle of two steps is captured.To sepa-
rate the 3-axial linear acceleration signal into gravitational
acceleration and body acceleration, a low-pass filter was
used which was shown to be successful in the research of
Bayat et al.[3]. A filter with 0.3Hz cutoff frequency was
used on the gravitational force as this force only has low
frequency components and maintains a constant gravity
signal[1]. In each sliding window a vector of features was
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Name Description

tBodyGyro Angular velocity of the body
tBodyGyroJerk Rate at which the angular velocity changes
tBodyAcc Acceleration of the body
tBodyAccJerk Rate at which the acceleration changes
tGravityAcc Gravitational acceleration

Table 2. Naming and description of the features

calculated by using the variables from the time and fre-
quency.

4.2 Feature extraction
4.2.1 Naming of the signals

This section will elaborate on the naming and specifica-
tion of the different features. The tBodyGyro indicates
the angular velocity captured by the gyroscope. As men-
tioned before, the acceleration signal of the accelerome-
ter was seperated into a body acceleration signal, tBody-
Acc, and a gravitational acceleration signal, tGravityAcc.
The tBodyAcc and tBodyGyro were derived to obtain the
jerk of these signals, which indicates the rate at which
the acceleration changes, tBodyAccJerk, and the rate at
which the velocity changes over time, tBodyGyroJerk. All
these five signals have their components in the X, Y and
Z directions, which are indicated by -X, -Y and -Z respec-
tively. For example, tBodyAccJerk-X indicates the rate at
which the body acceleration changes over time in the X-
axis and tBodyGyro-Z indicates the angular velocity in the
Z-axis. Table 2 summarizes the naming and description
of these signals. Furthermore the magnitude of these five
different three-dimensional signals (tBodyGyro, tBodyGy-
roJerk, tBodyAcc, tGravityAcc and tBodyAccJerk) were
calculated using the Euclidean norm, resulting in tBody-
GyroMag, tBodyGyroJerkMag, tBodyAccMag, tGravity-
AccMag and tBodyAccJerkMag. The Euclidean norm is
calculated by taking the square root of the Euclidean inner
product.

4.2.2 Naming of the variables
Different variables can be estimated from the aforemen-
tioned signal vectors. Table 3 shows the different variables
that were estimated from the signals.

Name Description

Mean() Mean value
Std() Standard deviation
Mad() Absolute deviation of the median
Max() Largest value in the array
Min() Smallest value in the array
Sma() Signal magnitude area
Energy() Energy measure
Iqr() Interquartile range
Entropy() Signal entropy
ArCoeff() Autoregression coefficients
Correlation() Correlation between two signals
Angle() Angle between two vectors

Table 3. Clarification of the variable names of the
signals

Most of these variables are well known, however some of
them need some clarification.

• Signal magnitude area: This is defined as the sum
of the three axis divided by the number of samples in

a sliding window. This is calculated by the equation

SMA =
1

N

N∑
i=1

(|x(i)|) + (|y(i)|) + (|z(i)|)

where N denotes the number of samples and x(i),
y(i) and z(i) denote the value of x-axis, y-axis and
z-axis respectively.

• Energy: The energy of a signal is the area under
the squared magnitude of that specific signal.

E =

∫ ∞
−∞
|x(t)|2dt

• Autoregression coefficients: The following func-
tion

y(t) =

p∑
i=1

α(i)y(t− 1) + ε(t)

represents an autoregressive model. This model uses
previous observations in time to predict the value at
the next time step. y(t) is the signal, α(i) are the
AR-coefficients, ε(t) is assumed to be the noise on
the signal and p is the order of the filter, which is 4
in the case of this research. So this model uses the
past 4 values of the signal to estimate the current
value of y(t).

Following this signal and variable naming convention, there
will be 40 variables for the five signals in Table 2. Fur-
thermore there will be 13 variables for the five magnitude
vectors discussed in Section 4.2.1. Finally, there will be
7 angle variables, where the angle between vectors of the
mean gravity and the mean of the other signals is esti-
mated. This results in 272 features to use for classifica-
tion.

4.3 Classification
4.3.1 Type of classifiers

A classifier can be trained with training data to identify in
which class a performed activity belongs when providing
it the sensor data of the performed action. Weka is a very
powerful machine learning tool that can be used to train
such classifiers and will therefore be used in this paper.
Different types of classifiers are available within Weka.

• Functions: These classifiers use models with math-
ematical functions to classify the data. Logistic and
MultilayerPerceptron are examples of such classifiers.

• Bayes: Bayes classifiers use numeric estimator pre-
cision values based on the training data to classify
the data. The best-known Bayes classifier is Naive-
Bayes.

• Trees: Tree classifiers create decision trees to decide
in which class the given data belongs. Examples of
these classifiers are J48 and LMT.

Tests with the gathered sensor data will have to be per-
formed to determine which classifiers to use for this re-
search. Accuracy but also time efficiency will be taken
into account here as there is a limited time frame for this
research.
When it is clear which classifiers will be used, the main
data set will be transformed. As the main data set con-
tains all six different activities and therefore cannot be
analysed properly regarding a specific activity, the main
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data set will be transformed into six different data sets.
The main data set will be copied and activities not re-
searched in the data set will be labelled as ’OTHER’.
Through this approach it is easier to analyse which fea-
tures are best for each activity, as with more activities in
one data set this information could be influenced by the
other activities.

4.3.2 Preliminary feature removal
As there will be 272 features in total from which can be
chosen, it will be too time-consuming to apply attribute
selection with all of the 272 features. Therefore some of
the features will have to be removed preliminary before
applying the attribute evaluator on the data. This can
be done in Weka by applying a single-attribute evaluator
method with ranking. This method will rank the features
according to their information gain or the correlation be-
tween the feature and the class. Using this method it is
possible to eliminate irrelevant features for each data set.

4.3.3 Best feature set selection
After using the ranking method, a Wrapper subset eval-
uator is applied with a Best First search method. This
Wrapper subset evaluator evaluates different feature sets
by using a learning scheme. The accuracy of the learn-
ing scheme for a set of attributes is estimated by the use
of cross validation. This evaluator will repeatedly try to
find a better subset of features and eventually outputs the
most accurate set of features for the activity.

5. RESULTS
This section shows the results of the classifying process.

5.1 Determination of classifiers
To determine which classifiers will be used, an accuracy
test was done on the main data set. The results of this
test can be found in Table 4.

Classifier Accuracy (%) Duration (seconds)

NaiveBayes 86.6159 6
Logistic 97.9461 2050
J48 95.7291 16
MultiLayerPerceptron 97.7017 5432
LMT 96.8971 3145

Table 4. Accuracy and duration of the different
classifiers

Logistic, LMT and MultiLayerPerceptron turned out to
take too much time for the given time of this research.
Even after eliminating more than half of the features be-
fore applying the subset evaluator, it would still take more
than 24 hours to apply the subset evaluator on one data
set, let alone that it would have to be done on all six data
sets. Therefore NaiveBayes and J48 were chosen for the
scope of this research. Both classifiers will be trained and
tested by using 10-fold cross-validation. This splits the
provided data set into ten subsamples. One of these sub-
samples will serve as testset and the other nine subsamples
will serve as trainingsets to train the classifier. This pro-
cess is repeated ten times after which the average accuracy
of these ten folds will be the final accuracy of the classifier.

5.2 Preliminary feature elimination
The feature elimination was executed by applying an Info
Gain Attribute Evaluator over the data sets with a Ranker
search method. Applying an offset of 0.15 as minimum
Info Gain would eliminate around half of the features and

was therefore chosen in all six data sets. Table 5 shows
the six activities and the number of features that were left
in the data set.

Activity Number of features left

Going downstairs 132
Going upstairs 147
Laying 143
Sitting 120
Standing 129
Walking 138

Table 5. The six data sets with the amount of
features left after preliminary feature elimination

This preliminary feature elimination reduced the average
computation time from 7320 seconds to 1260 seconds for
finding the best set of features for the J48 classifier. The
average computation time for finding the best feature set
for the Naive Bayes classifier was reduced from 3960 sec-
onds to 695 seconds.

5.3 Best feature set selection
After removing the features with the least info gain, the
Wrapper Subset Evaluator with a Best First search method
was applied. This was done for the J48 classifier and the
NaiveBayes classifier on all six data sets.

5.3.1 Going Downstairs
Table 6 shows the best sets of features for recognizing go-
ing downstairs for the J48 and the Naive Bayes classifiers.

J48 Naive Bayes

tBodyAcc-max()-X tBodyAcc-arCoeff()-X,4
tBodyAcc-correlation()-X,Y tBodyAcc-correlation()-X,Z
tGravityAcc-max()-Y tGravityAcc-arCoeff()-Y,2
tGravityAcc-min()-Z tGravityAcc-arCoeff()-Z,4
tBodyGyro-correlation()-Y,Z tBodyAccJerk-arCoeff()-X,2
tBodyGyroJerk-arCoeff()-Z,1 tBodyAccJerk-arCoeff()-Y,2
tBodyAccJerkMag-energy() tBodyAccJerk-arCoeff()-Z,4
tBodyGyroMag-iqr() tBodyGyro-correlation()-Y,Z
tBodyGyroJerkMag-min() tBodyGyroJerk-arCoeff()-Y,3

tBodyGyroJerk-
correlation()-X,Y
tBodyAccMag-std()
tBodyAccJerkMag-arCoeff()3
tBodyGyroJerkMag-arCoeff()3

Table 6. Going downstairs: Best set of features for
J48 and Naive Bayes classifiers

5.3.2 Going Upstairs
Table 7 shows the best sets of features for recognizing go-
ing upstairs for the J48 and the Naive Bayes classifiers.
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J48 NaiveBayes

tBodyAcc-arCoeff()-Y,2 tBodyAcc-mean()-Y
tGravityAcc-std()-Z tBodyAcc-energy()-X
tGravityAcc-min()-Y tBodyAcc-correlation()-X,Z
tGravityAcc-min()-Z tGravityAcc-entropy()-X
tGravityAcc-arCoeff()-Z,1 tGravityAcc-arCoeff()-Y,2
tGravityAcc-
correlation()-X,Y tGravityAcc-arCoeff()-Z,1
tBodyAccJerk-mean()-Y tGravityAcc-arCoeff()-Z,2
tBodyAccJerk-mad()-X tGravityAcc-correlation()-Y,Z
tBodyAccJerk-
arCoeff()-Y,1 tBodyAccJerk-max()-X
tBodyGyro-std()-Y tBodyAccJerk-max()-Z
tBodyGyro-mad()-Y tBodyAccJerk-arCoeff()-Z,2
tBodyGyro-iqr()-Z tBodyAccJerk-correlation()-X,Y
tBodyGyro-arCoeff()-X,2 tBodyAccJerk-correlation()-X,Z
tBodyGyro-arCoeff()-Y,1 tBodyGyro-iqr()-Z
tBodyGyroJerk-mean()-X tBodyGyroJerk-arCoeff()-X,4
tBodyAccJerkMag-mad() tBodyGyroJerk-arCoeff()-Y,2
tBodyAccJerkMag-iqr() tBodyGyroJerk-correlation()-X,Z
tBodyGyroMag-iqr() tBodyAccJerkMag-arCoeff()3

tBodyAccJerkMag-arCoeff()4
tBodyGyroMag-arCoeff()3
tBodyGyroMag-arCoeff()4
tBodyGyroJerkMag-arCoeff()3
tBodyGyroJerkMag-arCoeff()4
angle(tBodyGyroJerkMean,
gravityMean)

Table 7. Going upstairs: Best set of features for
J48 and Naive Bayes classifiers

5.3.3 Laying
Table 8 shows the best sets of features for recognizing lay-
ing down for the J48 and the Naive Bayes classifiers. J48
only has one feature in its best feature set, namely the
minimal value of the gravity acceleration in the x-axis.
This is rather logical, as there is almost no change in ac-
celeration in the x-axis when laying down compared to the
other activities.

J48 NaiveBayes

tGravityAcc-min()-X tBodyAcc-correlation()-X,Y
tBodyAcc-correlation()-Y,Z
tGravityAcc-min()-X
tGravityAcc-iqr()-Y
tGravityAcc-correlation()-Y,Z
tBodyAccJerk-arCoeff()-Z,4
angle(tBodyGyroJerkMean,
gravityMean)

Table 8. Laying: Best set of features for J48 and
Naive Bayes classifiers

5.3.4 Sitting
Table 9 shows the best sets of features for recognizing sit-
ting for the J48 and the Naive Bayes classifiers.

J48 NaiveBayes

tGravityAcc-max()-Z tBodyAcc-arCoeff()-X,4
tGravityAcc-min()-Y tBodyAcc-arCoeff()-Y,4
tGravityAcc-arCoeff()-Y,2 tBodyAcc-correlation()-X,Y
tBodyGyro-mean()-Y tBodyAcc-correlation()-X,Z
tBodyAccMag-max() tGravityAcc-mean()-Y
tBodyAccJerkMag-arCoeff()1 tGravityAcc-max()-Y

tGravityAcc-min()-Z
tGravityAcc-arCoeff()-Z,3
tGravityAcc-correlation()-X,Y
tBodyAccJerk-correlation()-X,Y
tBodyGyroJerk-entropy()-X
tBodyGyroJerk-arCoeff()-X,1
tBodyGyroJerk-arCoeff()-X,4
tBodyGyroJerk-correlation()-X,Y
tBodyGyroJerk-correlation()-Y,Z
tBodyGyroMag-arCoeff()1
angle(tBodyGyroMean,
gravityMean)
angle(tBodyGyroJerkMean,
gravityMean)
angle(Y,gravityMean)

Table 9. Sitting: Best set of features for J48 and
Naive Bayes classifiers

5.3.5 Standing
Table 10 shows the best sets of features for recognizing
standing for the J48 and the Naive Bayes classifiers.
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J48 NaiveBayes

tBodyAcc-std()-X tBodyAcc-arCoeff()-X,1
tBodyAcc-max()-Z tBodyAcc-arCoeff()-Y,4
tBodyAcc-entropy()-Y tBodyAcc-correlation()-X,Y
tBodyAcc-arCoeff()-X,1 tGravityAcc-max()-Z
tBodyAcc-arCoeff()-Y,2 tGravityAcc-min()-Y
tBodyAcc-correlation()-X,Z tGravityAcc-arCoeff()-Z,4
tGravityAcc-max()-Y tBodyAccJerk-arCoeff()-X,2
tGravityAcc-max()-Z tBodyGyro-arCoeff()-Y,1
tGravityAcc-energy()-Y tBodyGyro-arCoeff()-Y,4
tGravityAcc-entropy()-X tBodyGyroJerk-arCoeff()-X,1
tGravityAcc-arCoeff()-X,3 tBodyGyroJerk-arCoeff()-X,2
tGravityAcc-arCoeff()-X,4 tBodyGyroJerk-arCoeff()-X,3
tBodyAccJerk-std()-Z tBodyGyroJerk-arCoeff()-X,4
tBodyAccJerk-mad()-X tBodyGyroJerk-arCoeff()-Z,4
tBodyAccJerk-max()-Z tBodyGyroJerk-

correlation()-X,Y
tBodyAccJerk-min()-Z tBodyGyroJerk-

correlation()-Y,Z
tBodyAccJerk-arCoeff()-X,1 tBodyGyroMag-arCoeff()1
tBodyGyro-arCoeff()-Z,3 tBodyGyroJerkMag-arCoeff()1
tBodyGyroJerk-energy()-Y tBodyGyroJerkMag-arCoeff()2
tBodyGyroJerk-iqr()-Y tBodyGyroJerkMag-arCoeff()3

angle(tBodyGyroJerkMean,
gravityMean)

Table 10. Standing: Best set of features for J48
and Naive Bayes classifiers

5.3.6 Walking
Table 11 shows the best sets of features for recognizing
walking for the J48 and the Naive Bayes classifiers.

J48 NaiveBayes

tBodyAcc-std()-X tBodyAcc-mean()-X
tBodyAcc-mad()-Y tBodyAcc-energy()-X
tBodyAcc-correlation()-X,Y tBodyAcc-arCoeff()-Y,3
tGravityAcc-mean()-X tBodyAcc-arCoeff()-Y,4
tGravityAcc-min()-Z tBodyAcc-correlation()-X,Y
tGravityAcc-energy()-X tGravityAcc-sma()
tGravityAcc-entropy()-Y tGravityAcc-entropy()-X
tGravityAcc-arCoeff()-Y,1 tGravityAcc-arCoeff()-X,1
tBodyAccJerk-min()-X tGravityAcc-arCoeff()-Y,1
tBodyAccJerk-
correlation()-X,Y tBodyAccJerk-arCoeff()-Z,4
tBodyGyro-std()-Y tBodyAccJerk-

correlation()-X,Y
tBodyGyro-max()-Y tBodyGyro-mean()-X
tBodyGyro-entropy()-X tBodyGyro-arCoeff()-Y,4
tBodyGyro-
correlation()-Y,Z tBodyGyro-arCoeff()-Z,2
tBodyGyroJerk-std()-Y tBodyGyro-

correlation()-X,Y
tBodyGyroJerk-mad()-Y tBodyGyroJerk-mad()-X
tBodyGyroJerk-max()-Z tBodyGyroJerk-

correlation()-X,Z
tBodyGyroJerk-
correlation()-X,Y tBodyGyroJerk-

correlation()-Y,Z
tBodyGyroJerk-
correlation()-X,Z tBodyAccMag-arCoeff()1
tBodyAccJerkMag-std() angle(tBodyGyroJerkMean,
tBodyAccJerkMag-mad() gravityMean)
tBodyAccJerkMag-arCoeff()4
tBodyGyroMag-mean()

Table 11. Walking: Best set of features for J48
and Naive Bayes classifiers

5.4 Accuracy improvement
This section describes the improvement of the accuracy
of the J48 and Naive Bayes classifiers when trained and
tested with the best set of features.

5.4.1 Improvement of J48 classifier
Table 12 shows the accuracy of the J48 classifier for all
activities when used with all 272 features and with only
their best features. All accuracies are increased, except
the accuracy of laying which remained the same. This
can be explained by the fact that the tree built in the
J48 classifier for this activity consists of only one feature,
tGravityAcc-min()-X, which is the same as the feature in
the best feature set.

J48 All features J48 Best features

Going downstairs 97.463% 98.409%
Going upstairs 98.354% 98.898%
Laying 99.973% 99.973%
Sitting 97.565% 98.422%
Standing 98.109% 98.681%
Walking 97.661% 98.422%

Table 12. Accuracies of the J48 classifier with all
features and only the best features

5.4.2 Improvement of Naive Bayes classifier
Table 12 shows the accuracy of the Naive Bayes classifier
for all activities when used with all 272 features and with
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NB All features NB Best features

Going downstairs 75.626% 98.041%
Going upstairs 75.544% 97.824%
Laying 84.290% 99.878%
Sitting 66.553% 95.478%
Standing 83.991% 95.321%
Walking 79.108% 97.851%

Table 13. Accuracies of the Naive Bayes classifier
with all features and only the best features for each
activity.

only their best features. All accuracies are substantially
increased to a minimum accuracy of 95.321%.

5.4.3 Overall improvement
Table 14 shows the overall improved accuracy of both clas-
sifiers for each activity.

Activity Improvement NB Improvement J48

Going downstairs 22.416% 0.946%
Going upstairs 22.280% 0.544%
Laying 15.588% 0%
Sitting 28.924% 0.857%
Standing 11.330% 0.571%
Walking 18.743% 0.762%

Table 14. Overall improvement of using the best
features for the Naive Bayes classifier and the J48
classifier.

The accuracy of the Naive Bayes classifier is significantly
improved with improvements ranging from 11% to almost
29%. The improvements of the J48 classifier are lower,
however these accuracies were already minimal 97.46%
when performed with all features.

Table 15 shows the best accuracies of both classifiers. The
bold percentage in each row points out the most accurate
classifier for the activity. The J48 classifier is still the best
performing classifier for all six activities. However, the
differences in accuracies of both classifiers are significantly
lower now.

NB J48

Going downstairs 98.041% 98.409%
Going upstairs 97.824% 98.898%
Laying 99.878% 99.973%
Sitting 95.478% 98.422%
Standing 95.321% 98.681%
Walking 97.851% 98.422%

Table 15. Accuracies of the Naive Bayes and J48
classifiers with only the best features for each ac-
tivity.

Similar work in Human Activity Recognition using smart-
phone sensors such as Kwapisz et al. [7], Bayat et al. [3]
and Ronoa and Cho[9] showed an average accuracy of 90%
to 92%. The described results show that the approach in
this research outperforms those approaches as it reached
accuracies ranging from 95.32% up to 99.97% by deter-
mining the best sets of features for each activity.

6. CONCLUSION

In conclusion, the accuracy of the J48 and Naive Bayes
classifiers can be improved for almost all activities by de-
termining the best set of features from the data sets. By
first eliminating the least informative features using a Ranker
search method and thereafter running a Wrapper Subset
Evaluator with a Best First search approach it is possible
to increase the accuracy of the Naive Bayes classifier up
to 28.9%. The J48 classifier has only minor improvements
as it already has a minimum accuracy of 97.46%. How-
ever, the accuracy still improves with at least 0.5% when
the best set of features is used in the training process of
the classifier. The J48 classifier still outperforms the Naive
Bayes classifier in terms of accuracy for all activities. How-
ever, the accuracies of both classifiers are closer together
when trained with only the best feature sets. The J48
classifier is best when accuracy is the main objective for
an application. If computation time is an issue for an ap-
plication, then the Naive Bayes classifier is the best choice
as it delivers high accuracies within the fastest time.

7. FURTHER RESEARCH
Due to time restrictions of this research there was no time
available to improve the more time consuming classifiers
such as MultiLayerPerceptron or Logistic. This could be
done in further research where there is more time available.
Suggestions for further research could also be to skip the
step of preliminary feature elimination, which was also
used in this research due to time constraints. However,
even higher improvements of accuracy might be achieved
when skipping this step as features with less information
gain can contribute to the overall accuracy. Although the
information gain of these features is low, they can be the
determining factor in the algorithms when improving the
accuracy. A last suggestion for further research is to find
the best set of features for combined activities, as this
paper only focuses on the best features for the separate
activities.
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